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A Clustering Approach to Learn Sparsely-Used Overcomplete

Dictionaries

Alekh Agarwal, Animashree Anandkumar, and Praneeth Netrapalli ∗

Abstract

We consider the problem of learning overcomplete dictionaries in the context of sparse coding,
where each sample selects a sparse subset of dictionary elements. Our main result is a strategy
to approximately recover the unknown dictionary using an efficient algorithm. Our algorithm
is a clustering-style procedure, where each cluster is used to estimate a dictionary element. The
resulting solution can often be further cleaned up to obtain a high accuracy estimate, and we
provide one simple scenario where ℓ1-regularized regression can be used for such a second stage.

Keywords: Dictionary learning, sparse coding, overcomplete dictionaries, incoherence, lasso.

1 Introduction

The dictionary learning problem is as follows: given observations Y , the task is to factorize it as

Y = AX, Y ∈ R
d×n, A ∈ R

d×r, X ∈ R
r×n, (1)

whereX is referred to as the coefficientmatrix and the columns of A are referred to as the dictionary
elements. There are indeed infinite factorizations for (1) unless further constraints are imposed. A
natural assumption is that the coefficient matrix X is sparse, and in fact, that each sample yi selects
a sparse subset of dictionary elements from A. This instance of dictionary learning is popularly
known as the sparse coding problem [30, 25]. It has been argued that sparse coding can provide a
succinct representation of the observed data, given only unlabeled samples [25]. Through this lens
of unsupervised learning, dictionary learning has received an increased attention from the machine
learning community in the last few years; see Section 1.2 for a brief survey.

Although the above problem has been extensively studied, most of the methods are heuristic
and lack guarantees. Spielman et. al [31] provide exact recovery results for this problem, when
the coefficient matrix has Bernoulli-Gaussian entries and the dictionary matrix A ∈ R

r×d has
full column rank. This condition entails that the dictionary is undercomplete, i.e., the observed
dimensionality needs to be greater than the number of dictionary elements (r ≤ d). However, for
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most practical settings, it has been argued that overcomplete representations, where r ≫ d, are
far more relevant, and can provide greater flexibility in modeling as well as greater robustness to
noise [26, 12]. Moreover, in the context of blind source separation (BSS) of audio, image or video
signals, the dictionary learning problem is typically overcomplete, since there are more sources
than observations [15]. In this work, we provide guaranteed methods for learning overcomplete
dictionaries.

1.1 Summary of Results

In this paper we present a novel algorithm for the estimation of overcomplete dictionaries. The
algorithm can be seen as a clustering style method followed by a singular value decomposition (SVD)
within each cluster resulting in an estimate for each dictionary element. The clusters are formed
based on the magnitudes of the correlation between pairs of samples. Under our probabilistic model
of generating data as well as assumptions on the coefficients and dictionaries, it can be guaranteed
that such a procedure approximately recovers the unknown overcomplete dictionary. Under further
conditions, it is often possible to start with this approximate solution and perform additional post-
processing on it to obtain arbitrarily good estimates of the dictionary. We present one such set
of conditions under which sparse regression can be used for this post-processing. More advanced
post-processing methods have been developed in subsequent works [1, 8].

We consider a random coefficient matrix, where each column of X has s non-zero entries which
are randomly chosen, i.e., each sample yi selects s dictionary elements uniformly at random. We
additionally assume that the dictionary elements are pairwise incoherent and that the dictionary
matrix satisfies a certain bound on the spectral norm. Under these conditions, we establish that
our algorithm estimates the dictionary elements with bounded (constant) error when the number
of samples scales as n = O(r(log r + log d)), and when the sparsity s = O(d1/4, r1/4). To the best
of our knowledge, this is the first result of its kind which analyzes the global recovery properties of
a computationally efficient procedure in the setup of overcomplete dictionary learning.

In the special case when the coefficients are {−1, 0, 1}-valued with zero mean, the resulting
solution from the first step can be further plugged into any sparse regression algorithm for estimating
the coefficients given this dictionary estimate. Under a more stringent sparsity constraint: s =
O(d1/5, r1/6), it can be shown that this second step will recover the coefficients exactly even from
this approximate dictionary, which then also leads to an exact recovery of the dictionary by solving
the linear system. Hence, we provide a simple method for exactly recovering the unknown dictionary
in this special case. A natural generalization of this procedure to general weights is analyzed using
alternating minimization procedure in a subsequent work [1].

We outline our method as well as our analysis techniques in Section 1.3. This is the first work to
provide a tractable method for guaranteed recovery of overcomplete dictionaries, and we discuss the
previous results below. Finally, concurrently with our work, an approximate recovery result with a
similar procedure was recently announced by Arora et al. [8]. A detailed discussion comparing our
and their results is presented in Section 1.2.

1.2 Related Works

This work overlaps with and relates to prior works in many different communities and we discuss
them below in turn.
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Dictionary Learning: Hillar and Sommer [20] consider conditions for identifiability of sparse
coding and establish that when the dictionary succeeds in reconstructing a certain set of sparse
vectors, there exists a unique sparse coding, up to permutation and scaling. However, the number
of samples required to establish identifiability is exponential in r for the general case. In contrast,
we show that efficient recovery is possible using O(r(log r+log d)) samples, albeit under additional
conditions such as incoherence among the dictionary elements.

Spielman et. al [31] provide exact recovery results for a ℓ1 based method in the undercomplete
setting, where r ≤ d. In contrast, we allow for the overcomplete setting where r > d. There exist
a plethora of heuristics for dictionary learning, which work well in practice in many contexts, but
lack theoretical guarantees. For instance, Lee et. al. propose an iterative ℓ1 and ℓ2 optimization
procedures [25]. This is similar to the the method of optimal directions (MOD) proposed in [16].
Another popular method is the so-called K-SVD, which iterates between estimation of X and given
an estimate of X, updates the dictionary estimate using a spectral procedure on the residual. Other
works consider more sophisticated methods from an optimization viewpoint while still alternating
between dictionary and coefficient updates [24, 18]. Geng et al. [18] and Jenatton et al. [23] study the
local optimality properties of an alternating minimization procedure. In contrast, our work focuses
on global properties of a more combinatorial procedure than several of the above works which are
more optimization flavored. The upshot is that our procedure, while still being computationally
quite efficient, is able to guarantee global bounds on the quality of the solution obtained.

Recent works [34, 29, 27, 32] provide generalization bounds and algorithmic stability for predic-
tive sparse coding, where the goal of the learned sparse representation is to obtain good performance
on some predictive task. This differs from our framework since we do not consider predictive tasks
here, but the accuracy in recovering the underlying dictionary elements.

Finally, our results are closely related to the very recent work of Arora et al. [8], carried out
independently and concurrently with our work. There are however some important distinctions:
we require only O(r) samples in our analysis, while Arora et al. [8] require O(r2) samples in their
result. At the same time, their analysis yields milder conditions on the sparsity level s in terms of
its dependence on r and d. Following this work, Arora et al. [8] and Agarwal et al. [1] also developed
a post-processing techniques which can be thought of as a more advanced variant of the simpler
sparse-regression step that we analyze. These subsequent works view the methods developed here
as initialization procedures to alternating optimization schemes.

Blind Source Separation/ICA/Topic Models: The problem of dictionary learning is ap-
plicable to blind source separation (BSS), where the rows of X are signals from the sources and
A represents the linear mixing matrix. The term blind implies that the dictionary matrix A is
unknown and needs to be jointly estimated with the coefficient matrix X, given samples Y . This
problem has been extensively studied and the most popular setting is the independent component
analysis (ICA), where the sources are assumed to be independent. In contrast, for the sparse
component analysis problem, no assumptions are made on the statistics of the sources. Many
works provide guarantees for ICA in the undercomplete setting, where there are fewer sources than
observations [21, 9, 4] and some works provide guarantees in the overcomplete setting [14, 19].
However, the techniques are very different since they rely on the independence among the sources.
The problem of learning topic models can be cast as a similar factorization problem, where A now
corresponds to the topic-word matrix and X corresponds to the proportions of topics in various
documents. There are various recent works providing guaranteed methods for learning topic mod-
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els, e.g [2, 7, 6, 5]. However, these works make different assumptions on either A or X or both
to guarantee recovery. For instance, the work [7] assumes that the topic-word matrix A has rows
such that for each column, only the entry corresponding to that column is non-zero. The work [6]
assumes expansion conditions on A and provides recovery through ℓ1-based optimization. We note
that the techniques of [6] are related to those employed by Spielman et. al [31] for dictionary learn-
ing, but make different assumptions. All these works only deal with the undercomplete setting.
The recent work [5] considers topic models in the overcomplete setting, and provides guarantees
when A satisfies certain higher order expansion conditions. The techniques are very different from
the ones employed here since they involve higher order moments and tensor forms.

Connection to Learning Overlapping Communities: Our initial step for estimating the
dictionary elements involves finding large cliques in the sample correlation graph, where the nodes
are the samples and the edges represent sufficiently large correlations among the endpoints. The
clique finding problem is a special instance of the overlapping community detection problem, which
has been studied in various contexts, e.g. [3, 11, 10, 22, 28]. However, the correlation graph here
has different kinds of constraints than the ones studied before as follows. In our setting involving
noise-free dictionary learning, each community corresponds to a clique and there are no edges across
two different communities. In contrast, many works on community detection are concerned about
handling noise efficiently, where each community is not a full clique, and there are edges across
different communities. Here, we need to learn overlapping communities, while many community
detection methods limit to learning non-overlapping ones. In our setting, we argue that the overlap
across different communities is small under a random coefficient matrix, and thus, we can find the
communities efficiently through simple random sampling and neighborhood testing procedures.

1.3 Overview of Techniques

As stated earlier, our main algorithm consists of a clustering procedure which yields an approximate
estimate of the dictionary. This estimate can be subsequently post-processed for exact recovery of
the dictionary under certain further conditions. Below we give the outline and the main intuition
underlying these procedures and their analysis.

Dictionary estimation via clustering: This step first involves construction of the sample
correlation graph Gcorr(ρ), where the nodes are samples {y1, y2, . . . yn} and an edge (yi, yj) ∈ Gcorr(ρ)

implies that |〈yi, yj〉| > ρ, for some ρ > 0. We then employ a clustering procedure on the graph to
obtain a subset of samples, which are then employed to estimate each dictionary element. Roughly,
we search for large cliques in the correlation graph and obtain a spectral estimate of each dictionary
element using samples from such sets.

Key intuitions for the clustering procedure: The core intuitions can be described in terms
of the relationships between the two graphs, viz., the coefficient bipartite graph Bcoeff and the
sample correlation graph Gcorr, shown in Figures 1a and 1b. As described earlier, the correlation
graph Gcorr consists of edges between well correlated samples. The coefficient bipartite graph Bcoeff

consists of dictionary elements {ai} on one side and the samples {yi} on the other, and the bipartite
graph Bcoeff encodes the sparsity pattern of the coefficient matrix X. In other words, it maps the
dictionary elements {ai} to samples {yi} on which they are supported on and NB(yi) denotes the
neighborhood of yi in the graph Bcoeff .
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Now given this bipartite graph Bcoeff , for each dictionary element ai, consider a set of samples1

which (pairwise) have only one dictionary element ai in common, and denote such a set by Ci i.e.

Ci := {yk, k ∈ S : NB(yk) ∩ NB(yl) = ai, ∀ k, l ∈ S}. (2)

For a random coefficient matrix (resulting in a random bipartite graph), we argue that there exists
(large) sets Ci, for each i ∈ [r], which consists of a large fraction of NB(ai), and no two elements
ai and aj have a large fraction of samples in common. In other words, for random coefficient
matrices, we see a diversity in the dictionary elements among the samples, and this can be viewed
as an expansion property from the dictionary elements to the set of samples. We exploit this
property to establish success for our method.

Our subsequent analysis is broadly divided into two parts, viz., establishing that (large) sets
{Ci} can be found efficiently, and that the dictionary elements can be estimated accurately once
such sets {Ci} are found. We establish that the sets {Ci} are cliques in the correlation graph
when the dictionary elements are incoherent, as shown in Figure 1b. Combined with the previous
argument that the different sets Ci’s have only a small amount of overlap for random coefficient
matrices, we argue that these sets can be found efficiently through simple random sampling and
neighborhood testing on the correlation graph. Once a large enough set Ci is found, we argue that
under incoherence, the dictionary element ai can be estimated accurately through SVD over the
samples in Ci.

Sparse regression for post-processing: This is a relatively straightforward procedure. Once
an initial estimate of the dictionary matrix is obtained, we estimate the coefficient matrixX through
any sparse regression procedure (such as Lasso) and then perform thresholding on the recovered
coefficients. Now, we re-estimate the dictionary, given this coefficient matrix, by solving another
linear system. This provides us with a final estimate of both the dictionary as well as the coefficient
matrix.

Since we only have a noisy estimate of the dictionary, our analysis here is slightly different
from the usual analysis for a sparse linear system. The noise in our system is dependent on the
approximate dictionary employed, which differs from the typical statistical setting, where noise
is assumed to be independent. We exploit the known guarantees available for Lasso under de-
terministic noise [13] for our setting. Combining Lasso with a simple thresholding procedure, we
guarantee exact recovery of the coefficient matrix, albeit under a more stringent condition on the
sparsity and the coefficient values (namely zero mean and {−1, 0, 1}-valued ). The dictionary is
then re-estimated by solving another linear system, which is of course correct owing to the exact
estimation of the coefficient matrix.

2 Method and Guarantees

Notation: Let [n] := {1, 2, . . . , n} and for a vector w, let Supp(w) denote the support of w, i.e.
the set of indices where w is non-zero. Let ‖w‖ denote the ℓ2 norm of vector w, and similarly for a
matrix W , ‖W‖ denotes its spectral norm. Let A = [a1|a2| . . . |ar], where ai denotes the ith column,
and similarly for Y = [y1|y2| . . . yn] and X = [x1| . . . |xn]. For a graph G = (V,E), let NG(i) denote
set of neighbors for node i in G.

1Note that such a set need not be unique.
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(a) Coefficient bipartite graph B mapping dictio-
nary elements a1, a2, . . . ar to samples y1, . . . yn: yi =∑

j∈[r] xjiaj . See (2) for definition of Ci.
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(b) Sample correlation graph Gcorr with nodes {yk}
and edge (yi, yj) s.t. |〈yi, yj〉| > ρ. Ci, defined in (2),
is a clique in the correlation graph. See Lemma 3.1.

Figure 1: Coefficient bipartite graph and the sample correlation graph.

2.1 Clustering procedure and its analysis

We start with presenting the main algorithm of our work and bound the recovery error under
certain assumptions.

2.1.1 Algorithm

Our main algorithm is presented in Algorithm 1. Given samples Y , we first construct the correlation
graph Gcorr(ρ), where the nodes are samples {y1, y2, . . . yn} and an edge (yi, yj) ∈ Gcorr(ρ) implies
that |〈yi, yj〉| > ρ, for some threshold ρ > 0. We then determine a good subset of samples via a clus-
tering procedure on the graph as follows: we first randomly sample an edge (yi∗ , yj∗) ∈ Gcorr(ρ) and

then consider the intersection of their neighborhoods, denoted by Ŝ. We then employ UniqueIn-
tersection routine in Procedure 1 to determine if Ŝ is a “good set” for estimating a dictionary
element, and this is done by ensuring that the set Ŝ has sufficient number of mutual neighbors2 in
the correlation graph. Once Ŝ is determined to be a good set, we then proceed by estimating the
matrix M̂ using samples in Ŝ and output its top singular vector as the estimate of a dictionary
element. The method is repeated over all edges in the correlation graph to ensure that all the
dictionary elements get estimated with high probability.

2.1.2 Assumptions and Main Result

Assumptions: We now provide guarantees for the proposed method under the following as-
sumptions on A and X.

(A1) Unit-norm Dictionary Elements: All the elements are normalized: ‖ai‖ = 1, for i ∈ [r].

(A2) Incoherent Dictionary Elements: We assume pairwise incoherence condition on the dic-
tionary elements, for some constant µ0 > 0,

|〈ai, aj〉| <
µ0√
d
. (3)

2For convenience to avoid dependency issues, in Procedure 1, we partition Ŝ into sets consisting of node pairs and
determine if there are sufficient number of node pairs which are neighbors.
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Algorithm 1 DictionaryLearn(Y, ǫdict, ρ): Clustering approach for estimating dictionary elements.

Input: Samples Y = [y1| . . . |yn]. Correlation threshold ρ. Desired separation parameter ǫ be-
tween recovered dictionary elements.

Output: Initial Dictionary Estimate Ā.
Construct correlation graph Gcorr(ρ) s.t. (yi, yj) ∈ Gcorr(ρ) when |〈yi, yj〉| > ρ.
Set Ā← ∅.
for each edge (yi∗ , yj∗) ∈ Gcorr(ρ) do

Ŝ ← NGcorr(ρ)
(yi∗) ∩NGcorr(ρ)

(yj∗).

if UniqueIntersection(Ŝ, Gcorr(ρ)) then

L̂←∑
y∈Ŝ yy⊤ and ā← u1, where u1 is top singular vector of L̂.

if minb∈Ā ‖ā− b‖ > 2ǫdict then
Ā← Ā ∪ ā

end if
end if

end for
Return Ā

Procedure 1 UniqueIntersection(S,G): Determine if samples in S have a unique intersection.

Input: Set S with 2n vectors y1, . . . y2n and graph G with y1, . . . , y2n as nodes.
Output: Indicator variable UNIQUE INT

Partition S into sets S1, . . . , Sn such that each |St| = 2.
if |{t|St ∈ G}| > 61n

64 then
UNIQUE INT ← 1

else
UNIQUE INT ← 0

end if
Return UNIQUE INT

(A3) Spectral Condition on Dictionary Elements: The dictionary matrix has bounded spec-
tral norm, for some constant µ1 > 0,

‖A‖ < µ1

√
r

d
. (4)

(A4) Entries in Coefficient Matrix: We assume that the non-zero entries of X are drawn from
a zero-mean distribution supported on [−M,−m] ∪ [m,M ] for some fixed constants m and
M .

(A5) Sparse Coefficient Matrix: The columns of coefficient matrix have bounded number of
non-zero entries s which are selected randomly, i.e.

|Supp(xi)| = s, ∀ i ∈ [n]. (5)

We require s to be
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s < cmin



√

m2
√
d

2M2µ0
, 3

√
r

1536


 , (6)

for some small enough constant c.

(A6) Sample Complexity: Given a parameter α ∈ (0, 1/20) (which is related to the error in
recovery of dictionary, see Theorem 2.1), and a universal constant c > 0, choose δ > 0 and
the number of samples n such that

n := n(d, r, s, δ, α) =
cr

α2s
log

d

δ
, n2δ < 1.

(A7) Choice of Threshold for Correlation Graph: The correlation graph Gcorr(ρ) is con-
structed using threshold ρ such that

ρ =
m2

2
− s2M2µ0√

d
> 0. (7)

(A8) Choice of Separation Parameter ǫdict between Estimated Dictionary Elements:
This is the desired accuracy of the estimated dictionary elements to the true dictionary
elements using just the initialization step. It can be chosen to be:

32sM2

m2

(
µ1√
ds

+
µ2
1

d
+

s3

r
+ α2 +

α√
s

)
< ǫ2dict <

1

4
. (8)

The assumption (A1) on normalization is without loss of generality since we can always rescale
the dictionary elements and the corresponding coefficients and obtain the same observations. The
assumption (A2) on incoherence is crucial to our analysis. In particular, incoherence also leads to
a bound on the RIP constant; see Lemma A.5 in Appendix A.6. The assumption (A3) provides a
bound on the spectral norm of A.

The assumption (A4) assumes that the non-zero entries of X are drawn from a zero-mean
distribution with natural upper and lower bounds on the coefficients. Note that a similar assumption
is made in the work of Arora et.al [8].

The assumption (A5) on sparsity in the coefficient matrix is crucial for identifiability of dictio-
nary learning problem. We require for the sparsity to be not too large for recovery.

The assumption (A6) provides a bound on sample complexity. We subsequently establish that
in order to have decaying error for recovery of dictionary elements, we require n = ω(r) samples
for recovery. Thus, we obtain a nearly linear sample complexity for our method.

Assumption (A7) specifies the threshold for the construction of the correlation graph. Intu-
itively, we require a threshold such that we can distinguish pairs of samples which share a dictionary
element from those which do not.

Main Result: We now present our main result which bounds the error in the estimates of Algo-
rithm 1.
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Algorithm 2 RecoverCoeff(Y, Ā, ǫcoeff): Exact Recovery through lasso

input Samples Y , approximate dictionary Ā and accuracy parameter ǫcoeff . sign(X) returns a
matrix with signs of the entries of X.

1: for samples i = 1, 2, . . . , n do
2: Estimate

x̂i = arg min
x∈Rr
‖x‖1, subject to ‖yi − Āx‖2 ≤ ǫcoeff . (10)

3: Threshold: X̂ ← sign(X̂).
4: end for
5: Estimate Â = Y X̂T (X̂X̂T )−1

6: Normalize: âi =
âi

‖âi‖2
output Â

Theorem 2.1 (Approximate recovery of dictionary). Suppose the output of Algorithm 1 is Ā. Then
with probability greater than 1− 2n2δ, there exists a permutation matrix P such that:

ǫ2A := min
i∈[r]

min
z∈{−1,+1}

∥∥zai − (PĀ)i
∥∥2
2
<

32sM2

m2

(
µ1√
ds

+
µ2
1

d
+

s3

r
+ α2 +

α√
s

)
. (9)

Remark: Note that we have a sign ambiguity in recovery of the dictionary elements, since we can
exchange the signs of the dictionary elements and the coefficients to obtain the same observations.
The assumption on sparsity in (A4) implies that the first two terms in (9) decay. For the third term
in (9) to decay, we require s = o(r1/4) instead of s = O(r1/3) as in (A4). Moreover, we require that
α2s = o(1). Since the sample complexity in (A7) scales as n = Ω

(
r

α2s

)
, we require n = ω(r) samples

for recovery of dictionary with decaying error. Thus, we obtain a near linear sample complexity for
our method. We observe that the error in our estimation depends inversely on dimension-related
quantities such as d and r and not on the number of samples n. This is because the errors in our
estimates arise from errors in SVD step, specifically from the discrepancy between the SVD vector
and the dictionary element responsible for a cluster. Even the population SVD will suffer from an
approximation error here, which is responsible for our error bound, but the probability in the error
bound improves with the number of samples as we get closer and closer to the population SVD
estimate.

2.2 Post-processing for binary coefficients

We now present the post-processing step which will be analyzed under a more stringent condition
on the coefficients.

2.2.1 Algorithm

Once we obtain an estimate of the dictionary elements, we proceed to estimate the coefficient
matrix. The main observation at this step is that the coefficient vector xi for each sample yi is
a s-sparse vector in r-dimensions. Hence, recovering the coefficients would be a standard sparse
linear problem if we knew the dictionary A exactly. Our analysis will show that even an approx-
imately correct dictionary Ā from Algorithm 1 suffices to provide guarantees for this recovery.

9



Once the coefficients are estimated, the dictionary can be re-estimated by solving another linear
system. The procedure is formally described in Algorithm 2. We do not prescribe any particular
choice of computational procedure to solve the optimization problem (10), but there are many
algorithms available in standard literature. As a concrete example, the GraDeS algorithm of Garg
and Khandekar [17] or OMP of Tropp and Gilbert [33]works in our setting.

2.2.2 Exact recovery for bernoulli coefficients

Our second result is that under stronger conditions than before, it is possible to exactly recover the
unknown dictionary A with high probability. This result will be obtained by initializing Algorithm 2
with the output of Algorithm 1. We start with the additional assumptions, putting restrictions on
the allowed sparsity level s as a function of r and d.

Assumption B1 (Conditions for exact recovery). The non-zero coefficients in coefficient matrix
X are zero-mean Bernoulli{−1, 1}. This corresponds to setting M = m = 1 in Assumption (A4).

The sparsity level s, and the number of dictionary elements r and the observed dimension d
satisfy

32s

(
µ1√
ds

+
µ2
1

d

)
≤ 1

1200s2
, and

32s4

r
≤ 1

1200s2
.

The constant α in Theorem 2.1 satisfies

32s

(
α2 +

α√
s

)
≤ 1

1200s2
.

The number of samples n, in addition to assumption (A6), satisfies

n ≥ 4r

c0
log

d

δ
,

where c0 is a universal constant.
The accuracy parameter ǫcoeff in Algorithm 2 is chosen as ǫcoeff = sǫA, where ǫA is the error in

estimating the dictionary elements in (9).

Theorem 2.2 (Exact recovery for bernoulli coefficients). Under the conditions of Theorem 2.1,
and suppose, in addition Assumption B1 holds, then the output Â of Algorithm 2 initialized with
Algorithm 1 satisfies Â = A up to permutation of columns, with probability at least 1− 3n2δ.

Remark: Assumption B1 for exact recovery places more stringent conditions on the distribution
of the coefficients and the sparsity level s, compared to (A4) for approximate recovery. While for
approximate recovery, we require s = O(d1/4, r1/4), in Assumption B1, we require s = O(d1/5, r1/6)
for exact recovery. Note that the additional constraint on sample complexity n in Assumption B1
still has the same scaling, and thus, n = O(r(log r+log d)) suffices both for approximate and exact
recovery.

We also observe that the result of Theorem 2.2 relies on Algorithm 1 as the initialization
procedure, but in principle we can also use a different approximate recovery procedure to initialize
Algorithm 2. In particular, a different initialization procedure with a better error guarantee would
also directly translate to better recovery properties in the second step, in terms of the assumptions
relating s to r and d. Understanding these issues appears to be an interesting direction for future
research.
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3 Proofs of main results

In this section we will present the proofs of our main results, Theorems 2.1 and 2.2. We will start
by presenting a host of useful lemmas, and sketch out how they fit together to yield the main results
before moving on to the proofs.

3.1 Correlation graph properties

In this section we will present some useful properties of the correlation graph Gcorr(ρ) described in
Section 1.3. Recall that Gcorr(ρ), where the nodes are samples {y1, y2, . . . yn} and an edge (yi, yj) ∈
Gcorr(ρ) implies that |〈yi, yj〉| > ρ, for some ρ > 0. This is employed by Algorithm 1 as a proxy for
identifying samples which have common dictionary elements. We now make this connection concrete
in the next few lemmas. For this we also recall our notation NB(y) which is the neighborhood of
a sample y in the coefficient bipartite graph (see Figure 1a), that is, the set of dictionary elements
that combine to yield y.

Lemma 3.1 (Correlation graph). Under the incoherence assumption (A2) and the threshold ρ in
assumption (A7), the following is true for the edges in the correlation graph Gcorr(ρ):

|NB(yk) ∩ NB(yl)| = 1⇒ (yk, yl) ∈ Gcorr(ρ), ∀ i ∈ [r], (11)

(yk, yl) ∈ Gcorr(ρ) ⇒ |NB(yk) ∩ NB(yl)| ≥ 1, (12)

for all k, l ∈ {1, 2, , . . . , n}, k 6= l.

Lemma 3.1 suggests that nodes which intersect in exactly one dictionary element are special,
in that they are guaranteed to have an edge between them in Gcorr(ρ). Our next lemma works
towards establishing something even stronger. We will next establish that there are large cliques in
the correlation graph where any two samples in the clique intersect in the same unique dictionary
element. In order to state the lemma, we need some additional notation.

For each dictionary element ai, consider a set of samples3 {yk, k ∈ S}, for some S ⊂ {1, 2, . . . , n},
such that they only have ai in common, and denote such a set by Ci i.e.

Ci := {yk, k ∈ S : NB(yk) ∩ NB(yl) = {ai, } ∀ k, l ∈ S}. (13)

Lemma 3.1 implies that in the correlation graph, the set of nodes in Ci form a clique (not necessarily
maximal), for each i ∈ {1, 2, . . . , r}, as shown in Figure 1b. The above implication can be exploited
for recovery of dictionary elements: if we find the set Ci, then we can hope to recover the element
ai, since that is the only element in common to the samples in Ci.

For ease of stating the next lemma, we further define two shorthand notations.

Uniq-intersect(yi, yj) := {(yi, yj) ∈ Gcorr(ρ) and |NB(yi) ∩ NB(yj)| = 1}, (14)

Intuitively, the samples satisfying Uniq-intersect(yi, yj) are guaranteed to have an edge between
them by Lemma 3.1. In order to guarantee large cliques, we will also need to measure the number
of triangles in Gcorr(ρ).

3Note that such a set need not be unique.
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In order to do this, given anchor samples yi∗ and yj∗ have a unique intersection, we now bound
the probability that a randomly chosen sample yi, among the neighborhood set of yi∗ and yj∗ in
the correlation graph also has a unique intersection. Now define unique intersection event for a
new sample yi with respect to anchor samples yi∗ and yj∗ as follows

Uniq-intersect(yi; yi∗ , yj∗) := {NB(yi) ∩ NB(yi∗) = NB(yi) ∩ NB(yj∗) = {ak}} , (15)

where ak = NB(yi∗) ∩ NB(yj∗)} is the unique intersection of the anchor samples yi∗ and yj∗ . In
other words, Uniq-intersect(yi; yi∗ , yj∗) indicates the event that the pairwise intersections of the
new sample yi with each of the anchors yi∗ and yj∗ is unique and equal to the unique intersection
of yi∗ and yj∗.

Lemma 3.2 (Formation of clique under good anchor samples).

P
[
Uniq-intersect(yi; yi∗ , yj∗)

∣∣ Uniq-intersect(yi∗ , yj∗), and (yi, yi∗), (yi, yj∗) ∈ Gcorr(ρ)

]

≥ 1− s3

r
.

Lemma 3.2 is crucial for our algorithm. It guarantees that given a pair of good anchor elements—
one satisfying unique intersection property—a large fraction of their neighrbors also contain this
common dictionary element. Some further arguments can then be made to establish that a large
fraction of the neighbors of yi∗ and yj∗ also have edges amongst themselves and hence form cliques
as defined in Equation 13.

3.2 Correctness of Procedure 1

A key component in our analysis is the correctness of Procedure 1. As we saw in the previous
lemmas, it is crucial for a chosen pair of anchor elements to have a unique intersection in order to
use them for identifying large cliques Ci in Gcorr(ρ). Procedure 1 plays a crucial role by providing
a verifiable test for whether a pair of anchor elements have a unique intersection or not. Our next
two lemmas help us establish that this test is sound with high probability. We first show that two
neighbors of a bad anchor pair do not have an edge amongst them with high probability.

Denote the event

∆(yi, yj, yk) := {(yi, yj), (yj , yk), (yi, yk) ∈ Gcorr(ρ)},
i.e., the samples yi, yj , yk form a triangle in the correlation graph.

Lemma 3.3 (Detection of bad anchor samples). For randomly chosen samples yi, yj

P
[
(yi, yj) /∈ Gcorr(ρ) | ∆(yi, yi∗ , yj∗),∆(yj , yi∗ , yj∗),¬Uniq-intersect(yi∗ , yj∗)

]
>

1

16
.

Intuitively, this means that the number of sets Si which will be edges in Gcorr(ρ) is rather small
for an anchor pair with multiple dictionary elements in common. In order for correctness of the
procedure, we will in fact need this number to be substantially smaller than that for a good anchor
pair. This is indeed the case as we next establish.
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Lemma 3.4 (Detection of good anchor samples). For randomly chosen samples yi, yj

P
[
(yi, yj) /∈ Gcorr(ρ) | ∆(yi, yi∗ , yj∗),∆(yj , yi∗ , yj∗),Uniq-intersect(yi∗ , yj∗)

]
≤ 24s3

r
.

Combining the above two lemmas, the correctness of Procedure 1 naturally follows.

Proposition 3.1 (Correctness of Procedure 1). Suppose (yi∗ , yj∗) ∈ Gcorr(ρ). Suppose that s3 ≤
r/1536 and γ ≤ 1/64. Then Algorithm 1 returns the value of Uniq-intersect(yi∗ , yj∗) correctly with
probability greater than 1− 2 exp(−γ2n).

3.3 Proof of Theorem 2.1

In this section we will put all the pieces together and establish Theorem 2.1. We start by establishing
that given a pair of good anchor elements, the SVD step in Algorithm 1 approximately recovers
the unique dictionary element in the intersection of the two anchors.

Proposition 3.2 (Accuracy of SVD). Consider anchor samples yi∗ and yj∗ such that Uniq-intersect(yi∗ , yj∗)

is satisfied, and wlog, let NB(yi∗) ∩ NB(yj∗) = {a1}. Recall the definition of Ŝ (25), and further

define L̂ :=
∑

i∈Ŝ yiy
⊤
i and n̂ = |Ŝ|. If â is the top singular vector of L̂, then there exists a universal

constant c such that we have:

min
z∈{−1,1}

‖â− za1‖22 <
32sM2

m2

(
µ1√
ds

+
µ2
1

d
+

s3

r
+ α2 +

α√
s

)
,

with probability greater than 1− d exp
(
−cα2n̂

)
for α < 1/20.

Given the above proposition, the proof of Theorem 2.1 is relatively straightforward. Indeed,
the key missing piece is the dependence on the random quantity |Ŝ| in the error probability in
Proposition 3.2. We now present the proof.
Proof of Theorem 2.1:

Consider a particular iteration of Algorithm 1. Procedure 1 returns Uniq-intersect(yi∗ , yj∗) with

probability greater than 1−2 exp(−γ2|Ŝ|/2). If ¬Uniq-intersect(yi∗ , yj∗), then Algorithm 1 proceeds
to the next iteration. Consider the case of Uniq-intersect(yi∗ , yj∗) and supposeNB(yi∗)∩NB(yj∗) =

{al}. Using Proposition 3.2, with probability greater than 1− d exp
(
−cα2|Ŝ|

)
, we have:

‖al − â‖22 <
32sM2

m2

(
µ1√
ds

+
µ2
1

d
+

s3

r
+ α2 +

α√
s

)
.

Using Lemma A.4 and Lemma 3.1, we see that |Ŝ| ≥ ns
4r with probability greater than 1−exp

(−ns
16r

)
.

Using a union bound over all the iterations (which are at most n2), the above claims hold for all

iterations with probability greater than 1− n2d exp
(
−cα2ns

r

)
− 2n2 exp

(
−γ2ns

8r

)
− n2 exp

(−ns
16r

)
.

Using Lemma A.4 and Lemma 3.1, with probability greater than 1−r exp
(−ns
64r

)
, for every l ∈ [r],

there are at least ns
8r pairs (i∗, j∗) such that NB(yi∗)∩NB(yj∗) = {al} and (i∗, j∗) ∈ Gcorr(ρ). Lines

9-11 of the algorithm then ensure that there is a unique copy of the approximation to al dictionary
element. Using a union bound now gives the result.

�
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3.4 Analysis of post-processing step

In this section, we will show how to clean up the approximate recovery of the previous section
and obtain exact recovery of the dictionary under Assumption B1. We start by setting up the
problem as that of sparse estimation with deterministic noise and describing some guarantees in a
general setup. We then specialize these to the assumptions of our problem and present the proof
of Theorem 2.2.

3.4.1 Lasso with determinstic noise

Recalling the model (1), we see that each observation yi is generated according to the linear model

yi = Axi, for i = 1, 2, . . . , n,

where xi is a s-sparse vector in r dimensions. If we knew the dictionary A, then this is the usual
sparse linear system. Given the knowledge of an approximate dictionary Ā however, we can rewrite
the system as

yi = Āxi + (A− Ā)xi︸ ︷︷ ︸
wi

, (16)

where W ∈ R
d×n is the error matrix. Note that the errors in W are not zero mean, or even

independent of Ā unlike typical statistical settings. Under our initialization, however, they are
bounded, which we establish subsequently. For the remainder of this section, we assume the
following facts about Ā. Note that this is not an assumption about the model, but a condition on
the output of Algorithm 1, which will be proved in the next section.

Assumption C1 (Approximate initialization). Assume that Ā is an approximately correct initial-
ization for A, meaning the following hold:

RIP: The 2s-RIP constant of the matrix Ā, δ2s < 1
7 . That is, for every S ⊆ {1, 2, . . . , r} with

|S| ≤ 2s, the smallest and largest singular values, σmin and σmax respectively of the d× |S| matrix
ĀS satisfy:

6

7
< σmin < σmax <

8

7
.

Bounded error: ‖āi − ai‖2 ≤ ǫA for all i = 1, 2, . . . , r.

Under these general assumptions, we can provide a guarantee on the error incurred in (10) in
step (2) of Algorithm 2. While this result has been obtained in many contexts by various authors,
we use the following precise form from Candes [13].

Theorem 3.1 (Theorem 1.2 from Candes [13]). Suppose yi is generated according to the linear
model (16), where xi is s-sparse and assume that δ2s ≤

√
2−1. Then the solution to Equation (10)

obeys the following, for a universal constant C1,

‖x̂i − xi‖2 ≤ C1‖wi‖2.

In particular, C1 = 8.5 suffices for δ2s ≤ 0.2.
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3.4.2 Proof of Theorem 2.2

In order to prove Theorem 2.2, we first establish that under our assumptions, the coefficients
xi are exactly recovered in Equation (10). Once this is established, Theorem 2.2 follows in a
straightforward manner. We start with a useful proposition.

Proposition 3.3. Under conditions of Theorem 2.1, assume further that ǫA ≤ 1/(20s) for the
dictionary returned in Algorithm 1. Then Algorithm 2 guarantees that x̂i = xi for all i = 1, 2, . . . , n.

Proof: We would like to use Theorem 3.1 to show that we recover the coefficients xi correctly
in the lasso step (10) of Algorithm 2. In order to do this, we first need to verify Assumption C1 for
the dictionary returned by Algorithm 1, and then obtain bounds on the quantity ‖w1‖2. We start
with the former.

Consider any 2s-sparse subset S of [r]. We have:

σmin(ĀS) ≥ σmin(AS)− ‖AS − ĀS‖2
(ζ1)

≥ 1− 2µ0s√
d
−
∥∥AS − ĀS

∥∥
F

and,

σmax(ĀS) ≤ σmax(AS) + ‖AS − ĀS‖2
(ζ2)

≤ 1 +
2µ0s√

d
+
∥∥AS − ĀS

∥∥
F
,

where ζ1 and ζ2 follow from Lemma A.5 in Appendix A.6. Since AS is a d× 2s matrix, it satisfies
that

∥∥AS − ĀS

∥∥
F
≤ √2sǫA. Given the assumption ǫA ≤ 1/(20s), it immediately follows that the

minimum and maximum singular values of Ās are at least 6/7 and 8/7 respectively, so that we
obtain δ2s = 1/7 < 0.2.

This shows that Ā satisfies Assumption C1. Next we bound the ℓ2 norm of the noise vector wi.
Again bounding the frobenius norm of the error in the dictionary in the same way as above, we
obtain

‖wi‖2 ≤ ‖(A− Ā)Si
‖2‖xi‖2 ≤

∥∥(A− Ā)Si

∥∥
F

√
s ≤ sǫA,

where Si is the support of xi. Consequently, we obtain from Theorem 3.1 that the output x̂i of
Equation 10 satisfies

‖x̂i − xi‖2 ≤ C1 sǫA ≤ 9sǫA ≤ 9/20. (17)

We now observe that an ℓ2 error guarantee is also an ℓ∞ error guarantee. Recall that by the
model assumption, each non-zero coefficient of X has an absolute value of 1. Since Equation (17)
guarantees that the ℓ2 error guarantee is no larger than 1/2, all the coefficients will be uniquely
recovered and hence x̂i = xi.

�

Proof of Theorem 2.2:
We are now ready to provide our proof of exact recovery. Based on Proposition 3.3, we only

need to verify two things. First is that the initialization Ā satisfies ǫA < 1/(20s) and the second is
that the linear system Y = AX is well-posed when we solve for A. In order to verify the former,
we observe that our additional conditions in Assumption B1 guarantee that
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32s

(
µ1√
ds

+
µ2
1

d

)
≤ 1

1200s2
,

32s4

r
≤ 1

1200s2
, and

32s

(
α2 +

α√
s

)
≤ 1

1200s2
.

Hence we obtain from Theorem 2.1 that with probability at least 1 − n2d exp
(
−cα2ns

r

)
−

4max(n2, r) exp
( −ns
32768r

)
, ǫA < 1/(20s). Hence, it only remains to verify that the linear system

is well-posed.
According to Lemma A.7 in Appendix A.6, the matrix E

[
XXT

]
= s

r Ir×r so that all of its
singular values are equal to s/r. We now appeal to Theorem A.1 with W = X, d = r and u =

√
s.

Then we obtain for any t > 0 with probability at least 1− r exp(−ct2)

σmin(XXT ) ≥ ns

r
− nmax

{√
s

r
δ, δ2

}
,

where δ = t
√

s/n. Substituting the value of δ, we obtain the lower bound

σmin(XXT ) ≥ ns

r
− nmax

{√
s

r
t

√
s

n
, t2

s

n

}

≥ ns

r

(
1− t

√
r

n
− t2r

n

)

=
ns

4r
,

for t =
√

n/(4r). This means that the linear system is well-posed with probability at least 1 −
r exp(−cn/(4r)). Choosing c0 to now be min(c, 1/32768) finishes the proof. �

4 Discussion and Conclusion

In this paper, we proposed simple and tractable methods for dictionary learning. We present a novel
clustering-based approach which can approximately recover the uknown overcomplete dictionary
from samples. We also analyzed a simple denoising strategy based on sparse recovery algorithms
for reconstructing the dictionary exactly under some simplifying assumptions on the model. In
particular, the second step is not tied to the first step in any critical way, and more sophisticated
post-processing procedures have since been developed. There is of course, also room for developing
better approximate recovery schemes, building on our work.

In the analysis of the clustering step, we provide guarantees when the coefficient matrix is
sparse and randomly drawn. In principle, our analysis can be extended to general sparse coefficient
matrices and can be cast as a higher-order expansion condition on the coefficient bipartite graph.
Similar (and yet not the same) expansion conditions have appeared in other contexts involving
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learning of overcomplete models. For instance, in [5], Anandkumar et. al. establish that under
an expansion condition on the topic-word matrix, unsupervised learning of the model is possible.
Here, the hidden topics correspond to dictionary elements, and the observed words correspond to
the samples in the dictionary setting.

Finally, our work suggests some natural and interesting directions for future research. While
both the steps of our algorithm seem inherently robust to noise, it remains important to quantify
the recovery properties when the observations are noisy in future work. Another natural question
is raised by the fact that we use only one step of lasso and least squares for exact recovery. Indeed,
the subsequent work [1] analyzes a generalization where we perform multiple iterations of lasso
followed by subsequent dictionary estimation, and is able to exactly recover the dictionary under a
much broader set of conditions. Since our study was motivated by natural applications of dictionary
learning in signal processing and machine learning, it would also be interesting to investigate how
our provably correct procedures perform compared to the popular heuristic methods.
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A Proofs for clustering analysis

In this section we will provide the proofs of many of the Lemmas along with some auxilliary results
in Sections 3.1- 3.3. Some of the more technical results that are required will be deferred to
Appendix A.6.

A.1 Proofs of correlation graph properties

We start by proving Lemmas 3.1 and 3.2 in Section 3.1.
Proof of Lemma 3.1:

We first prove (12) via contradiction. Suppose NB(yk) ∩ NB(yl) = ∅, we then have

|〈yk, yl〉| = |
∑

i,j

xikxjl〈ai, aj〉| ≤
∑

i,j

|xikxjl〈ai, aj〉|

≤ |NB(yk)| · |NB(yl)| ·max
i,j,k,l

|xikxjl| ·max
i 6=j
|〈ai, aj〉| ≤

s2M2µ0√
d

For (11), let {ai∗} = NB(yk) ∩ NB(yl)

|〈yk, yl〉| = |
∑

i,j

xikxjl〈ai, aj〉| ≥ |xi∗kxi∗l|〈ai∗ , ai∗〉 −
∑

i 6=j

|xikxjl〈ai, aj〉|

≥ m2 − s2M2µ0√
d

,

using the above analysis. The claims now follow from the setting of ρ. �

We next establish Lemma 3.2.
Proof of Lemma 3.2: Define the event

A := {|NB(yi) ∩ NB(yi∗)| ≥ 1} ∩ {|NB(yi) ∩ NB(yj∗)| ≥ 1}.
From Lemma 3.1, we have that

P
[
Uniq-intersect(yi; yi∗ , yj∗)

∣∣ Uniq-intersect(yi∗ , yj∗), and (yi, yi∗), (yi, yj∗) ∈ Gcorr(ρ)

]

≥ P
[
Uniq-intersect(yi; yi∗ , yj∗)

∣∣ Uniq-intersect(yi∗ , yj∗),A
]

In order to lower bound P
[
Uniq-intersect(yi; yi∗ , yj∗)

∣∣ Uniq-intersect(yi∗ , yj∗),A
]
, we instead upper

bound the probability of the complementary event P
[
¬Uniq-intersect(yi; yi∗ , yj∗)

∣∣ Uniq-intersect(yi∗ , yj∗),A
]

In order to do so, we first bound the following

P
[
A
∣∣ Uniq-intersect(yi∗ , yj∗)

]
≥ s

r
, (18)

since A holds when the unique element in NB(yi∗) ∩ NB(yj∗) is chosen and its probability is s/r.
We also have
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P
[
¬Uniq-intersect(yi; yi∗ , yj∗) ∩ A

∣∣ Uniq-intersect(yi∗ , yj∗)
]
≤

(s− 1)2
(r−3
s−2

)
(r
s

) ,

since for ¬Uniq-intersect(yi; yi∗ , yj∗) to hold, we need to choose at least one of the s− 1 elements
in NB(yi∗)/NB(yj∗), and similarly one from the s − 1 elements of NB(yj∗)/NB(yi∗). The rest
of the s − 2 elements can be picked arbitrarily from the r − 3 dictionary atoms that remain after
excluding the two already picked and the unique intersection NB(yj∗) ∩NB(yi∗).

It is easy to check that

(s− 1)2
(r−3
s−2

)
(r
s

) =
(s− 1)2(r − s)s(s− 1)

r(r − 1)(r − 2)

≤ s4

r2
. (19)

Taking the ratio of the two bounds in (18) and (19) completes the proof. �

A.2 Proofs of Lemmas 3.3 and 3.4

We now prove the two lemmas that are crucial to establishing the correctness of Prcedure 1.
Proof of Lemma 3.3: Let A1 and A2 denote the following events:

A1 :={|NB(yi) ∩ NB(yi∗)| ≥ 1} ∩ {|NB(yi) ∩ NB(yj∗)| ≥ 1}
∩ {|NB(yj) ∩ NB(yi∗)| ≥ 1} ∩ {|NB(yj) ∩ NB(yj∗)| ≥ 1}

A2 :={|NB(yi) ∩ NB(yi∗)| = 1} ∩ {|NB(yi) ∩ NB(yj∗)| = 1}
∩ {|NB(yj) ∩ NB(yi∗)| = 1} ∩ {|NB(yj) ∩ NB(yj∗)| = 1} (20)

In words, both yi and yj have at least dictionary element in common with each of yi∗ and yj∗ under
the event A1, while the number of common elements is exactly one under the event A2. We have

P
[
(yi, yj) /∈ Gcorr(ρ) | ∆(yi, yi∗ , yj∗),∆(yj , yi∗ , yj∗),¬Uniq-intersect(yi∗ , yj∗)

]

(a)
= P

[
(yi, yj) /∈ Gcorr(ρ) | A1,∆(yi, yi∗ , yj∗),∆(yj , yi∗ , yj∗),¬Uniq-intersect(yi∗ , yj∗)

]

= P
[
(yi, yj) /∈ Gcorr(ρ),∆(yj , yi∗ , yj∗) | A1,∆(yi, yi∗ , yj∗),∆(yj , yi∗ , yj∗),¬Uniq-intersect(yi∗ , yj∗)

]

≥ P
[
(yi, yj) /∈ Gcorr(ρ),∆(yi, yi∗ , yj∗),∆(yj , yi∗ , yj∗) | A1,¬Uniq-intersect(yi∗ , yj∗), (yi∗ , yj∗) ∈ Gcorr(ρ)

]

(b)

≥ P
[
(yi, yj) /∈ Gcorr(ρ),A2 | A1,¬Uniq-intersect(yi∗ , yj∗), (yi∗ , yj∗) ∈ Gcorr(ρ)

]

(c)

≥ P
[
{NB(yi) ∩ NB(yj) = ∅} ∩ A2 | A1,¬Uniq-intersect(yi∗ , yj∗), (yi∗ , yj∗) ∈ Gcorr(ρ)

]
, (21)

where the inequalities (a), (b) and (c) follow from Lemma 3.1. We will now work on lower bounding
this resulting probability.

We first lower bound the numerator in writing the above conditional probability as the ratio of
a joint to marginal probability. We begin by noting that

19



P
[
{NB(yi) ∩NB(yj) = ∅} ∩ A2 ∩ A1 | ¬Uniq-intersect(yi∗ , yj∗ , (yi∗ , yj∗) ∈ Gcorr(ρ))

]

= P
[
{NB(yi) ∩ NB(yj) = ∅} ∩ A2 | ¬Uniq-intersect(yi∗ , yj∗), (yi∗ , yj∗) ∈ Gcorr(ρ)

]

Let us define l̂ = |NB(yi∗) ∪ NB(yj∗)| ∈ [s, 2s] and l = |NB(yi∗) ∩ NB(yj∗)| ≥ 24. The event
in the probability above, that is A2 holds while yi and yj do not share a dictionary element, can
be arranged by choosing two of the l elements, and assigning a unique element to each yi and yj.
Similarly the remaining elements can be chosen outside NB(yi∗) ∪ NB(yj∗) in a non-overlapping

manner: for yi assign s− 1 elements among r − l̂ elements, and then for yj assign from remaining

r − l̂ − s+ 1 elements. This logic yields the following lower bound on the probability

P [{NB(yi) ∩ NB(yj) = ∅} ∩ A2 | ¬Uniq-intersect(yi∗ , yj∗)]

≥
2
(
l
2

)(
r−l̂
s−1

)(
r−l̂−s+1

s−1

)
(r
s

)2 ≥
2
(
l
2

)(
r−2s
s−1

)(
r−3s+1
s−1

)
(r
s

)2 ,

where the second inequality uses l̂ ≤ 2s. Now with some straightforward algebra, we can further
lower bound this expression as

P [{NB(yi) ∩ NB(yj) = ∅} ∩ A2 | ¬Uniq-intersect(yi∗ , yj∗)]

≥ s2(l − 1)2

r2

(
1− 3s− 3

r − s

)s−1(
1− 2s− 1

r − s

)s−1

≥ s2(l − 1)2

r2

(
1− 3s

r − s

)s(
1− 2s

r − s

)s

.

Now we invoke Lemma A.6 to further lower bound the RHS and obtain

P [{NB(yi) ∩NB(yj) = ∅} ∩ A2 | ¬Uniq-intersect(yi∗ , yj∗)]

≥ s2(l − 1)2

r2
exp

(
− 3s2

r − s

)
exp

(
− 2s2

r − s

)
≥ s2(l − 1)2

r2

(
1− 10s2

r − s

)

≥ s2(l − 1)2

2r2
,

where the final inequality holds since s2 ≤ r/40.
In order to lower bound the conditional probability in Equation 21, we need to further upper

bound the marginal probability in the denominator. To this end, we observe that we have to
upper bound P [A1|¬Uniq-intersect(yi∗ , yj∗)]. Now conditioned on ¬Uniq-intersect(yi∗ , yj∗), for
each yi and yj, A1 can be satisfied in two ways: choose at least one element from l elements in
NB(yi∗) ∩ NB(yj∗) or choose at least two elements from m − l elements in NB(yi∗) ∪ NB(yj∗).
Making this precise, we obtain

4the intersection is at least 1 by Lemma 3.1
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P [A1 | ¬Uniq-intersect(yi∗ , yj∗)] ≤
(
ls

r
+

(l̂ − l)2
(
r−2
s−2

)
(
r
s

)
)2

≤
(
ls

r
+

s2(l̂ − l)2

(r − 1)2

)2

≤
(
ls

r
+

s2(2s− 2)2

(r − 1)2

)2

≤ 2l2s2

r2
, (since 4s3 < r − 1)

The result follows by using the fact that l ≥ 2. �

The proof of Lemma 3.4 is similar, but involves controlling slightly different events.
Proof of Lemma 3.4:

We will establish the lemma by lower bounding the probability of the complementary event.
We recall the events A1 and A2 defined in Equation 20 in the proof of Lemma 3.3. We can mimick
the initial arguments in the proof of Lemma 3.3 to conclude that

P
[
(yi, yj) ∈ Gcorr(ρ) | ∆(yi, yi∗ , yj∗),∆(yj , yi∗ , yj∗),Uniq-intersect(yi∗ , yj∗)

]

≥ P [Uniq-intersect(yi, yj) ∩A2 | A1,Uniq-intersect(yi∗ , yj∗)] ,

and we provide a lower bound for this. Once again, we express the conditional probability as
the ratio of a joint to a marginal and then lower bound the numerator and upper bound the
denominator. In the numerator, we have the event

We have

P [Uniq-intersect(yi, yj) ∩A2 ∩ A1 | Uniq-intersect(yi∗ , yj∗)]
= P [Uniq-intersect(yi, yj) ∩ A2 | Uniq-intersect(yi∗ , yj∗)]

The event Uniq-intersect(yi, yj)∩A2 is guaranteed to occur if we choose yi and yj so that they
have the only element in NB(yi∗) ∩ NB(yj∗) in common. This yields the lower bound

P [Uniq-intersect(yi, yj) ∩A2 ∩ A1 | Uniq-intersect(yi∗ , yj∗)]

≥
(r−2s+1

s−1

)(r−3s+2
s−1

)
(
r
s

)2 .

It is easy to further conclude that
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P [Uniq-intersect(yi, yj) ∩A2 ∩ A1 | Uniq-intersect(yi∗ , yj∗)]

≥ s2

r2

(
1− 3s− 3

r − s+ 1

)(s−1)(
1− 2s− 2

r − s+ 1

)s−1

≥ s2

r2
exp(−5(s − 1)2/(r − s+ 1))

≥ s2

r2

(
1− 10s2

r − s

)
≥ s2

r2

(
1− 20s2

r

)
,

where we again invoked Lemma A.6 as well as the fact that s ≤ r/2. As for the marginal probability
in the denominator, we need to upper bound

P [A1 | Uniq-intersect(yi∗ , yj∗)] ≤
(
s

r
+

(2s − 1)2
(
r−2
s−2

)
(
r
s

)
)2

≤
(
s

r
+

(2s − 1)2(s− 1)2

(r − 1)2

)2

≤ s2

r2

(
1 +

4s3

r

)2

,

since for each yi and yj, A1 can be satisfied in two ways: choose the unique element from NB(yi∗)∩
NB(yj∗) or choose at least two elements from 2s− 1 elements in NB(yi∗) ∪NB(yj∗).

Using the above two inequalities, we have:

P
[
(yi, yj) ∈ Gcorr(ρ) | ∆(yi, yi∗ , yj∗),∆(yj , yi∗ , yj∗),Uniq-intersect(yi∗ , yj∗)

]

≥ 1− 20s2

r(
1 + 4s3

r

)2 .

It is easy to verify that 1/(1 + x)2 ≤ 1− x for 0 ≤ x ≤ (
√
2− 1)/2. Since s3 ≤ r/5, we obtain

P
[
(yi, yj) ∈ Gcorr(ρ) | ∆(yi, yi∗ , yj∗),∆(yj , yi∗ , yj∗),Uniq-intersect(yi∗ , yj∗)

]

≥
(
1− 20s2

r

)(
1− 4s3

r

)

≥ 1− 24s3

r
.

�

A.3 Proof of Proposition 3.1

Let us start with the case when Uniq-intersect(yi∗ , yj∗) = 1. For any pair (yi, yj) where yi and yj
are taken from NGcorr(ρ)

(yi∗) ∩NGcorr(ρ)
(yj∗), let Eij be the random variable which is 1 if (yi, yj) ∈

Gcorr(ρ). Then Lemma 3.4 guarantees P(Eij = 1) ≥ 1 − 24s3/r. The size of the set being checked
in Procedure 1 is equal to

∑
tESt . Hoeffding’s inequality guarantees that with probability at least

1− 2 exp(−2nγ2)
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∣∣∣∣∣
1

n

n∑

t=1

(ESt − P(ESt = 1))

∣∣∣∣∣ ≤ γ.

Combining with the lower bound on P(Eij = 1), we obtain that with probability at least 1 −
2 exp(−2nγ2),

∑

t

ESt ≥ n

(
1− 24

s3

r

)
− nγ. (22)

Using γ ≤ 1/64, we see that this quantity is at least 62n/64 under the conditions of the lemma,
which means that Procedure 1 returns 1.

Now let us consider the case when Uniq-intersect(yi∗ , yj∗) = 0. Defining Eij the same way as
above, we see that by Lemma 3.3, P(Eij = 1) ≤ 15/16. Then, a similar application of Hoeffding’s
inequality yields this time

∑

t

ESt ≤
n

16
+ nγ, (23)

which is at most 61n/64 for γ ≤ 1/64. Hence Procedure 1 returns 0 in this case.

A.4 Proof of Proposition 3.2

We now prove Proposition 3.2. We need a couple of auxilliary results for the proof. We first restate
a theorem from [35], which we will heavily use in the sequel.

Theorem A.1 (Restatement of Theorem 5.44 from [35]). Consider a d× n matrix W where each
column wi of W is an independent random vector with covariance matrix Σ. Suppose further that
‖wi‖2 ≤

√
u a.s. for all i. Then for any t ≥ 0, the following inequality holds with probability at

least 1− d exp
(
−ct2

)
:

∥∥∥∥
1

n
WW T − Σ

∥∥∥∥
2

≤ max
(
‖Σ‖1/22 δ, δ2

)
where δ = t

√
u

n
.

Here c > 0 is an absolute numerical constant. In particular, this inequality yields:

‖W‖2 ≤ ‖Σ‖
1
2
2

√
n+ t

√
u.

In order to bound the errors made in Algorithm 1, we need some additional notation and
auxilliary results. For now, let us consider a fixed pair of anchor samples yi∗ and yj∗ such that
Uniq-intersect(yi∗ , yj∗) is satisfied, and wlog, let NB(yi∗)∩NB(yj∗) = {a1}. We define the following
sets of interest

Ŝ = N corr(yi∗) ∩ N corr(yj∗),

S = {yi ∈ Ŝ : NB(yi) ∩ NB(yi∗) = NB(yi) ∩NB(yj∗) = {a1}}, and (24)

S̃ = Ŝ \ S. (25)
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For the purposes of understanding the errors in Algorithm 1, it would be helpful to decompose
each vector yi ∈ S as

y̆i := yi − x1ia1, (26)

and accordingly define Y̆S to be the d × |S| matrix of all such vectors in S. Intuitively, if all the
vectors y̆ were 0, then Algorithm 1 can recover a1 via SVD in a relatively straightforward manner.
We start by controlling the norm of the vectors yi and y̆i.

Lemma A.1. Under the model 1 and given assumptions 3, 5 and 6 we have for all i = 1, 2, . . . , n

‖yi‖2 ≤
√
2sM and ‖y̆i‖2 ≤ 2M

√
s.

Proof:
The proof is relatively straightforward consequence of our model and the assumptions. The

model allows us to write

‖yi‖22 = 〈yi, yi〉 =
∑

ap,aq∈NB(yi)

xpixqi〈ap, aq〉

≤
∑

ap,aq∈NB(yi)

|xpixqi||〈ap, aq〉|

=
∑

ap∈NB(yi)

x2pi ‖ap‖22 +
∑

ap 6=aq∈NB(yi)

|xpixqi||〈ap, aq〉|

≤M2

(
s+ s2

µ0√
d

)

≤M2

(
s+

1

2

)
≤ 3sM2

2
.

Finally, by triangle inequality we further have that ‖y̆i‖2 ≤ ‖yi‖2 +M .
�

Given this result, we would next like to control the amount of contribution the y̆i directions
can have in the SVD step of Algorithm 1. Our next result shows that while these vectors are not
zero, their random support along with the incoherence of our dictionary elements ensures that these
vectors are not strongly aligned with any one direction. We do so by bounding the spectral norm
of the matrix Y̆S.

Lemma A.2. With the vectors y̆i defined in Equation 26, we have the following bound with prob-
ability greater than 1− d exp

(
−cα2|S|

)
for any α > 0

∥∥∥Y̆S

∥∥∥
2
≤M

√
s|S|

(
µ1√
d
+ 2α

)
,

where c is a universal constant.
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Proof:
In order to prove the lemma, we first calculate the spectral norm of the covariance matrix of y̆i

and then use Theorem A.1. Note that from Lemma A.1, we have ‖y̆i‖2 ≤ 2M
√
s. We first bound

the spectral norm of the covariance matrix of y̆i ∈ S i.e., we bound
∥∥E
(
y̆iy̆

T
i

)∥∥
2
. In order to do

this, we first fix w ∈ R
d and calculate:

wT
E
[
y̆iy̆

T
i

]
w = E

[(
wT y̆i

)2]
= E

[(
wTAx̆i

)2]
= E

[(
zT x̆i

)2]
,

where we use the notation z := ATw and x̆i is the same as xi but with xi1 set to 0. We further
simplify as

wT
E
[
y̆iy̆

T
i

]
w ≤ E






r∑

p=1

zpx̆pi




2


= E




r∑

p=1

z2p x̆
2
pi


+ E




r∑

p 6=q=1

zpzqx̆pix̆qi




≤
r∑

p=1

z2pE
[
x̆2pi
]
+

r∑

p 6=q=1

|zpzq||E [x̆pix̆qi]|

≤
r∑

p=1

z2pM
2 s

r
+ 0,

where the last inequality uses the fact that the values of E[xpixqi] = 0, since both of them are
independent mean zero random variables.

Then we can further simplify the upper bound to obtain

wT
E
[
y̆iy̆

T
i

]
w ≤ sM2

r
‖z‖22

(ζ)

≤ sM2

r
· µ

2
1r

d
=

µ2
1M

2s

d
,

where (ζ) follows from Assumption (A3), since

‖z‖2 =
∥∥ATw

∥∥
2
≤
∥∥AT

∥∥
2
‖w‖2 =

∥∥AAT
∥∥ 1

2

2
‖w‖2 ≤

√
µ2
1r

d
.

Recalling that w was an arbitrary unit vector, this immediately yields a spectral norm bound
on the expected covariance

∥∥E
[
y̆iy̆

T
i

]∥∥
2
≤ µ2

1M
2s

d
.

We are now in a position to apply Theorem A.1 with the matrix W = Y̆S of size d× |S|, where
u = (2M

√
s)

2
and t = α

√
|S| for some α > 0. Doing so yields the inequality
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∥∥∥Y̆S

∥∥∥
2
≤
√

µ2
1M

2s

d
·
√
|S|+ α

√
|S| · 2M√s

≤M
√

s|S|
(√

µ2
1

d
+ 2α

)
,

with probability greater than 1− d exp
(
−cα2|S|

)
. �

Finally we are in a position to establish a bound on the accuracy of the SVD step in Algorithm 1.
Having bounded the contribution from from the directions apart from a1 in the previous lemma,
we will now lower bound the contribution of the a1 direction, which will ensure that the largest
singular vector is close to a1.
Proof of Proposition 3.2: Recall the definitions of the sets S and S̃ (25). In order for a vector
yi ∈ Ŝ to end up in S̃, the event in Lemma 3.2 has to fail. Hence, if we define Ei to be the random
variable which is 1 if yi ∈ S̃, then we have from Hoeffding’s inequality

| 1
n̂

n̂∑

i=1

(Ei − P[Ei = 1])| ≤
√

2 log(2/δ)

n̂
,

with probability at least 1− δ/2. From Lemma 3.2 we further know that P[Ei = 1] ≤ s3/r so that

|S̃| ≤ n̂s3

r
+ αn̂, (27)

with probability at least 1− exp(−2α2n̂). As a consequence, the size of S is at least

|S| ≥ n̂(1− s3/r − α) ≥ 9n̂/10 (28)

for α < 1/20 by our assumption that s3 < r/384.
In order to understand the singular vector â, we now write the matrix L̂ as the sum of two

matrices L and L̃ as follows:

L̂ = L+ L̃, where,

L :=
∑

yi∈S
yiy

T
i and L̃ :=

∑

yi∈S̃

yiy
T
i .

Recalling our earlier notation y̆i (26), we expand L as follows:

L =
∑

yi∈S
yiy

T
i =

∑

i:yi∈S
x21ia1a1

T +
∑

i:yi∈S
x1i
(
a1y̆

T
i + y̆ia1

T
)
+
∑

i:yi∈S
y̆iy̆

T
i

We wish to show that a1 is close to the top singular vector of L̂. In order to show this, we bound
the spectral norms of the following matrices:

∑
i:yi∈S x1i

(
a1y̆

T
i + y̆ia1

T
)
,
∑

i:yi∈S y̆iy̆
T
i and L̃.

Using Lemma A.2, we first obtain:

26



∥∥∥∥∥∥
∑

i:yi∈S
x1ia1y̆

T
i

∥∥∥∥∥∥
2

≤ ‖a1‖2
∥∥∥Y̆S

∥∥∥
2
‖xS1‖2

≤M
√

s|S|
(√

µ2
1

d
+ 2α

)
·M
√
|S|

= M2s|S|
(

µ1√
ds

+
2α√
s

)
and, (29)

∥∥∥∥∥∥
∑

i:yi∈S
y̆iy̆

T
i

∥∥∥∥∥∥
2

=
∥∥∥Y̆SY̆

T
S

∥∥∥
2
≤ 2M2s|S|

(
µ2
1

d
+ 4α2

)
. (30)

Finally, we have the following bound on the spectral norm of L̃:

∥∥∥L̃
∥∥∥
2
=

∥∥∥∥∥∥
∑

yi∈S̃

yiyi
T

∥∥∥∥∥∥
2

≤ |S̃| ‖yi‖22 ≤ |S̃|2sM2. (31)

Using (29), (30) and (31), we now prove the statement of the lemma. Denote θ = |〈a1, â〉| and
Z = 1

|S|
∑

i:yi∈S x
2
1i. On one hand, we have:

∥∥∥âT L̂â
∥∥∥
2
≤ θ2Z|S|+ 2

∥∥∥∥∥∥
∑

i:yi∈S
x1ia1y̆

T
i

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
∑

i:yi∈S
y̆iy̆

T
i

∥∥∥∥∥∥
2

+
∥∥∥L̃
∥∥∥
2

≤ θ2Z|S|+ 2M2s|S|
(

µ1√
ds

+
2α√
s

)
+ 2M2s|S|

(
µ2
1

d
+ 4α2

)
+ |S̃|2sM2

≤M2|S|
[

Z

M2
θ2 + 8s

(
µ1√
ds

+
µ2
1

d
+ α2 +

α√
s
+

(
s3

r
+ α

))]
,

where the last step uses the bounds (27) and (28). On the other hand, we have

∥∥∥âT L̂â
∥∥∥
2
=
∥∥∥L̂
∥∥∥
2
≥ Z|S| · ‖a1‖22 − 2

∥∥∥∥∥∥
∑

i:yi∈S
x1ia1y̆

T
i

∥∥∥∥∥∥
2

−

∥∥∥∥∥∥
∑

i:yi∈S
y̆iy̆

T
i

∥∥∥∥∥∥
2

−
∥∥∥L̃
∥∥∥
2

≥ Z|S| − 2M2s|S|
(

µ1√
ds

+
α√
s

)
− 2M2s|S|

(
µ2
1

d
+ 4α2

)
− |S̃|2M2s

≥M2|S|
[

Z

M2
− 8s

(
µ1√
ds

+
µ2
1

d
+ α2 +

α√
s
+

(
s3

r
+ α

))]
.

Using the above two inequalities, and the fact that Z ≥ m2, we obtain

θ2 ≥ 1− 16sM2

m2

(
µ1√
ds

+
µ2
1

d
+

s3

r

)
− 16sM2

m2

(
α2 +

α√
s

)
.

27



Now we observe that since ‖a1‖2 = ‖â‖2 = 1, we have

‖â− a1‖22 = 2(1 − θ) ≤ 2(1 − θ2),

for 0 ≤ θ ≤ 1, which completes the proof.
�

A.5 Approximate recovery guarantee for Algorithm 1

Building on all our work so far, this section presents the main guarantee for Algorithm 1. So far,
we have established that the sub-procedure in Algorithm 1 correctly detects good anchor pairs with
high probability. Conditioned on this, Proposition 3.2 shows that we can recover the dictionary
element in this intersection to a bounded error with high probability. The next theorem, which
puts everything together shows that in an appropriate number of iterations, Algorithm 1 will
approximately receover all the dictionary elements with high probability.

Lemma A.3 (Number of good anchor pairs). Suppose we have n examples. Then, we have:

P

{
∪l∈[r]|{(i, j) : NB(yi) ∩ NB(yj) = {al}}| >

ns

8r

}
≥ 1− r exp

(−ns
64r

)
.

Proof: Fix l ∈ [r]. Define the set S ⊆ [n] as follows:

S := {i : al ∈ NB(yi)} .

Since for every i ∈ [n], the probability of i ∈ S is s
r , using standard Chernoff bounds, we see that:

P

[
|S| < ns

2r

]
< exp

(−ns
8r

)
. (32)

Consider any two examples yi, yj ∈ S. Then,

P [NB(yi) ∩ NB(yj) = {al}] ≥ 1− s2

r
.

Dividing the set S into |S|
2 disjoint pairs and using Chernoff bounds, we see that

P

[
|{(i, j) : NB(yi) ∩ NB(yj) = {al}}| <

|S|
4

]
≤ exp



−
(
1− s2

r

)
|S|

16


 ≤ exp

(−|S|
32

)
. (33)

Using (32) and (33), we have:

P

[
|{(i, j) : NB(yi) ∩ NB(yj) = {al}}| >

ns

8r

]
≥ 1− exp

(−ns
64r

)
.

Using a union bound over different dictionary elements, we have:

P

[
|{(i, j)|NB(yi) ∩ NB(yj) = {al}}| >

ns

8r
∀ l ∈ [r]

]
≥ 1− r exp

(−ns
64r

)
.

�
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Lemma A.4. In each iteration of Algorithm 1, the size of the set Ŝ satisfies:

|Ŝ| ≥ ns

4r
,

with probability greater than 1− exp
(−ns
16r

)
.

Proof: Since (yi∗ , yj∗) ∈ Gcorr(ρ), from Lemma 3.1, we know that NB(yi∗)∩NB(yj∗) 6= ∅. Wlog
let a1 ∈ NB(yi∗) ∩ NB(yj∗). Since each sample yi has probability of at least

s

r
·
(r−2s+1

s−1

)
(r−1
s−1

) ≥ s

r
·
(
r − 3s

r − s

)s

≥ s

r
·
(
1− 2s

r − s

)s

≥ s

r
·
(
1− 2s2

r − s

)
≥ s

2r
,

of satisfying NB(yi) ∩ NB(yi∗) = NB(yi) ∩ NB(yj∗) = {a1}, using Chernoff bounds, we have:

P

[
|i : Uniq-intersect (yi, yi∗)&Uniq-intersect (yi, yj∗)| <

ns

4r

]
≤ exp

(−ns
16r

)
.

Using Lemma 3.1 now finishes the proof. �

A.6 Auxiliary Results

Below, we establish that the incoherence assumption on the dictionary elements leads to a bound
on the RIP constant.

Lemma A.5. The 2s-RIP constant of A, δ2s satisfies δ2s <
2µ0s√

d
.

Proof: Consider a 2s-sparse unit vector w ∈ R
r with Supp(w) = S. We have:

‖Aw‖2 =


∑

j∈S
wjaj




2

=
∑

j

w2
j‖aj‖2 +

∑

j,l∈S,j 6=l

wjwl〈aj , al〉

≥ 1−
∑

j,l∈S,j 6=l

|wjwl||〈aj , al〉|

≥ 1−
∑

j,l∈S,j 6=l

|wjwl|
µ0√
d

≥ 1− µ0√
d
‖w‖12

≥ 1− µ0√
d
2s · ‖w‖2 = 1− 2µ0s√

d
.

Similarly, we have:

‖Aw‖2 ≤ 1 +
2µ0s√

d
.

This proves the lemma. �

Lemma A.6. For r > 2, c > 0, let 0 ≤ x ≤ r/(2c+1). Then (1−cx/(r−x))x ≥ exp(−cx2/(r−x)) ≥
1− 2x2

r−x .
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Proof:
We start by observing that x/(r−x) is an increasing function of x for x < r, so that x < r/(2c+1)

implies that cx/(r − x) < 1/2. Additionally, we have the following fact for any θ > 0

1− θ ≤ e−θ ≤ 1− θ +
θ2

2
. (34)

The first inequality is a consequence of the convexity of e−θ while the second one follows since the
second derivative of e−θ is at most 1 when θ > 0. Since we have x/(r − x) ≤ 1/2, it is easy to see
that

1− cx

r − x
≥ 1− 2

cx

r − x
+ 2

c2x2

(r − x)2
.

Now applying the inequalities (34) with θ = 2cx/(r − x), we obtain

(
1− cx

r − x

)x

≥
(
1− 2

cx

r − x
+ 2

cx2

(r − x)2

)x

≥ (exp(−2cx/(r − x)))x = exp(−2cx2/(r − x)

≥ 1− 2cx2

r − x
,

where the second inequality follows from again using (34), this time with θ = 2cx2/(r − x). �

Lemma A.7. We have:

E
[
XXT

]
=

s

r
Ir×r,

where Ir×r is the r × r identity matrix.

Proof: Let Σ := E
[
XXT

]
. We will first calculate the diagonal elements of Σ:

Σjj = E
[
x2ji
]
=

s

r
.

On the other hand, any off diagonal element can be calculated as follows:

Σjk = E [xjixki] = E [xji]E [xki] = 0.

This proves the lemma. �
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