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ABSTRACT OF THE DISSERTATION

Performance of Time Delay Estimation and Range-Based Localization in Wireless
Channels

by

Ning Liu

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, December 2010

Professor Zhengyuan Xu, Chairperson

This thesis studies the performance of time delay estimation and the range-based

localization schemes in wireless multipath channels. The research focuses on the local-

ization schemes based on time-of-arrival and time-difference-of-arrival measurements. In

multipath environments, time delay measurements suffer from the errors due to weak

line-of-sight and rich non-line-of-sight (NLOS) signal paths. Instead of proposing range

measurement algorithms, the thesis is devoted to develop theoretical performance lower

bounds used as benchmarks to guide algorithm design and provide insight into the be-

havior of time delay estimation (TDE).

The author develops Ziv-Zakai bounds (ZZBs) on Bayesian estimation of time de-

lay, for known pulsed signal and frequency hopping waveforms that propagate through

unknown random multipath channels following Rayleigh/Rician distribution, with a

uniform prior on the delay. The bounds do not assume channel knowledge at receivers,

providing more realistic and tighter performance limits than the average bound that

assumes channel knowledge. The ZZBs also present good performance prediction for

maximum a posteriori estimator, tracking a wide range of signal-to-noise ratios. The

ZZB for wideband frequency hopping waveforms reveals the performance benefit for

vii



TDE from frequency diversity over frequency-selective fading channels. To evaluate the

ZZB, the author proposes a moment generating function approach. The closed-form

expressions for independent flat-fading channels enable easy study of the effects of SNR,

frequency diversity, and channel statistics on TDE.

The TDE errors lead to time-based ranging errors that in turn cause positioning

errors and deteriorated localization performance. The thesis models the NLOS range

measurement error as a deterministic or random positive bias, following widely adopted

distributions for time delay over multipath channels. The error analysis for typical

estimators shows that the MSE and bias performance is determined by the statistics of

measurement bias and noise, the beacon array geometry and the estimator type.
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Chapter 1

Introduction

1.1 Background

In the past decades significant attention and efforts have been placed on wireless

networks. In addition to the communication capability, from the network service per-

spective, transceiver location information itself can be one of the services provided by

a network. A well-known example is the E-911 service of cellular networks [1], which

can provide the location information of the subscribers in emergency. Another example

is the location-based services (LBS) in wireless networks, which support applications

by commercial content providers in various contexts such as health, work and personal

life. In such networks, mobile devices’ location information is integrated with other

information in order to provide added value to users. In other specialized areas such as

military, scientific research, traffic control, agricultures and warehouse inventory man-

agement, low-cost unmanned localization capabilities for wireless sensor networks are

desired for surveillance, data collection and remote control [2]. In fact, for these kinds

of applications, when sensor data is reported, it should be accompanied with data’s

origination. The raw sensor data could be of very limited value if it is not combined

1



Localization Area of PHY Ranging Location Security
Schemes Deployment Signal Method Entity

GPS [3] WAL RF ToA Client Open

TeleSentinel [5] WAL RF(TDMA) AoA Network Open

Cursor [6] WAL RF(GSM) TDoA Network Open

SnapTrack [7] WAL RF ToA Client Open

Cricket [8] LAL Ultra Sound ToA Client Open

LEASE [9] LAL RF(802.11) RSS Network Open

HORUS [10] LAL RF(802.11) RSS Client Open

DV-Hop [11] AHL RF Conn Client Open

SeRLoc [12] AHL Any AoA Client Secure

SPA [13] AHL RF ToA Client Open

AHLoS [14] AHL Ultra Sound ToA Client Open

Table 1.1: List of some localization schemes for wireless sensor networks.

with spatial information. With location information the sensor data can be treated as

interconnected spatial samples to compute statistics rather than separate sensor read-

ings. Furthermore, from the perspective of network administration, location information

can also be used by commercial network operators to implement location based billing,

network configuration and performance optimization.

Generally the location information of a mobile device is obtained by the sky-

infrastructure-based GPS [3] receivers and assisted by cellular positioning methods,

while the GPS signal is unavailable for indoor environments and thus standalone so-

lutions utilizing terrestrial signals such as wireless LAN or Bluetooth become more

appropriate for obtaining positions. In addition, for some cost and power constraint

applications, for example wireless sensor networks, low complexity is a requirement of

high priority and integrating a GPS receiver for each sensor is not an affordable solution.

Thus terrestrial signal based localization schemes are more preferable in these scenarios.

A shortened list of existing localization schemes from [4] is provided in Table 1.1.

Solutions to the localization problem in wireless systems can be categorized in var-

ious ways, as shown in Fig. 1.1, depending on different classification criteria. Among

2



Localization

Area of

deployment

Measurement

parameter
Estimation

technique
Security

Wide Area

Local Area

Ad Hoc

PHY

signal

RF

Infrared

Ultrasound

RSS

ToA

Connectivity

AoA

Lookup

table

Deterministic

Probabilistic

Localizing

entity

Network

Client

Secure

Open

TDoA

Figure 1.1: Classification of wireless localization schemes.

all kinds of classifications, one important is based on what measurement parameters are

used. For instance they can be divided into range-free and range-based techniques [4],

depending on available measurements. Range-free techniques can rely on angle-of-arrival

(AoA) measurements or transceiver connectivity (Conn) [12, 15], as these measured pa-

rameters for location estimation do not utilize the knowledge of exact point-to-point

distance. The standalone application of an AoA technique is limited [16, pp.19] because

it often requires multiple antenna elements, which can contribute to transceiver cost

and size. Range-based techniques are based on multiple range estimates from reference

transceivers, or beacons, with known locations, typically based on measured time of ar-

rival (ToA) [13, 14], time difference of arrival (TDoA) or received signal strength (RSS)

[17] to estimate the distances from a transmitter to receivers. These techniques, also

known as source localization schemes, have been widely explored as a research topic of

long history for aerospace electronic navigation systems [18, 19, 20, 21]. Moreover, dif-

3



ferent measurement modalities can be combined to improve the accuracy and robustness

of location estimation [22].

In the applications of wireless sensor networks, traditional localization techniques

are not well suited for two particular features of sensor networks [23]. One is the energy

and cost constraint on sensors due to battery power and poor communication capability.

Thus the traditional way of including a GPS receiver on each device is obviously cost and

energy prohibitive. The low-power consumption, low computation and communication

cost schemes are preferred. The other feature is that wireless sensor networks are usually

infrastructure-less, which means that the reference nodes or base stations that know

their own coordinates are sparse in the network, and most of sensors may not have a

direct radio link to those reference nodes. This challenge leads to investigation of the

cooperative or network localization techniques [17]. In addition to the measurements

between unknown-location sensors and known-location references, the measurements

between pairs of unknown-location sensors are obtainable and these measurements can

be propagated through the network depending on specific algorithms. The additional

information from the measurements between unknown-location sensors enhances the

accuracy and robustness of the localization systems.

1.2 Motivation and Related Works

Wireless localization depends on the range, angle or other measurements between

transmitters and receivers. The accuracy of these measurements is affected by additive

noise, interference, and environment-dependent errors [2]. Noise and interference can

be reduced by averaging multiple measurements over time or filtering. Environment

dependent errors are the result of the physical arrangement of obstructions, reflectors

4



and scatters in a particular transceiver setting. As range-based localization absolutely

depends on the line-of-sight (LOS) signal path, range measurement is challenging and

erroneous due to the random nature of the LOS path. In some cases, the LOS path

is weak, ambiguous and difficult to be identified; in other cases, the LOS path is even

totally blocked and non-existing, which leads to the non-line-of-sight (NLOS) channels.

These multipath channels follow specific power delay profiles (PDP) and probability

distributions [24]. In both scenarios, the range measurement errors due to weak LOS or

NLOS propagation are inevitable.

To combat with the ranging errors in multipath environments, efficient algorithms

and schemes for range measurement, obtained from time delay estimation (TDE) in

ToA localization, are desired. The existing works in this category include the studies

on LOS path detection under a multipath channel, the NLOS path identification and

NLOS error mitigation. For LOS detection, [25] proposes a template-matching method

based on the comparison between the PDP of the received signal and a template. This

method is verified in [16]. [26] shows a maximum likelihood search algorithm for direct

path detection in a dense multipath environment using ultra-wideband (UWB) signals.

In the multipath channels with blocked LOS, NLOS path identification and miti-

gation is a difficult yet problem. Although some methods have been proposed in the

cellular network community, they usually depend on a priori information or redundant

measurements. For the NLOS identification problem, [27] shows a decision theoretic

framework using hypothesis tests under various a priori knowledge assumptions. [28]

and [29] propose the NLOS mitigation techniques based on time and space redundancy

of range measurements, respectively. In [30], the scattering-model-based methods for

NLOS mitigation are presented. More signal processing techniques for NLOS error

mitigation can be found in [31, 32, 33, 34].
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Overall there is no universally applicable range estimation method, and all the

proposed algorithms have to trade off the location estimation performance with the

availability of a priori or redundant information in practice. To evaluate the perfor-

mance of different range measurement algorithms in multipath channels, efficient and

tight theoretical performance bounds are desired to which the optimum estimation al-

gorithms are expected to achieve in the high signal-to-noise ratio (SNR) region and

stay close in the low SNR region. Such lower bounds provide useful tools for algorithm

designers and researchers. Without testing particular estimation algorithms, the best

achievable performance based on particular measurements can be readily evaluated. As

the ToA localization based on TDE is the mostly adopted scheme, this thesis will focus

on TDE, or ToA estimation, in the part of developing the performance limits for range

measurements. Theoretical performance bounds on TDE serve as benchmarks for the

ToA estimation algorithms and help to provide insight into the behavior of TDE.

Various TDE bounds have been developed in the past [35]. The Cramér-Rao bound

(CRB) has been extensively applied for bounding TDE performance in the case of a

deterministic channel [36, 37]. However, the CRB is only tight at high SNRs and not

applicable for unknown random channel. Ziv-Zakai lower bound (ZZB) [38, 39] is another

attractive approach among the Bayesian mean-square-error (MSE) bounds for predicting

optimal estimation performance over a wide range of SNRs [40]. ZZBs on TDE have

been developed for narrowband frequency-hopping channels [41], parallel narrowband

flat-fading channels [42, 43], and for ultra-wideband signals in additive white Gaussian

noise (AWGN) channels [44]. Bayesian bounds for TDE have also been developed by

Weinstein and Weiss [40, 45]. In wideband random multipath channels, the average

ZZB for TDE, assuming receivers know perfect channel realizations, is derived for a

given channel realization and then averaged over the channel distributions [46] .
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By the above literature review, the performance bounds for TDE have not been

developed before for unknown random multipath channel, assuming that the receiver

only knows the channel statistic, but does not know the channel realization. For the

scenarios in which channel estimations are unavailable, these performance bounds are

the important indications to the performance of TDE algorithms and thus motivate

the author’s research on this topic. Furthermore, the errors in ranging will essentially

propagate to the position estimation error by different range-based localization schemes,

in which NLOS errors in range estimates are expressed in terms of positively biased and

additive noise contaminated variables. [47] proposed an iterative localization algorithm,

in which the bias of range measurements is assumed deterministic and identical for

all sensors, and treated as a variable to be estimated. In [48], a localization bound

with biased measurements was developed in UWB environments, where the bias follows

uniform distributions. As these existing results assume specific types of ranging bias,

the localization performance with general bias in range measurements is not clear. This

inspires the localization performance study in this thesis, which models the general

ranging bias as either deterministic or random following several common distributions,

and analyzes the localization errors of typical estimators.

1.3 Contributions and Outline of Thesis

The thesis consists of five chapters and three appendices and is organized as follows:

Chapter 2 introduces the range measurements and models for range-based local-

ization schemes, mainly focusing on ToA trilateration and TDoA multilateration. The

localization model, and the linearization and iterative estimator for ToA are briefly

reviewed. Regarding TDoA localization, the author derives a geometric view on the
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TDoA-based linear localization algorithm for a linear array. The error analysis and

simulation results show the performance of the linear algorithm in comparison with the

CRB for TDoA localization. In addition, the thesis analyzes the challenges for range-

based localization in multipath environments, and surveys on the techniques of LOS

path identification and NLOS error detection and mitigation.

In Chapter 3 the author develops the TDE performance bounds in unknown random

multipath channels. Specifically, the Bayesian mean-square-error bounds by the Ziv-

Zakai approach are developed for both pulsed signal and wideband frequency hopping

waveforms. The development assumes that the receiver knows the channel distribution,

but does not know the channel realization. The transmitted signal is assumed known to

the receiver, and the time delay has a uniform prior distribution. The ZZBs represents

more realistic and tighter performance limits, and provide good performance prediction

for maximum a posteriori (MAP) time delay estimation, tracking the low, medium,

and high SNR regimes. The ZZB for frequency hopping waveforms also reveals achiev-

able TDE performance with frequency diversity in wideband frequency-selective fading

channels. In addition, to evaluate the ZZBs numerically, the author proposes a mo-

ment generating function (MGF) approach to compute the probability density function

(pdf) of the log-likelihood ratio (LLR), and the compact form of this MGF approach

greatly lowers the computation complexity. Several implementation issues for numerical

evaluations are also discussed.

Chapter 4 explores the ToA localization performance in the wireless multipath en-

vironments, in which the erroneous ToA range measurements are modeled as the true

time delay contaminated by both additive Guassian noise and unknown bias due to

NLOS errors. Except for the case of deterministic bias, the convolved pdf for the sum

noise and ranging bias is developed based on several possible distributions for random
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ranging bias. With these range measurement models for multipath channel, the au-

thor derives the bias and MSE of the widely adopted weighted least-square (WLS) and

maximum-likelihood (ML) location estimators. The error expressions are developed via

perturbation analysis, providing a means to study achievable localization performance,

as a function of the measurement bias and variance, the reference array geometry and

number of reference transceivers, as well as the estimator type. The numerical examples

compare the performance of WLS and ML estimators with the CRB, showing that in

general the estimator produces biased estimates.

Chapter 5 highlights the contents of the thesis and the major results.

Appendix A shows the CRB for TDoA localization scheme in AWGN channels.

Appendix B develops the MGF for the quadratic functions of a Gaussian random vector,

used for evaluating the ZZBs in Chapter 3. The two sections correspond to the real and

complex Gaussian random vectors, respectively. Appendix C presents the expressions of

the pulse signals that are used in the numerical ZZB examples. Their autocorrelation

functions and mean-square bandwidth expressions are also derived.
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Chapter 2

Range-Based Localization

Among all the localization schemes introduced in Chapter 1, the localization meth-

ods based on pair-wise range measurements between wireless transceivers are widely used

in practice because of its relatively high accuracy and the wide availability of range mea-

surements in real systems. In these schemes the geometric ranges between transceivers

are computed from measurements of ToA, RSS or TDoA, and these measurements al-

low the formation of statistical models for trilateration and multilateration localization,

based on which the transceiver locations are estimated with signal processing algorithms

of moderate complexity. In this chapter, Sections 2.1 and 2.2 review the trilateration

and multilateration localization schemes, respectively, including the localization models,

range or range-difference measurements, as well as the location estimation algorithms.

The linear algorithm for TDoA localization has low complexity and thus is attractive in

practical applications. In Section 2.2, the author provides a geometric view and detail

error analysis with numerical simulations on the linear estimation algorithm.

Because wireless signals are propagated through the environments full of obstruc-

tions, reflectors and scatters, the range measurement for accurate localization is challeng-
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ing in the real world. Generally, range measurements used for localization are affected by

noise, interference and environment-dependent errors. The additive noise and interfer-

ence from other transceivers can be mitigated by averaging over multiple measurements

and filtering techniques. However, the environment-dependent errors are mainly due to

the predominantly stationary objects in particular environments, and thus these errors

only have slight variation over time and difficult to avoid in range measurements. The

commonly used multipath channel in wireless communications is well-suited for model-

ing these environment-dependent errors, and Section 2.3 will discuss challenging range

measurement in multipath channels.

2.1 Trilateration with ToA or RSS Measurement

Trilateration methods determine transceiver locations by range measurement using

the geometry of circles on 2-D plane or spheres in 3-D space. On a 2-D plane, when

the range measurements from the unknown-location transceiver to more than three

known-location transceivers (reference points) can be obtained, the position estimate of

the unknown-location transceiver is determined by the intersection of the three circles,

shown in Fig. 2.1. Similarly, in the 3-D space, the unknown-location transceiver can

be located by the intersection of spheres, formed by the range measurements from at

least four reference points. More than three reference points on 2-D planes or four in

the 3-D space will lead to overdetermined localization model. Affected by noise and

interference, the final estimated location is a point in the intersection region in the

maximum likelihood sense.

The circles or spheres of range measurements can be acquired by different kinds

of measurements. The most common measurements for ranging include RSS, ToA,
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Figure 2.1: Geometry of ToA based location system.

and connectivity (Conn). The connectivity between two transceivers can be seen as

the quantized version or approximation of the real range measurements, and then it

is only appropriate for localization with low accuracy requirements in some network

localization systems [11]. The next two subsections review the measurement models of

RSS and ToA, which serve as the base for the trilateration localization model discussed

in the last subsection.

2.1.1 Received Signal Strength Measurement

In most implementations RSS is reported as measured power, i.e., the squared mag-

nitude of the signal strength. It can be measured in the receiver during normal data

recovery without additional bandwidth or energy requirements. Because RSS measure-

ments are simple to implement, they are preferred for low-cost localization system. The

disadvantages are that it is unpredictable, and the dynamics of outdoor environment

is usually along with low received RSS values. In practical environments, RSS varies
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inversely with the distance d between the transmitter and the receiver as ([49])

RSS ∝ 1

dn
(2.1)

where n is the path loss exponent (2 for free space). The ensemble mean power at

distance d is typically modeled as ([2])

P̄ (d) = P0 − 10nlog
d

d0
(2.2)

where P0 is the received power (dBm) at a short reference distance d0.

Due to the effect of shadowing, the standard deviation σ of RSS is modeled as log-

normal [50, 51, 49]. Therefore the received power Pi,j (dBm) at transceiver i transmitted

by j, has the distribution as [2]

f(Pi,j = p|θ) = N (p; P̄ (∥zi − zj∥), σ2
dB), (2.3)

where N (x; y, z) is the Gaussian p.d.f. for x with mean y and variance z, θ is the

coordinate parameter vector, and ∥zi − zj∥ is the actual distance between transmitter

and receiver.

With this distribution the maximum likelihood estimate can be derived as

dMLE
i,j = d010

P0−Pi,j
10n (2.4)

and the expect value of dMLE
i,j is

E{dMLE
i,j } = C∥zi − zj∥ (2.5)

where C = exp(γ/2) and γ = ( 10n
σdB log10)

2. The parameter C is a multiplicative bias

factor. For typical channels, C ≈ 1.2, adding 20% bias. Due to the log-normal model

RSS-based range estimate has variance proportional to the actual range. This is why

RSS errors are referred to as multiplicative.
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2.1.2 Time of Arrival Measurement

Time of arrival, or time of flight, or time delay, is the time duration in which a signal

travels from a transmitter to a receiver. When the receiver knows the transmitted time,

ToA is equivalent to the propagation-induced time delay. The ToA between transceiver

i and j is given by

Ti,j =
∥zi − zj∥

vc
, (2.6)

where vc is the propagation velocity, and ∥zi − zj∥ is defined in Eq. (2.3).

Generally range measurement by ToA is more accurate than RSS measurement

because ToA is unaffected by the transmitting power and the path loss and fading effect

of wireless channels. But all the time-based techniques depend on the accurate estimates

of the arrival time of the LOS signal compoenent, which may be unavailable in some

multipath channel environments. This issue will be discussed in more details in Section

2.3.

Measurements have shown that for short-range measurements in LOS channels,

measured time delay can be roughly modeled with Gaussian distribution as [52, 53],

f(Ti,j = t|θ) = N (t; (∥zi − zj∥)/vc + µT , σ
2
T ), (2.7)

where µT and σ2
T are the mean and variance of the time delay error, θ is the same as

in Eq. (2.3). Wideband DSSS measurements reported in [54] supported the Gaussian

error model and showed µT = 10.9 ns and σT = 6.1 ns. UWB measurements on a

mostly-empty factory floor [16] showed µT = 0.3 ns and σT = 1.9 ns. This mean error

µT can be estimated (as a nuisance parameter) by the localization algorithm so that it

can be subtracted out [55].

Other than the lack of LOS component in multipath channels, other issues exist in

ToA measurement. The most significant is the relative clock bias between transmitters
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and receivers. As ToA measurement acquires the absolute signal propagation time, small

clock bias can generate huge ranging error by the high signal traveling speed. Thus clock

tracking and bias correction is necessary, leading to increased implementation cost.

2.1.3 Trilateration Model and Algorithms

With pair-wise range measurements by ToA or RSS between the unknown-location

transceiver and each reference point, one can build the trilateration model and estimate

the unknown location. Assume the unknown-location transceiver in 3-D space is located

at ps = (xs, ys, zs), and there areK reference transceivers for range measurement located

at pk = (xk, yk, zk), k = 1, · · · ,K. Then the trilateration positioning problem involves

three unknown location quantities (xs, ys, zs). For ToA based trilateration system, for

example GPS [3], the receiver clock bias is treated as the fourth unknown quantity. Thus

a system of equations representing the range measurements can be used to determine

the unknowns, expressed as [3]

r1 =
√

(x1 − xs)2 + (y1 − ys)2 + (z1 − zs)2 + vc∆tr + ϵ1,

r2 =
√

(x2 − xs)2 + (y2 − ys)2 + (z2 − zs)2 + vc∆tr + ϵ2,

...

rK =
√

(xK − xs)2 + (yK − ys)2 + (zK − zs)2 + vc∆tr + ϵK , (2.8)

in which rk, k = 1, · · · ,K are the range measurements between the unknown-location

source and reference points, ∆tr is the receiver clock bias, vc is the signal propagation

speed, and ϵk, k = 1, · · · ,K are the composite measurement errors, including atmo-

sphere delay, reference location errors, multipath error and receiver noise, etc. For

trilateration with ToA measurements, if the receiver clock bias is treated as measure-

ment error instead of an unknown quantity, K ≥ 3 references or measurements are
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required; otherwise, if the clock bias needs to be estimated, then K ≥ 4 measurements

are needed.

The system of equations in (2.8) is non-linear and the closed-form solutions exist [56,

57, 58]. However, the linearization technique by Taylor expansion is typically adopted

in practical implementations as it is straightforward, converges quickly, and easy to be

examined by linear error analysis. In addition, the linearization and solution procedure

can be repeated iteratively for higher accuracy, with location estimations updated from

the previous iteration. By linearization eq.(2.8) is expressed as

r = r̄+Hδp+ ϵ+O(δp), (2.9)

or

δr = r− r̄ = Hδp+ ϵ+O(δp), (2.10)

where r = [r1, r2, · · · , rK ]T is the range measurement vector, and r̄ is the range vector

at the nominal point for linearization p̄ = (x̄, ȳ, z̄), computed by substituting p̄ for

ps as r̄k =
√

(xk − x̄)2 + (yk − ȳ)2 + (zk − z̄)2, k = 1, · · · ,K, and δp = [xs − x̄, ys −

ȳ, zs − z̄, vc∆tr]
T . ϵ = [ϵ1, ϵ2, · · · , ϵK ]t is the error vector, O(δp) represents the higher-

order terms in the linearization. Denote the true range for the kth reference point as

dk =
√

(xk − xs)2 + (yk − ys)2 + (zk − zs)2, the geometric matrix H is dependent on

the reference point locations, expressed as

H =



∂d1
∂xs

∂d1
∂ys

∂d1
∂zs

1

∂d2
∂xs

∂d2
∂ys

∂d2
∂zs

1

...
...

...
...

∂dK
∂xs

∂dK
∂ys

∂dK
∂zs

1


.

(2.11)
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By ignoring the higher-order quantity O(δp), the least-square solution to eq.(2.10)

gives the estimation of δp

δ̂p = (HTH)−1HT δr, (2.12)

and the estimation of actual position is

p̂s = p̄+ δ̂p. (2.13)

Note that when iterative process is adopted, p̄ can be the location estimation in the

previous iteration, and eq.(2.13) updates the estimation with the range measurement in

the current iteration.

2.2 Multilateration with TDoA Measurements

Localization with TDoA measurements, also known as multilateration, was of much

interest in the past [18]. Compared to ToA measurement and trilateration, TDoA mea-

surement can be simply obtained by cross-correlation between two signals from two

reference transceivers at different locations. Therefore, TDoA multilateration does not

require accurate clock synchronization and bias correction between transmitters and

receivers if only reference transceivers are synchronized with each other. In some prac-

tical applications, for instance sensor networks, low complexity is a requirement of high

priority, and the absolute clock information from signal sources is mostly unavailable.

Thus TDoA instead of ToA approaches are preferred.

2.2.1 Hyperbola Model

Consider a hyperbola shown in Fig. 2.2, where F1 and F2 are two foci, whose

distance is 2c. The difference of the distance from any point on the hyperbola to the
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two foci is 2a. If adopting a Cartesian coordinate system, the definition of hyperbola

[59] is √
(x+ c)2 + y2 −

√
(x− c)2 + y2 = 2a. (2.14)

Moving the second term to the right, squaring both sides and after some manipulations,

it becomes

x2

a2
− y2

b2
= 1,

where b =
√
c2 − a2. It is the standard equation of the hyperbola. For the general case

that the center of hyperbola is not at the origin, the standard equation is

(x− xc)
2

a2
− (y − yc)

2

b2
= 1, (2.15)

where (xc, yc) is the location of the center.

Consider a case of two receivers observing the signal from the source. The difference

of the arrival time denoted by τ , depends on the path difference, denoted by d. As the

signal propagates at speed vc, then d = vcτ . Then what is known from the two receivers

is the path difference from the source point to the receivers. Since hyperbola is the

set of points that have the same difference in distance to two fix points, the source is

on a hyperbola whose parameters are determined by the difference of arrival time and

the distance of the two receivers, as shown in Fig.2.2. This is the basic idea of TDoA

multilateration.

A hyperbola can also be defined as the locus of points whose distance from the focus

is proportional to the horizontal distance from a vertical line known as the conic section

directrix, where the ratio is the eccentricity e = c
a . As shown in Fig. 2.3, the equation

of the right directrix is x = xR = a2

c . So for any point P (xP , yP ) on the hyperbola, the

distance D(P, F2) to the right focus F2(c, 0) can be expressed as

D(P, F2) = e|xP − xR|. (2.16)
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Following the same line and using the left directrix x = xL = −a2

c , the distance D(P, F1)

of any point P (xP , yP ) on the hyperbola to the left focus F1(−c, 0) is

D(P, F1) = e|xP − xL|. (2.17)

These two equations are fundamental to the development of the linear solver next.

2.2.2 Linear Algorithm for Multilateration with Linear Array

A traditional solver for TDoA localization involves linearization and iterative pro-

cessing [18, 19], similar to the ToA localization algorithm described in Section 2.1.3. An

iterative method typically incurs high computational complexity and its convergence

requires initial estimate of the position at a tolerable accuracy. Closed-form algorithms

for TDoA localization have been proposed in the past [60, 61, 62] with suboptimal

estimators. [63] developed an explicit solution to TDoA multilateration exploiting a

two-stage weighted least-square estimation process, which is an approximate realization

of the maximum-likelihood estimator and is shown to achieve the Cramér-Rao bound in

the high SNR region.

For applications requiring low-complexity implementation, localization with a lin-

ear array of reference transceivers is desired as the positioning process can be simplified.

Some optimum processing techniques with different complexity and restrictions regard-

ing linear array have been shown in [20, 64, 65]. This section will review the linear solver

proposed in [60] from a geometric viewpoint when it is applied to linear sensor array

[66]. Directrices of hyperbolas determined by TDoA measurements are used to obtain

linear relations between the x-coordinate of the source and TDoAs of each reference

pair in a linear array on the x-axis. Only moderate number of scalar multiplications and

additions are involved, and no matrix inversion is required. Meanwhile, it is applicable
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Figure 2.4: A linear sensor array with M sensors on X-axis. The signal source is at
(xs, ys).

to both far-field and near-field setups. Localization performance is studied as well in

the next subsection. Applying a perturbation technique, localization error and bias is

derived analytically to be dependent on TDoA measurement errors.

Assume, in a sensor network application, a size M linear sensor array, from S1 to

SM , is placed on the x-axis as shown in Fig. 2.4. The coordinates of Si are pi = [xi, yi]
T ,

where yi = 0. The signal source with unknown location is at ps = [xs, ys]
T . The

hyperbola Hi centered in the middle of two sensors Si and Si+1 is determined by the

TDOA τi between them. Thus, the range difference di,i+1 from the TDOA τi is

di,i+1 = vcτi = ri − ri+1, i = 1, 2, · · · ,M − 1, (2.18)

where ri
∆
= ∥pi − ps∥ is the distance from the signal source to the ith sensor. In the

following di,i+1 is replace by di to simplify the notation.

A closed-form solution for xs can be derived directly from the alternative definition

of a hyperbola: the locus of points whose distance from the focus is proportional to the

horizontal distance from a vertical line known as the conic section directrix, where the

ratio is the eccentricity. The signal source lies on a series of hyperbolas whose parameters
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are determined by di as well as the distance between the two respective receiving sensors,

as shown in Fig. 2.4. The parameters of hyperbola Hi can be obtained as

ai =
|di|
2

, ci =
xi+1 − xi

2
, ei =

ci
ai

=
xi+1 − xi

|di|
,

xiL =
xi + xi+1

2
− a2i

ci
=

xi + xi+1

2
− d2i

2(xi+1 − xi)
, (2.19)

xiR =
xi + xi+1

2
+

a2i
ci

=
xi + xi+1

2
+

d2i
2(xi+1 − xi)

, (2.20)

where ei is the eccentricity of Hi, x
i
L and xiR are the x-coordinates of intersections of

the left and right directrices of Hi with the horizontal axis respectively.

Since sensor Si+1(i = 1, 2, · · · ,M − 2) is both the right focus of hyperbola Hi and

the left focus of hyperbola Hi+1, the distance from the source to the sensor Si+1 can be

equally expressed in terms of the directrices and eccentricities of both Hi and Hi+1 as

ei|xs − xiR| = ei+1|xs − xi+1
L |. (2.21)

Note that xiR < xi+1
L always holds. Let νi be an indicator of relative location of source

and sensor, equal to -1 when xiR < xs < xi+1
L , and 1 otherwise. The above equation can

be written as

ei(xs − xiR) = νi(ei+1xs − ei+1x
i+1
L ). (2.22)

Substituting (2.19), (2.19) and (2.20), then (2.22) becomes

[
xi+1 − xi

|di|
− νi(xi+2 − xi+1)

|di+1|

]
xs =

x2i+1 − x2i
2|di|

−
νi(x

2
i+2 − x2i+1)

2|di+1|
+

νi|di+1|+ |di|
2

.

(2.23)

Collecting coefficients of xs corresponding to i = 1, · · · ,M −2 in a column vector e, and

the right hand side in a column vector g, the localization model can be written as

exs = g, (2.24)
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where

e =


x2−x1
|d1| − ν1(x3−x2)

|d2|

...

xM−1−xM−2

|dM−2| − νM−2(xM−xM−1)
|dM−1|

 ,

g=


x2
2−x2

1
2|d1| − ν1(x2

3−x2
2)

2|d2| + ν1|d2|+|d1|
2

...

x2
M−1−x2

M−2

2|dM−2| − νM−2(x
2
M−x2

M−1)

2|dM−1| +
νM−2|dM−1|+|dM−2|

2

 .

Eq. (2.24) is over-determined. By minimizing the following error

x̂s = argmin
xs

∥g − xse∥2, (2.25)

the least-square solution is

x̂s = (eTe)−1eTg. (2.26)

Notice that eTe is a scalar. No matrix inversion is required, but vector multiplications.

The length of each vector is M − 2.

From xs, the location model for ys can be obtained from M−1 hyperbola equations

following a form of (2.15) as

fy2s = h, (2.27)

in which

f =


4

(x2−x1)2−d21

...

4
(xM−xM−1)2−d2M−1

 , h =


(2xs−x1−x2

d1
)2

...

(
2xs−xM−1−xM

dM−1
)2

− 1, (2.28)

that suggests

ys = ±
√

(fT f)−1fTh. (2.29)

By replacing xs by its estimate x̂s in h, an estimate of ys is found from (2.29). Thus

eq.(2.26) and (2.29) are the linear least-square (LS) solver for the source location.
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The polarity of ys and the value of νi depend on the source location relative to

sensors. In a practical system, some prior information can be acquired through network

or other measurements. For example, to determine νi, compare ri, ri+1 and ri+2. If

ri+1 < ri and ri+1 < ri+2, equivalently di > 0 and di+1 < 0, then νi = −1. Otherwise

νi = 1. In the following development, the attention is restricted to the case where

the source sensor is located to the right of the sensor array, leading to νi = 1 for all

i = 1, · · · ,M − 2 and di > 0 for all i = 1, · · · ,M − 1. However, subsequent discussions

are directly applicable to other scenarios. Also ys > 0 is assumed to further resolve the

ambiguity in estimating the source y-coordinate later on.

For comparison purposes, the maximum-likelihood estimator (MLE) can be de-

rived assuming all noise samples from measuring di are jointly Gaussian. Denote noise

covariance matrix by Cd. Then the MLE can be described by

(xML
s , yML

s ) = argmin
(xs,ys)

mTC−1
d m, (2.30)

where the i-th term of m is
√

(xs − xi)2 + y2s −
√

(xs − xi+1)2 + y2s − di.

The advantage of the least-square estimator is that it is a linear solver in a closed-

form and thus has a much lower computation complexity compared to the MLE or other

iterative algorithms. If the MLE is implemented using a gradient method, the number

of multiplications is at the order of MN , where N is the number of iterations. The

linear estimator is at the order of M . When the required precision is high, N for MLE

could be a very large number. Moreover the closed-form linear estimator does not have

the slow convergence problem since it does not need an iterating process.
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2.2.2.1 Connection with the Linear Algorithm for Arbitrary Array

The above development of the linear estimator for linear array presents a geometric

perspective, which can be linked to the general solution proposed for arbitrary array in

[60]. To show this, let us briefly review that approach. Consider an arbitrary sensor

array which is not necessarily linear nor on the x-axis. Denote the sensor coordinates

as pi = [xi, yi]
T , where yi = 0 does not always hold. The distance from the origin

to Si is Ri
∆
= ∥pi∥. To be consistent with notation in [60], this section uses di,j for

range-difference, and τi,j for TDOA.

In [60], a nuisance parameter rj is introduced, that is the distance from the source

to an arbitrary reference sensor Sj in the array. The algorithm derivation starts from

the definitions of ri, and range difference di,j . After some algebraic manipulation, the

following is obtained (eqn. (6) in [60])

(pi − pj)
Tp0 = (R2

i −R2
j − d2i,j)/2− rjdi,j , i = 1 · · ·M, i ̸= j. (2.31)

Collecting all M − 1 equations into a matrix form yields

Sjp0 = µj − rjρj , (2.32)

where the ith rows of Sj , µj and ρj are (pi−pj)
T , (R2

i−R2
j−d2i,j)/2 and di,j , respectively.

The nuisance parameter rj , which depends on unknown p0, can be nicely eliminated

after pre-multiplication by a null-space matrix of ρj , denoted Mj (so that Mjρj = 0),

MjSjp0 = Mjµj . (2.33)

A closed-form solution is then obtained as

p0 = (ST
j M

T
j MjSj)

−1µT
j M

T
j Mjµj , (2.34)
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as long as matrix MjSj has full column rank, which is highly probable for an arbi-

trary array of sufficient size. Note, however, that this algorithm excludes a linear array

geometry because in this case MjSj is singular.

In particular, for a linear array on the x-axis as in Fig. 2.4, the location of Si

becomes pi = [xi, 0]
T . Thus, matrix Sj has an all-zero column and loses column rank.

Now, from (2.33), only xs can be determined, and ys must be estimated by another

method, such as via (2.29). For simplicity, suppose the sensor S1 is chosen as the

reference sensor. The hyperbola Hi with two foci S1 and Si is determined by the

range difference di,1. Substituting expression for Mj , Sj and µj into (2.33) yields M −1

equations, but only M−2 are independent equations since any equation can be obtained

as a linear combination of the other M − 2 equations. Excluding the last equation, the

remaining M − 2 equations can be arranged as

ēxs = ḡ, (2.35)

where the i-th element of ē is xi+1−x1

d1,i+1
− xi+2−x1

d1,i+2
, and the i-th element of ḡ is

x2
i+1−x2

1

2d1,i+1
−

x2
i+2−x2

1

2d1,i+2
+

d1,i+2−d1,i+1

2 , for i = 1, · · · ,M − 2.

Referring back to Section 2.2.2, with S1 as the reference sensor, the range differ-

ence becomes d1,i, (i ̸= 1) for sensors S1 and Si. The hyperbola Hi has the following

parameters

āi =
|d1,i|
2

, (2.36)

c̄i =
xi − x1

2
, (2.37)

ēi =
c̄i
āi

=
xi − x1
|d1,i|

, (2.38)

x̄iL =
x1 + xi

2
− ā2i

c̄i
=

x1 + xi
2

−
d21,i

2(xi − x1)
. (2.39)
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Now the distance r1 from the source to sensor S1 can be written in M − 1 equations as

r1 = (xs − x̄iL)ēi

=
[
xs −

x1 + xi
2

+
d21,i

2(xi − x1)

]xi − x1
d1,i

=
xi − x1
d1,i

xs −
x2i − x21
2d1,i

+
d1,i
2

. (2.40)

Subtracting two consecutive equations for i = 2, · · · ,M produces M − 2 equations,

which can be written in a matrix form identical to (2.35). Therefore, the WLS solution

for xs is mathematically equivalent to a modified version of the algorithm in [60] when

the sensor array is linear and the reference sensor is fixed.

The derivation of the linear estimator for linear array provides an intuitive view

and a geometric interpretation. The next subsection continues on to develop bias and

mean-square error expressions for the linear algorithm with linear array.

2.2.3 Error Analysis on the Linear Algorithm

The location estimation error may be from the errors of TDoA measurements or

inaccurate coordinates of sensors. Here only the TDoA measurement errors are consid-

ered, denoted by δd = [δd1, · · · , δdM−1]
T . For simplicity, assume these errors have zero

means. However, the following analysis can easily incorporate non-zero means. If they

are independent, then Cd becomes diagonal

Cd = E{(δd)(δd)T } = diag{σ2
1, · · · , σ2

M−1}. (2.41)

These errors will introduce errors to e and g in (2.26). Denoting the square error vector

as ϵ = [(δd1)
2, · · · , (δdM−1)

2]T , second-order perturbation analysis yields their errors as

δe ≈ Pδd+Rϵ, (2.42)

δg ≈ Qδd+ Sϵ, (2.43)
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where

P =



p1 −p2 0 . . . 0

0 p2 −p3
. . .

...

...
. . .

. . .
. . . 0

0 . . . 0 pM−2 −pM−1


,

Q =



q1+1
2

−q2+1
2 0 . . . 0

0 q2+1
2

−q3+1
2

. . .
...

...
. . .

. . .
. . . 0

0 . . . 0
qM−2+1

2
−qM−1+1

2


,

R =



r1 −r2 0 . . . 0

0 r2 −r3
. . .

...

...
. . .

. . .
. . . 0

0 . . . 0 rM−2 −rM−1


,

S =



s1 −s2 0 . . . 0

0 s2 −s3
. . .

...

...
. . .

. . .
. . . 0

0 . . . 0 sM−2 −sM−1


, (2.44)

whose entries are related to pi, qi, ri and si, i = 1, · · · ,M − 1, defined as

pi =
xi − xi+1

d2i
, qi =

x2i − x2i+1

d2i
, ri =

xi+1 − xi
d3i

, si =
x2i+1 − x2i

2d3i
. (2.45)

These errors lead to an error δxs in estimating xs. It can be derived from (2.26).

Replace e by e+ δe and g by g+ δg respectively, and substitute (2.42) and (2.43). The

estimation error up to the second order of δd can be easily found to be

δxs ≈ uT δd+ δdTVδd+wT ϵ, (2.46)
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where

u =
(eTe)PTg − 2(eTg)PTe+ (eTe)QTe

(eTe)2
, w =

(eTe)RTg − 2(eTg)RTe+ (eTe)STe

(eTe)2
,

V =
PTQ

eTe
+

4(eTg)PTeeTP

(eTe)3
− 2PTegTP+ 2PTeeTQ+ (eTg)PTP

(eTe)2
.

The second order terms in (2.46) helps to obtain the mean error E{δxs} of the estimate.

Expressing ϵ as diag{(δd1)2, · · · , (δdM−1)
2}1 where 1 = [1, · · · , 1]T , the mean error is

βx
∆
= E{δxs} = tr{VCd}+wT (Cd ⊙ I)1, (2.47)

where ⊙ represents Hadamard product, I is an identity matrix of dimension M − 1.

Keeping the first order term in (2.46), the mean-square error in estimating xs is

obtained as

γ2x
∆
= E[(x̂s − xs)

2] = E{(δxs)2} ≈ uTCdu. (2.48)

Eq. (2.48) shows that the MSE is approximately proportional to the variance of di. This

trend will also be observed from the simulation results in the next section.

To obtain the estimation error for ys, consider y
2
s first for convenience. Notice that

the square of (2.29) has a similar form as (2.26). The errors in measuring all di bring

errors to f and h up to the second order of δd as

δf ≈ Aδd+ Jϵ, (2.49)

δh ≈ Bδd+ lδdTVδd+KδdδdTu+ lwT ϵ, (2.50)

where

A = diag{a1, · · · , aM−1}, J = diag{j1, · · · , jM−1}, l = [l1, · · · , lM−1]
T ,

B = diag{b1, · · · , bM−1}+luT , K = diag{k1, · · · , kM−1}+[
4

d21
, · · · , 4

d2M−1

]TuT , (2.51)
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whose entries are related to ai, bi, ji, ki and li defined as

ai =
8di

[(xi+1 − xi)2 − d2i ]
2
, bi =

−2(2xs − xi+1 − xi)
2

d3i
,

ji =
4(xi+1 − xi)

2 + 12d2i
[(xi+1 − xi)2 − d2i ]

3
, ki =

8(xi+1 − xi − 2xs)

d3i
, li =

4(2xs − xi+1 − xi)

d2i
,

for i = 1, · · · ,M − 1.

Applying the similar perturbation analysis technique as before, the error in esti-

mating y2s up to the second order of δd can be derived from as

δ(y2s) ≈ ηT δd+ δdTTδd+ λT ϵ, (2.52)

where

η =
(fT f)ATh− 2(fTh)AT f + (fT f)BT f

(fT f)2
,

T =
ATB+ fT lV + ufTK

fT f
+

4(fTh)ATffTA

(fT f)3
− 2AT fhTA+ 2ATffTB+ (fTh)ATA

(fT f)2
,

λ =
(fT f)JTh− 2(fTh)JT f + (fT f)wlT f

(fT f)2
. (2.53)

Since δ(y2s) = 2ysδys, using (2.52), the mean error βy and MSE γ2y in estimating ys can

be found in terms of δ(y2s) as follows

βy
∆
= E{δys} ≈ E{δ(y2s)}

2ys
=

tr{TCd}+ λT (Cd ⊙ I)1

2ys
, (2.54)

γ2y
∆
= E{(δys)2} ≈ E{[δ(y2s)]2}

4y2s
=

ηTCdη

4y2s
. (2.55)

These analytical results will be verified by simulations.

2.2.4 Optimum Weighted Least-Square Linear Solution

In the above closed-form linear algorithm, linear localization equations (2.24) and

(2.27) are solved by the standard least squares technique. To improve the localization

performance, it is possible to use the weighted least-square procedure instead. Then the
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covariance matrices of the error vectors on both x- and y-coordinates need to be found

firstly. In practice, the covariance matrices can be obtained by using previous estimated

location via an iterative process. The following derivation is based on the theoretical

error analysis in the previous section. The error vector in estimating xs is

ϕx = δg − xsδe ≈ (Q− xsP)δd+ (S− xsR)ϵ, (2.56)

and the mean vector of ϕx is

E{ϕx} = E{δg} − xsE{δe} ≈ (S− xsR)(Cd ⊙ I)1, (2.57)

because E{δd} = 0. In practice the second-order item is small. When ignoring the

second-order item in (2.56), ϕx becomes a Gaussian vector, and the the covariance is

Φx = E{ϕxϕ
T
x } ≈ (Q− xsP)Cd(Q− xsP)T (2.58)

Similarly, the error vector in estimating y-coordinate is

ϕy = δh− y2sδf ≈ (B− y2sA)δd+ (lwT − y2sJ)ϵ+ lδdTVδd+ δdTuKδd. (2.59)

The mean vector of ϕy is

E{ϕy} = E{δh} − y2sE{δf} ≈ (lwT − y2sJ)(Cd ⊙ I)1+ ltr{VCd}+KCdu, (2.60)

and the covariance matrix when ignoring the second-order items is

Φy = E{ϕyϕ
T
y } ≈ (B− y2sA)Cd(B− y2sA)T (2.61)

With the covariance matrix, the x-coordinate estimation in (2.25) and (2.26) is

optimized as

x̂s = argmin
xs

{(g − xse)
TWx(g − xse)}

= (eTWxe)
−1eTWxg, (2.62)
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in which Wx = Φ−1
x is the weighting matrix. Eq.(2.62) is recognized as the WLS

solution of (2.24). Also the y-coordinate WLS estimation can be found as

ŷs = argmin
ys

{(h− y2s f)
TWy(h− y2s f)}

= ±
√
(fTWyf)−1fTWyh, (2.63)

with Wy = Φ−1
y . For best performance, the weighting matrices Wx and Wy depend

on the true source location, and can be found either by an iterative process based on

the previous estimated location [60], or from the signal and noise power spectra [63].

The simulation results in the later section will use the theoretical error analysis results

detailed in Section 2.2.3 to build the optimal weighting matrices.

The error analysis for WLS algorithm follows the similar procedure for the LS

algorithm in Section 2.2.3, and the estimation bias and MSE have the same expressions

as in eq.(2.47), (2.48), (2.54) and (2.55), except with the appropriate insertion of Wx

and Wy in to the variables u, V and w, η, T and λ

u =
(eTΦ−1

x e)PTΦ−1
x g − 2(eTΦ−1

x g)PTΦ−1
x e

(eTΦ−1
x e)2

+
(eTΦ−1

x e)QTΦ−1
x e

(eTΦ−1
x e)2

, (2.64)

V =
PTΦ−1

x Q

eTΦ−1
x e

+
4(eTΦ−1

x g)PTΦ−1
x eeTΦ−1

x P

(eTΦ−1
x e)3

− 2PTΦ−1
x e(gTΦ−1

x P+ eTΦ−1
x Q)

(eTΦ−1
x e)2

+
(eTΦ−1

x g)PTΦ−1
x P

(eTΦ−1
x e)2

, (2.65)

w =
(eTΦ−1

x e)RTΦ−1
x g − 2(eTΦ−1

x g)RTΦ−1
x e

(eTΦ−1
x e)2

+
(eTΦ−1

x e)WTΦ−1
x e

(eTΦ−1
x e)2

, (2.66)

η =
(fTΦ−1

y2
f)UTΦ−1

y2
h− 2(fTΦ−1

y2
h)UTΦ−1

y2
f

(fTΦ−1
y2

f)2
+

(fTΦ−1
y2

f)BTΦ−1
y2

f

(fTΦ−1
y2

f)2
, (2.67)

T =
UTΦ−1

y2
B+ fTΦ−1

y2
lv + ufTΦ−1

y2
K

fTΦ−1
y2

f
+

4(fTΦ−1
y2

h)UTΦ−1
y2

ffTΦ−1
y2

U

(fTΦ−1
y2

f)3

−
2UTΦ−1

y2
fhTΦ−1

y2
U+ 2UTΦ−1

y2
ffTΦ−1

y2
B

(fTΦ−1
y2

f)2
+

(fTΦ−1
y2

h)UTΦ−1
y2

U

(fTΦ−1
y2

f)2
, (2.68)

λ =
(fTΦ−1

y2
f)JTΦ−1

y2
h− 2(fTΦ−1

y2
h)JTΦ−1

y2
f

(fTΦ−1
y2

f)2
+

(fTΦ−1
y2

f)wlTΦ−1
y2

f

(fTΦ−1
y2

f)2
, (2.69)
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in which u, V and w, η, T and λ are functions of error-free measurements, sensor

locations and weighting matrix Wx and Wy.

Given the estimation bias and MSE in both X and Y coordinates expressed in

(2.47), (2.48), (2.54), and (2.55), the normalized MSE and bias of the total localization

error can be obtained as

γ2 =
γ2x + γ2y

r2s
, β =

√
β2
x + β2

y

rs
, (2.70)

where rs =
√

x2s + y2s , xs ̸= 0 and ys ̸= 0. The total variance is given by γ2 − β2.

2.2.5 Simulations

In this section the theoretical derivation and error analysis is verified by simulation

and the performance of closed-form linear localization algorithms is compared with the

MLE and CRLB. Consider a 10-element array with sensors located at (xi, yi) = (i−1, 0),

i = 1, · · · , 10. The source is arbitrarily located at (xs, ys) = (17, 22). The additive noise

in the distance difference measurements is assumed zero mean, independent Gaussian

distributed, and the noise variance for all sensor pairs is σ2. Those measurements are

generated by adding random noises (with zero mean and diagonal covariance matrix

Cd) to the true distance differences. The normalized MSEs of E{(x̂s − xs)
2}/x2s and

E{(ŷs − ys)
2}/y2s are obtained from the average of 50,000 independent realizations.

Fig. 2.5 and Fig. 2.6 compare the average normalized MSE and bias between the

LS (identity weighting matrix) and WLS algorithms versus 10 log10(1/σ
2) from 500,000

independent realizations, and also shows the MLE performance and CRB [63]. In the

low noise region each MSE curve of the linear algorithms decrease linearly with the

increase of SNR, and the performance of the least-square algorithm approaches the

WLS solution. The WLS performance coincides with the MLE at about 40dB, with
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Figure 2.5: Performance comparison on normalized MSE between for LS, WLS, MLE
and CRB.
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Figure 2.6: Performance comparison on normalized estimation bias between for LS,
WLS, MLE and CRB.
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Figure 2.7: WLS estimated source locations over 1000 noise realizations with
SNR=40dB.

much lower complexity. WLS shows a 5dB gain compared to LS for a large range of σ2.

The squared bias of the WLS algorithm is insignificant compared with the respective

MSE from 40dB, such that the MSEs of the WLS and MLE coincide with the CRB at

low measurement variance.

Fig. 2.7 presents the CRB ellipse and a scatter plot of the WLS location estimates

from 1000 independent realizations at 10 log10(1/σ
2) = 40dB. It is visually evident that

the WLS is asymptotically unbiased. Note that the error in angle is much smaller than

that in range, which results from the source/array geometry. On the contrary, the least-

square estimator is a biased estimator instead and have to be accompanied by a bias

estimator for bias compensation.

Fig. 2.8 presents the performance of the WLS algorithm versus the ratio of the

source distance to the half size of the sensor array ( r0
L/2). The array length is 9 distance
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Figure 2.8: Performance of the WLS algorithm for varying range/baseline ratios.

units and 10 log10(1/σ
2) = 50dB. The MSE achieves 8 × 10−5 and 5 × 10−3 with a

range/baseline ratio of 5 and 30 respectively. As the source moves to the far field, the

range estimate becomes less and less accurate, while the angle error remains small.

2.3 Range Measurement in Multipath Channels

The ToA or TDoA localization schemes described in previous sections can provide

accurate position estimation with wideband or UWB signals. However, these range-

based localization methods highly rely on the LOS signal propagation, or direct path,

which is a straight line path that connects the transmitter and the receiver. In modern

wideband wireless networks, including cellular networks, wireless LAN or sensor net-

works employing UWB signals, wideband signals typically suffer from the dense reflec-
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tions, scattering and diffractions, which leads to the multipath propagation environment.

Multipath channel is usually modeled as a tap delay line response profile, which is a sum

of several attenuated, phase-shifted, and time-delayed path impulses. The most impor-

tant path among them for localization is the LOS path. If the LOS path is blocked,

the transmitted signal could only reach the receiver through reflected, diffracted, or

scattered paths, which may generate erroneous range measurements. This kind of error,

also known as NLOS error, is defined as the excessive travelling distance with respect

to the LOS path, and to be one major source of ranging error. The NLOS problem

has been reported as the killer issue in ToA or TDoA measurements and range-based

localizations as per the measurements in real wireless environments [67, 68].

According to whether LOS path exists in multipath channels, three different channel

environments regarding localization are categorized as following [69]:

• Dominant Direct Path (DDP). In this case a LOS path exists and the strongest

path of the channel estimate corresponds to LOS.

• Non-Dominant or Weak Direct Path (NDDP). In these channel response profiles,

a LOS path exists but it is not the strongest. The direct path is still detectable

with an appropriate receiver.

• Undetected Direct Path (UDP). If the direct path is not detectable or does not

exist, only NLOS paths can be used for range estimation. In some rare cases, the

LOS path is not the first or earliest-arriving path. This can also be treated as a

NLOS situation. For example, the LOS path is blocked by a material with a very

high dielectric constant such as a water container, then there may exist multipath

components that arrive earlier than the LOS path signal since the LOS path signal

suffers a considerable propagation delay.

37



To obtain robust localization in NLOS channels, reliable methods for range mea-

surements are very desirable, and many research work has been done. For example, in

deterministic channels, if the number of available range measurements is greater than

required, the redundancy can be used to identify NLOS errors [29, 70]. In a time-varying

channel, the ToA measurements including excess delays can be identified and ignored

[27]. The following two subsections will discuss more details about LOS path detection,

NLOS errors identification and mitigation in range measurements, and summarize the

existing ranging methods. In addition, as a fundamental theoretical problem, an efficient

and tight benchmark for evaluating all kinds of proposed range measurement algorithms

is also highly needed. In chapter 3 the author will discuss theoretical performance limits

of ToA estimation, or time delay estimation, in multipath environments. The proposed

Ziv-Zakai lower bounds for TDE in unknown random multipath channel is shown to be

a tight benchmark for both pulsed signal and frequency hopping waveform.

From the perspective of statistical models, the NLOS errors in multipath channel

can invalidate the Gaussian model of ToA measurement in eq.(2.7). The NLOS errors

are usually treated as positive bias in range measurements and thus can also be modeled

with exponential, uniform or Maxwell distributions [71, pp.340-341]. In Chapter 4 the

author will propose detailed analysis and simulation on the localization performance

of weighted least-square and maximum-likelihood estimators with these ranging bias

models.

2.3.1 LOS Path Detection

The LOS path can be simply detected by measuring the time that the cross-

correlation first crosses a threshold. However, the threshold depends on the propaga-

tion environments, which leads to an inaccurate detection. Alternatively, the template-
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matching method [25] provides a robust ToA estimation algorithm for greatly attenuated

LOS path detection. In template-matching, samples of the leading edge of the PDP are

compared to a normalized and oversampled template. The ToA estimate is the delay

which minimizes the square-error between the samples of the PDP and the template.

While early-arriving multipath components cause smaller errors than late-arriving

multipath, they may arrive very soon after the LOS path and are difficult to combat.

Wider signal bandwidths, such as direct-sequence spread-spectrum or UWB are neces-

sary for greater temporal resolution. [26] proposed a search algorithm for the LOS path

detection of UWB signals in a dense multipath environment. This search is based on

generalized maximum-likelihood (GML) estimation and can also been treated as one of

the template-matching methods. It is shown briefly in the following.

The received multipath signal can be composited with LOS path signal, reflected

signals, additive noise and interference. If interference from other nodes can be neglected

and assume to be zero, then the received signal can be represented by

rm(t) = ads(t− τd) +

L∑
n=1

ans(t− τn) + nm(t), (2.71)

where τd < τ1 < . . . < τL. ad is the path gain of the LOS path and τd is its time delay.

The signal s(t) is a correlator template with a width of Tp. The number of multipath

signals L is unknown a priori.

If all the paths are normalized and shifted with respect to the strongest path and

the paths later than the strongest are truncated, the received signal is represented by

r(t) = ρds(t+ δ) +
M∑
k=1

αks(t+ βk) + n(t), t ≤ Tp

2
(2.72)

39



where

δ = τpeak − τd, δ ≥ 0,

ρd = ad/|apeak|,−1 ≤ ρd ≤ 1,

βk = τpeak − τk, δ > β1 > . . . > βL,

αk = ak/|apeak|,−1 ≤ αk ≤ 1, (2.73)

andM is the number of signal components that arrived earlier than the peak component.

Then the correlation function of the noise n(t) is represented by RN (τ) = σ2
AδD(τ).

Assuming r(t) is sampled, it can be represented as a vector of samples

r = ρdsδ +

M∑
k=1

αksβk
+ n (2.74)

where sβk
is the sample vector of s(t + β) with the same length as r. The correlation

matrix of the noise sample vector n is RN = σ2
NI. Then the GML estimation of δ to be

δ̂ = argmax
δ

[
max

ρd,M,α,β
f(r|δ, ρd,M, αM , βM )

]

= argmin
δ

[
min

ρd,M,α,β
∥r − ρdsδ −

M∑
k=1

αksβk
∥2
]
. (2.75)

The above solution is computation intensive because 2(M + 1) parameters need to be

calculated. An iterative nonlinear programming technique can be employed to estimate

the parameters in a sequential manner [72].

2.3.2 NLOS Identification and Mitigation

The NLOS error mostly appears as a bias in the position error [28] and it is the

major source of error in ToA range estimation. To deal with NLOS problem two con-

secutive processing steps need to be utilized. The first step is to identify whether the

measurement is from LOS or NLOS path, denoted as NLOS detection; the second step is
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to correct the error from NLOS measurements, called NLOS mitigation. The main idea

is to exploit the information from one or more ToA measurements or channel responses

and try to get an appropriate position estimate.

There are many exisiting NLOS detection and mitigation methods from the cellular

networks community. Generally they can be categorized as following [73]:

1. Based on range estimates.

The time series or time history of range measurements can be utilized to obtain

redundancy in a hypothesis testing of ranging error distributions [28, 27]. In [27]

a binary hypothesis test is used as the general framework for NLOS identification:

H0 : X ∼ fXLOS
with probability P (H0) (LOS condition)

H1 : X ∼ fXNLOS
with probability P (H1) (NLOS condition)

where X is a vector of independent range measurements that are distributed with

probability density function (pdf) fXLOS
under hypothesisH0 and distributed with

pdf fXNLOS
under hypothesisH1. Five types of tests are proposed in [27]. Different

tests correspond to different a priori information available about the ditribution

of NLOS error. All the tests assume zero-mean Gaussian distribution with known

variance for LOS case, and compare likelihood ratio to some threshold:

(a) Gaussian NLOS probability model with known a priori probabilities and un-

known deterministic mean and variance parameters⇒Generalized Likelihood

Ratio Test (GLRT).

(b) Gaussian NLOS probability model with known a priori probabilities and un-

known random mean and variance parameters ⇒ Use Jeffreys’ Priors for

parameter distribution.
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(c) Gaussian NLOS probability model with unknown a priori probabilities and

unknown deterministic mean and variance parameters ⇒ Uniformly Most

Powerful (UMP) test (Neyman-Pearson criteria).

(d) Gaussian NLOS probability model with unknown a priori probabilities and

unknown random mean and variance parameters ⇒ Use Jeffreys’ Priors for

parameter distribution and use Neyman-Pearson criteria.

(e) Unknown NLOS probability model ⇒ Simple comparison of unbiased sample

variance with LOS variance using some predetermined threshold. This test

is also called running variance and the corresponding test is given by:

H0 : σ2 = σ2
LOS with probability P (H0) (LOS condition)

H1 : σ2 > σ2
LOS with probability P (H1) (NLOS condition)

These hypothesis tests are all based on time history of range measurements, which

incur the unavoidable latency. In addition, the valid error distributions must be

available. Both requirements are very difficult to satisfy in reality.

2. Based on channel impulse response.

The approaches in this category try to exploit more information out of the channel

impulse response than the ToA estimate. One of them is to use the shape of

channel impulse response to identify NLOS. This method is a little similar with

the template matching algorithm for LOS detection. It uses the joint power and

ToA estimates of the detected path [74]. In [75] the confidence metric algorithm

uses the joint power and ToA estimates of both the maximum and detected path.

Similar with LOS path, simple statistical metrics, e.g. threshold crossing rate or

delay spread [74], can also be used to identify NLOS. More complicated statistical
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metrics requires to compare the channel impulse response with different channel

models [74, 76, 30]. In [73] a NLOS detection method based on SNR variations is

used to indicate the environment transition.

3. Based on position estimate.

These methods exploit the several range estimates after the measurement fusion

to detect NLOS. Some methods try to derive environment data and to detect

NLOS based on given floor maps [77, 78, 79]. Others uses the redundancy of the

range estimates, e.g. Minimax or Least Square approaches [80, 81]. The Residule

weighting NLOS mitigation algorithm in [29] utilize the range measurement com-

binations to obtain the space redundancy. Each combination consists of a subset

of all the measurements from the base stations around the mobile station, and

can generate a location estimate. Then the normalized error residule from each

combination can be evaluated as

R̃es(x;S) =

∑
i∈S [ri − (x̂−Xi)]

2

Size of S
, (2.76)

where S is the subset of the measurements combination, ri is the range measure-

ment from base station i with the location of Xi, and x̂ is the estimated location

by the combination S. For ToA location the size of S must be equal or greater

than 3, therefore the total combinations for M base stations is N =
∑M

i=3

(
M
i

)
. By

weighting the location estimates from all the groups with the residues, the final

location estimate of mobile station is given by

x̂ =

∑N
k=1 x̂k(R̃es(x̂k, Sk))

−1∑N
k=1(R̃es(x̂k, Sk))−1

. (2.77)

This mitigation algorithm does not have the latency problem and error distribu-

tion requirement. However, it assumes the availability of enough base stations and
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some of them has LOS path with the mobile station. For some outdoor applica-

tion of sensor networks, the sparse nodes deployments cannot satisfy the minimum

requirement of the number of measurements. For indoor location, all the measure-

ments may be from NLOS paths with a high probability. Thus the prerequisites

of the algorithm may not be satisfied in many sensor network applications.

2.4 Summary

Ranged-based localization schemes are commonly used in practical applications.

The measurement and localization models, and estimators are reviewed in this chapter.

Although linearization technique combined with iterative process serves as straightfor-

ward and robust ToA or TDoA estimator with wide applicability, it has relatively high

complexity and requires appropriate initialization point for iterative update in order

to converge to global minimum. On the other side, closed-form linear estimators are

attractive to cost and power sensitive applications due to its low computational com-

plexity. The geometric explanation on the WLS TDoA estimation with linear reference

array provides an intuitive perspective on the linear algorithm.

The performance of range-based localization is degraded in multipath propagation

environments due to lack of or weak LOS received signal component. Solutions to this

problem by identifying LOS signal path and mitigating NLOS errors have been discussed

in the literature. The next chapter will develop the fundamental theoretical limits on

the ToA estimation in multipath channel. The tight bounds based on the Ziv-Zakai

approach are proposed by the author, which are for both pulsed signal and frequency

hopping waveforms and do not suppose channel estimation available at receivers.

44



Chapter 3

Performance Bounds for Time

Delay Estimation in Multipath

Channels

3.1 Introduction

Time delay estimation, or ToA estimation, is the fundamental range measurement

for ToA localization. However, as described in Chapter 2, the encountered channel for

TDE in modern wireless networks is often wideband, random, and unknown with multi-

path fading, or frequency-selective fading [82]. In this wireless multipath environment,

the TDE faces great challenge on the identification of LOS signal component and suffers

NLOS errors that may introduce large bias to range measurements and lead to unreliable

location estimation.

To evaluate the performance of TDE with different algorithms in the multipath

channel, efficient and tight theoretical performance bounds are desired to which the
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optimum estimation algorithms are expected to achieve in the high SNR region and

stay close in the low SNR region. Such lower bounds provide useful tools for algorithm

designers and researchers. Without testing particular estimation algorithms, the best

achievable performance based on particular measurements can be quickly obtained. The-

oretical performance bounds on TDE serve as benchmarks for the estimation algorithms

and help to provide insight into the behavior of TDE.

Various TDE bounds have been developed in the past [35]. In the literature the

performance of TDE is often analyzed in AWGN channels or narrowband fading chan-

nels [35]. The CRB has been extensively applied for bounding TDE performance in the

case of a deterministic channel model, e.g., Yau and Bresler developed CRBs for super-

imposed and delayed parameterized signals [36], and that approach is readily adapted

to the case of TDE in a known deterministic multipath channel [37]. Nonetheless, the

CRB is only tight at high SNRs and not applicable for unknown random channel.

Ziv-Zakai lower bound [38, 39] is another attractive approach in all the various TDE

bounds, and it is among the best Bayesian mean-square-error bounds for predicting

optimal estimation performance over a wide range of SNRs, e.g., see Van Trees and

Bell and references therein [40]. ZZBs on TDE have been developed for narrowband

frequency-hopping channels [41], parallel narrowband flat-fading channels [42, 43], and

for ultra-wideband signals in AWGN channels [44]. Bayesian bounds have also been

developed by Weinstein and Weiss and applied to TDE [45, 40].

Regarding the case of wideband random multipath channels, in [46] the ZZB for

TDE is derived for a given channel realization and then averaged over the channel dis-

tribution. This average ZZB assumes the receiver knows the perfect channel realization,

and then it belongs to the category of perfect measurement based lower bounds [83].

The beginning section of this chapter reviews this average ZZB.
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In Section 3.3, the author develops the ZZB for TDE with pulsed signal in unknown

random multipath Gaussian channel, assuming that the receiver knows the channel

distribution, but does not know the channel realization. Here, both the multipath

channel taps and noise are treated as Gaussian random variables, which is a widely

adopted model, for example, for narrow band and wideband wireless communication

fading channels [82, 84, 85]. The signal is assumed known to the receiver, and the time

delay has a uniform prior distribution. This ZZB represents a more realistic and tighter

bound, and comparison of our new results with [46] reveals the TDE accuracy penalty

associated with the unknown channel. The ZZB derivation differs considerably from

that in [46]. The LLR for the associated hypothesis test in the ZZB derivation is shown

to follow a general quadratic form of a Gaussian random vector. Then the pdf of the

LLR via a MGF approach is found, that in turn leads to the minimum detection error

probability expression needed to complete the ZZB derivation.

The ZZB for TDE is compared with a CRB, as well as the performance of a MAP

time delay estimator. With a uniform prior on the time delay parameter, the Bayesian

CRB is inapplicable due to the violation of regularity conditions, so the development

turns to the expected value of a conditional CRB [40], conditioned on the random

Gaussian channel. It is shown that the ZZB provides much better prediction of the MAP

estimator performance for high, medium, and low SNR regimes, than does the CRB.

It is also compared to a GML time delay estimator, which is equivalent to minimum

mean-square error (MMSE) estimator by assuming deterministic channel realizations.

The MAP estimator exploits knowledge of the channel distribution, and so performs

considerably better than the GML estimator.

Furthermore, in Section 3.4 the ZZB is extended for frequency-hopping waveforms

in the unknown random frequency-selective fading channels and generalizes previous
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results [43, 42, 46, 86]. The same random Gaussian channel model as for pulsed signal is

still adopted that captures possible correlation across time and frequency. The deriva-

tion follows the same approach used in [86], except with the frequency-hopping signal

model as well as generalizing from a real to a complex Gaussian channel model. Then the

log-likelihood ratio for the associated hypothesis test follows a general quadratic form

of a complex Gaussian random vector. The resulting tight bound reveals achievable

TDE performance for frequency-hopping waveforms that provide frequency diversity in

wideband fading channels, in which the receiver does not have perfect channel state

information. In particular, the closed-form expression of ZZB in the independent Ri-

cian and Rayleigh flat fading channels allows study of the choice of frequency-hopping

waveform parameters, as well as the effects of channel statistics.

3.2 Average Ziv-Zakai Bounds for Pulsed Signal

In [46], the average ZZB for TDE in multipath channel is developed with the as-

sumption of perfect channel estimation. Moreover, a known transmitted signal, a tapped

delay line random channel model, and a uniform prior on the delay are assumed.

3.2.1 Channel and Pulsed Signal Models

The transmitted signal is assumed known to the receiver and given by p(t) =

√
Etxs(t), where s(t) is normalized to have unit energy, so that Etx is the transmitted

signal energy. The signal propagates through a convolutive random channel, or tapped

delay line, with fixed spacing Tt, given by

g(t) =
√

G0

L−1∑
l=0

αlδ(t− lTt). (3.1)
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Here G0 is the total gain factor, L is the total number of taps, αl is the gain for the

(l + 1)-th tap, and let α = [α1, · · · , αL]
T . The model α is modeled as a Gaussian

random vector with distribution denoted N (µα,V), where µα is the mean vector and

V is the covariance matrix. The channel is assumed to have unit power such that

tr(µαµ
T
α +V) = 1, where tr is the trace operator. Define Erx

∆
= G0Etx and denote the

propagation delay as t0 ∈ R+. The received signal is given by

y(t) =
√

Erx

L−1∑
l=0

αls(t− lTt − t0) + n(t) =
√

Erxα
T s(t− t0) + n(t), (3.2)

where

s(t− t0) = [s(t− t0), s(t− Tt − t0), · · · , s(t− (L− 1)Tt − t0)]
T , (3.3)

and n(t) is AWGN with double sided spectral density σ2
n = N0/2, from which the signal

to noise ratio is defined as ξb =
Erx
σ2
n
. A uniform prior distribution is assumed for t0 in

[0, T ]. The TDE problem is to estimate t0, and the ZZB is developed for TDE.

3.2.2 The Ziv-Zakai Bound

The development of the ZZB links estimation of time delay t0 to a hypothesis

testing problem that discriminates a signal at two possible delays [39]. Let t̂0 be a time

delay estimate. For a received signal y(t) at one of the two possible delays y(t − a) or

y(t− a−∆), where ∆ > 0 and a, a+∆ ∈ [0, T ], the hypothesis test is given by

Decide H0 : t0 = a if |t̂0 − a| < |t̂0 − a−∆|,

Decide H1 : t0 = a+∆ if |t̂0 − a| > |t̂0 − a−∆|. (3.4)

Denote the estimation error by ϵ = t̂0−t0, and let Pe(a, a+∆) be the minimal probability

of error achieved by the optimum detection scheme in making the above decision. If the

two hypothesized delays are equally likely to occur, then the estimation MSE is lower
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bounded by [39]

ϵ2 ≥ 1

T

∫ T

0
∆

∫ T−∆

0
Pe(a, a+∆)da d∆. (3.5)

In general, with equally likely hypotheses, Pe(a, a + ∆) is only a function of the offset

∆ and not a. Thus, write Pe(∆) = Pe(a, a+∆), and it follows that

ϵ2 ≥ 1

T

∫ T

0
∆(T −∆)Pe(∆)d∆. (3.6)

3.2.3 Development of Average ZZB

Evaluation of the bound (3.6) relies on finding the minimal probability of error

Pe(∆). For our case, consider the received signal

y(t) =
√

Erxα
T s(t−m∆) + n(t), (3.7)

where m takes values of 0 or 1 corresponding to the two hypotheses, and ∆ is the relative

delay in the hypothesis test. Here, Pe(∆) is equivalent to the error probability of a maxi-

mum likelihood detector for a binary pulse position modulation (PPM) communications

scheme, as a function of the relative delay ∆. Thus, the development can appeal to

binary PPM error results, but with the added complication of the random channel. Re-

sorting to the optimal binary PPM detector, Pe(∆) conditioned on a channel realization

is found as [46]

Pe(∆) = Q(
√
D) = Q(

√
ξb(R0 −R∆)), (3.8)

where Rτ1−τ2 is the correlation of αT s(t− τ1) and αT s(t− τ2), and

D = ξb(R0 −R∆) and SNR = ξb
∆
= Erx/σ

2
n. (3.9)

Pe(∆) is then averaged over channel realizations to find the average error probability

Pe(∆). Define the random channel gain vector α = [α0, · · · , αL−1]
T . The average
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probability of error is given by

P e(∆) = E{Pe(∆)} = E{Q(
√
D)}, (3.10)

where the expectation is over random gain α ∈ RL. The Q-function is difficult to work

with. The evaluation of the expectation value is done by using the MGF of the quadratic

forms of Gaussian variables. The final form of the averaged ZZB on TDE is expressed

as ([46])

P e(∆) =
2

L
2

π

∫ π
2

0
exp[−ξb

2
µT
αΦB−1µα] |B|−

1
2 (sinϕ)Ldϕ, (3.11)

where

B = 2 sin2 ϕI+ ξbVΦ,

Φ =

L−1∑
k=−(L−1)

(2βkTt − β∆+kTt − β∆−kTt)J
k,

βτ =

∫ ∞

−∞
s(t)s(t− τ)dt (3.12)

and J is a L×L down-shifting matrix, whose first sub-diagonal elements below the main

diagonal are ones while all others are zeros.

After finding the averaged error probability, the averaged ZZB is found by using

Pe(∆) in (3.6), which is one of the so-called perfect-measurement-based lower bounds

[83].

3.3 Ziv-Zakai Bounds for Pulsed Signal in Unknown Mul-

tipath Channel

This section presents the author’s work on the Ziv-Zakai bounds for TDE with

pulsed signal for unknown multipath channel. The same signal and channel models are

assumed as described for the average ZZB in the last section. The difference between
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this work and the average ZZB in [46] is that receivers only know the statistics of the

channel vector α but do not know its realizations. The development is organized as

follows. The received signal distribution is established in Section 3.3.1, along with the

ZZB derivation. In Section 3.3.2, development of the ZZB is facilitated via a MGF

approach using quadratic forms of Gaussian random vectors. The ZZB is analyzed

asymptotically for both low and high SNRs in Section 3.3.3, and an approach to find

the SNR thresholds is described. Some important special cases of the ZZB are then

considered in Section 3.3.4, including the cases of memoryless random channels (flat

fading) and known channels. A detailed road map for computation of the ZZB, as well

as low and high SNR limiting cases, is provided in Section 3.3.5. In Section 3.3.6 the

ZZB is compared against the performance of time delay estimators and the CRB that

is averaged over the random unknown channel. Numerical examples of the estimations

and the bounds are shown in Section 3.3.7.

3.3.1 Development

Based on the signal and channel models in Section 3.2.1, the development of ZZB

generally follows the procedure in Section 3.2.2. The ZZB in (3.6) depends on the

minimal probability of error Pe(∆) in making the hypothesis test, which will be found

by evaluating the LLR test, as follows. The conditional distribution of the received

signal is obtained conditioned on the channel realization. This is then averaged over the

channel distribution, yielding the distribution of the received signal, reflecting the lack

of knowledge of the channel at the receiver. Note this averaging of the signal distribution

is over the unknown random channel with the information of channel statistics, which

is different with the averaging Pe(∆) over channel realizations in the development of

average ZZB. The LLR is shown to depend quadratically on the received signal, and in
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Section 3.3.2 a moment generating function approach is used to find an expression for

the LLR distribution. Finally, Pe(∆) is found using the LLR distribution.

3.3.1.1 Received Signal Distribution

From equation (3.106), the received signal can be written as

y(t) =
√

Erxα
T sm + n(t), (3.13)

where m takes the value 0 or 1 corresponding to hypotheses H0 or H1 respectively, and

sm = s(t−m∆) = [s(t−m∆), s(t− Tt −m∆), · · · , s(t− (L− 1)Tt)−m∆]T .

Note that, in the context of developing the bound, the delay parameter t0 in eq. (3.3)

has been replaced by m∆. The duration of the observation window at the receiver

is denoted as T0, is much larger than the sum of T and the duration of the channel

output waveform, where the output waveform duration is (L− 1)Tt plus the duration of

transmitted signal p(t). From (3.108), the distribution of y(t) conditioned on channel

gain α and time delay m∆ is [84]

p(y(t)|α,m∆) = K exp

[
− 1

2σ2
n

∫
T0

(
y(t)−

√
Erxα

T sm

)2
dt

]
= K exp

[
− 1

2σ2
n

(
Erxα

TS00α− 2
√

Erxr
T
mα+ Iy

)]
. (3.14)

where K absorbs all of the integration constants independent of α and m∆, and

Sm1m2

∆
=

∫
T0

sm1s
T
m2

dt, rm
∆
=

∫
T0

smy(t)dt, Iy
∆
=

∫
T0

y2(t)dt, (3.15)

with m,m1,m2 = {0, 1}. Smm = S00 = S11 is a symmetric Toeplitz matrix independent

of m. Also the non-symmetric Toeplitz matrices S01 and S10 are to be used in the ZZB

development in Section 3.3.1. Denoting the transmitted waveform autocorrelation by

βτ =

∫
To

s(t)s(t− τ)dt
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and defining the L× L down-shifting matrix J whose first subdiagonal elements below

the main diagonal are ones while all others are zeros, the matrices are compacted as [46]

S00 = S11 =
L−1∑

k=−(L−1)

β−kTtJ
k, S01 = ST

10 =
L−1∑

k=−(L−1)

β∆−kTtJ
k, (3.16)

where J−1 ∆
= JT , J0 ∆

= I. Next, (3.14) is averaged over the probability distribution of

the channel vector α, given by

p(y(t)|m∆) = Eα {p(y(t)|α,m∆)}

= KEα

{
exp

[
− 1

2σ2
n

(
Erxα

TS00α− 2
√

Erxr
T
mα+ Iy

)]}
. (3.17)

The expected value of the exponential of a quadratic form of the normal random vector

α can be obtained from its moment generating function [87]. Let Q be the exponent in

(3.17), given by

Q = − 1

2σ2
n

(
Erxα

TS00α− 2
√

Erxr
T
mα+ Iy

)
.

Using equation (B.3) in Appendix B, with s = 1, then

p(y(t)|m∆) = K|X|−
1
2 exp

{
1

2
vT
mX−1vm + cm

}
(3.18)

where

X = I+
Erx

σ2
n

V
1
2S00V

1
2 = I+ ξbV

1
2S00V

1
2 , (3.19)

and ξb is the SNR as defined in Section 3.2.1. The received signal is embedded in vm

and cm, given by

vm =

√
Erx

σ2
n

V
1
2 rm − Erx

σ2
n

V
1
2S00µα, cm =

√
Erx

σ2
n

µT
αrm − Erx

2σ2
n

µT
αS00µα − Iy

2σ2
n

.

Using vm and cm, eq. (3.18) can be expressed as a function of rm, given by

p(y(t)|m∆) = K|X|−
1
2 exp

{
rTmWrm + hT rm + c̃

}
, (3.20)
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where

c̃ =
E2

rx

2σ4
n

µT
αS00V

1
2X−1V

1
2S00µα − Erx

2σ2
n

µT
αS00µα − Iy

2σ2
n

,

W =
Erx

2σ4
n

V
1
2X−1V

1
2 =

ξ2b
2Erx

V
1
2X−1V

1
2 , (3.21)

h =

√
Erx

σ2
n

µα −
√
ErxErx

σ4
n

V
1
2X−1V

1
2S00µα =

ξb√
Erx

(
I− ξbV

1
2X−1V

1
2S00

)
µα = Hµα.

(3.22)

Note that c̃ does not depend on m, i.e., it does not depend on the hypothesis choice.

Note also that h = 0 in the zero-mean channel case, i.e., when µα = 0.

3.3.1.2 Log-likelihood Ratio Test

By the received signal distribution in (3.20) the likelihood ratio (LR) for the hy-

pothesis test can be evaluated. The LR to decide on hypothesis Hm, m = 0, 1, is

Λ
∆
=

p(y(t)|0)
p(y(t)|∆)

H0

≷
H1

1. (3.23)

Because c̃ in (3.20) does not depend on the hypothesis choice, then it will not affect the

error probability of the hypothesis test and can be dropped. Consequently, employing

(3.20), the LLR becomes

L ∆
= lnΛ = ln p(y(t)|0)− ln p(y(t)|∆) = rT0 Wr0 − rT1 Wr1 + hT r0 − hT r1

= rTΨr+ gT r (3.24)

H0

≷
H1

0,

where

r =

 r0

r1

 , Ψ =

 W 0

0 −W

 , g =

 h

−h

 =

 Hµα

−Hµα

 = Gµα. (3.25)
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An error occurs if L < 0|m = 0, or if L > 0|m = 1. Thus, the hypothesis test minimum

error probability can be written as

Pe(∆) = Pr{L < 0|H0}Pr{H0}+ Pr{L > 0|H1}Pr{H1}

=
1

2
Pr{L < 0|H0}+

1

2
Pr{L > 0|H1}, (3.26)

where the second equality assumes equally likely hypotheses. Let Lm
∆
= L|Hm, and

r̃m
∆
= r|Hm. Then eqs. (3.112) and (3.26) become

Lm = r̃TmΨr̃m + gT r̃m, (3.27)

Pe(∆) =
1

2
Pr{L0 < 0}+ 1

2
Pr{L1 > 0}. (3.28)

The goal now is to evaluate the probabilities in (3.115), in order to use Pe(∆) in

the ZZB expression (3.6). The next subsection will find the distribution of r̃m. Then,

in the next section, the distribution of Lm is derived, from which the probabilities are

obtained.

3.3.1.3 The Distribution of r̃m

Using (3.110) and (3.108) conditioned on H0, then r0 and r1 can be expressed as

r0|H0 =

∫
T0

s0

[√
Erxα

T s0 + n(t)
]
dt =

√
Erx

(∫
T0

s0s
T
0 dt

)
α+

∫
T0

s0n(t)dt

=
√

ErxS00α+ z0, (3.29)

r1|H0 =

∫
T0

s1

[√
Erxα

T s0 + n(t)
]
dt =

√
Erx

(∫
T0

s1s
T
0 dt

)
α+

∫
T0

s1n(t)dt

=
√

ErxS10α+ z1, (3.30)

where

z0
∆
=

∫
T0

s0n(t)dt, z1
∆
=

∫
T0

s1n(t)dt.
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Stack r0|H0 and r1|H0 as in (3.25) and obtain

r̃0 = r|H0 =
√
ErxR0α+ z, R0 =

 S00

S10

 , z =

 z0

z1

 . (3.31)

Similarly, conditioned on H1, it follows

r̃1 = r|H1 =
√

ErxR1α+ z, R1 =

 S01

S00

 . (3.32)

Therefore, under either hypothesis the data vector r̃0 or r̃1 is a linear combination of

Gaussian vectors α and z, so that r̃m follows a normal distribution as r̃m ∼ N (µm,Σm).

Using (3.117) and (3.118), the mean and variance of r̃m can be compactly expressed as

µm =
√

Erxmm, mm = Rmµα, Σm = Erx

(
RmVRT

m + ξ−1
b Γ

)
, (3.33)

where

Γ = E{zzT }/σ2
n =

 S00 S01

S10 S00

 =

[
R0 R1

]
. (3.34)

Thus, the pdf of the 2L-dimensional Gaussian vector r̃m can be written as

fm(x) =
1

(
√
2π)2L|Σm|

exp

{
−1

2
(x− µm)TΣ−1

m (x− µm)

}
,

which will be useful in the next section.

Note that with the distribution of r̃m, it is easy to express the probabilities in

(3.115) as

Pr{L0 < 0} = Pr
{
x ∈

{
x : xTΨx+gTx < 0}

}
=

∫
· · ·
∫

︸ ︷︷ ︸
2L fold

x∈
{
x: xTΨx+gTx<0

}f0(x)dx,
(3.35)

Pr{L1 > 0} = Pr
{
x ∈

{
x : xTΨx+gTx > 0}

}
=

∫
· · ·
∫

︸ ︷︷ ︸
2L fold

x∈
{
x: xTΨx+gTx>0

}f1(x)dx.
(3.36)
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However, these require finding the bounding set for x and evaluating the 2L-dimensional

integrals. In the next section an MGF approach is introduced that results in a 2-

dimensional integration and is much more computationally attractive.

3.3.2 Evaluation of the ZZB using the moment generating function

Using the results from Section 3.3.1, the ZZB can be evaluated as follows. With the

distribution of the log-likelihood ratio Lm in (3.114), it is straightforward to evaluate

the probabilities in (3.115) via 1-dimensional integration, and then use the resulting

Pe(∆) to find the ZZB in (3.6). Note that Lm is a quadratic function of the Gaussian

vector r̃m, and so no closed form is available for the distribution of Lm. Consequently,

adopting an MGF approach can find it.

The MGF of Lm is given by

Θm(s)
∆
= Er̃m{exp(sLm)} = Er̃m{exp[s(r̃

T
mΨr̃m + gT r̃m)]}. (3.37)

Consider two alternative forms for Θm(s) referred to as the direct form and the compact

form. The compact form relies on eigendecomposition, but does not require explicit

matrix inversion as does the direct form. So, in general the compact form is preferred

for numerical evaluation. However, the direct form is convenient to carry out asymptotic

analysis in Section 3.3.3. Further numerical details are deferred until Section 3.3.5.

3.3.2.1 MGF Direct Form

Applying (B.4) from Appendix B, and using the mean and variance of r̃m from

(3.119), evaluation of (3.37) obtain

Θm(s) = |Ãm(s)|−
1
2 exp{skm +

1

2
s2p̃T

mÃ−1
m (s)Σmp̃m}, (3.38)
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where

Ãm(s) = I− 2sΣmΨ, km = µT
mΨµm + gTµm, p̃m = g + 2Ψµm. (3.39)

Setting s = j2πf , the Fourier transform of Θm(j2πf) yields the pdf of Lm, and the

probabilities Pr{L0 < 0} and Pr{L1 > 0} are given by

Pr{L0 < 0} =

∫ 0

−∞

∫ ∞

−∞
Θ0(j2πf)e

−j2πfudfdu, (3.40)

Pr{L1 > 0} =

∫ ∞

0

∫ ∞

−∞
Θ1(j2πf)e

−j2πfudfdu. (3.41)

Substituting Pr{L0 < 0} and Pr{L1 > 0} into (3.115), the minimum error probability

Pe(∆) follows.

The fast Fourier transform (FFT) algorithm can be employed to approximate the

continuous Fourier transform in the inner-most integration in (3.40) and (3.41). How-

ever, to do this, then for each s = 2πf the matrix inverse and determinant of Ãm(s)

must be computed, which has high computational complexity. In the next subsection

the eigendecomposition approach is adopted to derive a compact form for the MGF,

leading to lower complexity. Note that (3.38) will prove useful to carry out asymptotic

analysis of the ZZB in Section 3.3.3.

3.3.2.2 MGF Compact Form

Next consider an alternative evaluation of the MGF relying on eigendecomposition.

Let us begin with the LLR in (3.114). Using the definitions of Ψ and g in (3.25), it can

be easily shown that gTΨ−1g = 0. Therefore, the LLR becomes

Lm = x̃T
mΨx̃m, x̃m = r̃m +

1

2
Ψ−1g. (3.42)

Note that x̃m is a Gaussian random vector with variance Σm, and whose mean is

µxm = µm +
1

2
Ψ−1g = (

√
ErxRm +

1

2
Ψ−1G)µα.
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Introduce the zero mean Gaussian random vector um, obtained from x̃m by the trans-

formation

x̃m = Σ
1
2
mPmum + µxm = Σ

1
2
mPm(um + bm),

so that the variance of um is the identity matrix I, and the vector bm is a linear

transformation of channel mean µα given by

bm = PT
mΣ

− 1
2

m µxm = PT
mΣ

− 1
2

m (
√

ErxRm +
1

2
Ψ−1G)µα. (3.43)

In this transformation, Pm is a unitary matrix in the eigendecomposition of the sym-

metric matrix given by

Σ
1
2
mΨΣ

1
2
m = Pmdiag{λ1, · · · , λJ ,−λJ+1, · · · ,−λ2L}PT

m. (3.44)

From the structure of Ψ and the fact that W is positive definite, it follows that λk ≥ 0

for all k.

From this, the elements umk of um are independent Gaussian random variables,

each with zero mean and unit variance. It follows that (3.119) can be written as

Lm = (um + bm)Tdiag{λ1, · · · , λJ ,−λJ+1, · · · ,−λ2L}(um + bm) (3.45)

=
J∑

k=1

λk(umk + bmk)
2 −

2L∑
k=J+1

λk(umk + bmk)
2, (3.46)

where bmk is the k-th element of bm.

The MGF is now obtained by using (3.121) in equation (B.5) from Appendix B,

Θm(s) =

{
J∏

k=1

(1− 2sλk)
− 1

2 exp{
sλkb

2
mk

1− 2sλk
}

}{
2L∏

k=J+1

(1 + 2sλk)
− 1

2 exp{
−sλkb

2
mk

1 + 2sλk
}

}
.

(3.47)

In this case, each of the 2L product factors stems from the MGF of a scaled noncentral

Chi-square random variable with one degree of freedom [87]. This observation is consis-

tent with (3.46), consisting of two weighted sums of independent noncentral Chi-square
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random variables, where each term in the summation results in a multiplicative factor in

(3.122). As with the MGF direct form, substituting into (3.40) and (3.41), the decision

error probabilities can be found, and the ZZB follows.

Note that compact form of the MGF in (3.122) does not require matrix inversion at

each frequency, though it is necessary to re-compute Σm, Rm, and the eigendecomposi-

tion in (3.121) for each value of ∆. Overall, the compact form requires less computation

than the direct form, and it will be used in our numerical examples in Section 3.3.7.

3.3.3 ZZB Asymptotic Analysis and Threshold Regions

In this section, the author derives asymptotic expressions for the ZZB at both low

and high SNRs, and show how SNR thresholds can be found to isolate the low and

high SNR regimes. The MGF direct form of (3.38) is expanded in a power series as a

function of SNR ξb for low SNR, and ξ−1
b for high SNR. The MGF in (3.38) is a function

of Ãm(s), km, and p̃m. These quantities depend on Ψ, that in turn depends on W in

(3.21), where W incorporates X−1, and finally X in (3.19) is a function of the desired

expansion variable ξb. So, the derivation begins by expanding X in ξb, or X−1 in ξ−1
b ,

and then substitute these until the desired expansion of the MGF is obtained1.

3.3.3.1 Low SNR Regime

Using the results from Appendix B.1.1, a Taylor expansion of X−1 is given by

X−1 = (I+ ξbV
1
2S00V

1
2 )−1 = I− ξbV

1
2S00V

1
2 +O(ξ2b ). (3.48)

The expansion of V
1
2X−1V

1
2 follows, contained in W, as

V
1
2X−1V

1
2 = V − ξbVS00V +O(ξ2b ). (3.49)

1A similar approach can be applied beginning with the MGF compact form. Along with some common
terms arising in the MGF direct form expansion, this also requires expansion of eigendecomposition
components Pm and λk in (3.121) that can be obtained using a perturbation analysis technique.
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Subsequently, Ψ and g become

Ψ =
ξ2b
Erx

Ψ2 +O(ξ3b ), g =
ξb√
Erx

g1 +O(ξ2b ), Ψ2 =

 V
2 0

0 −V
2

 , g1 =

 µα

−µα

 .

(3.50)

Then, Ãm(s), p̃m and km become

Ãm(s) = I− 2sΣmΨ = I− 2sErx(RmVRT
m + ξ−1

b Γ)Ψ = I− 2sΓΨ2ξb +O(ξ2b ), (3.51)

p̃m = g+2Ψµm =
ξb√
Erx

g1+O(ξ2b ), km = µT
mΨµm+gTµm = gT

1 mmξb+O(ξ2b ). (3.52)

Using the Taylor expansions in (B.11), (B.12) and (B.13) in Appendix B.1.1, the

inverse and determinant of Ãm(s) can be expanded as

Ã−1
m (s) = I+ 2sξbΓΨ2 +O(ξ2b ),

|Ãm(s)| = 1− 2sξbtr(ΓΨ2) +O(ξ2b ),

|Ãm(s)|−
1
2 = 1 + sξbtr(ΓΨ2) +O(ξ2b ). (3.53)

From eqs. (3.52) and (3.53), the following is obtained as

p̃T
mÃ−1

m (s)Σmp̃m = ξbg
T
1 Γg1 +O(ξ2b ). (3.54)

Substituting (3.52) and (3.53) into (3.38), the MGF expansion is

Θm(s) =
{
1 + sξbtr(ΓΨ2) +O(ξ2b )

}
× exp

{
sξbg

T
1 mm +

s2

2
ξbg

T
1 Γg1 +O(ξ2b )

}
. (3.55)

As ξb → 0, the leading coefficient in (3.55) goes to unity, and the first order approxima-

tion of the MGF in the low SNR regime is

Θm(s) ≈ exp
{
sξbg

T
1 mm +

s2

2
ξbg

T
1 Γg1

}
. (3.56)

This is the MGF of a normally distributed random variable with mean ξbg
T
1 mm and

variance ξbg
T
1 Γg1. So at low SNR, Lm ∼ N (ξbg

T
1 mm, ξbg

T
1 Γg1), (3.40) and (3.41) are

Pr{L0 < 0} = Q

 ξbg
T
1 m0√

ξbg
T
1 Γg1

 , P r{L1 > 0} = Q

− ξbg
T
1 m1√

ξbg
T
1 Γg1

 , (3.57)
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where Q(x) = 1√
2π

∫∞
x exp(− t2

2 )dt is the Q-function. Substituting (3.57) into (3.26) and

using the following expansion of the Q-function for small x [46]

Q(x) =
1

2
− 1√

π

∞∑
n=0

(−1)n( x√
2
)2n+1

(2n+ 1)n!
,

eq. (3.26) becomes

Pe(∆) ≈ 1

2
− 1

2

√
ξbg

T
1 (m0 −m1)√
πgT

1 Γg1

. (3.58)

Substituting into (3.6), the low SNR ZZB is approximately

ϵ2 ≥ 1

T

∫ T

0
∆(T −∆)

[1
2
− 1

2

√
ξbg

T
1 (m0 −m1)√
πgT

1 Γg1

]
d∆. (3.59)

Using the definitions of g1 in (3.50), Γ in (3.119), Rm in (3.117) and (3.118), and mm

in (3.119), it can be easily shown that

gT
1 (m0 −m1) = gT

1 Γg1 = 2µT
α(S00 − S01)µα =

L−1∑
k=−(L−1)

2(β−kTt − β∆−kTt)µ
T
αJ

kµα.

Therefore, the desired low SNR ZZB is arrived, given by

ϵ2 ≥ 1

T

∫ T

0
∆(T −∆)

1
2
−
√

ξb
2π

√√√√ L−1∑
k=−(L−1)

(β−kTt − β∆−kTt)µ
T
αJ

kµα

 d∆. (3.60)

The resulting bound is a function of the channel mean µα and signal correlation βτ ,

while not depending on the channel correlation because the term associated with Ψ2 in

(3.55) has been neglected.

3.3.3.2 High SNR Regime

Now consider large ξb. Rewrite (3.19) as

X = (I+V− 1
2S−1

00 V
− 1

2 ξ−1
b )(ξbV

1
2S00V

1
2 ),

so that the Taylor expansion of X−1 can be expressed as

X−1 = V− 1
2S−1

00 V
− 1

2 ξ−1
b −V− 1

2S−1
00 V

−1S−1
00 V

− 1
2 ξ−2

b +O(ξ−3
b ). (3.61)

63



It follows that

V
1
2X−1V

1
2 = S−1

00 ξ
−1
b − S−1

00 V
−1S−1

00 ξ
−2
b +O(ξ−3

b ). (3.62)

Subsequently, Ψ and g become2

Ψ =
1

Erx

[
ξbΨ1 + ξ0bΨ0 +O(ξ−1

b )
]
, g =

1√
Erx

[
ξ0bg0 +O(ξ−1

b )
]
,

in which

Ψ1 =
1

2

 S−1
00 0

0 −S−1
00

 , Ψ0 =
1

2

 −S−1
00 V

−1S−1
00 0

0 S−1
00 V

−1S−1
00

 ,

g0 =

 S−1
00 V

−1µα

−S−1
00 V

−1µα

 . (3.63)

Now Ãm(s), p̃m and km have Taylor expansions

Ãm(s) = I− 2sΣmΨ = I− 2sErx(RmVRT
m + ξ−1

b Γ) · 1

Erx

[
ξbΨ1 + ξ0bΨ0 +O(ξ−1

b )
]

= I+ s

−2RmVRT
mΨ1︸ ︷︷ ︸

A1

ξb + (−2RmVRT
mΨ0 − 2sΓΨ1)︸ ︷︷ ︸
A0

ξ0b

+O(ξ−1
b )

= I+ s
(
A1ξb +A0ξ

0
b

)
+O(ξ−1

b ), (3.64)

p̃m = g + 2Ψµm =
1√
Erx

[
2Ψ1mm︸ ︷︷ ︸

p1

ξb + (g0 + 2Ψ0mm)︸ ︷︷ ︸
p0

ξ0b +O(ξ−1
b )
]

=
1√
Erx

[
p1ξb + p0ξ

0
b +O(ξ−1

b )
]
, (3.65)

km = µT
mΨµm + gTµm = mT

mΨ1mmξb + (gT
0 mm +mT

mΨ0mm)ξ0b +O(ξ−1
b ), (3.66)

where A1 is singular and A0 is non-singular.

Here the development focuses on the case of large ξb, but note that |s| will vary

from small to large. In order to easily evaluate the inverse and determinant of Ãm(s)

2For clarity in the expansion in terms of SNR ξb, the notation ξ0b is preserved, although ξ0b = 1.
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for large ξb and small-to-large |s|, it is inappropriate to view sA1 as the dominant term

in (3.64) due to the singularity of A1 and possibly small |s|. Thus, (3.64) should not be

regarded as a power series in ξb alone. Instead, an analytically elegant approach would

be to expand the appropriate quantities as a function of both s and ξb in order to cope

with a large range of |s| and large ξb. However, this leads to significant complexity, e.g.,

using piece-wise approximations for different variable range combinations to complete

the integration in the probability evaluation. Fortunately, numerical study reveals that

the MGF is very steep around its peak at high SNR (the pdf is much flatter than for

the low SNR case). This observation permits us to focus on the small |s| region only.

Accordingly, the inverse and determinant of Ãm(s) is firstly expressed with respect to

s using the Taylor expansions (B.11), (B.12) and (B.13) in Appendix B.1.1

Ã−1
m (s) =

[
I+ s

(
A1ξb +A0ξ

0
b

)
+O(ξ−1

b )
]−1

= I− s
(
A1ξb +A0ξ

0
b

)
+O(|s|2) +O(ξ−1

b )

= ξb (−sA1)︸ ︷︷ ︸
B1

+ξ0b (I− sA0)︸ ︷︷ ︸
B0

+O(|s|2) +O(ξ−1
b )

= ξbB1 +B0 +O(|s|2) +O(ξ−1
b ), (3.67)

|Ãm(s)| =
∣∣I+ s

(
A1ξb +A0ξ

0
b

)
+O(ξ−1

b )
∣∣

= 1 + s · tr(ξbA1 +A0) +O(|s|2) +O(ξ−1
b ), (3.68)

|Ãm(s)|−
1
2 = ξb

[
−s

2
tr(A1)

]
+
[
1− s

2
tr(A0)

]
+O(|s|2) +O(ξ−1

b ). (3.69)

By eqs. (3.65) and (3.67), it follows that

p̃T
mÃ−1

m (s)Σmp̃m =
[
p1ξb + p0ξ

0
b +O(ξ−1

b )
]T [

ξbB1 +B0 +O(|s|2) +O(ξ−1
b )
]

×(RmVRT
m + ξ−1

b Γ)
[
p1ξb + p0ξ

0
b +O(ξ−1

b )
]

= ξ3b q3 + ξ2b q2 + ξbq1 + q0 +O(|s|2) +O(ξ−1
b ), (3.70)

65



where

q3 = pT
1 B1RmVRT

mp1,

q2 = pT
1 B1(RmVRT

mp0 + Γp1) + (pT
1 B0 + pT

0 B1)RmVRT
mp1,

q1 = pT
1 B1Γp0 + (pT

1 B0 + pT
0 B1)(RmVRT

mp0 + Γp1) + pT
0 B0RmVRT

mp1,

q0 = (pT
1 B0 + pT

0 B1)Γp0 + pT
0 B0(RmVRT

mp0 + Γp1). (3.71)

Substituting eqs. (3.66), (3.69) and (3.70) into (3.38), the MGF becomes

Θm(s) =
{
ξb

[
−s

2
tr(A1)

]
+
[
1− s

2
tr(A0)

]
+O(|s|2) +O(ξ−1

b )
}

× exp
{
ξ3b q3 + ξ2b q2 + ξb[q1 + s(mT

mΨ1mm)] + q0 +O(|s|2) +O(ξ−1
b )
}
.

(3.72)

Finally, by ignoring the high order terms of both s and ξb the desired high SNR MGF

approximation follows

Θm(s) ≈
{
ξb

[
−s

2
tr(A1)

]
+
[
1− s

2
tr(A0)

]}
exp

{
ξ3b q3 + ξ2b q2 + ξb[q1 + s(mT

mΨ1mm)] + q0
}
. (3.73)

Setting s = j2πf in (3.73) and substituting into (3.40) and (3.41), the probabilities can

be found for Pe(∆) in (3.115).

3.3.3.3 Thresholds and Performance Regions

Our asymptotic analysis results at low and high SNRs are valuable in determining

disjoint segments of SNR ξb, separated by thresholds, that characterize different per-

formance regions. The thresholds are defined as the SNR values where the ZZBs and

the asymptotic ZZB approximations differ by 1/2 [46]. Let us apply this rule to the

low SNR regime first based on (3.60). Taking the limit ξb → 0, the convergence level is
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1
12T

2. Therefore, one can find the threshold ξb = δ1 that yields half of the convergence

level

1

T

∫ T

0
∆(T −∆)

1
2
−
√

δ1
2π

√√√√ L−1∑
k=−(L−1)

(β−kTt − β∆−kTt)µ
T
αJ

kµα

 d∆ =
1

24
T 2. (3.74)

Solving this equation numerically, one can obtain δ1.

The threshold ξb = δ2 at high SNR can be found similarly. Substituting (3.73) into

(3.40) and (3.41), and subsequently into (3.115), Pe(∆) follows. Using that result in

(3.6) and setting it equal to half the general ZZB from (3.6), an equation in δ2 results.

3.3.4 Important ZZB Special Cases

In this section, the ZZB for three cases of broad interest is considered. First is

narrowband channels, corresponding to Rayleigh/Rician flat fading, and a result is re-

covered, derived differently by Kozick and Sadler [42, 43]. Then wideband channels

with independent taps are considered, with the signal bandwidth matching the chan-

nel bandwidth. Finally, the deterministic case when the receiver knows the channel is

discussed.

3.3.4.1 Single Tap Channel

With L = 1, the channel gain α followsN ∼ (µα, σ
2
α) corresponding to Rayleigh/Rician

flat fading. The received signal is modeled by

y(t) =
√

Erxαsm(t) + n(t), (3.75)

and correlation and other terms are

Iy
∆
=

∫
T0

y2(t)dt, rm
∆
=

∫
T0

smy(t)dt, Smm
∆
=

∫
T0

s2m(t)dt, S01 = S10
∆
=

∫
T0

s0(t)s1(t)dt.

X = 1+ξbσ
2
αS00, vm =

√
Erx

σ2
n

σαrm−Erx

σ2
n

σαS00µα, cm =

√
Erx

σ2
n

µαrm−Erx

2σ2
n

µ2
αS00−

Iy
2σ2

n

.
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The distribution of the received signal is proportional to

p(y(t)|m∆) ∝ exp
{
Wr2m + hrm

}
, (3.76)

where

W =
ξ2bσ

2
α

2(1 + ξbσ2
αS00)

, h =

[
ξb −

ξ2bσ
2
αS00

(1 + ξbσ2
αS00)

]
µα.

The mean and variance for r̃m are given by

µ0 =
√

Erx

 S00µα

S10µα

 , Σ0 = Erx

 S2
00 + ξ−1

b S00 S00S10 + ξ−1
b S01

S00S10 + ξ−1
b S10 S2

10 + ξ−1
b S00

 ,

µ1 =
√

Erx

 S01µα

S00µα

 , Σ1 = Erx

 S2
01 + ξ−1

b S00 S00S01 + ξ−1
b S01

S00S01 + ξ−1
b S10 S2

00 + ξ−1
b S00

 .

In this case, the log-likelihood ratio becomes

L = W (r20 − r21) + h(r0 − r1) = rTΨr+ gT r, (3.77)

Ψ =

 W 0

0 −W

 , g =

 h

−h

 .

In particular for the Rayleigh fading case µα = 0, then h = 0 and L = W (r20 − r21).

Since W > 0, the LLR test reduces to comparison of r20 with r21, the signal power3.

Thus, the error probability expression before simplification matches eq. (113) in [43]

under N = 1 therein. Moreover, µ0 = [0, 0]T , and

Σ0 = Erxξ
−1
b

 S00 + ξbS
2
00 (1 + ξbS00)S01

(1 + ξbS00)S01 S00 + ξbS
2
10



= S00σ
2
n (1 + ξbS00)

 1 S01
S00

S01
S00

1+ξb(
S2
01

S00
)

1+ξbS00

 . (3.78)

3As pointed out in [42, 43], the optimal detector corresponds to a non-coherent matched filter.
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If defining the SNR as in eq. (75) in [43],

SNR
∆
= ξb, ρ(0)

∆
= S00, ρ(θ)

∆
= S01, No

∆
= σ2

n, (3.79)

then our eq. (3.78) above becomes

Σ0 = ρ0N0

(
1 + SNRρ0

) 1 ρ(θ)
ρ0

ρ(θ)
ρ0

1+SNR(
ρ(θ)2

ρ0
)

1+SNRρ0

 , (3.80)

which takes the same form as eq. (115) in [43]. With the above results, the same closed

form expression for error probability Pe as in eq. (116) and (117) of [43] can be obtained

Pe =
1

2
− 1

2

[
1 +

4(1 + SNR · ρ(0))(
ρ(0) · SNR

)2 · [1− |ρ(θ)/ρ(0)|2]

]−1/2

. (3.81)

See [42, 43] for extension to multiple narrowband independent channels, and further

results including CRBs and estimation.

3.3.4.2 Wideband Waveform with Independent Channel Taps

This case assumes that the waveform bandwidth matches the channel, with an ideal

correlation function such that βτ = 0 for τ > Tt and βτ ̸= 0 for |τ | ≤ Tt. Thus, the

waveform autocorrelation matrix S00 in (3.16) becomes β0I, and S01 has at most two

nonzero subdiagonals. Independent channel taps are also assumed, where each channel

tap may have different mean and variance. This corresponds to many measured wireless

fading channel models, e.g., with an exponential decay in the variance. Now, the channel

mean vector is µα = [µα1 , · · · , µαL ]
T and covariance matrix V = diag[σ2

α1
, · · · , σ2

αL
].

Let us examine the dependence of the two data vectors r0 and r1 in the LLR

expression. As an example, assume hypothesis H0. Using (3.116) and (3.30) finds

VAR(r0|H0) = Erxβ
2
0V + σ2

nI, VAR(r1|H0) = ErxS10VST
10 + σ2

nI,

COV(r0|H0, r1|H0) = Erxβ0VST
10 + σ2

nS
T
10. (3.82)
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These simplified expressions can be used to replace their counterparts in our earlier ZZB

development.

Remark: Further simplifications do not appear to be straightforward. For example,

with multiple independent flat fading (single tap) channels, a simplified ZZB expression

is obtained in Section 5.3 in [43], using results from Appendix B of [84] or Appendix

9A of [82]. However, in our case, note that S10 is a function of the continuous variable

∆. While the elements of r0 are independent, the entries of r1 are not necessarily

independent except for some special values of ∆ such that S10 has only one non-zero

subdiagonal. Also, from the above covariance, r0 and r1 are generally correlated for

most values of ∆. These conditions violate the assumptions used in [43].

3.3.4.3 Known Channel

Here comes the case when the channelα is fixed and known to the receiver. Now, the

LLR is governed by (3.14), rather than taking the expectation over channel realizations

as in (3.17). The LLR can be easily shown to be rT0 α − rT1 α, with some constants

suppressed4. It follows that

L0 =
√

Erxα
T (S00 − S10)α+αT (z0 − z1)

H0

≷
H1

0,

which is Gaussian distributed with mean
√
Erxα

T (S00−S10)α and variance σ2
n[α

T (s0−

s1)]
2. Then,

Pr{L0 < 0} = Q

(√
Erxα

T (S00 − S10)α

σn|αT (s0 − s1)|

)
.

Similarly, it follows that Pr{L1 > 0} takes the same expression as above. Therefore,

Pe(∆) = Pr{L0 < 0} = Q

(√
ξbα

T (S00 − S10)α

|αT (s0 − s1)|

)
. (3.83)

4With the signal and channel known to the receiver, the corresponding optimal detector is a coherent
matched filter.
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Notice that S10 and s1 are functions of ∆. Substituting into (3.6), the ZZB can be

evaluated. The low and high SNR asymptotic ZZB expressions can also be found by

incorporating the power series expansion of the Q-function in, as in Section 3.3.3.

3.3.5 Summary of the ZZB Computation

This section summarizes the computation of the ZZB. The ZZB can be evaluated

for the various cases as follows, with reference to Table 3.1. The computation flows

downward in the table. Below the author describes the general ZZB computation, as

well as the low and high SNR approximations from Section 3.3.3. See also Section 3.3.4

for other special cases.

Step 0 (Initialization). The input parameters to the bound are given as follows.

The uniform prior on the time delay is specified by duration T , the signal is specified

by its deterministic autocorrelation βτ , and the random Gaussian channel parameters

are mean µα, covariance matrix V, number of taps L, and the tap spacing in time Tt.

Step 1 (Intermediate variables). Using the initial specification from Step 0, simple

linear algebraic operations yield the intermediate variables S00, S01, S10, S11, R0, R1,

X, W, h, Ψ, g, Γ, and the distribution parameters µm, mm and Σm of the data vector

rm.

Step 2 (Moment generating function). Next the MGF is calculated. Generally,

either the direct form or the compact form can be employed (see the discussion in

Section 3.4.3). The table also shows the variables associated with the low and high SNR

asymptotic cases.

1. MGF direct form. The variables Ãm(s), km and p̃m are calculated, and then the

MGF is computed by (3.38).
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2. MGF compact form. The variable bm is found by (3.120), and the eigenvalues λk

of Σ
1
2
mΨΣ

1
2
m using (3.121). The MGF is computed by substitution into (3.122).

3. Low SNR approximation. Compute g1 from (3.50), and then use (3.56).

4. High SNR approximation. Compute variables A0, A1, q0, q1, q2, q3, Ψ0, and Ψ1,

and then use (3.73).

Step 3 (Probability of error). Next Pe, the probability of error of the hypothesis

test associated with the ZZB, is found by substituting the MGF from Step 2 into (3.40)

and (3.41), and then into (3.115). Note that for the low SNR approximation, Pe can

alternatively be computed using (3.58).

Step 4. The ZZB is obtained by substituting Pe into (3.6).

Next let us discuss some numerical issues in the ZZB computation relating to the

MGF. The MGF can be computed using the direct or the compact form. The direct

form relies on computing the determinant and inverse of Ãm(s) for each s = j2πf , which

is computationally expensive. The compact form allows us to exploit the symmetry of

Σ
1
2
mΨΣ

1
2
m to compute the determinant and inverse efficiently from its eigenvalues and

eigenvectors, which are independent of s, and then (3.122) follows easily. Thus, the

compact form is generally preferred, and it is adopted in our numerical studies that

follow.

Step 3 relies on the Fourier transform of the MGF in (3.40) and (3.41), which can

be computed efficiently using the FFT, but requires truncation in the frequency variable

f due to the infinite integration limits. Thus, the truncation value must be specified,

as well as the size of the FFT used to sample the MGF up to its truncation point. As

noted in Section 3.3.3, the MGF concentrates around its peak at high SNR, and in the

cases studied, the truncation error diminishes rapidly. However, at lower SNR, larger
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Table 3.1: Symbols and equations for evaluating the ZZB and its approximations

Notation Equations

(0) Initialization T , βτ , µα, V, L, Tt

S00, S01, S10, S11 (3.16)
R0 (3.117)
R1 (3.118)
X (3.19)

(1) Intermediate Variables W (3.21)
h (3.22)

Ψ, g (3.25)
Γ (3.119)

µm, mm, Σm (3.119)

Direct Form Ãm(s), km, p̃m (3.39)
(2) Compact Form bm (3.120)

MGF λk (3.121)
Associated Low SNR Approx. g1 (3.50)
Variables A0, A1 (3.64)

High SNR Approx. q0, q1, q2, q3 (3.71)
Ψ0, Ψ1 (3.63)

Direct Form (3.38)
Compact Form Θm(s) (3.122)

MGF Low SNR Approx. (3.56)
High SNR Approx. (3.73)

(3.115)
(3) Probability of Error Pe (3.40)

(3.41)

(4) ZZB ϵ2 (3.6)
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truncation thresholds are generally required, and longer FFTs are needed to sample the

truncated MGF.

A related issue, arising with the MGF transform computation, is the inherent rect-

angular window weighting; the pdf estimate is convolved with a sinc function. When Pe

is large (i.e., low SNR), any numerically induced error is generally negligible. But when

Pe is small (high SNR), then oscillations in the pdf estimate may lead to an error in

Pe. Therefore generally at high SNR, the pdf estimate is smoothed by convolving with

a positive valued smoothing function, ensuring that the pdf estimate is strictly greater

than or equal to zero. The appropriate length of the averaging window depends on the

sampling interval of the pdf. The oscillation can also be alleviated by increasing the

MGF truncation window length as well as the FFT length within the window, with an

increase in computational complexity.

3.3.6 Bayesian TDE Estimation, the Average Conditional CRB, and

the ZZB

For comparison with our ZZB, the author first presents the MAP and Bayesian

maximum-likelihood time delay estimators. Then an alternative bound is developed,

deriving the expected value of the conditional CRB, averaging over the random channel.

Finally, the comparison of the MAP estimator mean square error performance at low

SNR to that predicted by the ZZB is given, showing how the approximations in the

ZZB lead to a bound that does not precisely converge to the prior distribution at low

SNR, whereas the MAP estimator does. Convergence of the MAP estimate to the ZZB

at high SNR is shown in the examples in Section 3.3.7.
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3.3.6.1 Bayesian Time Delay Estimation

The MAP and Bayesian ML estimators are commonly used for estimating random

parameters. Generally they are equivalent as the SNR increases to infinity. However, if

the a priori distribution of the parameter is uniformly distributed, these two estimators

are the same in the whole range of SNR [88]. For our case the unconditional distribution

of the received signal, averaged over the channel distribution, is given by equation (3.20).

With the uniform prior on the time delay ft0(t0) =
1
T , then the MAP and Bayesian ML

estimators are

t̂0,MAP = argmax
t0

{ft0(t0)p(y(t)|t0)} = argmax
t0

{
1

T
exp

(
rTt0Wrt0 + hT rt0

)}
, (3.84)

t̂0,ML = argmax
t0

{p(y(t)|t0)} = argmax
t0

{
exp

(
rTt0Wrt0 + hT rt0

)}
, (3.85)

and so they are identical in this case.

For later comparison, the generalized maximum-likelihood estimator is also stated.

For our problem, this assumes deterministic channel and estimates the time delay by

t̂0,GML = argmax
t0

{p(y(t)|t0,α)} = argmax
t0

{
rTt0S

−1
00 rt0

}
. (3.86)

This GML estimator does not use knowledge of the channel distribution, and is then

equivalent to a MMSE estimator [89]. Section 3.3.7 will show that lack of knowledge of

the channel distribution significantly impairs the performance of the GML estimation

with respect to MAP estimation.

3.3.6.2 Cramér-Rao Bound

Next consider the Cramér-Rao bound for the problem and the Bayesian CRB

(BCRB) should be employed generally. However here, with a uniform prior, the regu-

larity condition for computing the BCRB is not satisfied and consequently the BCRB
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does not exist [83]. As an alternative, the author derives the expectation of the CRB

conditioned on the random channel, which is referred to as the expected conditional

CRB (ECRB) [40].

Generally, if the estimator is assumed asymptotically conditionally unbiased for

every value of the random parameter, the MAP/ML estimators should provide perfor-

mance converging to the ECRB at infinite SNR, as established in [40]. For the time

delay estimation problem at hand, the ZZB and MLE are based on the distribution in

(3.20), which has been averaged on the channel distribution, while the ECRB is to be

derived from the distribution in (3.14) which is conditioned on the channel. Thus the

ECRB may not converge to the prior distribution at low SNR, and at high SNR it may

be a slightly weaker bound than the ZZB, as will be demonstrated in our numerical

examples in Section 3.3.7.

From (3.14), the log-probability conditioned on the random time delay t0 and the

random channel vector α is given by

ln p(y|t0,α) = − 1

2σ2
n

∫
T0

[
y(t)−

√
Erxα

T s(t− t0)
]2

dt+ lnK. (3.87)

Differentiating leads to

d ln p(y|t0,α)

dt0
= − 1

2σ2
n

∫
T0

2
[
y(t)−

√
Erxα

T s(t− t0)
] [

−
√

Erxα
T ds(t− t0)

dt0

]
dt.

(3.88)

Note that the required regularity condition is satisfied

Ey|t0,α

{
d ln p(y|t0,α)

dt0

}
= − 1

2σ2
n

∫
T0

2
[
Ey|t0,α {y(t)|t0,α} −

√
Erxα

T s(t− t0)
]

×
[
−
√

Erxα
T ds(t− t0)

dt0

]
dt

= 0, (3.89)
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where

Ey|t0,α {y(t)|t0,α} =
√

Erxα
T s(t− t0). (3.90)

The second derivative is

d2 ln p(y|t0,α)

dt20
=

1

σ2
n

∫
T0

{√
Erxy(t)α

T d
2s(t− t0)

dt20
− Erx

dsT (t− t0)

dt0
ααT ds(t− t0)

dt0

−Erxs
T (t− t0)ααT d

2s(t− t0)

dt20

}
dt. (3.91)

The Fisher information is

JF (t0,α) = Ey|t0,α

{
−d2 ln p(y|t0,α)

dt20

}
= ξb

∫
T0

dsT (t− t0)

dt0
ααT ds(t− t0)

dt0
dt

= ξbα
T

[∫
T0

ds(t− t0)

dt0

dsT (t− t0)

dt0
dt

]
α = ξbα

TΦα = ξbΥ(α), (3.92)

where Φ =
∫
T0

ds(t−t0)
dt0

dsT (t−t0)
dt0

dt and Υ(α) = αTΦα.

To compute the ECRB, the inverse of the above Fisher information is computed

conditioned on both the prior on the time delay and the random channel, and then its

expected value is evaluated with respect to both quantities

ECRB , Et0,α

{
J−1
F (t0,α)

}
=

1

ξb

∫
1

αTΦα
· p(α)dα =

1

ξb
Eα

{
Υ−1(α)

}
, (3.93)

where the distribution of α is multivariate normal with mean µα and variance V

p(α) =
1

(2π)L/2|V|1/2
exp

[
−1

2
(α− µα)

TV−1(α− µα)

]
. (3.94)

Note that log(ECRB) is linearly decreasing with log(SNR), so the slope of its root mean

square equals −1
2 .

Next evaluate Eα

{
Υ−1(α)

}
in (3.93). The result of eq. (4.5d.4) in [87] shows the

negative power of a quadratic form can be expressed as an integral

[Υ(x)]−h =
1

Γ(h)

∫ ∞

0
zh−1e−zΥ(x)dz, (3.95)
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where Γ(h) is the Gamma function. Applying this result generates

Eα

{
Υ−1(α)

}
= Eα

{∫ ∞

0
e−zΥ(α)dz

}
=

∫ ∞

0
Eα

{
e−zΥ(α)

}
dz

= −
∫ 0

−∞
Eα

{
esΥ(α)

}
ds, (3.96)

in which Eα

{
esΥ(α)

}
is the moment generating function of Υ(α). By the result of eq.

(B.3) in Appendix B it is expressed as

Eα

{
esΥ(α)

}
=|I− 2sV

1
2ΦV

1
2 |−

1
2

× exp

{
sµT

αΦµα + 2s2µT
αΦV

1
2

(
I− 2sV

1
2ΦV

1
2

)−1
V

1
2Φµα

}
. (3.97)

This closed form MGF can be computed numerically, and note that a compact form

similar to that in Section 3.3.2.2 can be used to accelerate the computation. The ECRB

is then easily obtained from (3.97), (3.96), and (3.93) by numerical integration.

3.3.6.3 Comparing Bayesian TDE and the ZZB at Low SNR

In the low SNR regime, the Bayesian TDE is noise dominated, and the TDE mean-

square error converges to the variance of the prior as the SNR goes to zero. With the

uniform prior ft̂0(t̂0) = 1
T over [0, T ], the MSE of our Bayesian estimate is ϵ2 = T 2

6 .

However, the low SNR convergence level of the ZZB was derived in Section 3.3.3.3 to

be T 2

12 = 1
2ϵ

2, so the ZZB does not converge to the prior at low SNR. (For example

see Figure 3.2 in the next section.) This occurs because two key inequalities applied

throughout the bound development by Ziv and Zakai [39] are not tight at low SNR. In

the following, the author explains this gap by computing the bounding errors for our

problem.
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First, considering the last inequality in eq. (3) of [39], one can obtain

1

2

∫ ∆

0
Pr

{
ϵ < −∆

2
|a
}
da =

1

2

∫ ∆

0
Pr

{
(t̂0 − a) < −∆

2
|a
}
da

=
1

2

∫ ∆

0
Pr

{
t̂0 < (a− ∆

2
)|a
}
da

=
1

2

∫ ∆

∆
2

1

T
(a− ∆

2
)da =

1

2
· ∆

2

8T
, (3.98)

1

2

∫ T

T−∆
Pr

{
ϵ > −∆

2
|a
}
da =

1

2

∫ T

T−∆
Pr

{
(t̂0 − a) >

∆

2
|a
}
da

=
1

2

∫ T

T−∆
Pr

{
t̂0 > (a+

∆

2
)|a
}
da

=
1

2

∫ T−∆
2

T−∆

1

T

[
T − (a+

∆

2
)

]
da =

1

2
· ∆

2

8T
. (3.99)

Then the extra error ϵ2inc1 corresponding to 1
T

∫ T
0 ∆

∫ T−∆
0 Pe(a, a+∆)dad∆ in the same

equation is

ϵ2inc1 =
1

2

∫ T

0
∆

[
1

T

∫ ∆

0
Pr

{
ϵ < −∆

2
|a
}
+ Pr

{
ϵ > −∆

2
|a
}
da

]
d∆

=
1

2

∫ T

0
∆

(
1

T

∆2

8T
× 2

)
d∆ =

T 2

32
. (3.100)

The other inequality causing an extra bounding error is from 4
∫ T

2
0 xF (x)dx to 4

∫ T
0 xF (x)dx

in the derivation above eq. (5) of [39], in which F (x) has the following expression

F (x) =
1

T

∫ T

0
Pr {|ϵ| ≥ x|a} da =

1

T

∫ T

0
Pr
{
|t̂0 − a| ≥ x|a

}
da

=
1

T

∫ T

0
Pr
{
t̂0 ≥ a+ x or t̂0 ≤ a− x|a

}
da

=
1

T

∫ T−x

0
Pr
{
t̂0 ≥ a+ x|a

}
da+

1

T

∫ T

x
Pr
{
t̂0 ≤ a− x|a

}
da

=
1

T

∫ T−x

0

(∫ T

a+x

1

T
dt̂0

)
da+

1

T

∫ T

x

(∫ T

a+x

1

T
dt̂0

)
da =

(
1− x

T

)2
.(3.101)

Then the additional error ϵ2inc2 corresponding to 1
T

∫ T
0 ∆

∫ T−∆
0 Pe(a, a+∆)dad∆ is

ϵ2inc2 = 2

∫ T

T
2

xF (x)dx = 2

∫ T

T
2

x
(
1− x

T

)2
dx =

(
1

12
− 1

32

)
T 2. (3.102)

Finally, during the development in [39] from 1
T

∫ T
0 ∆

∫ T−∆
0 Pe(a, a + ∆)dad∆ to ϵ2 =
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−
∫ T+
0 x2dF (x), the total extra error is

ϵ2inc = ϵ2inc1 + ϵ2inc2 =
T 2

32
+

(
1

12
− 1

32

)
T 2 =

T 2

12
. (3.103)

Noting that T 2

6 − T 2

12 = T 2

12 , this verifies the bound gap between the prior and the ZZB.

3.3.7 Numerical Examples

In this section, examples of estimation performance and the corresponding bounds

are presented. The ZZB evaluation uses the compact form, as described in Section

3.3.5. In addition to the ZZB and ECRB developed in this paper, the “average ZZB”

derived in [46] is also plotted; this version of the ZZB assumes the channel is known to

the receiver, and the bound is averaged over the channel statistics. It is interesting to

compare the average ZZB to the ZZB developed here, which does not assume knowledge

of the channel and so is more realistic for the random channel case.

The root MSE (RMSE) of the TDE as the performance metric is adopted. Unless

otherwise specified, the signal is a square-root raised cosine (SRRC) pulse (see Appendix

C) with roll-off factor β = 0 and parameter Tp = 2. The channel is Gaussian with Tt = 1,

and L = 5 independent taps, and the prior has T = 30. Note all the time variables are

normalized to the channel tap spacing. Based on measured wideband channels [85], an

exponential power delay profile is employed with decay factor λ = 6, the mean of the

first tap corresponding to a Rician-K factor for the first path of K = 20 dB, and all

other taps with zero mean.

Figure 3.1 plots the ZZB and the average ZZB, illustrating the low, medium, and

high SNR regions with thresholds. The ZZB and average ZZB are coincident at low

SNR, converging to T/
√
12 plotted as a horizontal line. The low SNR approximation

from (3.59) or (3.60) is valid up to 0 dB, and converges to T/
√
12 as the SNR decreases to
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Figure 3.1: Typical ZZB behavior for time delay estimation, including low, medium,
and high SNR regimes with thresholds δ1 and δ2. The channel is Gaussian with strong
Rician K-factor in the first tap, and exponential power decay profile. The average ZZB
is a weaker bound that assumes the channel is known to the receiver.

zero. Using (3.74) and shifting 3dB down from the convergence MSE level (i.e., 1.5dB

in terms of RMSE), the low-SNR breakdown point to be δ1 ≈ −4.1dB is obtained.

Beyond δ1, the ZZB and the average ZZB separate, with a roughly 3 dB loss in RMSE

performance due to the lack of channel knowledge that is reflected in the tighter ZZB.

The high SNR threshold occurs at δ2 ≈ 17.4 dB. Beyond δ2, the ZZB and average ZZB

both linearly decrease with increasing SNR, with a slope of about −0.5, consistent with

bandwidth limited pulse cases studied by Ziv and Zakai [39], [38].

Figure 3.2 compares estimators and bounds, averaging over 30,000 realizations. The

MAP estimator (3.133) converges to the ZZB at high SNR, with a few dB gap between

the ZZB and MAP estimator in the mid-SNR threshold region, as occurs in frequency

estimation and other problems [40]. Also shown is the GML estimate from (3.86), which
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Figure 3.2: MAP time delay estimation performance, with ZZB and ECRB comparison.
The ZZB tracks the estimator threshold behavior, while the ECRB is not tight below
the SNR threshold. The GMLE minimizes the MSE without knowledge of the channel
statistics and consequently has much worse performance.

tracks the MAP performance only at low SNR and generally has weak performance. At

high SNR, the ECRB is slightly looser than the ZZB. As the CRB is a local bound it

does not track the MAP threshold behavior and becomes loose for low to medium SNR.

Figure 3.3 plots the ZZB with curves parameterized by the uniform prior distribu-

tion duration [0, T ], varying T over T = (5, 15, 20, 100). With the prior equal to the

channel duration T = LTt = 5, the threshold behavior is enhanced by several dB. At

high SNR, the RMSE performance is independent of the prior.

Next Figure 3.4 shows the ZZB as a function of signal bandwidth, employing the

mean-square bandwidth (MSB) defined by (C.1) in Appendix C. The root-raised cosine

pulse was used, with root-MSBs of (0.15,0.3,0.5,1). See Appendix C for the relevant

expressions. Increased bandwidth has significant impact above the high SNR thresh-
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Figure 3.3: ZZB on time delay with curves parameterized by prior distribution [0, T ],
T = (5, 15, 30, 100). The threshold performance improves when T is close to the channel
duration LTt, while the performance is independent of the prior at high SNR.
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Figure 3.4: ZZB on TDE with varying signal bandwidth. A square-root raised cosine
pulse with roll-off factor β = 0 is assumed. Curves are parameterized by the root-mean-
squared bandwidth for (0.15, 0.3, 0.5, 1). At high SNR, increasing the bandwidth by
roughly an order of magnitude decreases the TDE RMSE by an order of magnitude.

old, where performance is dominated by the signal autocorrelation and the associated

ambiguities [90]. Increasing the root-MSB from 0.15 to 1 yields roughly an order of

magnitude reduction in the TDE RMSE in the high SNR regime.

To illustrate the effect of the signal choice, several different signals including SRRC,

pseudo-random (PN) coded SRRC pulse train, Gaussian, and Gaussian doublet are

considered in Figure 3.5. The root-MSBs were all set to 1/
√
12 unit frequency (see

Appendix C for the signal and bandwidth expressions). From (3.119) and (3.119), the

pulse shaping only affects the distributions of the LLR and the ZZB through their

autocorrelation matrices S00 and S01, accounting for the small variation in RMSE error

slope in the high SNR regime. Given the same MSB, the threshold and low SNR

behaviors are identical.
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Figure 3.5: Ziv-Zakai bounds on time delay, comparing several different signals, all
with identical root-mean squared bandwidth. The threshold and low SNR behaviors
are identical, while the high SNR performance depends on the detailed structure of the
signal autocorrelation.
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Figure 3.6: Ziv-Zakai bounds on time delay, comparing SRRC and ideal rectangular
signals, assuming the main lobe bandwidth of the rectangular signal is same as the
SRRC bandwidth of 0.5. The ideal rectangular pulse yields significantly better TDE
performance at high SNR due to its broad spectral occupancy compared to the SRRC
pulse.

As a final example, Figure 3.6 compares a rectangular pulse of duration Tp = 2

with the bandlimited SRRC. For comparison, the SRRC bandwidth is set to the width

of the rectangular pulse spectrum main lobe, which is 1/Tp. While these two signals have

nominally the same bandwidth, the rectangular pulse yields a TDE RMSE slope of −1

(consistent with [38]) versus −1
2 for the SRRC. This illustrates the difficulty in selecting

a universal definition of bandwidth, without accounting for the rate of spectral decay.

The rectangular pulse has much broader spectral shape, and leads to significantly better

TDE performance, although the ideal rectangular pulse is not bandlimited and can only

be approximated in practice.
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3.4 Ziv-Zakai Bounds for Frequency Hopping Waveform

In this section the ZZB for pulsed signal in Section 3.3 is extended to the case of

frequency hopping transmission in random frequency-selective fading channels [91]. The

wideband frequency hopping waveforms are readily employed for both communications

and TDE. Similarly, the receiver does not know the channel realization to assist in

estimating the time delay, but does know the channel statistics. The development

procedure is similar as that in Section 3.3, while the waveform overlaps at the receiver

are incorporated into the signal model and then in the ZZB development. In addition to

tight mean-square error prediction for the MAP estimator performance, the bounds also

accurately predict the TDE frequency diversity gain from multi-frequency transmission

in fading channels. The special case of independent flat-fading is discussed, including

both Rician and Rayleigh fading, and closed-form expressions enable easy study of the

effects of SNR, frequency diversity, and channel statistics on TDE.

3.4.1 Models for Frequency Hopping Transmission

Frequency-hopping waveforms are formed by basic pulses p(t) modulated by known

symbols. Here, p(t) is assumed to be a SRRC pulse with unit energy, symmetrically

truncated to the symbol duration Ts, though the results are general. During an N-hop

frequency-hopping cycle, the pulse during the ith (i = 1, · · · , N) hop and kth symbol

period is denoted as pi,k(t) = p(t− (i− 1)MTs − kTs), where each hop has M symbols

with hop dwell time MTs. The the ith hop waveform is represented as

si(t) =

K2∑
k=−K1

ai,kpi,k(t)

=

K2∑
k=−K1

ai,kp(t− (i− 1)MTs − kTs), t ∈ [(i− 1)MTs, iMTs] (3.104)
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in which M = K1 +K2 +1. The symbols ai,k can be taken from a constellation such as

PSK or QAM, and they are assumed known to the receiver.

The transmitted ith hop signal si(t) propagates through a convolutive random

channel modeled as a tapped delay line with fixed spacing Tt and fading gains αi,l, given

by [46], [92]

gi(t) =

L∑
l=1

αi,lδ(t− (l − 1)Tt). (3.105)

Let the L gains be in the L×1 vector αi, modeled as a complex Gaussian random vector

with distribution CN (µαi,Vi), where µαi is the mean vector and Vi is the covariance

matrix. Further, stacking αi over N hops into vector α gives a LN×1 complex Gaussian

vector with mean µα and variance V. The ith row and jth column block Vij of V repre-

sents the covariance between the ith and jth hops. This complex-valued channel model

encompasses a variety of scenarios, including correlated FIR taps and sub-channels of

different hops.

Denote the propagation delay as t0. For simplicity, the channel delay spread is

assumed less than each hop dwell time. Extension to a much longer channel case is

straightforward. Thus, due to any overlap in the time domain, there arises only inter-

hop interference from the previous hop signal. The received signal for the ith hop

spanning the time interval [(i− 1)MTs, iMTs] is given by

yi(t) =

L∑
l=1

αi,lsi(t− (l − 1)Tt − t0) + αi−1,lsi−1(t− (l − 1)Tt − t0) + ni(t)

= αT
i si(t− t0) +αT

i−1si−1(t− t0) + ni(t), t ∈ [(i− 1)MTs, iMTs], (3.106)

where

si(t− t0) = [si(t− t0), si(t− Tt − t0), · · · , si(t− (L− 1)Tt − t0)]
T , (3.107)

ni(t) is complex AWGN with spectral density N0. Also define α0
∆
= 0, s0(t − t0)

∆
= 0
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for the model to cover y1(t) in a unified form. The second term in (3.106) denotes the

inter-hop interference from the (i − 1)th hop to the ith hop because of the multipath

propagation. The SNR of the ith hop is defined by SNRi = tr(µαiµ
H
αi +Vi)/N0, where

tr is the trace operator. As in the last section, the uniform prior distribution is assumed

for the propagation delay t0 on [0, T ], and the ZZB on the estimation of t0 is derived

next.

3.4.2 Development

The development of the ZZB for frequency hopping waveforms is a similar proce-

dure as that for pulsed signal in Subsection 3.3.1. The LLR for the hypothesis test is

considered to evaluate (3.6), and Pe(∆) is found by the MGF approach as in Subsection

3.4.3.

3.4.2.1 Received Signal Distribution

From equation (3.106), the received signal for the ith hop can be written as

yi(t) = αT
i sm,i +αT

i−1sm,i−1 + ni(t), t ∈ [(i− 1)MTs, iMTs] (3.108)

where sm,i = si(t−m∆) and m takes the value 0 or 1 corresponding to hypotheses H0

or H1, respectively. Note that, in the context of bound development, the delay t0 has

been replaced by m∆. Collecting yi(t) and ni(t) in vectors generates,

y(t) = [y1(t), · · · , yN (t)]T , n(t) = [n1(t), · · · , nN (t)]T , t ∈ [0, NMTs].
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From (3.108) and the noise independence, the distribution of y(t) conditioned on the

channel gain and time delay m∆ is given by [82]

p(y(t)|α,m∆) = K exp

N∑
i=1

[
− 1

N0

∫ iMTs

(i−1)MTs

∥∥yi(t)−αT
i sm,i −αT

i−1sm,i−1

∥∥2 dt]
= K exp

N∑
i=1

{
− 1

N0

∫ iMTs

(i−1)MTs

[
αH

i s∗i s
T
i αi +αH

i−1s
∗
i−1s

T
i−1αi−1

+αH
i s∗i s

T
i−1αi−1 +αH

i−1s
∗
i−1s

T
i αi − 2Re{(s∗m,iyi(t))

Hαi}

− 2Re{(s∗m,i−1yi(t))
Hαi−1}+ ∥yi(t)∥2

]
dt

}
= K exp

[
− 1

N0

(
αHS00α− 2Re

{
rHmα

}
+ Iy

)]
, (3.109)

where K absorbs all the terms independent of αi and m∆, and other quantities are

defined as follows

Sm1m2

∆
=



Sm1m2,1,1 Sm1m2,1,2 0 · · · · · · 0

Sm1m2,2,1 Sm1m2,2,2 Sm1m2,2,3
. . .

...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

...
. . .

. . .
. . . Sm1m2,N−1,N

0 · · · · · · 0 Sm1m2,N,N−1 Sm1m2,N,N



,

Sm1m2,i = Sm1m2,i,i
∆
=

∫ (i+1)MTs

(i−1)MTs

s∗m1,is
T
m2,idt,

Sm1m2,i,i−1
∆
=

∫ iMTs

(i−1)MTs

s∗m1,is
T
m2,i−1dt, Sm1m2,i−1,i

∆
=

∫ iMTs

(i−1)MTs

s∗m1,i−1s
T
m2,idt,

rm = [rTm,1, · · · , rTm,N ]T , rm,i
∆
=

∫ iMTs

(i−1)MTs

s∗m,iyi(t)dt+

∫ (i+1)MTs

iMTs

s∗m,iyi+1(t)dt,

(3.110)

Iy =

N∑
i=1

Iyi, Iyi
∆
=

∫ iMTs

(i−1)MTs

∥yi(t)∥2dt,

with m,m1,m2 ∈ {0, 1}, and yN+1(t)
∆
= 0 is defined for the expression of rm,i to cover

i = N as well. Note that if each sub-channel is flat fading and signals from different
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hops do not overlap, the expression of Sm1,m2 will be block diagonal, and rm,i only has

the first term. This case will be discussed in detail in Section 3.4.4.

The exponent of (3.109) has a quadratic form in the complex Gaussian random

vector α, which is averaged over the channel α using (B.14) from the Appendix with

s = 1, yielding

p(y(t)|m∆) = Eα[p(y(t)|α,m∆)] = K|X|−1 exp
{
rHmWrm + 2Re{hHrm}+ c

}
,

(3.111)

where

X = I+
1

N0
V

1
2S00V

1
2 , W =

1

N2
0

V
1
2X−1V

1
2 ,

h =
1

N0

(
I− 1

N0
V

1
2X−1V

1
2S00

)
µα = Hµα,

c = µH
α

(
1

N2
0

S00V
1
2X−1V

1
2S00 −

1

N0
S00

)
µα − Iy

N0
.

3.4.2.2 Log-likelihood Ratio Test

From (3.111), the LLR for the test of hypothesis Hm, m = 0, 1 is

L ∆
= ln

p(y(t)|0)
p(y(t)|∆)

= rH0 Wr0 − rH1 Wr1 + 2Re{hHr0 − hHr1}

= rHΨr+ 2Re{gHr} (3.112)

H0

≷
H1

0,

where

r =

 r0

r1

 , Ψ =

 W 0

0 −W

 , g =

 h

−h

 = Gµα. (3.113)

An error occurs if L < 0|m = 0, or if L > 0|m = 1. Letting Lm
∆
= L|Hm, and

r̃m
∆
= r|Hm, (3.112) becomes

Lm = r̃HmΨr̃m + 2Re{gH r̃m}, (3.114)
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and the hypothesis test minimum error probability is

Pe(∆) =
1

2
Pr{L0 < 0}+ 1

2
Pr{L1 > 0}. (3.115)

Our goal now is to evaluate the probabilities in (3.115), yielding Pe(∆) for use in the

ZZB equation (3.6). Next the distribution of r̃m is derived, and then used to find the

distribution of Lm.

3.4.2.3 The Distribution of r̃m

Using (3.110) and (3.108) conditioned on H0, then rm,i (m = 0, 1) can be expressed

as

rm,i|H0 =

∫ iMTs

(i−1)MTs

s∗m,iyi(t) +

∫ (i+1)MTs

iMTs

s∗m,iyi+1(t)

= Sm0,i,iαi + Sm0,i,i−1αi−1 + Sm0,i,i+1αi+1 + zm,i, (3.116)

where zm,i
∆
=
∫ (i+1)MTs

(i−1)MTs
s∗m,i[ni(t) + ni+1(t)]dt. Stacking all N vectors zm,i into a big

vector zm, and similarly for rm,i|H0, one can obtain rm|H0 = Sm0α + zm. Further

stacking r0|H0 and r1|H0 as in (3.112) obtains

r̃0 = r|H0 = R0α+ z, R0 =

 S00

S10

 , z =

 z0

z1

 . (3.117)

Similarly, conditioned on H1, it follows that

r̃1 = r|H1 = R1α+ z, R1 =

 S01

S00

 . (3.118)

Therefore, under either hypothesis the data vector r̃0 or r̃1 is a linear combination of

Gaussian vectors α and z, so that r̃m follows a Gaussian distribution r̃m ∼ N (µm,Σm),

where the mean and covariance are

µm = Rmµα, Σm =
(
RmVRH

m + Γ
)
,
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with

Γ = E{zzH} = N0

 S00 S01

S10 S00

 = N0

[
R0 R1

]
.

With the pdf of r̃m, each of the two probabilities Pr{L0 < 0} and Pr{L1 > 0} in (3.115)

can be expressed as a 2LN -dimensional integral as in [86]. However, it is computationally

difficult to directly evaluate those integrals. In the next sub-section the MGF approach

is employed to find the distribution of Lm that results in a computationally attractive

2-dimensional integral.

3.4.3 MGF Approach for FH Waveform

The LLR Lm in (3.114) is a quadratic form of the Gaussian vector r̃m. To find

the probability distribution of Lm, the author first obtains its MGF (or characteristic

function) and then apply the Fourier transform implemented efficiently using an FFT.

Then, the distribution of Lm is used to evaluate the error probabilities in (3.115) via

1-dimensional integration, and the resulting Pe(∆) is used to find the ZZB in (3.6).

By the definitions in (3.113), gTΨ−1g = 0. Using this, rewrite Lm in (3.114) as

follows,

Lm = x̃H
mΨx̃m, (3.119)

where x̃m = r̃m +Ψ−1g. Note that x̃m is Gaussian distributed with variance Σm and

mean

µxm = µm +Ψ−1g = (Rm +Ψ−1G)µα.

Introduce a zero-mean Gaussian random vector um, obtained from x̃m by the transfor-

mation

x̃m = Σ
1
2
mPmum + µxm = Σ

1
2
mPm(um + bm),
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so that the variance of um is the identity matrix I, and the vector bm is a linear

transformation of channel mean µα given by

bm = PH
mΣ

− 1
2

m µxm = PH
mΣ

− 1
2

m (Rm +Ψ−1G)µα. (3.120)

In this transformation, Pm is a unitary matrix in the eigendecomposition of the Hermi-

tian matrix given by

Σ
1
2
mΨΣ

1
2
m = Pmdiag{λ1, · · · , λ2LN}PH

m = PmΛPH
m.

From this, the elements umk of um are independent Gaussian random variables, each

with zero mean and unit variance. It follows that (3.119) can be written as

Lm = (um + bm)HΛ(um + bm) =

2LN∑
k=1

λk|umk + bmk|2, (3.121)

where bmk is the k-th element of bm. The MGF is obtained from (3.121) by applying

eq. (B.15) from the Appendix yielding

Θm(s) =

2LN∏
k=1

(1− sλk)
−1exp

{
sλk|bmk|2

(1− sλk)

}
. (3.122)

In (3.122), each of the 2LN product factors stems from the MGF of a scaled noncen-

tral Chi-square random variable with one degree of freedom [87]. This observation is

consistent with (3.121), a weighted sum of independent noncentral Chi-square random

variables, where each summation term corresponds to a factor in (3.122).

3.4.4 The Independent Flat Fading Case

Now let us discuss the ZZB when the channels are flat fading, corresponding to

narrowband frequency-hopping. With L = 1, the channel gain αi of the ith hop follows

N ∼ (µαi, Vi), which is Rician or Rayleigh flat fading. Then the dimension of the total

channel covariance matrix V reduces to N × N , in which Vij is determined by Vi, Vj
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and the channel correlation coefficient between the two hops. Also the channel mean

vector reduces to µα = [µα1, · · · , µαN ]T .

The flat fading channel has no memory and so there will be no overlap between

hops in the time domain. So the inter-hop interference terms disappear in the signal

and distribution expressions. The received signal in (3.108) becomes

yi(t) = αism,i + ni(t), t ∈ [(i− 1)MTs, iMTs] (3.123)

and the quantities in (3.109) reduce to

Sm1m2 = diag{Sm1m2,1,1, · · · , Sm1m2,N,N}, rm,i =

∫ iMTs

(i−1)MTs

s∗m,iyi(t)dt. (3.124)

Moreover, the channel αi over each hop is assumed independent and identical distributed

(i.i.d), and then the signal correlation Sm1m2,i is the same for each hop. By this assump-

tion, V becomes diagonal. The joint distribution of the received signal over independent

flat fading channels becomes

p(y(t)|m∆) =
N∏
i=1

p(yi(t)|m∆) ∝
N∏
i=1

exp
{
Wir

2
m,i + 2Re{h∗i rm,i}

}
, (3.125)

where

Wi =
Vi

N0(N0 + ViS00,i)
, hi =

µi

N0 + ViS00,i
, S00,i

∆
= S00,i,i.

In this case, the LLR is

L = rHΨr+ 2Re{gHr} =

N∑
i=1

Wi(r
2
0,i − r21,i) + 2Re{h∗i (r0,i − r1,i)}. (3.126)

This is the sum of the LLRs corresponding to each sub-channel. Accumulation helps to

improve the decision performance in fading and noise, a benefit of frequency hopping

diversity.
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Conditioned on hypothesis Hm, the statistics of r̃m,i
∆
= [r0,i|Hm r1,i|Hm]T are

H0 : µ0,i =

 S00,iµαi

S10,iµαi

 , Σ0,i =

 S2
00,iVi +N0S00,i S00,iS

∗
10,iVi +N0S

∗
10,i

S00,iS10,iVi +N0S10,i |S10,i|2Vi +N0S00,i

 ,

(3.127)

H1 : µ1,i =

 S∗
10,iµαi

S00,iµαi

 , Σ1,i =

 |S10,i|2Vi +N0S00,i S00,iS
∗
10,iVi +N0S

∗
10,i

S00,iS10,iVi +N0S10,i S2
00,iVi +N0S00,i

 .

(3.128)

Next, the Rician (line-of-sight) and Rayleigh (non-line-of-sight) cases are considered

respectively.

3.4.4.1 Rician Fading Case

Under the i.i.d condition, Wi and hi are the same for each i, and r̃m,i is also i.i.d.

Then with Wi > 0, the error probability Pe(∆) becomes

Pe(∆) = Pr{L0 < 0} = Pr

{
N∑
i=1

[∣∣∣∣r0,i|H0 +
hi
Wi

∣∣∣∣2 − ∣∣∣∣r1,i|H0 +
hi
Wi

∣∣∣∣2
]
< 0

}
. (3.129)

Denote the Gaussian variables within the brackets as A = r0,i|H0+
hi
Wi

and B = r1,i|H0+

hi
Wi

, where r0,i|H0 and r1,i|H0 are elements of r̃0,i. For these two variables, mean µA, µB,

variance ΣA,ΣB and covariance ΣAB can be found from (3.127) as

[µA, µB]
T = µi,0 +

hi
Wi

[1, 1]T , Σi,0 =

 ΣA ΣAB

Σ∗
AB ΣB

 .

Thus from the results in [82, pp. 619-624] (eq. (9A.11)) or [84, pp. 943-948] (eq.

(B-21)), a closed form for Pe(∆) can be obtained

Pe(∆) = Q1(a, b)−

[
1−

∑N−1
i=0

(
2N−1

i

)
ηi

(1 + η)2N−1

]
exp

(
−a2 + b2

2

)
I0(ab) +

1

(1 + η)2N−1

×

{
N∑
i=2

(
2N − 1

N − i

){
ηN−i[Qi(a, b)−Q1(a, b)]− ηN−1+i[Qi(b, a)−Q1(b, a)]

}}
,

(3.130)
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in which Qi(a, b) is the ith order Marcum Q-function [93, 94], and

a =

[
2v21v2(ξ1v2 − ξ2)

(v1 + v2)2

]1/2
, b =

[
2v21v2(ξ1v1 + ξ2)

(v1 + v2)2

]1/2
,

η = v2/v1, v1
2
=

√
w2 +

1

ΣAΣB − |ΣAB|2
∓ w, w =

ΣA − ΣB

2(ΣAΣB − |ΣAB|2)
,

ξ1 = N(|µA|2ΣB + |µB|2ΣA − µ∗
AµBΣAB − µAµ

∗
BΣ

∗
AB), ξ2 = N(|µA|2 + |µB|2).

3.4.4.2 Rayleigh Fading Case

For the Rayleigh fading case as studied in [43], µi = 0 and so hi = 0. The LLR

becomes L =
∑N

i=1(|r0,i|2− |r1,i|2), and the test reduces to the comparison of the signal

power |r0,i|2 with |r1,i|2. The error probability expression (3.129) matches eq. (113) in

[43], and µi,0 = [0, 0]T and Σi,0 in (3.127) matches distribution parameters of eq. (115)

in [43]. Therefore the same closed form expression for error probability Pe(∆) as in eqs.

(116) and (117) of [43] follows,

Pe(∆) =
N−1∑
i=0

(
2N − 1

i

)(
1 + ν(∆)

2

)i(1− ν(∆)

2

)2N−1−i

, (3.131)

with

ν(∆) =

[
1 +

4(1 + SNRi · S00,i)

(S00,i · SNRi)
2 · [1− |S10,i/S00,i|2]

]−1/2

.

Each summation term in (3.131) is a binomial distribution f(i; 2N − 1, 1+ν(∆)
2 ). When

the number of hops N is large, it can be approximated by a Gaussian distribution for

simplified evaluation [95]. Moreover, ν(∆) is close to 1 in the high SNR region and then

Pe is dominated by the last several summation terms with large i. Selecting the last U

summation terms, Pe can be approximated as

Pe(∆) ≈
N−1∑

i=N−U

(
2N − 1

i

)(
1 + ν(∆)

2

)i(1− ν(∆)

2

)2N−1−i

≈
N−1∑

i=N−U

exp
{
− [i−(2N−1)(1+ν(∆))/2]2

(2N−1)(1−ν2(∆))/2

}
√

2π(2N − 1)(1− ν2(∆))/4
. (3.132)
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For large N , it suffices to choose a small U . This approximate expression shows the

effect of frequency hopping diversity (in terms of N) on Pe, and therefore on the ZZB.

The next subsection will show numerically how the ZZB decreases with increasing N .

3.4.5 Numerical Examples

As before, the RMSE of the TDE is adopted as the performance metric, and use

both the MGF approach in Section 3.4.3 and the closed-form expressions in Sections

3.4.4.1 and 3.4.4.2 to evaluate the ZZB. Unless otherwise specified, p(t) is a normalized

SRRC pulse with roll-off factor β = 0 and mean-square bandwidth B = 1/12. The

SRRC pulse is used due to its common use in communications systems, and its good

spectral occupancy properties. Actually a rectangular pulse can produce better TDE

results, but at the cost of more spectral occupancy (see the results in Section 3.3.7).

The SRRC pulse is symmetrically truncated to duration Ts = 12, i.e., 12 times beyond

the first zero-crossing point. The channel has tap spacing Tt = 1 and L = 5 taps. Note

that all the time variables are normalized to Tt. The time delay has a uniform prior

over [0, 30]; i.e., T = 30. The transmission duration is NMTs, which is a cycle of N

hops, where the number of transmitted symbols per hop is set to M = 80/N . As the

transmitted pulse has unit energy, and the number of symbols in one cycle is fixed to

MN = 80, the total transmitted energy for one-shot TDE is fixed and independent of

N . The hops are equally spaced, and the center frequency separation of neighboring

hops is set to ∆f = 1. Then, the ith and jth hops are separated by |i− j|∆f .

The channel fading distribution of αi and SNRi are the same for each hop. To

obtain the covariance between the pth and qth channel taps (p, q = 1, · · · , LN), both

the tap variance and the correlation coefficients are needed. The mean µαi and the

variance Vi for all the channel taps in the ith hop are generated using the exponential
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power decay profile given in [46], with the mean of the first tap obtained from a Rician-

K factor, and all other taps with zero mean. The frequency-hopping channel correlation

coefficient between the pth and qth channel taps from the ith and jth hops, respectively,

is expressed as ρp,q = ρtp,q(1+
√
−1σ2π|i−j|∆f)/(1+(σ2π|i−j|∆f)2), which is developed

in [96] following the classical Jakes model [92, pp. 46-51]. The temporal correlation ρtp,q

depends on the time separation between the pth and qth taps. In the following numerical

examples ρt = 0.8 is adopted for the first two neighboring taps, and σ = 1 is the root-

mean-square value of the delay spread.
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Figure 3.7: Time delay estimation results, comparing the ZZB and the corresponding
MAP estimation performance. N = 4 hops, M = 20 symbols, and an FIR random
channel, with first tap Rician-K = 20dB, and later taps Rayleigh distributed.

Figure 3.7 plots the ZZB for a frequency-hopping waveform with N = 4 hops in

comparison with the performance of the optimum MAP estimator. The MAP estimator
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is implemented by using (3.111) as follows (see also eq. (78) in [86])

t̂0,MAP = argmax
t0

{
1

T
exp

(
rHt0Wrt0 + 2Re{hHrt0}

)}
, (3.133)

where 1/T is the prior on delay t0, and rt0 is defined by replacing m∆ with t0 in rm.

The channel Rician-K factor is set to K = 20dB. The ZZB predicts typical behavior for

TDE. At low SNR, the ZZB converges to T/
√
12, similar to other cases [46, 86]. High

SNR threshold occurs at about -6 dB, below which TDE performance rapidly degrades.

Above the high SNR threshold, the ZZB decreases linearly with increasing SNR, with

a slope of about −0.5, similar to bandwidth limited pulse cases studied by Ziv and

Zakai [38, 39]. Moreover, the ZZBs track the MAP estimator threshold behavior and

the MAP RMSE converges to the ZZB at high SNR as expected. At low SNR, the MAP

RMSE converges to T/
√
6, higher than the ZZB’s convergence level. The gap has been

quantitatively analyzed in [86], and occurs due to approximations in the derivation of

the original ZZB inequality by Ziv and Zakai.

The closed-form expressions of the ZZB in (3.130) and (3.131) for independent flat

fading channels have much lower numerical complexity than the MGF approach, and

are useful for quickly testing parameter effects on the ZZB. Figure 3.8 compares the

ZZBs at various number of hops, N = 1, 2, 4, 8, and 16, under the independent flat

Rayleigh fading channel discussed in Section 3.4.4.2. The ZZB without the Gaussian

approximation in (3.131), and with the Gaussian approximation in (3.132), are plotted

with U = 3 for N > 2, and U = N when N ≤ 2. As can be seen, larger N leads

to lower RMSE level and the high SNR threshold occurs at lower SNR, about 25dB,

14dB, 5dB, and 0dB for N = 2, 4, 8 and 16, respectively. Recalling that the total

transmitted energy is fixed and independent of N , the RMSE reduction arises solely

from the frequency-hopping diversity available via hopping through different channel
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Figure 3.8: ZZBs with independent flat Rayleigh channels show the frequency hopping
diversity gain, with curves parameterized by the number of hops N = 1, 2, 4, 8 and 16.

realizations. This comparison clearly exemplifies the frequency diversity effect on TDE.

The diversity gain from increasing N over 2 to 16 achieves a maximum of about 18dB

at RMSE of 2× 10−2, with a constant gain of about 12dB in the high SNR regime.

In Figure 3.9, (3.130) is used to evaluate the effect of Rician-K factor on the ZZB

under independent flat Rician fading. The FH transmission has N = 4 hops and K

varies from −20dB to 20dB. The ZZBs exhibit the most difference in the moderate SNR

region over −10dB to 5dB, and the maximum difference is about 11dB at RMSE 10−1.

In this region, the ambiguities in signal correlation dominate the TDE error, which occur

due to fading. In the high SNR region, the effects of varying K are minimized and the

bounds for different K coincide.
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Figure 3.9: ZZBs for varying Rician-K factor, with independent flat fading channels.
The stronger Rician channel yields significant TDE performance gain in the mid-SNR
range.

3.5 Summary

This chapter discusses the theoretical performance limits of time delay estimation

in multipath channels. Ziv-Zakai bounds on Bayesian estimation of time delay are

developed for the known pulsed signal or frequency hopping waveforms propagating

through unknown random multipath channels, with a uniform prior on the delay. The

multipath channel model includes important special cases, such as Rayleigh/Rician flat

fading channels, wideband multipath channels, and known channels. With appropriate

power delay profiles, the channel model can be readily adapted to the strong LOS

channel, or multipath channel with weak LOS path, or even NLOS channel. In each

of the assumed channels, the bounds assume channel statistics known to receivers but

without knowledge of the channel realizations.
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The ZZBs provide good performance prediction for MAP time delay estimation,

tracking the low, medium, and high SNR regimes. The associated Cramér-Rao bound is

shown tight only at high SNR, whereas the ZZBs predict threshold behavior and TDE

breakdown as the SNR decreases. When compared to the average ZZB that assumes

knowledge of the channel realization, the ZZBs developed by the author provides more

realistic and tighter performance limits, revealing the performance penalty due to lack

of channel knowledge. The non-convergence to the prior uniform distribution when the

SNR goes to zero is well known for the ZZB, and this was accounted for by studying the

ZZB approximations at low SNR. Moreover, the ZZB for frequency hopping waveforms

shows the benefit of frequency diversity for TDE in frequency-selective fading chan-

nels. The special case of independent flat-fading is discussed, including both Rician and

Rayleigh fading, and closed-form expressions enable easy study of the effects of SNR,

frequency diversity, and channel statistics on TDE.
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Chapter 4

Performance of ToA Localization

4.1 Introduction

By the discussion in previous chapters, it is known that range estimates or time

delay estimation may have a positive bias in multipath environments, where a line-

of-sight path may be weak or essentially nonexistent. In Chapter 3 the performance

limits of time delay estimates are throughly developed. In range-based localization

systems, the errors in range measurements will essentially be converted to the position

estimation error by different localization schemes. In this chapter the author analyzes

the performance of localization in multipath channel, based on multiple erroneous range

estimates from reference points.

There are different cases in unknown location estimation in multipath channel, de-

pendent on the assumption on the bias in range estimation: (a) bias is known; (b) bias

is an unknown nuisance deterministic parameter embedded in measurement error; (c)

bias is an unknown nuisance deterministic parameter jointly estimated with the source

location; and (d) bias is random following certain distribution. These cases lead to

different estimators and corresponding localization performance. Case (a) becomes an
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easy one after subtracting the bias from each measurement to obtain an unbiased mea-

surement. In related recent works, [47] studied Case (c) assuming the deterministic bias

is identical for all sensors , and [48] developed a localization bound in an ultra-wideband

environment, where the bias is assumed uniformly distributed and the statistics were

obtained experimentally in an indoor scenario.

In this chapter, the author focuses on Case (b) and Case (d), deriving the bias and

mean-square error of the widely adopted weighted least-square and maximum-likelihood

location estimators, as a function of deterministic or random measurement bias with

different distributions, receiver noise and other parameters. The error expressions are

developed via perturbation analysis, providing a means to study achievable localization

performance, as a function of the measurement bias and variance, as well as the refer-

ence array geometry and number of reference transceivers (beacons). Other nuisance

parameters such as clock bias are omitted and assumed perfect in the analysis.

4.2 Models for Biased Range Measurement

Consider a range-based localization problem employing K beacon nodes at known

locations pi = [xi, yi]
T , i = 1, · · · ,K. The range from the signal source at ps = [xs ys]

T

to the ith beacon at pi is

di =
√

(xs − xi)2 + (ys − yi)2. (4.1)

Denote the angle between the source and the ith beacon with respect to the horizontal

as θi, then

cos θi =
xs − xi

di
, sin θi =

ys − yi
di

. (4.2)
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By measuring the first signal arriving at the i beacon receiver from the source, the range

measurement at the ith beacon is modeled as

ri = di + vi

= di + bi + ni, (4.3)

in which vi = bi + ni is the total ranging error, composed of a non-negative bias bi ≥ 0

with mean µbi and standard deviation σbi , and the white Gaussian noise ni with zero

mean, standard deviation σni .

The estimation of ps = (xs, ys) is based on the measurements of r = [r1, · · · , rK ],

in a noisy fading channel. The bias is assumed either unknown deterministic, or random

with known distributions in multipath fading channels where LOS path is weak or non-

existent. The most widely adopted models for the random time delay bias include

exponential, Maxwell, uniform, and Bernoulli distributions [71, pp. 340-341]. Since

time delay mainly depends on the propagation environment, all bias bi are assumed

independent.

4.2.1 Exponential Distribution

The bias follows an exponential distribution E(1/σbi , b0i ) if its pdf is

hi(bi) =
1

σbi
exp

[
− 1

σbi
(bi − b0i )

]
, bi ≥ b0i , (4.4)

where b0i is the known location parameter, σbi is the mean and standard deviation of

the variable bi − b0i .
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4.2.2 Maxwell Distribution

The Maxwell distribution has the following form

hi(bi) =


√

2/π(3−8/π)3/2

σ3
bi

b2i exp
[
− (3−8/π)b2i

2σ2
bi

]
, bi ≥ 0

0, bi < 0

, (4.5)

with a distribution parameter σbi .

4.2.3 Uniform Distribution

The bias bi follows a uniform distribution in [βs, βm] if its pdf takes the following

form.

hi(bi) =


1

βm−βs
= 1

2
√
3σbi

, βs ≤ bi ≤ βm

0, others

. (4.6)

In the above, it is assumed βs ≥ 0.

4.2.4 Bernoulli Distribution

The Bernoulli distribution is given by

hi(bi) =



1
2 , bi = 0

1
2 , bi = 2σbi

0, others

. (4.7)

The above models have their respective merits and deficiencies in different applica-

tion scenarios. The bias distribution parameter could vary in a particular scenario even

if the distribution type might be invariant. In extreme cases, it may be zero for a subset

of references. For the random bias case, the analysis in the following sections mainly

focuses on the exponential model and then detail the corresponding discussions. Only

brief discussions are provided on other models.
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4.3 Convolved Distributions of Range Measurements

The location estimation depends on the distribution of the range measurement ri

at the ith reference point, that in turn depends on the total measurement error vi. With

random bias assumption and sensor measurement model (4.3), the distribution fi(vi) of

vi is the convolution the pdf hi(bi) of the bias bi and gi(ni) of the noise ni, given by

fi(vi) =

∫ ∞

−∞
hi(x)gi(vi − x)dx. (4.8)

Denote the pdf of the Gaussian noise ni as

gi(ni) =
1√

2πσni

e
− n2

i
2σ2

ni . (4.9)

The standard deviation of bias σbi is normalized for each specific distribution model,

while its mean µbi is different. Since all bi and ni are independent, the joint pdf of all

ri is simply the product of individuals that will be shown later in the next section. In

the following, fi(vi) or fi(ri) are developed for each possible bias model respectively. In

addition, the first-order partial derivative of fi(ri) with respect to di is found for the

CRB derivation in the next section.

4.3.1 Exponential Bias Model

Assume the bias bi at the ith beacon follows an exponential distribution E(1/σbi , b0i )

by (4.4). By (4.8), the pdf of vi is

fi(vi) =

∫ ∞

b0i

hi(x)gi(vi − x)dx

=
1√

2πσniσbi

∫ ∞

b0i

exp

[
− 1

σbi
(x− b0i )

]
exp

[
−(vi − x)2

2σ2
ni

]
dx. (4.10)
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After some manipulations, it can be simplified as

fi(vi) =
1√

2πσniσbi
exp

(
b0i − vi
σbi

+
σ2
ni

2σ2
bi

)∫ ∞

b0i

exp

[
−
(x− vi + σ2

ni
/σbi)

2

2σ2
ni

]
dx

=
1

σbi
exp

(
b0i − vi
σbi

+
σ2
ni

2σ2
bi

)
Q

(
b0i − vi + σ2

ni
/σbi

σni

)
. (4.11)

Note that at vi = b0i , it takes a value of

fi(b
0
i ) =

1

σbi
e

σ2
ni

2σ2
bi Q

(
σni

σbi

)
. (4.12)

The pdf of ri is the same as fi(vi) in eq.(4.10) except the variable vi is replace by

ri − di, expressed as

fi(ri) =
1

σbi
exp

(
b0i − ri + di

σbi
+

σ2
ni

2σ2
bi

)
Q

(
b0i − ri + di + σ2

ni
/σbi

σni

)
. (4.13)

The derivative on (4.13) with respect to di is

∂fi(ri)

∂di
=

1

σbi

[
fi(ri)− gi(ri − di − b0i )

]
, (4.14)

where gi(ri − di − b0i ) is the Gaussian noise pdf in (4.9).

4.3.2 Maxwell Bias Model

The bias distribution follows (4.5). The distribution of vi is

fvi(vi) =

∫ ∞

0
fbi(x)fni(vi − x)dx

=
(3− 8/π)3/2

πσ3
biσn

∫ ∞

0
x2 exp

[
−(3− 8/π)x2

2σ2
bi

− (vi − x)2

2σ2
n

]
dx, (4.15)

which does not have a closed-form expression. Note that the standard deviation σbi is

normalized to be the same as the exponential distribution, and the mean µbi =
2
√
2√

3π−8
σbi.

The pdf of ri, fi(ri), is found by variable substitution, and its derivative is

∂fi(ri)

∂di
=

(3− 8/π)3/2

πσ3
biσ

3
n

∫ ∞

0
x2(ri − di − x) exp

[
−(3− 8/π)x2

2σ2
bi

− (ri − di − x)2

2σ2
n

]
dx.

(4.16)

The derivative does not have closed-form either and can only be evaluated numerically.
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4.3.3 Uniform Bias Model

The bias bi follows a uniform distribution (4.6). The distribution of vi is

fvi(vi) =

∫ βm

βs

fbi(x)fni(vi − x)dx

=
1

βm − βs

∫ βm

βs

1√
2πσn

exp

[
−(vi − x)2

2σ2
n

]
dx

=
1

βm − βs

[
Q

(
vi − βm

σn

)
−Q

(
vi − βs
σn

)]
. (4.17)

Similarly, the distribution is normalized to have standard deviation σbi and mean µbi =

βs+βm

2 . which is a special case of the piece-wise uniform model in [48]. By variable

substitution, fri(ri) can be obtained and its derivative is

∂fi(ri)

∂di
=

1√
2πσn(βm − βs)

[
e−(ri−di−βm)2/2σ2

n − e−(ri−di−βs)2/2σ2
n

]
. (4.18)

4.3.4 Bernoulli Bias Model

Using the Bernoulli distribution (4.7) for the bias, the distribution of vi is

fvi(vi) = fbi(x)fni(vi − x)|x=0 + fbi(x)fni(vi − x)|x=2σbi

=
1

2
√
2πσn

{
exp

(
− v2i
2σ2

n

)
+ exp

[
−(vi − 2σbi)

2

2σ2
n

]}
=

1

2
[gi(vi) + gi(vi − 2σbi)] . (4.19)

The bias standard deviation is also normalized to σbi and bias mean is µbi = σbi. The

derivative of fri(ri) is

∂fi(ri)

∂di
=

1

2
√
2πσ3

n

{
(ri − di) exp

[
−(ri − di)

2

2σ2
n

]
+ (ri − di − 2σbi) exp

[
−(ri − di − 2σbi)

2

2σ2
n

]}
.

(4.20)
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4.4 Cramér-Rao Bound on ToA Localization with Biased

TDE

Based on the bias models for TDE and the distributions of range measurements

developed in the previous sections, the ToA localization Cramér-Rao Bounds can be

obtained. With the independent measurements corresponding to all the reference points,

the joint distribution of the range measurement vector r = [r1, r2, · · · , rK ] is

f(r;ps) =

K∏
i=1

fi(ri;ps), (4.21)

in which fi(ri;ps)
∆
= fi(ri) is the unknown-location-dependent pdf of the range mea-

surement at the ith reference point. The pdf expressions for all the possible bias models

can be found in the previous section. The Fisher information matrix (FIM) is given by

[48]

J = Er

{
[∇ps ln(f(r;ps))] [∇ps ln(f(r;ps))]

T
}

= Er


K∑
i=1

1

fi(ri;ps)2


(
∂fi(ri;ps)

∂xs

)2
∂fi(ri;ps)

∂xs

∂fi(ri;ps)
∂ys

∂fi(ri;ps)
∂ys

∂fi(ri;ps)
∂xs

(
∂fi(ri;ps)

∂ys

)2



=

K∑
i=1

ρ(νi)

 cos2 θi cos θi sin θi

sin θi cos θi sin2 θi

 , (4.22)

where

νi = vi − µbi = ri − di − µbi , ρ(νi) =

∫ ∞

−∞

1

fi(ri;ps)

(
∂fi(ri;ps)

∂di

)2

dνi. (4.23)

The CRB is expressed as

Er

{
(ps − p̂s)(ps − p̂s)

T
}
≥ J−1. (4.24)
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The lower bound for the RMSE of the location estimation can also be expressed by FIM

as

RMSE
∆
=
√

Er {(xs − x̂s)2 + (ys − ŷs)2} ≥
√

tr{J−1}, (4.25)

where tr denotes the trace of a square matrix.

In (4.22) and (4.23), the pdf fi(ri;ps) of the measurement ri has the same expression

as fvi(vi) in the previous section. Computing ρ(νi) with (4.23) by taking the differentials

on fi(ri;ps) and substituting ρ(νi) into (4.22), one can find the FIM and the CRBs.

Because the expression (4.23) of ρ(νi) is an integration and the integrand incorporates

the squared derivative, ρ(νi) generally does not have a closed-form expression, and it

can only be evaluated numerically in most cases.

4.5 Weighted Least-Square Location Estimator

In the absence of bias distribution, the best location estimator based on biased

measurements is a WLS estimator. This section presents this estimator, and analyze

its estimation performance from a perturbation viewpoint (assuming error is small). A

special case of uniform circular array is examined. This configuration leads to some

interesting observations. Finally performance optimization utilizing analytical results is

discussed.

4.5.1 WLS Estimator

The WLS estimation of the source location is given by

min
(xs,ys)

K∑
i=1

(ri − di)
2wi, (4.26)

where wi is a weight that can be chosen as desired, for example, letting wi = σ−2
ni .

The solution to the optimization problem (4.26) can be obtained by differentiating with
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respect to both xs and ys and equating with zero, satisfying the two equations [97]

K∑
i=1

wi(ri − di) cos θi = 0, (4.27)

K∑
i=1

wi(ri − di) sin θi = 0. (4.28)

These equations are highly nonlinear due to (4.1) and (4.2), and xs and ys can only be

solved numerically.

4.5.2 First-Order Error Analysis on WLS Estimation

To study the estimation error from the estimator (4.26), a perturbation analysis is

carried out around the optimal solution p̂s = [x̂s, ŷs]
T , e.g., see [66]. Let δri = vi denote

a small measurement error that includes the measurement bias and noise. The error δri

causes an estimation error δxs, δys, and associated error δdi in di, with xi and yi known.

Reference position errors are omitted here but can be incorporated easily.

Note that the perturbed quantities still satisfy (4.27) and (4.28). Under the small

error assumption, perturbation analysis is equivalent to differentiation, i.e., replacing

the total differential operator by the error operator δ at the true solution point. In

order to relate δxs and δys to δri, first re-express δdi here. According to (4.1) and (4.2),

and applying the total differential theorem, the first-order error terms are related by

δdi ≈ cos θiδxs + sin θiδys. (4.29)

Next, δxs and δys are related to δri from equations (4.27) and (4.28), yielding two

equations for δxs and δys. Term-by-term differentiation on (4.27) and (4.28) yields

K∑
i=1

wi[(δri − δdi) cos θi + (ri − di)δ(cos θi)] = 0, (4.30)

K∑
i=1

wi[(δri − δdi) sin θi + (ri − di)δ(sin θi)] = 0. (4.31)
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In our error analysis, ri represents the measurement in the absence of error ni, and δri

represents the error vi. Replacing ri by di and δri by vi, the above becomes

K∑
i=1

wi(vi − δdi) cos θi = 0, (4.32)

K∑
i=1

wi(vi − δdi) sin θi = 0. (4.33)

Substituting (4.29) into (4.32) and (4.33) and combining corresponding terms, one can

obtain a compact matrix equation for location estimation error vector δp to satisfy as

Cδp ≈ Dv, (4.34)

where

C =

 c11 c12

c21 c22

 , δp =

 δxs

δys

 , D =

 dT
1

dT
2

 , v =

[
v1 · · · vK

]T
, (4.35)

with

c11 =

K∑
i=1

wi cos
2 θi, c12 =

K∑
i=1

wi cos θi sin θi, c22 =

K∑
i=1

wi sin
2 θi,

d1 = [w1 cos θ1, · · · , wK cos θK ]T , d2 = [w1 sin θ1, · · · , wK sin θK ]T . (4.36)

So the first order estimation error vector for source location is

δp ≈ C−1Dv = Gv, (4.37)

where G = C−1D.

Eq. (4.37) is the desired relation of location perturbation error δp with measure-

ment noise and system parameters. The MSE of the estimator is

ϵ̄2WLS = E{|δp|2} ≈ tr{GΦvG
T }, (4.38)

where Φv is the correlation matrix of v. Stacking the range bias from different sensor

measurements into b = [b1, · · · , bK ]T , then Φv is related to bias and noise variance by

Φv = E{vvT } = Rb + diag{σ2
n1, · · · , σ2

nK}, (4.39)
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in which Rb is the correlation matrix of b, and Rb = bbT for deterministic bias. The

resulting bias in the location estimate is given by

βWLS = E{δp} ≈ Gb = C−1Db. (4.40)

Thus the WLS estimator will be biased in general if b ̸= 0. However, it is possible to

make the estimation bias to be zero while b ̸= 0 for some special cases, for example,

when Gb = 0. Next, these expressions are applied for studying a localization example

with a uniform circular sensor array.

4.5.3 An Example of Circularly Uniform Array

Consider an example where the sensors are uniformly and circularly placed around

the source, so that θi = 2π(i−1)/K. This includes special cases of linear, triangular and

square sensor configurations, corresponding to K = 2, 3, 4, respectively. For simplicity,

assume a common measurement bias so that all elements in b are equal, i.e., b = b1 for

b ̸= 0. Let wi = w = σ−2
n for all sensors. Under these assumptions, θi = 2π(i − 1)/K

and the elements in C and the vector Db in (4.40) can be rewritten as

c11 = w

K∑
i=1

cos2
2π(i− 1)

K
=

1

2
w

(
K +

K∑
i=1

cos
4π(i− 1)

K

)
, (4.41)

c22 = w

K∑
i=1

sin2
2π(i− 1)

K
=

1

2
w

(
K −

K∑
i=1

cos
4π(i− 1)

K

)
, (4.42)

c12 = c21 = w

K∑
i=1

sin
2π(i− 1)

K
cos

2π(i− 1)

K
=

1

2
w

K∑
i=1

sin
4π(i− 1)

K
, (4.43)

Db = wb

[
K∑
i=1

cos
2π(i− 1)

K
,

K∑
i=1

sin
2π(i− 1)

K

]T
. (4.44)

Based on the Euler’s identities

cosx =
1

2
(ejx + e−jx), sinx =

1

2j
(ejx − e−jx), (4.45)
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where j =
√
−1, and the following result for a geometric series

K∑
k=1

ej(k−1)x =
ejKx − 1

ejx − 1
=

ejKx/2(ejKx/2 − e−jKx/2)

ejx/2(ejx/2 − e−jx/2)

=
sin Kx

2

sin x
2

ej
K−1

2
x, (4.46)

the following equations are obtained

K∑
k=1

cos(k − 1)x =
sin Kx

2 cos K−1
2 x

sin x
2

, (4.47)

K∑
k=1

sin(k − 1)x =
sin Kx

2 sin K−1
2 x

sin x
2

. (4.48)

Substituting these results into (4.41), (4.42), (4.43) and (4.44) yields

c11 = c22 =
1

2
wK, c12 = c21 = 0, Db = 0. (4.49)

So C = wK
2 I. Applying these results to (4.40) generates E{δp} = 0. Therefore, for this

special geometry and with common measurement bias, the WLS estimation has no bias

(up to the first order error). This is intuitively pleasing, and indicates that spatially

diverse sensor placement can reduce estimation bias.

The MSE (4.38) can also be simplified for this special case. With Db = 0 and

diag{σ2
1, · · · , σ2

K} = σ2I, it can be easily verified that DDT = wC. Then (4.38) becomes

ϵ̄2WLS ≈ σ2
ntr{C−1DDTC−1} =

4σ2
n

K
. (4.50)

The expression is consistent with the CRB of eq. (28) developed in [47] for the case

of a common bias for all sensors. It is interesting that without any knowledge of the

measurement bias, for this example, the WLS MSE approaches the CRB at high SNRs

(i.e., under the small error assumption).
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4.5.4 Geolocation Performance Optimization

The analytical results on the location estimation bias and MSE relate WLS perfor-

mance to measurement bias, noise variance, sensor locations, and WLS weights. Here

the optimization rely on analytical results to adjust the weights and sensor locations in

order to minimize the localization error.

From (4.40), a general condition for WLS to produce an unbiased location estimates

is Gb = 0. It requires vector b to be in the null subspace of matrix G. This can be

achieved with Db = 0, i.e., when

K∑
i=1

wibi cos θi = 0,
K∑
i=1

wibi sin θi = 0. (4.51)

This sufficient condition suggests a possible method for sensor placement and weight

selection that results in a small location estimation bias.

To gain some insight into bias reduction, let bi = b and wi = w. The squared norm

of Db can now be expressed as

|Db|2 = b2w2

( K∑
i=1

cos θi

)2

+

(
K∑
i=1

sin θi

)2


= b2w2

K +
K∑

i1 ̸=i2=1

cos(θi1 − θi2)

 . (4.52)

This quantity depends on the measurement bias b, and all possible sensor placement

angle differences. Consider an extreme sensor configuration where all the sensors are

located in a cluster at angle zero with respect to the source; then |Db|2 reaches its

maximum value of K2b2w2 since all θi are equal. This worst case leads to a large

estimation bias and consequently an increased MSE. Now suppose half of the even

number of sensors are located at angle zero, and the other half at angle 180 degrees.

Then, |Db|2 reaches its minimum value of zero, andWLS is unbiased. This is also similar

to the circular array case discussed in Section 4.5.3. For arbitrary sensor configurations,

117



|Db|2 takes a value between zero and its maximum. For example, if half the sensors

are at angle zero and half at 90 degrees, then |Db|2 takes the medium value K2b2w2/2.

These examples indicate that sensor location angle diversity helps to reduce the impact

of measurement bias.

The WLS weight can be employed to reduce the localization error. Intuitively,

according to (4.51), the weight for a particular sensor should be chosen to be smaller

when the measurement bias is larger, although tuning the weight in this way requires

additional information about the bias. It is also of interest to consider the bias-variance

tradeoff. The MSE, given by (4.38), can also be minimized with respect to sensor

locations and weights. In Section 4.7 some numerical results will be presented on the

impact of bias and sensor placement.

4.6 ML Estimation with Random Biased Range Measure-

ment

In the case of range measurement with random bias, vi in the measurement model

(4.3) becomes a sum of two random variables: random bias bi and Gaussian noise ni.

The optimum estimator for ps based on the maximum-likelihood criterion depends on

the distribution of vi which is a convolution of the pdfs of the two random variables,

developed in Section 4.3. In this section, the author first finds the generic equations for

the optimal estimator to satisfy. Since these equations are non-linear, no closed-form

solution exists. However, applying the perturbation technique can obtain location esti-

mation errors from those equations. Afterward, with those general results, the following

subsection focuses on the widely adopted exponential bias distribution model and ob-

tain the estimation error results. An equivalence of this model is established with the
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deterministic bias case under the limit of the bias standard deviation σbi → 0. The last

subsection also shows the respective ML estimator for uniform distribution.

Since all bi and ni are independent, the joint pdf of all ri is simply the product of

individuals. The ML estimator can be formulated based on the log-likelihood function

p̂s = max
(xs,ys)

L = max
(xs,ys)

ln f(r;ps)

= max
(xs,ys)

ln

K∏
i=1

fi(ri − di) = max
(xs,ys)

K∑
i=1

ln fi(ri − di). (4.53)

Setting the partial derivatives of L with respective to xs and ys equal to zero, two

equations for optimal location estimates follow

K∑
i=1

f ′
i(ri − di)

fi(ri − di)
cos θi = 0, (4.54)

K∑
i=1

f ′
i(ri − di)

fi(ri − di)
sin θi = 0, (4.55)

where f ′
i(ri − di) is the derivative with respect to di, which can be found from the

derivative of fi(vi) with respect to vi since f ′
i(ri − di) = −f ′

i(vi). Substituting f ′
i(vi) or

f ′
i(ri−di) of a specific bias model into (4.54) and (4.55) can find the solutions to xs and

ys.

Localization errors are analyzed for the ML estimator using the similar perturbation

analysis procedure as in Section 4.5 for the WLS estimator. Expanding (4.54) and (4.55)

around ri = di + b0i will yield two equations, which build the connection of δxs and δys

with the perturbation in the range measurement δri = vi − b0i = bi − b0i + ni in the first

order. Writing those equations in a matrix form, the localization error vector δp can be

solved. Then the bias and MSE are found easily.
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4.6.1 Exponential Distribution Case

This subsection follows the general analysis procedure described above and focuses

on the exponential bias distribution model. In addition, several limiting cases are ana-

lyzed based on the analytical results.

4.6.1.1 ML Estimator

Based on (4.54) and (4.55), to obtain the ML estimator the derivative of fi(vi) in

(4.11) with respect to vi is needed. As is known, differentiation under the integral sign

for function

F (x) =

∫ b(x)

a(x)
f(x, t)dt

follows a general formula

dF (x)

dx
= f(x, b(x))

db(x)

dx
− f(x, a(x))

da(x)

dx
+

∫ b(x)

a(x)

∂

∂x
f(x, t)dt. (4.56)

Thus by the definition of Q-function [98] it shows that

d

dvi
Q

(
b0i − vi + σ2

ni
/σbi

σni

)
=

1√
2πσni

exp

[
−
(b0i − vi + σ2

ni
/σbi)

2

2σ2
ni

]
. (4.57)

Applying (4.57) to (4.11) produces

f ′
i(vi) = − 1

σbi
fi(vi) +

1

σbi
exp

(
b0i − vi
σbi

+
σ2
ni

2σ2
bi

)
1√

2πσni

exp

[
−
(b0i − vi + σ2

ni
/σbi)

2

2σ2
ni

]

= − 1

σbi
fi(vi) +

1

σbi
√
2πσni

exp

[
−(vi − b0i )

2

2σ2
ni

]
=

1

σbi
[gi(vi − b0i )− fi(vi)]. (4.58)

Using (4.58) in (4.54) and (4.55), the constraint equations of the ML estimator become

K∑
i=1

1

σbi

[
gi(ri − di − b0i )

fi(ri − di)
− 1

]
cos θi = 0, (4.59)

K∑
i=1

1

σbi

[
gi(ri − di − b0i )

fi(ri − di)
− 1

]
sin θi = 0. (4.60)
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Substituting (4.9) and (4.11), and noticing (4.1) and (4.2), the above become nonlinear

equations for xs and ys. They can be solved numerically as functions of measurements.

Instead of pursuing optimal solutions, the author investigates how estimation errors

are affected by the measurement error in the neighborhood of optimal solutions, in

particular by measurement bias. That is, the range measurement ri = di+b0i is perturbed

with error bi − b0i + ni. It causes a small estimation error in source location (at high

SNR).

4.6.1.2 Error Analysis on Location Estimation

The perturbed estimates still satisfy (4.59) and (4.60), which are expanded around

ri = di + b0i to obtain two equations for δxs and δys with the perturbation in the range

measurement δri = vi−b0i = bi−b0i +ni as input. For notational simplicity, the following

development focuses on the i-th term in the summation and also temporarily suppress

multiplicative constant 1/σbi . Later on both the summation and this constant will be

put back. Applying differential theorem to the left hand side of (4.59) and (4.60) obtains

δ

[
gi(ri − di − b0i )

fi(ri − di)

]
cos θi +

[
gi(ri − di − b0i )

fi(ri − di)
− 1

]
δ(cos θi), (4.61)

δ

[
gi(ri − di − b0i )

fi(ri − di)

]
sin θi +

[
gi(ri − di − b0i )

fi(ri − di)
− 1

]
δ(sin θi). (4.62)

Since

δgi(ri − di − b0i ) ≈ g′i(ri − di − b0i )(δri − δdi),

δfi(ri − di) ≈ f ′
i(ri − di)(δri − δdi),

and ri = di + b0i , the first error term in (4.61) and (4.62) is

δ

[
gi(ri − di − b0i )

fi(ri − di)

]
≈ g′i(0)fi(b

0
i )− gi(0)f

′
i(b

0
i )

f2
i (b

0
i )

(δri − δdi). (4.63)
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According to (4.9), g′i(0) = 0. Also together with (4.9) and (4.58), it follows that

f ′
i(b

0
i ) =

1

σbi
[gi(0)− fi(b

0
i )], gi(0) =

1√
2πσni

, (4.64)

where fi(b
0
i ) is given by (4.12). Substituting (4.64) and (4.29) into (4.63) yields

δ

[
gi(ri − di − b0i )

fi(ri − di)

]
≈ gi(0)f

′
i(b

0
i )

f2
i (b

0
i )

(cos θiδxs + sin θiδys − δri). (4.65)

The second error terms in (4.61) and (4.62) are

δ(cos θi) ≈
sin θi
di

(sin θiδxs − cos θiδys), (4.66)

δ(sin θi) ≈ −cos θi
di

(sin θiδxs − cos θiδys). (4.67)

Substituting (4.64), (4.65), (4.66) and (4.67) into (4.61) and (4.62), and adding back

summation and the multiplicative constant 1/σbi , the constraint equations are found as

u11δxs + u12δys ≈ tT1 δr, (4.68)

u21δxs + u22δys ≈ tT2 δr, (4.69)

with

u11 =

K∑
i=1

[gi(0)− fi(b
0
i )]

σbidif
2
i (b

0
i )

[digi(0) cos
2 θi/σbi + fi(b

0
i ) sin

2 θi], (4.70)

u12 = u21 =

K∑
i=1

[gi(0)− fi(b
0
i )] cos θi sin θi

σbidif
2
i (b

0
i )

[digi(0)/σbi − fi(b
0
i )], (4.71)

u22 =
K∑
i=1

[gi(0)− fi(b
0
i )]

σbidif
2
i (b

0
i )

[digi(0) sin
2 θi/σbi + fi(b

0
i ) cos

2 θi], (4.72)

t1 = [t1,1, · · · , t1,K ]T , t2 = [t2,1, · · · , t2,K ]T , (4.73)

t1,i =
gi(0)[gi(0)− fi(b

0
i )] cos θi

σ2
bi
f2
i (b

0
i )

, t2,i =
gi(0)[gi(0)− fi(b

0
i )] sin θi

σ2
bi
f2
i (b

0
i )

. (4.74)

These two equations can be compactly written in a matrix form

Uδp ≈ Tδr. (4.75)
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So, by (4.75), the first order estimation error vector for source location in this case is

δp ≈ U−1Tδr. (4.76)

The bias and MSE of this estimator can be studied. Since

E{δri} = σbi , E{(δri)2} = 2σ2
bi
+ σ2

ni

and the mean and correlation of the vector δr is

µb = E{δr} = [σb1 , · · · , σbK ]
T , (4.77)

Ψ = E{δrδrT } = µbµ
T
b + diag{(σ2

b1 + σ2
n1
), · · · , (σ2

bK
+ σ2

nK
)}, (4.78)

then the bias and MSE of the location estimate are

βML = E{δp} ≈ U−1Tµb, (4.79)

ϵ2ML = E{δpT δp} ≈ tr{U−1TΨTTU−1}. (4.80)

These statistics are functions of sensor locations, bias distribution parameters, noise

variance, and number of sensors.

4.6.1.3 Discussion on a limiting case ∀σbi → 0

The assumption of ∀σbi → 0 means both the mean and the standard deviation of

the exponentially distributed bias diminish. So the randomness of the bias tends to fade

out and the bias bi reverts back to the deterministic known value b0i . In this case, the

exponential distribution function reduces to a delta function and fi(vi) takes a form as a

Gaussian distribution. In fact, the pdf expression of vi can also be obtained from (4.11)

by taking the limit as

lim
σbi

→0
fi(vi) = lim

σbi
→0

Q

(
b0i−vi+σ2

ni
/σbi

σni

)
σbi exp

(
vi−b0i
σbi

− σ2
ni

2σ2
bi

) . (4.81)
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Considering Q(∞) = 0, the L’Hopital’s rule can be applied to simplify. By the definition

of Q-function

d

dσbi
Q

(
b0i − vi + σ2

ni
/σbi

σni

)
=

σni√
2πσ2

bi

exp

[
−
(b0i − vi + σ2

ni
/σbi)

2

2σ2
ni

]
. (4.82)

Applying L’Hopital’s rule and (4.82), (4.81) becomes

lim
σbi

→0
fi(vi) = lim

σbi
→0

σni√
2πσ2

bi

exp

[
− (b0i−vi+σ2

ni
/σbi

)2

2σ2
ni

]
(
σbi −

vi−b0i
σbi

+
σ2
ni

σ2
bi

)
exp

(
vi−b0i
σbi

− σ2
ni

2σ2
bi

)
=

1√
2πσni

exp

[
−(vi − b0i )

2

2σ2
ni

]
= gi(vi − b0i ). (4.83)

This means that in the limiting case, fi(vi) is a Gaussian variable with mean b0i and

variance σ2
ni
.

Additionally one should expect the error analysis result for the ML estimation in

this limiting case to be the same as the WLS result (4.37) with wi = 1
σ2
i
. Taking

derivative on (4.83) generates

lim
σbi

→0
f ′
i(vi) = −v − b0i

σ2
ni

gi(v − b0i ) = −v − b0i
σ2
ni

lim
σbi

→0
fi(vi). (4.84)

Substituting (4.84) into (4.54) and (4.55), the ML estimates satisfy

K∑
i=1

1

σ2
ni

[(ri − b0i )− di] cos θi = 0, (4.85)

K∑
i=1

1

σ2
ni

[(ri − b0i )− di] sin θi = 0, (4.86)

which have the same form as the WLS equations (4.27) and (4.28) with wi =
1
σ2
i
except

that the deterministic known bias b0i is deducted from the measurement ri. In error

analysis, since δ(ri − b0i ) = δ(ri) and replacing ri − b0i with di, the same expression

as (4.37) will be obtained. Therefore, the performance of the ML estimation for this

limiting case and the WLS estimation for the deterministic bias case are equivalent.
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In fact, it is straightforward to directly prove that the error analysis results for the

two cases are equivalent. It suffices to show

lim
∀σbi

→0
U = C, lim

∀σbi
→0

T = D. (4.87)

Notice that elements of matricesU andT depend on fi(b
0
i ) given by (4.12). So expansion

of Q-function for large x is necessary, which is given by [46]

Q(x) =
e−

x2

2

x
√
2π

∞∑
k=0

(−1)k(2k)!

k!(
√
2x)2k

for large x. (4.88)

So (4.12) becomes

fi(b
0
i ) =

1√
2πσni

∞∑
k=0

(−1)k(2k)!σ2k
bi

k!(
√
2σni)

2k
, (4.89)

from which

lim
σbi

→0
fi(b

0
i ) =

1√
2πσni

= gi(0), (4.90)

which matches the result in (4.83). Continuing leads to

lim
σbi

→0

gi(0)− fi(b
0
i )

σ2
bi

=
1√

2πσ3
ni

=
gi(0)

σ2
ni

. (4.91)

With these results, the limiting results for elements of U will be obtained. Discard the

second term in (4.70) since it is negligible as compared to the first term with a factor

1/σbi . Applying (4.91) and (4.90) successively to that equation yields

lim
σbi

→0
u11 = lim

σbi
→0

K∑
i=1

cos2 θigi(0)[gi(0)− fi(b
0
i )]

σ2
bi
f2
i (b

0
i )

= lim
σbi

→0

K∑
i=1

cos2 θig
2
i (0)

σ2
ni
f2
i (b

0
i )

=

K∑
i=1

cos2 θi
σ2
ni

,

(4.92)

which is the same as c11 in (4.36) if wi = 1/σ2
ni
. Similarly one can establish convergence

of the other elements of U to those of C, and T to D. Therefore, (4.87) follows, and

the two cases are equivalent. In fact, the above equivalence proof partially validates the

derivations in Section 4.6.1.2.
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4.6.1.4 Other limiting cases

A few other limiting cases are also interesting:

1. ∀σbi → ∞

As ∀σbi → ∞, the mean of measurement bias goes to infinity. Therefore bias has

a very long tail. Those quantities in matrices U and T can be simplified. First,

lim
σbi

→∞
fi(b

0
i ) =

1

2σbi
, (4.93)

according to (4.12) since Q(0) = 1/2. Then

lim
∀σbi

→∞
u11 =

K∑
i=1

2gi(0)

di
[2 cos θ2i digi(0) + sin θ2i ],

lim
∀σbi

→∞
u12 = lim

∀σbi
→∞

u21 =

K∑
i=1

2 cos θi sin θigi(0)

di
[2digi(0)− 1],

lim
∀σbi

→∞
u22 =

K∑
i=1

2gi(0)

di
[2 sin θ2i digi(0) + cos θ2i ],

lim
∀σbi

→∞
t1,i = 4 cos θig

2
i (0),

lim
∀σbi

→∞
t2,i = 4 sin θig

2
i (0). (4.94)

Once elements of matrices are obtained, limiting matrices U∞ = lim∀σbi
→∞U and

T∞ = lim∀σbi
→∞T follow. Then the MSE (4.80) has a limiting result

lim
∀σbi

→∞
MSEML ≈ tr{U−1

∞ T∞Ψ∞TT
∞U−1

∞ }, (4.95)

where

Ψ∞ = µbµ
T
b + diag{σ2

b1 , · · · , σ
2
bK

}. (4.96)

The MSE increases with increased σbi , which is the mean and standard deviation

of the measurement bias. Thus the effect of measurement bias is pronounced for

large σbi .
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2. ∀σni → ∞ No particular insight can be made except that the noise is a dominant

error factor. It is similar to a typical noise-corrupted measurement case.

3. ∀σni → 0 This limiting case corresponds to diminishing Gaussian noise while only

random bias is dominant in the measurement error. According to (4.11), and due

to vi ≥ b0i and Q(−∞) = 1, vi has an exponential distribution E(1/σbi , b0i )

fi(vi) =
1

σbi
exp

[
− 1

σbi
(vi − b0i )

]
, vi ≥ b0i , (4.97)

the same as the distribution of bi. It is not surprising since the noise effect di-

minishes and vi = bi. Then the ML estimator needs to satisfy (4.53), reduced

to

max
(xs,ys)

L =

K∑
i=1

[
− lnσbi −

1

σbi
(ri − di − b0i )

]
. (4.98)

Its partial derivatives with respective to xs and ys become

∂L
∂xs

=

K∑
i=1

cos θi
σbi

,
∂L
∂ys

=

K∑
i=1

sin θi
σbi

.

The derivatives are independent of di and (xs, ys), and thus there is no solution

for arbitrary (xs, ys) by setting them to zeros. In fact, the objective function L

does not have a maximum. It increases unbounded with increasing magnitudes of

unknown variables xs and ys that can be observed in eq.(4.98).

4.6.2 Uniform Distribution Case

The bias model assuming uniform distribution has also been measured in experiment

and of research interest in the literature [48]. To obtain the ML estimator for this model,

the derivative of fvi(vi) is found as

f ′
vi(vi) = − 1

βm − βs

[
e
− (vi−βm)2

2σ2
n − e

− (vi−βs)
2

2σ2
n

]
.
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Substituting fvi(vi) and f ′
vi(vi) into (4.54) and (4.55), the ML estimation constraint

equations are found as

1√
2πσn

K∑
i=1

e
− (ri−di−βm)2

2σ2
n − e

− (ri−di−βs)
2

2σ2
n

Q
(
ri−di−βm

σn

)
−Q

(
ri−di−βs

σn

) cos θi = 0, (4.99)

1√
2πσn

K∑
i=1

e
− (ri−di−βm)2

2σ2
n − e

− (ri−di−βs)
2

2σ2
n

Q
(
ri−di−βm

σn

)
−Q

(
ri−di−βs

σn

) sin θi = 0. (4.100)

The error analysis can follow the same procedure as in Subsection eq.(4.6.1.2), while

the analytical results would not provide more insight than the exponential case. So in

the following section the numerical study on the estimation error will still focus on the

exponential distribution model.

4.7 Numerical Examples

This section presents numerical results of the error analysis for both WLS and ML

location estimation, and compare them with simulation performance as well as CRB.

The random bias with exponential distribution is assumed for all the testing cases. The

RMSE and estimation bias are adopted as localization performance metrics as [66]

RMSE =
√
E{(δxs)2}+ E{(δys)2},

Bias =
√
(E{δxs})2 + (E{δys})2.

As the estimation RMSE and bias are affected by the statistics of measurement bias µb

and σb and Gaussian noise σn, the reference array geometry and estimation methods

together, the effects of all these parameters are examined on estimator performance in

the following. All simulation results are based on 50000 independent realizations, and

the expectations in RMSE and bias are replaced with sample averages.

Consider a fixed reference array with K = 10 reference transceivers either uniformly

or non-uniformly placed on a circle with normalized radius of one distance unit (DU),
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centered at the unknown source location. The exponential distributed bias and Gaussian

noise at each sensor are assumed i.i.d. with σbi = σb and σni = σn unless explicitly

stated. Note that the errors are expressed relative to the source range of 1 DU. Thus,

for example, σn = 0.1 corresponds to Gaussian noise with a standard deviation of 10% of

the true range (a large range error). For the simulations, the expectations in the RMSE

and bias are replaced with sample averages. The WLS weights are set to wi = w = 1/σ2

in all experiments.

Figure 4.1 depicts the impact of deterministic bias in range measurements on the

RMSE and bias of WLS estimator, with both uniform and non-uniform beacon array.

For the non-uniform configurations, the beacon location angles are randomly generated

once in [0, 2π) and fixed for the duration of the experiment. Here Gaussian noise level is

fixed to σ = 0.1. The RMSE error floor is due to the fixed non-zero value of σni . It can be

observed that the RMSE with a uniform array is almost insensitive to the measurement

bias and the corresponding estimation bias is zero. However, the RMSE for the non-

uniform array increases linearly with, and is at a similar level to, the measurement bias.

Similarly, estimation bias increases quickly with the measurement bias.

Figure 4.2 plots the RMSE of both WLS and ML estimation in 3D with contours,

which provide intuitive view on how the RMSE varies with the increasing exponential

bias and Gaussian noise standard deviations. The circular array has 10 uniformly placed

beacons. The analytical results are compared with the simulated RMSE for both WLS

and ML location estimation.

Figure 4.3 and Figure 4.4 are the corresponding 2D plots of Fig. 4.2. Figure 4.3

shows the impact of increasing bias on location estimate RMSE and bias, with a fixed

Gaussian noise level of σn = 0.05. It can be observed that the RMSEs of both WLS and

MLE with a uniform array are insensitive to the measurement bias and the corresponding
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Figure 4.1: Localization performance of WLS estimation based on range measurement
of deterministic bias with uniform circular array of 10 sensors. RMSE and bias of WLS
estimation vary with the deterministic bias µi. The standard deviation of additive noise
σni = 0.1.
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Figure 4.3: Localization by biased range measurement with uniform circular array of
10 sensors. RMSE and bias of WLS and ML estimation vary with the exponential bias
standard deviation σb. The analysis and simulation results are plotted in comparison
with CRB.

estimation bias is almost zero. The analytical results overlap with the simulation when

σb is close to zero, showing the first-order error analysis provides good prediction over

small-error region. As expected, the theory-simulation gap increases when the fixed σb

increases from σb = 0.01 to σb = 0.1. The simulated ML estimation has a lower RMSE

than WLS. Moreover, the RMSE results asymptotically converge to the CRB.

Figure 4.4 depicts the estimation RMSE and bias against Gaussian noise standard

deviation σn for uniform circular reference placement. For all the reference points, the

unknown bias is fixed at σb = 0.05. As σn increases over 0.05 (lower SNR), Gaussian

noise has a larger effect on the location estimation when σb is relatively smaller, and the

bias effect tends to be overridden by the noise effect. In that region both the WLS and

ML estimation bias are averaged to a negligible level by the additive noise. The RMSE
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Figure 4.4: Localization by biased range measurement with uniform circular array of
10 sensors. RMSE and bias of WLS and ML estimation vary with the Gaussian noise
standard deviation σn. The anlysis and simulation results are plotted in comparison
with CRB.
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Figure 4.5: A case of non-uniform circular array with two groups of 5 sensors placed at
0 and 90 degrees, respectively. RMSE and bias of WLS and ML estimations are plotted
versus the exponential bias standard deviation σb in comparison with CRB.

increases slowly for small σn and then linearly after σn exceeds 0.05. However, when σn

is small, the measurement bias σb = 0.05 causes a floor for each of the estimators, and

the RMSE curve of MLE deviate from the CRB.

Figure 4.5 tests a case of fixed non-uniform reference placement. The K = 10

beacon sensors of a circular array are split into two groups. The first group of 5 sensors

is placed around 0 degree as (0,±5,±10) degrees, and the second group of 5 sensors is

around 90 degree as (80, 85, 90, 95, 100) degrees. It can be observed that the RMSE of

WLS estimation for this non-uniform array increases linearly with, and is at a similar

level to, the measurement bias. Similarly, estimation bias of WLS increases quickly

with the measurement bias and contributes the most part of RMSE. In comparison,

the RMSE and bias of ML estimation have much smaller increasing rates with σb than
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WLS, and the RMSE is close to CRB. The ML estimation has an obvious suppression

effect on the estimation bias for this non-uniform array configuration.

Figure 4.6 studies the effect of non-i.i.d. random measurement bias at different

reference beacons. Here, K = 10 beacons are uniformly circularly spaced in order

to avoid the geometry introduced estimation bias. The beacons are divided into five

groups with 2 beacons in each. Each group has a common measurement bias standard

deviation, with groups from 1 to 5 keeping a constant ratio of 1 : 2 : 4 : 2 : 0.5 between

each other, starting from the beacon at 0 degree and proceeding counter-clockwise. All

range measurements have the same noise standard deviation σn = 0.01. Then in Fig.

4.6a, the estimation RMSE and bias are plotted versus the measurement bias standard

deviation σb of the first group. It can be seen that the bias and RMSE of WLS increase

at an approximate rate of twice the measurement bias σb. The ML estimation exploits

the distribution information of the random measurement bias and greatly mitigates the

estimation bias and RMSE. The increasing rates of ML RMSE and bias are only 1/2

and 1/8 of σb, and the RMSE has a very small gap with CRB. The scatter plots in Fig.

4.6b and Fig. 4.6c show that the resulting WLS location estimates cluster in the fourth

quadrant, which is predominantly opposite to beacon group 3 whose measurements bias

have the largest standard deviation. On the other hand, the ML estimates cluster in

the second quadrant as the ML compensates the measurement bias by exploiting the

known error distributions.

To gain more intuitive insight into the beacon geometry effect on the estimation

bias, Figure 4.7 illustrates scatter plots of WLS and ML estimation from 300 random

realizations on measurement bias and noise, respectively. The uniform circular array is

compared with three configurations of non-uniform circular array, with K = 10 beacons

again confined to the circle with unity radius. In the three non-uniform cases, the bea-
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Figure 4.6: The case of non-identically distributed measurement bias. The standard
deviation σb of the exponential bias at five sensor groups (2 beacons per group) keep
the constant ratio of 1:2:4:2:0.5, starting from the sensor at 0 degree. Estimation RMSE
and bias are plotted versus σb of the first group of beacons.
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cons are split into two groups of five beacons per group. In configuration 1, both groups

are placed around 0 degrees as (±1,±5,±10,±15,±20) degrees. Configuration 2 centers

groups around 0 and 90 degrees, given by (−10,−5, 0, 5, 10,80, 85, 90, 95, 100) degrees.

Configuration 3 centers around 0 and 180 degrees, at (−10,−5, 0, 5, 10, 170, 175, 180, 185,

190) degrees. The measurement error distribution is identical at all beacons and the

standard deviations are set to σb = 0.2 and σn = 0.05.

The scatter figures clearly show that the estimated locations are significantly af-

fected by the geometry of beacon groups. The uniform array suppresses estimation bias

and both WLS and ML estimation are unbiased. The ML estimation has smaller vari-

ance. With non-uniform configuration 1 and 2, the WLS estimated locations depart

from the true source location along the direction from beacon groups to the true source

location (pushed by beacons), and the ML estimated locations approach the true loca-

tion along the same direction. For example, with configuration 2, WLS estimated points

are located in the third quadrant while the center of the ML estimated points are in the

first quadrant. The extent of departure depends on measurement bias. Configuration 3

is different as its horizontal symmetric placement helps to mitigate the estimation bias

along x-axis, and the ML estimation bias along y-axis is spread.

The corresponding RMSE and bias plots to the scatter figures are shown in Figure

4.8. As expected, the uniform array shows better performance than non-uniform con-

figurations, and configuration 3 has the best estimation among three non-uniform cases

due to its special x-axis symmetric geometry. For small measurement bias, the array

geometry does not create much difference on RMSE, but that difference increases with

increased measurement bias.
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Figure 4.7: Scatter plots with uniform and three non-uniform circulary arrays. σb = 0.2,
σn = 0.05.
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Figure 4.8: Estimation RMSE and bias are plotted versus σb for uniform and three
non-uniform circular arrays.
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4.8 Summary

The performance of source location estimation is severely deteriorated in a mul-

tipath fading propagation environment due to weak LOS or NLOS signal paths. This

chapter models the range measurement error by both additive Gaussian noise and possi-

bly positive bias, either deterministic or random. The random measurement bias follows

widely adopted distribution models for time delay over multipath channels, and the anal-

ysis mainly focuses on the exponential distribution. The analytical estimation bias and

MSE for the WLS and ML estimators are derived to assess the localization performance,

showing that in general the estimator produces biased estimates, and the MSE and bias

performance is determined by the statistics of measurement bias and noise, the beacon

sensor geometry as well as the estimator type. The analysis and numerical evaluations

show that the ML estimation has a better performance than WLS in terms of both MSE

and bias in typical cases, and is closer to the CRBs.
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Chapter 5

Conclusions

This thesis explored the performance of time delay estimation and transceiver lo-

calization in wireless multipath channels. In the multipath environment, range measure-

ments suffer from the errors due to weak LOS and rich NLOS signal paths. The research

focused on range-based localization schemes, especially ToA trilateration and TDoA

multilateration, and analyzed the algorithm performance of TDoA and ToA localization

as well as the performance limits of time delay estimation. Instead of proposing algo-

rithms for LOS identification and NLOS mitigation, the thesis was devoted to develop

theoretical performance lower bounds of TDE that are used to guide algorithm design

as benchmark and help to provide insight into the behavior of time delay estimation.

Ziv-Zakai bounds on Bayesian estimation of time delay were developed for known

pulsed signal propagating through an unknown random multipath channel following

Rayleigh/Rician distribution, with a uniform prior on the delay. The bound does not

assume knowledge of the channel at the receiver, providing a tighter bound than the

average ZZB that assumes channel realizations known to receivers. Differences between

the two bounds are pronounced at moderate and high SNRs. In comparison the ECRB,
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conditioned on the channel, is reasonably tight at high SNR, but does not capture the

threshold TDE behavior and is not tight below the high SNR threshold. The special

cases of independent fading channel, flat fading channel and known channel were dis-

cussed. Furthermore, the ZZB was extended to cover frequency hopping waveforms,

showing the particular benefit of frequency diversity for TDE in frequency-selective fad-

ing channels. The development incorporated both correlation among FIR channel taps

as well as frequency-hopping sub-channels. The closed-form expressions of ZZB for fre-

quency hopping waveforms in independent flat-fading channels, including both Rician

and Rayleigh fading, enable easy study of the effects of SNR, frequency diversity, and

channel statistics on TDE.

Comparisons with the RMSE performance of MAP estimation indicate that the

ZZB is tight for a large range of SNRs, and thresholds can be found that separate

low, medium, and high SNR regimes. Lack of precise convergence to the prior as the

SNR goes to zero is accounted for by studying the ZZB approximations at low SNR. In

addition, an GML/MMSE time delay estimator was evaluated that does not exploit the

channel statistics, and the GML/MMSE estimator was shown considerably poorer than

the MAP estimator that does account for the random channel.

The ranging errors due to multipath propagation finally lead to location estimation

inaccuracy, and the performance of localization is deteriorated by the noisy and biased

range measurements in multipath fading environment. The last part of the thesis mod-

eled the range measurement error by the sum of additive Gaussian noise and possibly

positive bias. The random measurement bias followed widely adopted distribution mod-

els for time delay over multipath channels. The analytical estimation bias and MSE for

the WLS and ML estimators were focused on the exponential distribution, showing that

in general the estimator produces biased estimates, and the MSE and bias performance
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is determined by the statistics of measurement bias and noise, the beacon array geome-

try as well as the estimator type. Numerical evaluations showed that the ML estimation

has a better performance than WLS in terms of both MSE and bias in typical cases,

and is closer to the CRBs.
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Appendix A

CRB for TDoA Multilateration

The derivation of the Cramér-Rao bound for TDoA multilateration is presented in

this section, cited from [63].

Define z0p and zp are the true and estimated transmitter locations, respectively. A

vector of TDoA d is known to be asymptotically Gaussian with covariance matrix given

by Q. The conditional probability density function of d is

p(d|zp) =
1

(2π)(M−1)/2|Q|1/2
exp{−1

2
(d− 1

vc
r)TQ−1(d− 1

vc
r)}, (A.1)

where r = [r2,1, r3,1, . . . , rM,1]
T is a function of zp. The transmitter position can be

expressed as a nonlinear function of d, i.e., x = f1(d) and y = f2(d). Using Talor-series

expansion of x and y around the true TDoA vector, it can be verified that both the bias

and variance of transimitter position are proportional to the TDoA covariance matrix

Q. If variations in TDoA’s are small so that the bias square is insignificant compared

with the variance, the CRLB of zp is given by

Φ0 = {E[(
∂

∂zp
lnp(d|zp))(

∂

∂zp
lnp(d|zp))T ]|zp=z0p

}−1 (A.2)
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The partial derivative of lnp(d|zp) with respect to zp is

∂

∂zP
lnp(d|zp) = − 1

vc

∂rT

∂zp
Q−1(d− r

vc
). (A.3)

Hence

Φ0 = v2c (
∂rT

∂zp
Q−1 ∂r

∂zp
)−1|zp=z0p

(A.4)

where ∂rT

∂zp
is from the definition of r to be Gt given by

Gt =



(x1 − x)/r1 − (x2 − x)/r2 (y1 − y)/r1 − (y2 − y)/r2

(x1 − x)/r1 − (x3 − x)/r3 (y1 − y)/r1 − (y3 − y)/r3

...
...

(x1 − x)/r1 − (xM − x)/rM (y1 − y)/r1 − (yM − y)/rM


. (A.5)
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Appendix B

MGF of Quadratic Function of a

Gaussian Random Vector

B.1 Case of a Real Gaussian Random Vector

Assume r is a real Gaussian vector with distribution r ∼ N (µ,C), where C > 0.

For constant Ψ, g and d, the MGF of Q = rTΨr+ gT r+ d is defined as

Θ(s) = E{exp(sQ)} = E{exp
[
s(rTΨr+ gT r+ d)

]
}. (B.1)

According to Theorem (3.2a.1) in [87], if Ψ is a real symmetric matrix, then the MGF

is

Θ(s) = |I− 2sΨC|−
1
2 exp{−1

2
(µTC−1µ− 2sd)

+
1

2
(µ+ sCg)T (I− 2sΨC)−1C−1(µ+ sCg)} (B.2)

= |I− 2sC
1
2ΨC

1
2 |−

1
2 exp{s(d+ µTΨµ+ gTµ)

+(s2/2)(C
1
2g + 2C

1
2Ψµ)T (I− 2sC

1
2ΨC

1
2 )−1(C

1
2g + 2C

1
2Ψµ)}. (B.3)
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Both equivalent forms (B.2) and (B.3) can be useful. Equation (B.2) does not require

the square root C
1
2 , but the matrix (I − 2sΨC) is asymmetric, whereas (B.3) does

require C
1
2 , but the symmetry of (I−2sC

1
2ΨC

1
2 ) can lead to efficient calculation of the

inverse and determinant.

A form withoutC
1
2 can also be obtained. Noting that |I−2sC

1
2ΨC

1
2 | = |I−2sCΨ|,

and

C
1
2 (I− 2sC

1
2ΨC

1
2 )−1C

1
2 = (C− 1

2 − 2sC
1
2Ψ)−1C

1
2 = (I− 2sCΨ)−1C,

then (B.3) can be expressed as

Θ(s) = |I−2sCΨ|−
1
2 exp{s(d+µTΨµ+gTµ)+(s2/2)(g+2Ψµ)T (I−2sCΨ)−1C(g+2Ψµ).

(B.4)

If g = 0 and d = 0, then Q degrades to Q = rTΨr. In this case, Θ(s) of Q is given

by

Θ(s) = |I− 2sC
1
2ΨC

1
2 |−

1
2 exp{sµTC− 1

2 (C
1
2ΨC

1
2 )(I− 2sC

1
2ΨC

1
2 )−1C− 1

2µ)} (B.5)

according to the last equality of MQ(t) on p. 40 in [87].

When Ψ is asymmetric, since rTΨr = rTΨT r, one can obtain an equivalent ex-

pression for Q as Q = 1
2r

T (Ψ +ΨT )r + gT r + d. Therefore, the above results are also

applicable after replacing Ψ by 1
2(Ψ+ΨT ).

B.1.1 Taylor Expansion of the Inverse and Determinant of a Matrix

Let square matrix B have a second order expansion for small α given by B =

A + αX + α2Y, where A is non-singular. Expansion of B−1 in a power series of α

requires derivatives of B−1 with respect to α. Since BB−1 = I, it follows that

B
dB−1

dα
+

dB

dα
B−1 = 0,

147



that leads to

dB−1

dα
= −B−1dB

dα
B−1. (B.6)

d2B−1

dα2
= −dB−1

dα

dB

dα
B−1 −B−1d

2B

dα2
B−1 −B−1dB

dα

dB−1

dα

= 2B−1dB

dα
B−1dB

dα
B−1 −B−1d

2B

dα2
B−1

= 2B−1XB−1XB−1 − 2B−1YB−1. (B.7)

Therefore B−1 has a Taylor expansion given by

B−1 = B−1|α=0 + α
dB−1

dα
|α=0 +

1

2
α2d

2B−1

dα2
|α=0 +O(α3)

= A−1 − αA−1XA−1 + α2[A−1(XA−1)2 −A−1YA−1] +O(α3). (B.8)

The expansion of the determinant |B| requires associated derivatives as well. From

(A.390) in Appendix A of [99]

d|B|
dα

= |B|d ln |B|
dα

= |B|tr(B−1dB

dα
),

so that

d2|B|
dα2

=
d|B|
dα

tr(B−1dB

dα
) + |B|tr(dB

−1

dα

dB

dα
+B−1d

2B

dα2
)

= |B|tr2(B−1dB

dα
) + |B|tr(−(B−1dB

dα
)2 +B−1d

2B

dα2
). (B.9)

Therefore, |B| has the following expansion

|B| = |B|α=0 + α
d|B|
dα

|α=0 +
1

2
α2d

2|B|
dα2

|α=0 +O(α3)

= |A|+ α|A|tr(A−1X) +
α2

2
|A|

{
tr2[A−1X] + tr[2A−1Y − (AX)2]

}
+O(α3).(B.10)

If A = I, then

(I+ αX+ α2Y)−1 = I− αX+ α2[X2 −Y] +O(α3). (B.11)

|I+ αX+ α2Y| = 1 + αtr(X) +
α2

2

{
tr2(X) + tr(2Y −X2)

}
+O(α3). (B.12)
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The above also readily leads to

|I+ αX+ α2Y|−
1
2 = 1− α

2
tr(X) +

α2

4

[
1

2
tr2(X)− tr(2Y −X2)

]
+O(α3). (B.13)

B.2 Case of a Complex Gaussian Random Vector

Assume r is a complex Gaussian vector with distribution p(r) denoted by r ∼

N (µ,Σ). For Hermitian symmetric matrix Ψ, complex vector g and real scalar d, the

MGF of Q = rHΨr+ 2Re{gHr}+ d is defined as Θ(s) = E{exp(sQ)}. Using the same

integration technique as shown in [100] for the quadratic form rHΨr, and after a similar

manipulation as Theorem 3.2a.1 in [87], a symmetric form of the MGF is given by

Θ(s) =|I− sΣ
1
2ΨΣ

1
2 |−1 exp

{
s(µHΨµ+Re{gHµ}+ d)

+ s2(Σ
1
2g +Σ

1
2Ψµ)H(I− sΣ

1
2ΨΣ

1
2 )−1(Σ

1
2g +Σ

1
2Ψµ)

}
. (B.14)

If g = 0 and d = 0, then Q shrinks to Q = rHΨr. Then, Θ(s) can be found as

Θ(s) = |I− sΣ
1
2ΨΣ

1
2 |−1 exp

{
sµHΣ− 1

2 (Σ
1
2ΨΣ

1
2 )(I− sΣ

1
2ΨΣ

1
2 )−1Σ− 1

2µ
}
. (B.15)
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Appendix C

Pulse Signals and Their

Autocorrelation and Bandwidth

Expressions

The numerical examples of ZZBs in this thesis adopt mean-square bandwidth (MSB)

defined by [101]

B2 =

∫ ∞

−∞

|ṗ(t)|2

R(0)(2π)2
dt =

∫ ∞

−∞

f2|P (f)|2

β(0)
df, (C.1)

where p(t) and P (f) are, respectively, the time and frequency-domain expressions of

the signal, and β(t) is the autocorrelation. B is also known as the root-mean-squared

equivalent bandwidth (RMSB).
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C.1 Square-Root Raised Cosine (SRRC) Pulse

The spectrum of a square-root raised cosine (SRRC) pulse is given by [84]

PSRRC(f) =



√
Tp/2, 0 6 |f | 6 1−β̃

Tp√
Tp

4

{
1 + cos

[
πTp

2β̃

(
|f | − 1−β̃

Tp

)]}
, 1−β̃

Tp
6 |f | 6 1+β̃

Tp

0, |f | > 1+β̃
Tp

, (C.2)

where Tp/2 is the first zero-crossing time, and β̃ is the roll-off factor. The time-domain

expression is

pSRRC(t) =



sin
[
π(1−β̃) 2t

Tp

]
+ 8β̃t

Tp
cos

[
2π(1+β̃) t

Tp

]
2πt
Tp

[
1−

(
8β̃t
Tp

)2
] , t ̸= 0, t ̸= ±Tp

8β̃
,

1− β̃ + 4β̃
π , t = 0,

β̃√
2

[
(1 + 2

π ) sin(
π

4β̃
) + (1− 2

π ) cos(
π

4β̃
)
]
, t = ±Tp

8β̃

(C.3)

The autocorrelation and squared MSB of the SRRC pulse are

βSRRC(τ) = sinc

(
2τ

Tp

)
cos(2πβ̃τ/Tp)

1− (4β̃τ/Tp)2
, B2

SRRC =
1

3T 2
p

[
1 + β̃2

(
3− 24

π2

)]
. (C.4)

where sinc(x) , sin(πx)
πx .

C.2 Gaussian Pulse

The Gaussian pulse, its spectrum and autocorrelation are [102, pp.28-31]

pG(t) = ±c
1√
2πσ2

e−
t2

2σ2 = ±c

√
2

α̃
e−

2πt2

α̃2 , PG(f) = ce−
π
2
α̃2f2

, βG(τ) =
c2

α̃
e−

π
α̃2 τ

2

.

(C.5)

where α̃ , 4πσ2. Set c2 = α̃ for normalizing the autocorrelation, which makes βG(0) = 1

and does not affect the bandwidth. The squared MSB of the Gaussian pulse is obtained

by the second-order moment of the Gaussian distribution as

B2
G =

∫ ∞

−∞
f2 |PG(f)|2 df =

1

2πα̃2
. (C.6)
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C.3 Gaussian Doublet Pulse

The Gaussian doublet pulse (the second derivative of the Gaussian pulse) is a

common pulse in UWB systems, given by [102, pp.28-31]

pG2(t) =
d2pG(t)

dt2
= cK(1− 4π

α̃2
t2)e−

2π
α̃2 t

2

, (C.7)

where K = −
√
32π
α̃3 = − 1√

2πσ3 is a coefficient inherited from the above Gaussian pulse.

Its autocorrelation is

βG2(τ) =
d4βG(τ)

dτ4
= c2K2

(
π2

2α̃3
τ4 − 3π

2α̃
τ2 +

3α̃

8

)
e−

π
α̃2 τ

2

. (C.8)

To normalize set c2K2 = 8
3α̃ . The spectrum of the pulse and its squared MSB are given

by

PG2(f) = c(j2πf)2e−
π
2
α̃2f2

, B2
G2 =

∫ ∞

−∞
f2 |PG2(f)|2 df =

5

2πα̃2
. (C.9)

C.3.1 Square-Root Raised Cosine Pulse Modulated by a PN Code

The SRRC pulse modulated by a pseudorandom noise (PN) code generates a pulse

train. Suppose the code hasN chips with a duration of Tc for each chip. The SRRC pulse

with the first zero-crossing point Tp/2 is cut at ±Tc
2 > 3Tp. The length of pseudo-random

m-sequences is set to 15, corresponding to the generating polynomial g(x) = x4+x3+1.

The discrete periodic autocorrelation of binary (±1) m-sequence is [103]

θ(k) =
1

N

N−1∑
n=0

cncn+k =


1, k = L̃N

− 1
N , k ̸= L̃N

(C.10)

where L̃ is an integer. The pulse train and autocorrelation are given by

pPN(t) =

N−1∑
i=0

cipSRRC(t− iTc), (C.11)
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βPN(τ) =

∫ ∞

−∞
pPN(t)pPN(t+τ)dt =

N−1∑
i=0

N−1∑
j=0

cicj

∫ ∞

−∞
pSRRC(t−iTc)pSRRC(t−jTc+τ)dt.

(C.12)

The delay τ can be expressed as τ = kTc + τϵ, where 0 ≤ τϵ < Tc, and then the SRRC

pulses overlap only for j = k +m and j = k +m+ 1. So the autocorrelation of the PN

pulse train becomes [103]

βPN(τ) = βPN(k, τϵ) = θ(k) · βSRRC(τϵ) + θ(k + 1) · βSRRC(Tc − τϵ). (C.13)
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Appendix D

Acronyms

AoA Angle of Arrival
AWGN Additive White Gaussian Noise
BCRB Bayesian Cramér-Rao Bound
Conn transceiver Connectivity
CRB Cramér-Rao Bound
DSSS Direct-Sequence Spread Spectrum
ECRB Expectation of conditional Cramér-Rao Bound
FFT Fast Fourier Transform
GML Generalized Maximum Likelihood
LBS Location Based Services
LLR Log-Likelihood Ratio
LR Likelihood Ratio
LOS Line Of Sight
LS Least Square
MAP Maximum A Posteriori
MGF Moment Generating Function
ML Maximum Likelihood
MMSE Minimum Mean Square Error
MSB Mean-Square Bandwidth
MSE Mean Square Error
NLOS Non-Line Of Sight
pdf probability density function
PDP Power Delay Profile
PN Pseudo Noise
PPM Pulse-Position Modulation
RMSE Root Mean Square Error
RSS Received Signal Strength
SNR Signal-to-Noise Ratio
SRRC Square-Root Raised Cosine
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TDE Time Delay Estimation
TDoA Time Difference of Arrival
ToA Time of Arrival
UWB Ultra-WideBand
WLS Weighted Least Square
ZZB Ziv-Zakai Bound
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