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Abstract

Myelosuppression is one of the most common and severe adverse events associated with

anti-cancer therapies and can be a source of drug attrition. Current mathematical modeling

methods for assessing cytopenia risk rely on indirect measurements of drug effects and pri-

marily focus on single lineage responses to drugs. However, anti-cancer therapies have

diverse mechanisms with varying degrees of effect across hematopoietic lineages. To

improve predictive understanding of drug-induced myelosuppression, we developed a

quantitative systems pharmacology (QSP) model of hematopoiesis in vitro for quantifying

the effects of anti-cancer agents on multiple hematopoietic cell lineages. We calibrated the

system parameters of the model to cell kinetics data without treatment and then validated

the model by showing that the inferred mechanisms of anti-proliferation and/or cell-killing

are consistent with the published mechanisms for three classes of drugs with different

mechanisms of action. Using a set of compounds as a reference set, we then analyzed

novel compounds to predict their mechanisms and magnitude of myelosuppression. Fur-

ther, these quantitative mechanisms are valuable for the development of translational in

vivo models to predict clinical cytopenia effects.

Author summary

Reduced bone marrow activity and levels of mature blood cells is an undesirable side effect

of many anti-cancer therapies. Selecting promising lead compounds for further develop-

ment requires understanding of potential myelosuppressive effects. However, existing

preclinical experiments and modeling formulations fail to consider drug effects on multi-

ple blood cell types or the mechanistic differences between how drugs induced myelosup-

pression. Here we developed a quantitative systems pharmacology (QSP) model that

estimates a drug candidate’s effect on multiple precursor and mature blood cell lineages

and further distinguishes how the drug affects these populations—through cell-killing or

anti-proliferation mechanisms. This modeling formalism is valuable for vetting
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compounds for therapeutic development and for further translational modeling to antici-

pate the clinical effects of compounds.

This is a PLOS Computational BiologyMethods paper.

Introduction

Drug-induced myelosuppression is one of the most severe adverse events (AEs) associated

with anti-cancer therapies[1]. Myelosuppression increases patient fatigue and hinders their

daily routines[2,3], and increases patient risk for infection [4]. Understanding patient propen-

sity for AEs is required for clinical optimization of both drug selection and dose schedules.

Often anti-cancer therapies specifically optimize efficacy on the basis of minimizing undesir-

able myelosuppressive effects [5,6]. Despite the frequency of myelosuppression following anti-

cancer treatment, predicting the severity of this AE remains challenging[1].

Computational models and pre-clinical experiments remain the standard for anticipating

and understanding potential myelosuppressive effects. Predictive toxicology approaches can

expedite early phase clinical trials and reduce the number of patients treated with ineffective

doses[7]. A validation study of 20 compounds demonstrated that pre-clinical in vitromeasure-

ments of a drug’s 90% inhibition concentrations (IC90) of granulocyte-macrophages was a suf-

ficient predictor of the maximum tolerated dose (MTD) in animals and humans[7]. Many

modeling approaches have captured the effects of novel compounds on single lineages. For

instance, the Friberg model describes the in vivo development of neutrophils using multiple

transit compartments where drug treatment can affect the self-renewal and proliferation of

immature cell types[8]. Importantly, these models have supported safety-mitigating strategies

in the clinic. Semi-mechanistic modeling combined with clinical data sufficiently captured

G-CSF response and neutrophil loss after chemotherapy[9] and identified an optimal blood

monitoring schedule during palbociclib treatment[10].

An understanding of mechanistic and lineage-specific effects would advance predictive tox-

icology approaches. Improved understanding of drug-induced myelosuppression requires a

systems-level perspective of hematopoiesis and effects on progenitors to better explain down-

stream effects on blood cells[11]. A challenge to mathematical modeling of myelosuppression

is understanding lineage effects in the bone marrow, especially when using indirect measure-

ments in peripheral blood[3,11,12], suggesting in vitromeasurements will be essential to this

advancement. A cell-based assay that analyzed the relative anti-proliferative effects of multiple

chemotherapies found that the extent of anti-proliferation was associated with the severity of

myelosuppression[13]. These findings further suggest that a mechanistic understanding of

drug-induced cytopenias can inform vetting of multiple drug candidates.

Modeling effects on multiple lineages and progenitors could be valuable for interpreting

differences in toxicity induced by multiple compounds[3,11], yet advancing predictability

requires better mechanistic understanding. For instance, a decrease in neutrophils could be a

result of depletion of mature neutrophils or a depletion of granulocyte progenitors. One recent

study used rat to human translation to understand how carboplatin-induced DNA damage

affected multiple hematopoietic lineages[12]. A key feature of their approach was using QSP

modeling to learn carboplatin effects on early hematopoietic progenitors in rats and applying

this mechanistic understanding to predict clinical rates of cytopenias. They discovered that
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feedback on multipotent progenitor (MPP) proliferation was insufficient for capturing clinical

recoveries, but that adding feedback on MPP maturation could adequately describe clinical

data[12]. This demonstrates that a mechanistic understanding of cytopenias is valuable for cre-

ating meaningful, translational in vivomodels.

We developed a quantitative systems pharmacology (QSP) model of in vitro hematopoiesis

(hereafter referred to as in vitroQSP model) for quantifying the effects of multi-class anti-can-

cer agents on multiple cell lineages. In contrast to prior modeling work based on in vivo stud-

ies[12], our model is built upon a set of in vitro data generated using a novel multi-lineage

toxicity assay (MLTA) and hence has the benefit of reduced animal use and increased through-

put. In particular, we first calibrated the system parameters in the QSP model to cell kinetic

proliferation data generated in the absence of any drug treatment. We subsequently generated

dose-response data for drugs of interest using MLTA and fitted treatment parameters that

reflect the extent and dose-dependence of drug effects per lineage. Our motivation was to

understand the mechanisms of drug effects, specifically anti-proliferative and cell-killing

effects, and the magnitude of these effects on hematopoietic cell lineages, from progenitors to

mature cell types. Towards this goal, experimental and computational methods can comple-

ment each other, as illustrated in Fig 1. While an IC50 value of a drug on a particular cell type

can be directly read out from the MLTA treatment data, it represents the cumulative effects on

not only the cell type of interest but also all the progenitors that precede it. Through modeling

and computational optimization, we can discern the contributing effects on each individual

lineage to recapitulate the net observed cell count decrease. Thus, through the deconvolution

of the experimental data, the in vitroQSP model provides an understanding into mechanistic

and lineage-specific drug effects. We tested the model using drugs with known cytopenia

mechanisms and used these parameters as references for considering potential cytopenic

effects of novel compounds. The method has broad utility for anticipating cytopenic effects

Fig 1. Illustration of the difference between the IC50 value assessed directly from experimental data and model-

based deconvolution of mechanisms explaining downstream inhibition. The cartoon shows the percent inhibition

of granulocyte-macrophage progenitors (GMP) cells at increasing doses of drug. The IC50 value derived from this

experimental data represents the cumulative loss along the pathway leading to the formation of GMP, including drug

impacts on the early progenitors, hematopoietic stem cells (HSC) and multi-potent progenitors (MPP). On the right,

model-derived Emax and EC50 values represent the drug’s direct effect on cell-killing or anti-proliferation on

individual cell types, including HSC, MPP and GMP. In the proposed modeling framework, it is possible to separate

effects on a specific cell type, from propagated effects, such as loss of upstream progenitors. The color gradients above

all curves represent the percent inhibition (red/yellow color) or percent decrease (blue/yellow color) and these colors

are used in later figures.

https://doi.org/10.1371/journal.pcbi.1007620.g001
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and demonstrates the value in using QSP modeling to anticipate potential safety risks in a pre-

dictive, and mechanism-driven fashion.

Results

An in vitro QSP model for describing hematopoiesis and cell effects in

response to drug treatment

As we endeavored to understand the mechanistic effects of drugs on hematopoietic cell popula-

tions, we constructed an in vitroQSP model describing hematopoiesis, both in the control condi-

tion as well as in the presence of drug treatment (Fig 2) using a system of ordinary differential

equations (ODEs) in MATLAB (described in Methods, full equations provided in S1 Text). The

model represents the cell populations measured in the MLTA, their lineage relationships, and the

processes of proliferation, differentiation vs renewal, branching, and death (see Fig 2 for the gen-

eral formulation of the equation system). In Fig 2A, the arrows with solid lines denote reactions,

whereby the “substrate” leads to the “product” at the end of the arrow; the dashed lines denote the

process of proliferation, whereby the same cell type appear as both the “substrate” and “product”.

In particular, the model assumes that hematopoietic stem cells (HSCs) replenish themselves,

whereas multi-potent progenitors (MPPs) numbers are maintained by the differentiation of HSCs,

as well as the proliferation of MPPs. As Fig 2A indicates, the MPPs are assumed to give rise to all

of the lineages: erythroid, megakaryocyte, monocyte, granulocyte, and lymphocyte branches. Only

the most mature cell types of each lineage are assumed to die, shown with red arrows in Fig 2A.

The model variable “totalViableCells” simply sums up all the live cells represented in the model.

The full set of model cell types, parameters, flux equations, and ordinary differential equations

(ODEs) are further described in (S1 Text). To account for differentiation and renewal, we used a

mathematical formulation to describe this process (Fig 2B). We use a factor of two to account for

the fact that cell division yields two identical cells (Fig 2B)–both of which can renew or differenti-

ate. For progenitors that yield multiple cell types, branching parameters are applied to account for

the probability of differentiating into a particular cell type (Fig 2C). These probabilities sum to one

for a given progenitor. Drug effects are modeled at the cell death and proliferation reactions for all

cell species (Fig 2D). Cell death effects are modeled using an Emax relationship. Anti-proliferation

effects are modeled as affecting the basal proliferation rate of the affected cell type.

The model explains cell kinetic data in the absence of drug treatment

In order to infer the drug effects on various lineages in the MLTA (publication forthcoming)

the proliferation kinetics in the control setting first needed to be understood. For this purpose,

an experiment was performed to generate time-resolved measurements of cell numbers, at

days 0, 2, 3, 4, 5, 6 and 9 (Fig 3). The kinetic data was then used to inform parameters in the in
vitroQSP model. For the purpose of informing model parameters, the data points measured at

days 0 and 9 are dropped for model fitting: the reason for dropping data at day 0 is the appar-

ent difference in kinetics between days 0 and 2 (including a decline in counts for certain cell

types, potentially due to the cells coming out of liquid nitrogen and hence not recovering until

day 2) as compared to the subsequent time points; day 9 data was only generated for explor-

atory purposes as replating was done after the day 6 measurement, and hence also dropped for

the purpose of model fitting. Using the days 2 to 6 data, a hybrid optimization approach

(genetic algorithm and local search) was performed to infer a parameter set best compatible

with the data (please refer to the Methods section for details). We further used profile likeli-

hood to address parameter identifiability (Methods and S2 Text). Using the set of parameters

identified, the model was able to recapitulate the kinetic data well (Fig 3).
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Multi-lineage concentration-response data captures cumulative lineage-

specific cell responses to drug treatment

We used the MLTA to capture dose-dependent drug effects (publication forthcoming). The 96

well assay used simultaneous differentiation of human donor CD34+ stem cells into multiple

Fig 2. A QSP model for describing in vitro hematopoiesis, cell kinetics, and drug effects. The model contains 15 species representing 13 different cell types:

hematopoietic stem cells (HSC), multi-potent progenitors (MPP), granulocyte-macrophage progenitors (GMP), monocyte progenitors (monocyte prog), monocytes

(monocyte-lin), granulocyte progenitors (gran-lin prog), granulocytes (gran-lin), neutrophils, lymphoid progenitors, B-cells (B-lin), megakaryocyte cells (MK-lin),

early erythroid cells (erythroid I), and late erythroid cells (erythroid II). The model also tracks total viable cells (this is the sum of the 13 hematopoietic lineages and

only includes living cells), and total dead cells (we cannot distinguish between cell types in total dead cells). In addition, drug is also represented as a species in the

model. The model includes a quiescent neutrophil population to adjust for the large number of neutrophils observed. This is similar to other published reports of

semi-mechanistic modeling [14]. The solid arrowed lines in the diagram denote reactions resulting in the formation of products pointed to at the end of the arrow,

whereas dashed lines denote reactions whereby the species in connection is both the substrate and product. Under no drug treatment, it is assumed that only the

most mature cell types die, as indicated by the red arrows. For the simplicity of illustration, the anti-proliferative and killing effects of drugs on each cell type are not

explicitly shown on the diagram, except for the drug-induced killing contributing towards the total number of dead cells. Shapes and colors do not encode any

model information but are just meant to distinguish between cell types (A). The rate of increase in the number of a cell type (e.g. MPP) depends on the input flux

from its predecessor cell type (e.g. HSC), proliferation flux (κ_MPP × [MPP]), as well as the fraction renewed (ρ_MPP) versus differentiated (1 - ρ_MPP). Note that

drug effects are not represented in this diagram (B). Branching parameters are applied for progenitors that yield multiple cell types. All branching parameters sum to

one for a given progenitor. Example shown for MPP (C). The model captures drug effects at the cell death reaction (“Drug cell-killing effects”) and at the

proliferation reaction (“Drug anti-proliferation effects”). In this abbreviated schematic we show the drug effects on the GMP cell type and show the example

equations for this species, but they are adapted for all other cell types in the model. Anti-proliferation drug effects alter the basal proliferation rate for the cell type,

and this affects both proliferation and differentiation (D).

https://doi.org/10.1371/journal.pcbi.1007620.g002

Fig 3. In vitroQSP model captures proliferation kinetics across cell types in the absence of drug treatment. Cells/mL are plotted

against time (days) for 13 live cell types and the total dead cells. Error bars represent standard error of the mean of six unique donor

samples. In all plots, experimental data are shown in blue dashed lines with “+” markers, and model data are shown in solid pink lines.

https://doi.org/10.1371/journal.pcbi.1007620.g003
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lineages and measured these lineages using flow cytometry. We tested 51 compounds (S1

Table). This compound set spanned multiple drug classes and contained drugs with known

clinical cytopenic effects as well as novel compounds without clinical data (Fig 4).

The assay captured cumulative changes in numbers across cell types from a reference set of

compounds with known hematopoietic toxicities. To provide context for the value of this

modeling approach, we have used this reference set throughout the manuscript to describe the

analysis and demonstrated usage on this reference of compounds with known hematopoietic

effects before applying our method to compounds with unknown effects. Classical chemother-

apies exhibited decreased numbers across cell types and this effect was relatively stronger than

other drugs in this reference set (Fig 4E & 4F), and the cyclin-dependent kinase inhibitors

(CDKis), ribociclib, abemaciclib, dinaciclib, and palbociclib (Fig 4A, 4B, 4C & 4D) exhibited

relatively more stable cell numbers across lineages. For instance, classic chemotherapies

decreased MPP cell numbers to a greater extent and at lower doses than ribociclib or palboci-

clib. Our negative control, thalidomide (Fig 4G), had the least effect on hematopoietic cell

types across doses, and the phosphoinositide-3 kinase inhibitor (PI3Ki) pictilisib had a moder-

ate reduction of cells types.

We first applied a traditional, curve-fitting analysis to the concentration response data and

identified an IC50 value for each cell type with each drug treatment. We used these IC50 values

to plot normalized percent inhibition plots, based on Eq 1 (Fig 5). Using these relationships,

the classic chemotherapies (Fig 5E & 5F) showed a decrease in most cell types and inhibition

occurs at lower doses compared to the CDK inhibitors (Fig 5A–5D). The CDK inhibitors, abe-

maciclib, dinaciclib, ribociclib, and palbociclib, decreased cell numbers across most cell types,

with dinaciclib showing a stronger decrease at lower concentrations. The negative control, tha-

lidomide (Fig 5G), did not drastically decrease cell types. The PI3K inhibitor, pictilisib (Fig

5H) decreased most cell types. We did PCA analysis on the compounds based on the log of

their experimentally derived IC50 values (Fig 6). Ultimately, the goal of the MLTA assay is to

be predictive of clinical effects. We further explored PCA analysis as a means for identifying

components that provide a “mechanistic” explanation of how these compounds affect cytope-

nias. In this work, we were driven to understand drug mechanisms in terms of how they

affected different lineages and PCA components represented a means for investigating these

mechanisms in a multivariate fashion. Compounds were generally well separated by class, and

we observed that a single PCA component could explain the variability between compounds.

The PCA analysis highlighted that logIC50 values do not identify much variance between com-

pounds and suggested that this paradigm may only be partially predictive for clinical effects.

Percent Inhibition ¼
½drug�

½drug� þ IC50
Eq 1

QSP model fitting identified quantitative, mechanistic hematopoietic

effects of drug treatment on each cell type

Using the in vitroQSP model, we identified 26 parameters reflecting drug mechanisms for

affecting hematopoietic toxicity. We adopted the approach of parsimony in explaining the

observed treatment data: namely, for each drug, we fitted a single set of Emax and log(EC50)

parameters for each of the 13 cell types measured (Table 1 and full data in S2 Table). This is in

contrast to the alternative of fitting a cell-killing Emax, a cell-killing EC50, an anti-prolifera-

tion Emax, and anti-proliferation EC50 for each drug, for each cell type (which would result in

a total of 52 drug effect parameters). Goodness of fit plots and mean squared error across cell

types for the reference drug set (highlighted in Fig 4) are included in S1–S8 Figs. The model

was well-fitted to the experiment data for drugs in the reference set, with the exception of
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Thalidomide. Thalidomide was used as a negative control in the MLTA assay, and as expected,

an Emax model was unable to describe these cell populations because they were relatively sta-

ble during drug treatment (S7 Fig).

In this model, we allowed drugs to have both anti-proliferation as well as cell-killing effects.

However, in order to describe both effects with the most parsimonious parametric representa-

tion, we have developed the following novel formulation. The underlying assumption is that

under treatment with increasing concentrations, drugs will first manifest anti-proliferation

effects, followed by cell-killing effects at drug concentrations above certain thresholds that

result in complete block of proliferation. The formulation relies upon a single set of Emax and

log(EC50). Using the model, we estimate a total Emax value (EmaxT) for each drug on each

cell type. From EmaxT, we can infer an antiproliferation component of EmaxT < = 1 (EmaxAP

= min(1, EmaxT)) and a cell-killing component of EmaxT larger than 1 (EmaxCK = max(0,

EmaxT -1)).

As expected, the classic chemotherapies, docetaxel and paclitaxel, had relatively strong

EmaxT effects. Specifically, docetaxel induced cell-killing on HSCs (EmaxT,HSC = 1.3, EmaxCK,

HSC = 0.3), MPPs (EmaxT,MPP = 2.014, EmaxCK,MPP = 1.014), granulocytes (EmaxT,Gran =

2.762, EmaxCK,Gran = 1.762), monocyte progenitors (EmaxT,MonoP = 1.459, EmaxCK,MonoP =

0.459), and early erythroid cells (EmaxT,ErythI = 1.726, EmaxCK,ErythI = 0.726) and is consistent

with published cell-killing effects on hematopoietic progenitors [15]. Paclitaxel induced cell-

killing on HSCs (EmaxT,HSC = 1.188, EmaxCK,HSC = 0.188), granulocytes (EmaxT,Gran = 2.360,

EmaxCK,Gran = 1.360), monocyte progenitors (EmaxT,MonoP = 1.556, EmaxCK,MonoP = 0.556),

and early erythroid cells (EmaxT,ErythI = 1.466, EmaxCK,ErythI = 0.466) and is consistent with

the known cytotoxic effects of paclitaxel [16]. Comparatively, the CDKis exhibited less cell-kill-

ing effects and more anti-proliferative effects. Abemaciclib, dinaciclib, palbociclib, and riboci-

clib exhibited strong anti-proliferative effects on HSCs (EmaxT,HSC = 0.910, 1.031, 0.776, and

0.489 and EmaxAP,HSC = 0.910, 1.000, 0.776, and 0.489 respectively). Dinaciclib was the only

CDKi with a relatively strong cell-killing effect on granulocyte-lineage committed cells

(EmaxT,Gran = 2.010). (Table 1 and full data in S2 Table). The estimated anti-proliferative and

cell-killing effects of palbociclib and dinaciclib are consistent with published mechanisms

[10,17].

We additionally plotted these results as EmaxT expressions (that is, EmaxT
½drug�

½drug�þEC50
) that

illustrate drug effects at increasing concentrations (Fig 7). Paclitaxel, docetaxel, and dinaciclib

have cell-killing mechanisms (EmaxT effects > 1.0), though, the classic chemotherapies, pacli-

taxel, and docetaxel have stronger effects at lower concentrations (Fig 7). For comparison, we

plotted the equivalent information using the experimental IC50 values (Fig 5). As anticipated,

the IC50s describe cumulative effects and EmaxT expressions identify specific cell type effects.

In particular, the percent inhibition for palbociclib as shown in Fig 5D indicates a drop in cell

counts for a block of 8 cell types ranging from HSCs, MPPs through erythrocytes; alternatively,

the modeling result shown in Fig 7D indicates that palbociclib data can be (parsimoniously)

explained by anti-proliferation effects on essentially just the HSCs and GMPs.

Fig 4. Concentration-response data captures drug effects across multiple lineages. We tested the concentration-

response for ribociclib (A), abemaciclib (B), dinaciclib (C), palbociclib (D), paclitaxel (E), docetaxel (F), thalidomide

(G), and pictilisib (H). Extent of shading represents relative cell counts where black or white correspond to fewer or

equivalent cell counts relative to vehicle control wells respectively. In all cases, the x-axis represents doses in nM

concentration (0.2, 1, 5, 25, 100, 500, 2500), and each row represents a different cell species (top: Hematopoietic Stem

Cells, MPP, GMP, Gran-lin prog, Gran-lin, Monocyte prog, Monocyte-lin, Neutrophil-lin, Erythroid-lin I, Erythroid-

lin II, MK-lin, B-lin, totalViableCells, and bottom: totalDeadCells).

https://doi.org/10.1371/journal.pcbi.1007620.g004
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Fig 5. Percent inhibition plotted using IC50 values. Percent inhibition is plotted for abemaciclib (A), dinaciclib (B),

ribociclib (C), palbociclib (D), paclitaxel (E), docetaxel (F), thalidomide (G), and pictilisib (H). Percent Inhibition was

calculated using IC50 values fitted to the concentration-response data. Black to yellow shading represents increasing

inhibition of each cell type: note that IC50s for MK- and B-lin could not be determined from the treatment data, hence

these cell types are shown as having 0% suppression. The results indicate that generally a broad set of cell types are

inhibited under drug treatment. In all cases, the x-axis represents doses in nM concentration (0.2, 1, 5, 25, 100, 500,

2500), and each row represents a different cell species (top: HSCs, MPPs, GMPs, Mon, Gran, Neut, ErythI, ErythII,

MK, and bottom: B lin).

https://doi.org/10.1371/journal.pcbi.1007620.g005
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Principal component analysis (PCA) separates drugs based on their EmaxT

effects

To further understand the “mechanisms” of drug effects we again conducted PCA analysis on

the EmaxT values generated with the full 51 drug set (Fig 8 and S9 Fig) and log(EC50 values)

(S10 Fig). The parameters most correlated (> 0.1) with PC1 and PC2 are shown in Fig 8B. For

this analysis, we used anonymized drug class names to protect molecules in development.

Indeed, both of these PCA analyses better separated the compounds compared to analysis with

log(IC50) data, suggesting the ability to detect different “mechanisms” for their effects. Some

drug classes were located in PCA space proximal to each other because of similar mechanisms,

where there was separation between other drugs within the same class. For instance, docetaxel

and paclitaxel, two microtubule inhibitors from the chemotherapy class, plotted near to each

other (Fig 8) likely due to the large Emax parameters in regard to Granulocytes, but separate

from the remaining chemotherapies, bortezomib (proteosome inhibitor), cytarabine (DNA

synthesis inhibitor), and 5-FU (inhibitor of DNA synthesis). Conversely, dinaciclib was distant

from other CDK inhibitors but was proximal to docetaxel and paclitaxel, as compared to all

other drugs. Using the loadings plot (Fig 8B), it’s likely that dinaciclib was plotted distinct

from other CDK inhibitors due partially to an effect on granulocytes that was not observed

with other CDK inhibitors. Abemaciclib, ribociclib, and palbociclib plotted proximal to each

other. Further investigation of the loadings plot (Fig 8B) revealed more information about the

“mechanistic” effects of these drugs. EmaxT,Gran, EmaxT,ErythroidI, and EmaxT,GMP were rela-

tively well-correlated to principal components 1 and 2 as compared to the EmaxT values for

Fig 6. PCA of compounds using the log of experimentally derived IC50 values. A set of 46 marketed compounds,

including 15 negative controls were grouped using principal component analysis. Marker color indicates drug class.

The result shows that while almost all the compounds ranged between classic chemotherapies and negative controls on

the first principal component, the mechanisms differentiating the compound classes cannot be well identified using

the IC50 values alone.

https://doi.org/10.1371/journal.pcbi.1007620.g006
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other cell types (Fig 8B) and had the greatest variance across the compounds. The coefficients

for the remaining unlabeled variable names are included in S3 Table.

Analysis of mechanistic effects enables consideration of experimental drug

candidates

To further scrutinize novel compounds for potential hematological toxicity, we considered

their magnitude of effect per cell type relative to the reference set of compounds considered in

Fig 4. (Fig 9, and S11 Fig). Drugs in class 3 and class 6 (S11B Fig and S10B Fig) had relatively

similar EmaxT effects compared to the reference set and these effects were shifted to higher

EC50 values. The single drug in class 5 had strong cell-killing effects on early erythroid cells

and GMP cells, similar to dinaciclib, docetaxel, and paclitaxel (S11D Fig, triangles and dia-

monds respectively). The class 4 compounds (S11C Fig) had relatively little to no EmaxT

effects compared to the reference set. The PI3K inhibitors had similar anti-proliferative but

reduced cell-killing effects as compared to the reference set (Fig 9A). The remaining named

compounds tested (S11E Fig) had comparable EmaxT effects relative to the reference set.

Discussion

Here we presented an approach using a QSP model of in vitro hematopoiesis for learning line-

age-specific drug mechanisms of myelosuppression. Our ordinary differential equations

Table 1. Examples of EC50 and EmaxT parameter values for compounds with known hematopoietic toxicity effects. Thalidomide is included as a negative control

and EC50 values above the max tested dose of 2500 nM are extrapolated from model fitting.

Parameter Name abemaciclib dinaciclib docetaxel paclitaxel palbociclib pictilisib ribociclib thalidomide

EC50HSC 111.199 70.670 33.732 62.300 165.661 289.334 372.722 189.555

EC50MPP 46.123 16.681 4.706 42.378 354.142 368.700 700.610 718.402

EC50GMP 37.326 49.137 102.942 28.210 54.617 1.406 140.666 176.993

EC50GranP 33.181 548.688 127.836 98.209 0.105 93.047 21.418 128.605

EC50Gran 38.891 167.897 7.907 15.772 20.732 0.167 22.176 36.708

EC50MonoP 42.516 31.343 7.885 24.767 33.480 116.627 75.973 305.042

EC50Mono 46.187 28.381 9.030 30.004 39.336 1023.971 180.253 694.357

EC50Neut 66.213 14.199 13.699 25.092 74.956 131.773 177.785 0.302

EC50ErythI 29.184 25.770 8.136 15.356 42.506 190.664 88.607 424.670

EC50ErythII 45.082 32.781 6.299 20.180 99.537 190.999 222.347 1379.963

EC50MK 486.023 23.213 7.789 51.732 758.847 1070.272 2044.762 321.784

EC50LymP 36.507 25.655 17.633 11.696 23.977 3.805 12.339 20.077

EC50B 69.229 41.555 10.386 36.695 90.551 91.304 35.828 130.058

EmaxT,HSC 0.910 1.031 1.300 1.188 0.776 0.486 0.489 0.000

EmaxT,MPP 0.002 0.694 2.014 0.002 0.000 0.000 0.000 0.000

EmaxT,GMP 1.034 0.001 0.000 0.001 0.884 0.071 0.760 0.000

EmaxT,GranP 0.002 0.000 0.000 0.000 0.047 0.605 0.064 0.000

EmaxT,Gran 0.002 2.010 2.762 2.360 0.000 0.232 0.000 0.000

EmaxT,MonoP 0.002 0.000 1.459 1.556 0.000 1.399 0.000 0.000

EmaxT,Mono 0.231 0.482 0.198 0.258 0.142 0.039 0.195 0.000

EmaxT,Neut 0.235 0.281 0.232 0.214 0.184 0.165 0.139 0.011

EmaxT,ErythI 1.024 1.115 1.726 1.466 0.000 0.000 0.001 0.000

EmaxT,ErythII 0.033 0.071 0.016 0.071 0.118 0.136 0.108 0.000

EmaxT,MK 0.068 0.331 0.126 0.259 0.074 0.123 0.048 0.000

EmaxT,LymP 0.002 1.149 0.002 0.002 0.000 0.000 0.000 0.000

EmaxT,B 0.649 0.774 1.019 0.914 0.499 0.514 0.305 0.002

https://doi.org/10.1371/journal.pcbi.1007620.t001
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Fig 7. EmaxT expressions show relative drug effects at increasing concentrations. EmaxT effects are plotted against

concentration for abemaciclib (A), dinaciclib (B), ribociclib (C), palbociclib (D), paclitaxel (E), docetaxel (F),

thalidomide (G), and pictilisib (H). Color bars represent magnitude of EmaxT effect and concentrations are in nM.

The results show that for select targeted therapies, the treatment data can be explained by drug effects on a

parsimonious set of cell types. In all cases, the x-axis represents doses in nM concentration (0.2, 1, 5, 25, 100, 500,
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model described cell kinetics in the absence of drug treatment, as well as drug effect parameter

values, EmaxT and EC50, that explain the observed drug effects on multiple hematopoietic cell

types. The major innovation in our approach is the deconvolution and mechanistic interpreta-

tion of drug effects on multiple hematopoietic lineages including early progenitors and mature

blood cells. By this modeling approach, we were able to estimate the drug effect parameters

(EmaxT and EC50) on each cell type in the hematopoiesis pathway in a manner that is inde-

pendent of study treatment duration and enables model-based in vitro to in vivo translation

that is underway. We expect the model-based translational approach to be more predictive of

clinical outcomes, due to the fact that known differences between in vitro and in vivo hemato-

poiesis are captured in the mathematical models (including proliferation kinetics and feedback

mechanisms mediated by cytokines such as G-CSF, EPO and TPO).

The presented approach consisted of multiple analysis stages that balance the practicality of

preclinical analysis and the aim of recapitulating a complex biological system. The first compu-

tational analysis analyzed kinetic data from the MLTA assay. The assay is a robust and infor-

mative system for generating insights about cell-type specific toxicities. Our model was well-fit

to the data, but we are aware of the influence of the growing conditions of the assay on the esti-

mated parameters. For instance, the lymphocyte progenitors appear to decline in numbers.

This could be due to cell death or differentiation into more mature progenitors, or perhaps

limitations in generating a perfect physiological environment for this cell type. The gran-lin

progenitor and total dead cell populations were only moderately fit in the kinetic model. The

poor fitting for dead cells is likely due to an initial influx of dead cells after thawing that the

model could not explain through kinetic parameters and the underprediction of the gran-lin

progenitors is likely due to the nature of adapting in silico equations to in vitro conditions. It is

possible that this population needed additional rate equations or parameters, but this complex-

ity was outside the scope of this modeling effort. When estimating drug effects, we used

human donor cells that also have some variability, and thus, a range of variability/uncertainty

in the estimated parameters. We sought robust drug effect parameter estimates by using a rela-

tively high number of donor samples to minimize these effects and to perform an analysis that

is practical in a preclinical setting. We employed an Emax model that was well-suited to our

experimental system, and specifically endeavored to discover Emax parameters that described

the magnitude of drug effect on each cell type. We acknowledge that these conditions are not

appropriate for every system and we acknowledge that there are other Emax model formula-

tions. Specifically, we assumed that a drug must exert anti-proliferation effects before cell kill-

ing. We made this assumption to reduce the total number of parameters and because

mechanistically, CDK-inhibitors are already known to have antiproliferation effects [10].

However, the model could easily be extended to have separate cell killing and anti-proliferation

parameters. Additionally, for systems where the modelers anticipate very large EC50 values,

linear drug effects may be appropriate, and these effects can be encoded in the model.

We used these parameters with multivariate and comparative analyses across compounds to

anticipate if and the extent of hematological toxicity of novel compounds. More specifically, we

selected an example set and compared parameters of novel compounds in development to the

parameters associated with the sample set. We anticipated this modeling and interpretation para-

digm to generally be valuable for early stage development decisions. Multivariate analysis enabled

comparison of novel compounds based on their complete set of EmaxT values. Here we

highlighted that dinaciclib is broadly more similar to the classic chemotherapies than to other

2500), and each row represents a different cell species (top: HSC, MPP, GMP, GranP, MonoP, Mon, Neut, ErythroidI,

ErythroidII, MK, LymP, and bottom: B lin).

https://doi.org/10.1371/journal.pcbi.1007620.g007
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Fig 8. PCA separates drugs based on EmaxT effects. The 51 compounds are plotted in PCA space (A). Marker color

corresponds to drug class. Drugs and variables contributing to the top two components are plotted in PCA space (B). Note: in

figure A there is only one drug in class 5 and it is marked with an � to distinguish this compound from the remaining class 2

drugs.

https://doi.org/10.1371/journal.pcbi.1007620.g008
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CDK inhibitors. Further, cell-type-specific analysis of drug classes compared to the reference set

enabled cell-type specific consideration of within-class drugs. This analysis could provide support

for discriminating one drug class over another, or rank-order compounds within the same class

based on their toxicity profiles. For instance, the PI3K and class 4 compounds had favorable toxic-

ity parameters compared to the reference set where the single agent in class 5 had much stronger

cell-killing effects than the reference set. The platform is flexible, and the reference drug set can be

modified to reflect compounds and toxicity effects specific to a development program.

Many compounds are known to be cytotoxic to hematopoietic cells, yet, cytopenias measured

in the blood do not reflect the full extent of damage to the hematopoietic system[18]. Understand-

ing of mechanisms for myelosuppression would further inform first-in-human trials and help

anticipate possible adverse-event mitigating strategies such as appropriate cytokine therapy by

increasing evidence-based practices [3,11]. For instance, cytokine therapy is already employed for

patients receiving anti-cancer therapy. Understanding how and where the drug affects the hemato-

poietic lineages will help inform whether or not a specific cytokine therapy might mitigate poten-

tial safety concerns; for instance, a drug that results in the loss of hematopoietic stem cells would

have a different clinical risk implication from one that depletes the granulocyte lineage alone.

A mechanistic understanding of lineage-specific drug effects could inform further transla-

tional modeling. Specifically, we are actively developing an in vivo clinical model that translates

in vitro drug parameters to simulate multiple cytopenias, including thrombocytopenia, neutro-

penia, and anemia. Thus, while we are eager to translate these findings to clinical applications,

it was not within the scope of this work to further establish relationships between in vitro and

in vivo parameters. Currently, our in vitro parameters can inform a related in vivoODE model

of hematopoiesis to predict clinical cytopenias in the presence of drug treatments. This model

would additionally need pharmacokinetic parameters and models to incorporate clinically rel-

evant drug exposures. Pharmacokinetic data is published for many anticancer therapies, mak-

ing it possible to develop a clinical model and eventually create more predictive paradigms for

anticipating clinical cytopenias. This in vivomodel could inform optimal dosing schedules

considering multiple cytopenia effects and ultimately inform personalized treatment

approaches [18]. This model contains similarities to the Friberg model [8] such as multiple

maturation compartments. Yet our priority will be to compare the model to translational data

instead of benchmarking on this foundational model.

Materials, methods, and model

In vitro multilineage hematopoietic toxicity assay culture system

A custom optimized cytokine cocktail was developed using commercially available cytokines

(Peprotech, New Jersey) to facilitate simultaneous multi-lineage differentiation and self-

renewal of freeze-thawed primary human bone marrow-derived CD34+ cells in SFEM II

media (cells and media from StemCell Technologies, Vancouver). Cultures were carried out in

ultra-low attachment 96-well plates (Corning, New York) with test article added on day 0 and

cultured at 37˚C, 85% relative humidity, and 5% CO2 for six days before interrogating drug

impact via 17-parameter flow cytometry.

Fig 9. Mechanistic effects of developmental compounds per cell type compared to the reference set. EmaxT parameters per cell type are plotted against the EC50

values for each cell type. Marker shape represents cell type and marker shading represents either the reference set (black gradient, all figures), PI3K inhibitors (multi-

color, A), or class 6 (purple, B). The same data are broken into cell type plots for PI3K inhibitors: HSCs, GMP, granulocytes, neutrophils, monocytes, B-cells (C,D,G,H,

K,L); or for class 6 drugs: HSCs, GMP, granulocytes, neutrophils, monocytes, B-cells (E,F,I,J,M,N), respectively. In all plots, the x-axis represents the EC50

concentration in nM (0.01, 0.1, 1.0, 10, 100, 1000, 10000) and the y-axis represents EmaxT values from 0-4.The dashed line represents where EmaxT = 1.0. Only a subset

of cell type plots is shown. Note: only compounds with EmaxT effects> 0.1 are plotted; compounds such as the negative control, thalidomide, had no effects above 0.1

and are not shown.

https://doi.org/10.1371/journal.pcbi.1007620.g009
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Flow cytometry panel and analysis

The flow cytometry panel used to define hematopoietic subsets was composed of CD34-PECy7,

CD90-PECY5, CD38-AF488, CD371-PE, CD45Ra-BV421, CD14-BV605, CD42b-AF647,

CD10-PEDazzle594, CD235a-PerCPCy5.5 (BioLegend, California), CD15-BUV395, CD41a-

APCH7, CD71-BV786 (BD Biosciences, California), and DAPI for dead cell exclusion (Thermo-

Fisher, California). In short, Day 6 cells were harvested, FcR-blocked (FcR binding inhibitor, Ther-

moFisher), surface-stained, then analyzed in a buffer containing TruCount Control Beads using a

BD LSR Fortessa SORP fitted with a high-throughput sampler (BD Biosciences, California). Data

was analyzed in Diva 6.0.2 and exported to CSV where after all cell data was transformed to cell per

mL then normalized on a per-donor basis to untreated control wells to determine drug impact.

Measuring drug-free cell kinetics

Six replicate samples of human donor CD34+ stem cells were seeded in 96 well plates and

exposed to a customized cytokine cocktail to promote differentiation (publication forthcom-

ing). Cells were maintained in culture for six days and cell lineages were measured using flow

cytometry as described above. We further used profile likelihood to address the identifiability

of these parameters. This analysis and results are explained in S2 Text.

Model simulation and calibration to cell kinetic data without treatment

We implemented the model using the Simbiology toolbox in MATLAB, version 2019A. The

flux equations, ODEs, model parameters and model cell types are further described in S1 Text.

The model tracks 13 live cell types: hematopoietic stem cells (HSCs), multi-potent progenitors

(MPPs), granulocyte-macrophage progenitor (GMPs), granulocyte progenitor (Gran-lin

prog), granulocytes (Gran-lin), monocyte progenitors (monocyte prog), monocytes (mono-

cyte-lin), neutrophils (neutrophil-lin), early erythroid cells(eryth I), late erythroid cells (eryth

II), MK cells (MK-lin), lymphocyte progenitors (LymP) and B cells (B-lin); the total number of

dead cells is also described (totalDeadCells). The ODE system describes the various steps of

differentiation, proliferation, and renewal of hematopoietic stem cells into mature lineages.

The most mature cell type of each lineage (that is: eryth II, MK-lin, monocyte-lin, neutrophil-

lin and B-lin) are assumed to die, at a uniform rate (kDeath). In summary, the system parame-

ters of the model included cell-type specific renewal rates (denoted with ρ for each cell type),

proliferation rates (denoted with κ for each cell type), branching rates (denoted with β for each

cell type), and a uniform death rate (denoted with δ). All δ parameters are assumed to be zero

for non-terminal cell types in the absence of drug treatment. For the LymP cell type, we did

not include a renewal parameter because this parameter wasn’t necessary for describing the

kinetic data; it appears that these cells are differentiating but not proliferating in the MLTA

assay. We have used a generic representation for equations in the figures and methods section

and have provided a mapping to the specific parameter names as implemented in MATLAB

(S3 Text). We have additionally included the MATLAB SimBiology file which is accessible

through GitHub (https://github.com/jenwilson521/Multilineage_InvitroHem_Model).

The 27 system parameters of the model as well as the initial cell counts (at time = 0) for

each of the 13 cell types and total dead cells modeled were fitted to describe the mean of the

kinetic data over the 6 donors. In particular, a hybrid optimization approach combining

genetic algorithm with local search was used (as implemented in the MATLAB function, ga) to

obtain an optimal parameter set that best explain the experimental data. For the algorithm set-

tings, the maximum number of generations (MaxGenerations) and the population size (Popu-

lationSize) were set to 50 and 500 respectively. Appropriate lower and upper bounds ([LB,

UB]) were set on the parameter values and initial conditions, as follows:
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• Renewal rates: [0.5, 1] for HSCs and [0, 0.5] for all other proliferating cell types

• Branching rates: [0.001, 1] and summing up to 1 at each branching step

• Proliferation rates: [0, 4/log(2)]

• Death rate: [0, 2]

• Initial conditions: [0.1, 1] x measured cell counts @ t = 0

Multi-lineage toxicity assay (MLTA) using anti-cancer therapies

Donor material was collected and cultured as described above. The number of replicate donor

samples per drug ranged from 2–7 and varied per drug (S1 Table). Drug treatment was added at

time 0 and cells were maintained in culture for 6 days. Concentrations tested for each drug com-

pound are contained in S1 Table. Concentrations were selected to span a range that is clinically

useful. Following treatment, cell populations were measured using flow cytometry. We extracted

cell counts from flow cytometry data, normalized to bead counts, and corrected for well volume.

Data normalization and pooling across donors

Each well was normalized to the average of six vehicle control wells. For drugs that were tested

across multiple runs of the assay, vehicle-normalized donor data were pooled, and we used the

average of these pooled data for further modeling. Normalized data used as model inputs are

included in S1 Table.

Creating an in vitro model for hematopoiesis in the presence of drug treatment

We implemented drug effects using an Emax model for the drug’s effect on each cell type. The

13 maximum effect parameters (EmaxT,C) are unitless and can vary between 0 and 2 and

where a subscript, C, represents one of the previously described 13 cell types. We adapted a tra-

ditional Emax model using the equations below. We interpreted EmaxT values less than or

equal to one as anti-proliferative, and EmaxT values greater than one as indicating a cell-killing

mechanism in addition to anti-proliferation. The relationships for these effects are included in

the model using the following equations. Eq 2 describes the drug anti-proliferative effect in the

net proliferation rate for a given cell type. Eq 3 describes the cell-killing EmaxCK effect.

Anti-proliferation:

kC ¼ kC0 � 1 � minð1;EmaxT;CÞ �
½drug�

EC50C þ ½drug�

� �� �

Eq 2

Where:

kC ¼ post � treatment proliferation rate for cell type;C

kC0 ¼ basal proliferation rate for cell type;C

EmaxT;C ¼ total Emax parameter relative to cell type;C

logEC50C ¼ log of EC50 relative to cell type;C
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EC50C ¼ expðlogEC50CÞ

Cell-killing:

EmaxCK;C � ½drug�
½drug� þ EC50C

� �

� C½ � Eq 3

Where:

EmaxCK;C ¼ maxð0;EmaxT;C � 1Þ

½C� ¼ concentration of cell type;C

In the above equations, EmaxCK,C has units of (1/day) and [C] represents the concentration

of the relevant cell type.

Extracting EC50 and EMAX effects to explain drug myelosuppression

mechanisms

For estimating mechanistic parameters, we fitted the normalized concentration-response data

for each drug across 13 cell types: hematopoietic stem cells (HSCs), multi-potent progenitors

(MPPs), granulocyte-macrophage progenitor (GMPs), granulocyte progenitor (Gran-lin

prog), granulocytes (Gran-lin), monocyte progenitors (monocyte prog), monocytes (mono-

cyte-lin), neutrophils (neutrophil-lin), early erythroid cells (Eryth I), late erythroid cells (Eryth

II), MK cells (MK-lin), and B cells (B-lin), via the optimization procedure (further described

below), for each drug in question we identified a set of 26 parameters: 13 total EmaxT parame-

ters and 13 total EC50 parameters (one EmaxT and one EC50 parameter per cell type).

Towards the estimation of mechanistic parameters, we considered different formulations:

(a) weighting the objective value to prioritize fitting dead cells and (b) using regularization

methodology to encourage a parsimonious solution. We assessed the contributions of these

formulations using mean-squared error and goodness of fit plots for drugs with known mecha-

nisms. We discovered that weighting the distance between the observed and estimated value

for the dead cell populations by a factor of two was necessary to fit known cell-killing and anti-

proliferation mechanisms. Further, we used L1 regularization to penalize parameters that were

close to zero to help identify a parsimonious set of parameters to explain drug effects. That is,

we minimized the weighted objective function as shown in Eq 4, whereMdata
C and Mmodel

C are

the concentration-response data and model simulation for cell type C respectively, with the

regularization parameter set to λ = 0.1 and weights set to wtotalDeadCells = 2, and wC = 1 other-

wise. Thus, the model was incentivized to reduce any near-zero parameters to zero and explain

drug effects through a parsimonious set of EmaxT and EC50 parameters. This regularization

approach selects for the simplest solution given the data.

objective function ¼
X

C
k wC � ðM

model
C � Mdata

C Þk
2 þ l�

X

C
jEmaxT;Cj Eq 4

We solved the minimization problem of Eq 4 using a hybrid optimization approach com-

bining genetic algorithm with local search (as implemented in the MATLAB function, ga). For

the algorithm settings, the maximum number of generations (MaxGenerations) and the popu-

lation size (PopulationSize) were set to 30 and 300 respectively. We fitted the logEC50 parame-

ters (rather than EC50 values) to improve the ability of optimization algorithms in finding the
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best fitting parameter values. The following lower and upper bounds ([LB, UB]) were set on

the drug effect parameters:

• EmaxT,C: [0, 2]

• logEC50C: [-2.3, 8.5]

Principal component analysis (PCA) of 51 compound set

We conducted PCA of the drug parameters estimated from the 51 compounds using MATLAB

version 2019A (selecting the singular value decomposition algorithm and other default set-

tings), with the aim of reducing the dimensionality of the inferred parameters and helping to

identify patterns within compound classes. Because all of our EmaxT values and logEC50 val-

ues were on the same scale, our analysis required no further data scaling. We tested both PCA

using only EmaxT effects and only logEC50 parameters.

Mechanistic plots of lineage specific drug effects

We created cell-type specific plots using Python version 2.7.16.

Supporting information

S1 Table. S1Table_drugs_and_doses.xlsx: This contains drug names or anonymized names

and the doses tested in the MLTA. This is the raw data for the paper.

(XLSX)

S2 Table. S2Table_drug_emax_logEC50_params.xlsx: For all drugs, this contains parame-

ters fitted from the QSP model.

(XLSX)

S3 Table. S3Table_coefficients_from_PCA.xlsx: This contains coefficients from the PCA

analysis for all drugs.

(XLSX)

S1 Text. S1Text_in_vitro_equations.pdf: This contains all equations, rules, and parameters

as used in MATLAB Simbiology to implement the ODE model.

(PDF)

S2 Text. S2Text_ProfileLikelihood_HemeToxQSP.pdf: This is a Supplementary analysis

that addresses parameter identifiability.

(PDF)

S3 Text. S3Text_parameter_table.pdf: This is a table that maps between parameter names

used in explanatory figures and the methods section and the parameter names imple-

mented in ODEs for MATLAB.

(PDF)

S1 Fig. Goodness of fit across cell types for abemaciclib. For each cell type and total live and

viable cells, normalized cell counts from experimental data (open circles) and simulated results

(solid line) are plotted against concentration (nM). Additionally, each plot includes the mean

squared error of the difference between experimental and data plotted with the estimated

EmaxT effects.

(PNG)
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S2 Fig. Goodness of fit across cell types for dinaciclib. For each cell type and total live and

viable cells, normalized cell counts from experimental data (open circles) and simulated results

(solid line) are plotted against concentration (nM). Additionally, each plot includes the mean

squared error of the difference between experimental and data plotted with the estimated

EmaxT effects.

(PNG)

S3 Fig. Goodness of fit across cell types for palbociclib. For each cell type and total live and

viable cells, normalized cell counts from experimental data (open circles) and simulated results

(solid line) are plotted against concentration (nM). Additionally, each plot includes the mean

squared error of the difference between experimental and data plotted with the estimated

EmaxT effects.

(PNG)

S4 Fig. Goodness of fit across cell types for ribociclib. For each cell type and total live and

viable cells, normalized cell counts from experimental data (open circles) and simulated results

(solid line) are plotted against concentration (nM). Additionally, each plot includes the mean

squared error of the difference between experimental and data plotted with the estimated

EmaxT effects.

(PNG)

S5 Fig. Goodness of fit across cell types for docetaxel. For each cell type and total live and

viable cells, normalized cell counts from experimental data (open circles) and simulated results

(solid line) are plotted against concentration (nM). Additionally, each plot includes the mean

squared error of the difference between experimental and data plotted with the estimated

EmaxT effects.

(PNG)

S6 Fig. Goodness of fit across cell types for paclitaxel. For each cell type and total live and

viable cells, normalized cell counts from experimental data (open circles) and simulated results

(solid line) are plotted against concentration (nM). Additionally, each plot includes the mean

squared error of the difference between experimental and data plotted with the estimated

EmaxT effects.

(PNG)

S7 Fig. Goodness of fit across cell types for thalidomide. For each cell type and total live and

viable cells, normalized cell counts from experimental data (open circles) and simulated results

(solid line) are plotted against concentration (nM). Additionally, each plot includes the mean

squared error of the difference between experimental and data plotted with the estimated

EmaxT effects.

(PNG)

S8 Fig. Goodness of fit across cell types for pictilisib. For each cell type and total live and via-

ble cells, normalized cell counts from experimental data (open circles) and simulated results

(solid line) are plotted against concentration (nM). Additionally, each plot includes the mean

squared error of the difference between experimental and data plotted with the estimated

EmaxT effects.

(PNG)

S9 Fig. Percent variance explained by each principal component. The percent variance(left

axis) and cumulative variance (right axis) are plotted against the top six components (x-axis)
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for PCA analysis of EmaxT values.

(PNG)

S10 Fig. Principal component analysis of drugs based on the logEC50 of their effects. The

51 compounds are plotted in PCA space (A). Marker color corresponds to drug class. Drugs

and variables contributing to the top two components are plotted in PCA space (B). Note: in

figure A there is only one drug in class 5 and it is marked with an � to distinguish this com-

pound from the remaining class 2 drugs. Variance explained by each principal component is

plotted in (C).

(PNG)

S11 Fig. Mechanistic effects of developmental compounds per cell type compared to the

sample set. Emax parameters per cell type are plotted against the EC50 values for each cell

type. Marker shape represents cell type and marker shading represents either the sample set

(black gradient, all figures) or drugs in class 2 (blues, A), class 3 (purples, B), class 4 (browns,

C), class 5 (orchids, D), class 7 (green, E), or all other drugs (reds, F). The dashed line repre-

sents where Emax = 1.0.

(PNG)
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