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High Density Genetic Maps

of Seashore Paspalum Using
Genotyping-By-Sequencing and
Their Relationship to The Sorghum
Bicolor Genome

Peng Qi'?, Douglas Eudy’, James C. Schnable®?, Jeremy Schmutz®*3, Paul L. Raymer® &
Katrien M. Devos'-?

As a step towards trait mapping in the halophyte seashore paspalum (Paspalum vaginatum Sw.), we
developed an F; mapping population from a cross between two genetically diverse and heterozygous
accessions, 509022 and HI33. Progeny were genotyped using a genotyping-by-sequencing (GBS)
approach and sequence reads were analyzed for single nucleotide polymorphisms (SNPs) using the
UGbS-Flex pipeline. More markers were identified that segregated in the maternal parent (HA maps)
compared to the paternal parent (AH maps), suggesting that 509022 had overall higher levels of
heterozygosity than HI33. We also generated maps that consisted of markers that were heterozygous
in both parents (HH maps). The AH, HA and HH maps each comprised more than 1000 markers. Markers
formed 10 linkage groups, corresponding to the ten seashore paspalum chromosomes. Comparative
analyses showed that each seashore paspalum chromosome was syntenic to and highly colinear with
a single sorghum chromosome. Four inversions were identified, two of which were sorghum-specific
while the other two were likely specific to seashore paspalum. These high-density maps are the first
available genetic maps for seashore paspalum. The maps will provide a valuable tool for plant breeders
and others in the Paspalum community to identify traits of interest, including salt tolerance.

Saline soils occupy some 2.1% of the world’s total land and as much as 19.5% of irrigated land (www.fao.
org/soils-portal). Many crops are salt-sensitive and have reduced yields when grown in the presence of salt'.
Consequently, there is significant interest to breed or genetically engineer crops with enhanced salt tolerance?.
Furthermore, the quest for salt-tolerant crops will need to be accelerated over the next decades. The increased
demand for food will necessitate expansion of crop cultivation into marginal areas that are already salt-affected
or are vulnerable to salinization through seawater intrusion, storm surges and/or the salinizing effects of irriga-
tion in arid areas®. With these future challenges in mind, we have initiated research to understand the tolerance
mechanisms in the halophytic species seashore paspalum (Paspalum vaginatum Sw.). Seashore paspalum is able to
survive exposure to even ocean-strength levels of salt, and as such has become an important turf grass in coastal
and salt-affected areas of the world*. This panicoid grass is closely related to some of the world’s most important
grain crops such as maize, sorghum and many of the millets, and may provide a gateway to improving these and
other cereal crops for salt tolerance.

Seashore paspalum belongs to group Disticha, genus Paspalum, tribe Paspalae within the grass subfamily
Panicoideae. The species is largely diploid (2n = 2x=20) with a relatively small genome (C = ~600 Mb)>. Despite
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having been utilized as a turf for almost one hundred years, few genetic resources are available for seashore
paspalum. A number of diversity analyses have been conducted that used random amplified polymorphic DNA
(RAPD) markers®, amplified fragment length polymorphisms (AFLPs)” and/or simple sequence repeat (SSR)
markers>-1%, but no genetic maps are available.

As a result of the revolution in molecular technologies, analyzing the genetic variation present in any plant
germplasm, irrespective of its genome size and complexity, has become feasible!. In species with small and rela-
tively non-complex genomes, whole genome (re)sequencing has become commonplace (e.g. rice, Setaria, tomato,
soybean)'?"'°. For species with larger and/or more complex genomes (e.g. wheat, barley, maize, pearl millet,
finger millet), where whole genome resequencing may still be cost prohibitive, reduced representation genome
sequencing approaches such as restriction site associated DNA (RAD) sequencing and genotyping-by-sequencing
(GBS) have paved the way for exploring genomic diversity and structure'®-'°. The utility of these approaches is
not limited to species with high quality genome sequences, but extends to species such as seashore paspalum
that have long suffered from a dearth of molecular resources. We employed GBS to develop several thousand
single-nucleotide polymorphism (SNP) markers that segregated in an F, population from a cross between
Paspalum vaginatum accessions 509022 and HI33. These markers were used to construct the first genetic maps
in the species. A comparative analysis between seashore paspalum and Sorghum bicolor, its closest relative with a
fully assembled genome, showed a high level of colinearity between the two species.

Materials and Methods

Mapping population. An F, mapping population comprised of 226 progeny was developed by crossing
seashore paspalum accession 509022 with accession HI33. The origin of the lines is described in Eudy et al.>. The
parental lines were chosen because they exhibited a large difference in their ranking for salt tolerance?. They were
also genetically divergent. 509022 and HI33 belonged to two different genetic subpopulations as determined by
an analysis with 43 SSR markers>.

Tissue collection/DNA extraction. Healthy leaves were collected from the parents and mapping progeny,
and flash frozen in liquid nitrogen. Samples were stored at —80 °C until processed further. Frozen leaves were
ground in a TissueLyser IT bead mill (Qiagen). DNA was extracted using the DNeasy Plant Mini Kit (Qiagen) fol-
lowing the manufacturer’s instructions, except that the volume of elution buffer (BufferAE) was reduced to 65 uL.
Extracted DNA was quantified using a Nanodrop spectrophotometer and diluted to a working concentration of
50ng/uL.

GBS-library construction. DNA of the parents and progeny was digested with the restriction enzymes Pst,
Ndel and Mspl, and libraries were constructed as described in Qi et al.'. It should be noted that later experiments
showed that this three-enzyme combination was not the optimal choice to get the maximum number of markers
for the sequencing depth we obtained". Two independent libraries were made for the maternal parent (509022)
and three independent libraries were made from the paternal parent (HI33). Each library was individually quan-
tified using the dsDNA HS (High Sensitivity) Assay Kit and a Qubit 2.0 Fluorometer (Invitrogen). A total of 45 ng
of library from each of 184 progeny and from the parents were combined in a single pool. The pool of libraries
was subjected to a double Solid Phase Reversible Immobilization (SPRI) selection at the Georgia Genomics and
Bioinformatics Core (GGBC) to eliminate residual primers and DNA fragments outside the target range of 350-
900 bps. The resulting DNA was sequenced on an Illumina NextSeq platform (paired-end 150 bps). GBS reads
have been submitted to NCBI-SRA (Acc. PRINA514362).

Generation of a GBS reference and SNP calling.  Generation of a GBS reference was conducted with
the UGbS-Flex pipeline which combines different software packages with in-house perl and python scripts to
generate a GBS reference from paired-end reads’. The parameters used in ‘ustacks® and ‘ASustacks’® were -m
2,-M3and -N 1} and “m 1, -M 3 and -N 1] respectively, where ‘m’ is the minimum depth of coverage required to
create a stack, ‘M’ is the maximum distance (in nucleotides) allowed between stacks and ‘N’ is the maximum dis-
tance allowed to align secondary reads to primary stacks. ‘Ustacks’ and ‘ASustacks’ cluster reads within and across
accessions, respectively, based on the defined parameters, and identify a representative read for each cluster. We
refer to this representative read identified by ‘ASustacks’ (across accessions) as a ‘GBS tag. GBS tags derived from
‘ASustacks’ clusters that had representation from at least 50% of the accessions were selected to form the reference.
If two or more tags had >95% sequence identity, only a single tag was included in the reference'. This reduced
presence of allelic tags in the GBS reference.

Reads from each sample were aligned to either the GBS reference or to a highly fragmented seashore paspalum
genome sequence assembly (J Schnable and ] Schmutz, unpublished data) with Bowtie 2?2, and SNP calling was
done using Unified Genotyper from the Genome Analysis Toolkit (GATK)?. SNP filtering included removal of
SNPs with three or more alleles, removal of SNPs with allele frequencies <0.1 and >0.9, and removal of adjacent
SNPs, some of which had previously been shown to be artefacts derived from read misalignments'. SNPs with a
read depth of at least 8X were converted to the mapping scores A, B, H, D (A or H) and C (B or H)". SNPs within
the same GBS tag were consolidated to a single marker as described by Qi and colleagues'’. For SNPs identified
against the P. vaginatum genome sequence, SNPs located within 500 bp of each other on the same scaffold were
consolidated. Markers with less than 20% of missing data were used for genetic map construction.

Creating maternal (HA), paternal (AH) and HH datasets. Based on the segregation ratios and the
parental genotypes, the markers were divided into three sets. The ‘maternal dataset’ consisted of markers segre-
gating only in the gametes contributed by the maternal parent (genotype H in accession 509022, and A or B in
accession HI33). The ‘paternal dataset’ consisted of markers segregating only in the gametes contributed by the
paternal parent (genotype A or B in 509022, and H in HI33). The HH dataset comprised the markers segregating
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in the gametes of both parents (both parents H). Maps generated with SNPs identified using the GBS data as
reference were referred to as ‘GBS maps’ and those using the paspalum genome sequence were referred to as
‘Genome maps. Chi-square tests were conducted to test markers for deviation from the expected 1:1 ratio (mark-
ers heterozygous in the maternal or paternal parent only) or 1:2:1 ratio (markers heterozygous in both parents).
Markers with a p-value > 1e-10 were selected for map construction. This threshold, which was determined empir-
ically, provided a balance between removing markers with highly distorted segregation ratios that interfered with
linkage group formation, and retaining chromosomal regions in the linkage map that carried factors affecting
Mendelian segregation ratios. Markers that were heterozygous in one of the parents and appeared homozygous in
the other parent, but segregated A, B and H across the progeny were discarded. The segregation ratios suggested
that the apparent homozygous parental genotype carried a null allele and was, in fact, hemizygous (a- or b-).

Because we mapped in an outcrossing species, the linkage phase of the markers was unknown. Furthermore,
whether an allele was designated as ‘A’ or ‘B’ depended on the allele present in the reference used for SNP call-
ing. To make the data suitable for analysis in MAPMAKER, which does not have an algorithm to deal with
outcrossing species, we modified the genotypic datasets. Please note that the modifications are different and
have been described separately for HA/AH and for HH datasets. In the maternal (HA) and paternal (AH)
datasets, ‘B’ scores in markers that were initially scored as ‘B’ in one parent and ‘H’ in the other parent were
recoded to ‘A We then used the script ‘outcross-F1-AH-HA.py’ (http://research.franklin.uga.edu/devoslab/
scripts-used-genetic-mapping) to duplicate the scores for each marker and reverse the marker scores in one copy
of the duplicated dataset (‘H” was changed to ‘A, and ‘A’ was changed to ‘H’). Markers with reversed scores were
identified with the suffix ‘r’ (exemplified in Table S1). The final dataset consisted of two different genotypic scores
for each marker, and led to the formation of double the number of linkage groups expected based on the chromo-
some number. Pairs of linkage groups consisted of the same markers scored in different ways (Table S1). Only one
linkage group per pair was used to generate a genetic map.

To group and order markers with contrasting linkage phase in the HH dataset using MAPMAKER, we
modified the HH dataset using the script ‘outcross-F1-HH.py’ (http://research.franklin.uga.edu/devoslab/
scripts-used-genetic-mapping). The modifications are outlined below and illustrated in Table S2. First, we dupli-
cated the scores for each marker across progeny so that each marker had two scores per progeny. Then the entire
marker set was duplicated as demonstrated in Supplementary Table S2. For one copy of the marker set, we kept
the original scores in the first set of progenies, and changed ‘H’, ‘C’ and ‘D’ scores to missing data (‘—’), and ‘A
and ‘B’ scores to ‘H’ in the second set of progenies. For the second copy of the marker set, we changed the scores
as above in the first set of progenies and kept the original scores for the second set of progenies (Supplementary
Table S2). These markers were given the suffix ‘d’ at the end of the marker name. We then duplicated the entire
marker set again and changed ‘A’ scores to ‘B’ and vice versa in one of the copies (Supplementary Table S2).
Markers with reversed ‘A’ and ‘B’ scores were given the suffix ‘r’ in the marker name. The final dataset consisted
of four different genotypic scores for each marker. For markers that originated from a single chromosome, we
expected linkage analysis to yield four linkage groups, each comprising the same markers scored in different ways
(Supplementary Table S2). Marker ordering and genetic map construction was then conducted for one of the four
‘replicated’ linkage groups.

Genetic map construction. Maternal, paternal and HH genetic maps were constructed using a modified
version of MAPMAKER, essentially following the approach described by Qi et al."’. Population type was set as
‘backcross’ (BC) for the maternal and paternal data sets, and as ‘F2 intercross’ for the HH data set. Three progeny
showed patterns consistent with sample contamination and were removed from the dataset. Where possible, map
orders of markers that cosegregated were inferred from the physical positions of orthologous loci identified in
the Sorghum bicolor (v2.0) genome. This was achieved by identifying the sorghum orthologs for each GBS tag
as outlined under ‘Comparative Map Construction, followed by manual reordering of cosegregating Paspalum
markers based on their order in the sorghum genome. Map distances were calculated in centiMorgans (cM) using
the Kosambi function.

Comparative map construction. For SNP markers identified against the GBS reference, the GBS tags
were used as queries in BLASTN searches using default parameters to the Sorghum bicolor genome v2.0*. For
SNP markers identified against the paspalum genome sequence, regions spanning 500 bp on either side of the
SNP were excised from the paspalum genome sequence and used as queries. For tags that returned hits at an
e-value < le-5, the first and second best hits were recorded. The top hits were used to determine comparative
relationships. Markers that were located on orthologous chromosomes in seashore paspalum and sorghum were
considered syntenic. Markers that were present in the same order on the orthologous chromosomes were defined
as colinear. If the top hit did not fit the general pattern of observed synteny or colinearity, the second best hit was
also considered in the comparative analysis. The locations of the top and, where relevant, secondary hits in the
sorghum genome were plotted against the map positions of the SNP markers in seashore paspalum. The cen-
tromere locations annotated in the sorghum genome sequence were superimposed on the comparative maps to
delineate the putative centromere locations in seashore paspalum.

Results

GBS-tags. The ‘ASustacks’ derived reference set, filtered to include tags present in at least 50% of the samples,
contained a total of 13,184 sequence tags. Using these reference tags and after all filtering and consolidation steps,
a total of 4078 SNP markers sequenced to a depth of >8X and with less than 20% of missing data was obtained for
map construction. The number of markers for the HA, AH and HH maps was 1740, 1148 and 1190, respectively.
When the highly fragmented seashore paspalum genome was used as reference for SNP calling, 1885 HA, 1654
AH and 1290 HH markers were obtained after filtering and consolidation.
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GBS Reference P. vaginatum Genome Reference
Maternal Paternal Maternal Paternal
(HA) (AH) HH (HA) (AH) HH
Marker No. 284 192 160 287 296 191
LGl Map length (cM) 147 139 121 160 143 129
Marker No. 248 127 181 269 177 161
LG2 Map length (cM) 124 115 131 124 127 82
Marker No. 236 94 158 249 185 146
L3 Map length (cM) 129 123 93 130 122 124
Marker No. 184 125 92 198 179 119
LG4 Map length (cM) 125 113 76 127 111 123
Marker No. 154 141 83 196 177 95
1G> Map length (cM) 107 118 134 98 117 123
Marker No. 194 95 106 215 125 128
LG6 Map length (cM) 95 87 78 103 83 74
Marker No. 81 92 91 102 124 115
LG7 Map length (cM) 102 90 87 95 86 104
Marker No. 89 58 95 93 110 100
LG8 Map length (cM) 80 78 113 80 79 81
Marker No. 155 86 93 161 111 107
LG9 Map length (cM) 107 74 80 106 73 72
LG 10 Marker No. 115 138 131 115 170 128
Map length (cM) 103 87 97 103 87 101
Marker No. 1740 1148 1190 1885 1654 1290
Total Map length (cM) 1119 1022 1010 1125 1028 1013

Table 1. Marker number and length for the generated genetic maps.

Paspalum genetic maps. Seashore paspalum is largely self-incompatible and highly heterozygous and,
hence, mapping was done using a pseudo-testcross approach in the F; generation. For all maps generated, 10
linkage groups (LGs) were obtained, corresponding to the 10 seashore paspalum chromosomes. The number
of markers and genetic length of each linkage group for each of the six maps are given in Table 1. The ‘Genome’
linkage maps are presented in Figs 1 (maternal map), 2 (paternal map) and 3 (HH map), and the ‘GBS’ maps
are presented in Supplementary Figs S1 (maternal), S2 (paternal) and S3 (HH). For clarity, only one marker per
group of cosegregating markers was included in the map charts. Full maps, including cosegregating markers,
with genotypic scores are given in Supplementary Table S3. Sequence information for the mapped SNPs is given
in Supplementary Table S4. Regions exhibiting highly significant segregation distortion (p <0.01) were found on
LG 1, LG 9 and LG 10 in the maternal map (Fig. 1 and Supplementary Fig. S1), and on LG 1, LG 2, LG 3,LG 6
and LG 9 in the paternal map (Fig. 2 and Supplementary Fig. S2). Regions of severe segregation distortion were
unique to each of the parental maps. Because of score duplications and conversions, segregation distortion was
not calculated for the HH maps.

Comparative relationships with sorghum.  Of the 4078 GBS tags mapped, 2311 (56.7%) returned at least
one hit in the Sorghum bicolor genome, the closest diploid species to seashore paspalum with a reference genome
sequence, at an e-value threshold le-5. Comparative datapoints were obtained for 80.2% of the SNP markers
identified against the P. vaginatum genome. The percentage of comparative markers that were in syntenic position
was similar for the two references (GBS reference: 69.7%; genome reference: 67.3%). A comparison by linkage
group across the six maps, however, showed that the percentage of markers with a putative syntenic ortholog in
the sorghum genome was significantly lower for LG 5 than for the other linkage groups (37.2% for LG 5 versus, on
average, 69.4% for the other LGs for the GBS reference; 37.4% for LG 5 versus, on average, 67.4% for the other LGs
for the genome reference; Supplementary Table S5). LG 5 was the only linkage group for which the percentage
syntenic markers deviated from the mean by more than 1.5 standard deviations in all six maps. The majority of
syntenic markers mapped to colinear positions (GBS reference: 95.3%; genome reference: 92.5%). The number
of comparative markers, syntenic markers and colinear markers per chromosome is given in Supplementary
Table S5. While we recorded the top two blast hits, 98.5% of the colinear locations corresponded to the top hit.
Dot plots and circos diagrams showing the comparative relationships of P. vaginatum with sorghum are presented
in Fig. 4 (dot plots; maternal and paternal Genome maps) and in Supplementary Fig. S4 (dot plots and circos
diagrams; all maps).

Each seashore paspalum linkage group largely corresponded to a single sorghum chromosome (Fig. 4 and
Supplementary Fig. S4), and paspalum linkage groups were therefore oriented and numbered according to their
synteny with sorghum. A known inversion in sorghum LG 4 spanning the region 57.81 to 64.36 Mb? differenti-
ated sorghum from all seashore paspalum LG 4 maps (maternal, paternal and HH). The number of comparative
markers encompassing the inversion varied from three in the paternal GBS map to 26 in the maternal Genome
map. A second inversion, also specific to sorghum, extended from position 59.58 Mb until the end of LG 7%.
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Figure 1. Maternal genetic map comprised of markers that were heterozygous in 509022 and homozygous in
HI33. SNP markers were identified using a fragmented seashore paspalum genome sequence as reference. Only
one marker per set of cosegregating markers is shown. Markers that deviated significantly from the Mendelian
segregation ratio of 1:1 are indicated with * (deviation at the 5% level), ** (1% level) or *** (0.1% level) next to
the marker name.

This inversion was also seen in all sorghum - paspalum comparative maps and was characterized by between
five (maternal GBS map) and 14 comparative markers (paternal Genome map). Two small rearrangements on
LG 1 (corresponding to the region 63.37-64.30 Mb in sorghum) and LG 5 (corresponding to the region 14.29-
15.12 Mb in sorghum) had not previously been identified in any grass comparative analyses and, hence, were
likely paspalum specific. The LG 1 inversion was identified in three of the six maps (AH Genome, HA GBS and
AH GBS maps) by either three or four comparative markers. In the other three maps, the number of markers was
insufficient to confirm the presence of this inversion. The LG 5 inversion was identified by four markers only in
the HA Genome map. As for LG 1, this region on LG 5 was not covered by sufficient markers to determine the
presence of a rearrangement in the other maps.

Discussion

Generation of HH maps in a pseudo-testcross population. A typical approach for linkage map-
ping in an obligate outcrossing species (F, generation) is to generate maternal and paternal maps that capture
recombination in the female and male parent, respectively, using a pseudo-testcross design. While software
such as JoinMap?® and OneMap?’ can integrate the parental maps with markers that are heterozygous in both
parents, uncertainty about the linkage phase increases marker order ambiguity. Furthermore, we prefer to use
MAPMAKER!?® which has superior error handling ability?, so we opted to generate separate maternal and
paternal maps. However, because the GBS technology yielded more than 1000 SNP markers that were heterozy-
gous in both parents, we endeavored to also construct F,-type linkage maps. To ensure that markers that were
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Figure 2. Paternal genetic map comprised of markers that were homozygous in 509022 and heterozygous in
HI33. SNP markers were identified using a fragmented seashore paspalum genome sequence as reference. Only
one marker per set of cosegregating markers is shown. Markers that deviated significantly from the Mendelian
segregation ratio of 1:1 are indicated with * (deviation at the 5% level), ** (1% level) or *** (0.1% level) next to
the marker name.

derived from the same chromosome would link together irrespective of their linkage phase, we duplicated all
genotypic scores across progenies (referred to as progeny sets 1 and 2) and across markers (referred to as marker
sets 1 and 1d). We then converted the genotypic scores as exemplified in Supplementary Table S2. A second round
of duplication and conversion (Supplementary Table S2) was carried out to account for the fact that the parental
allele composition was unknown. This led to each chromosome being represented by four linkage groups, each
consisting of the same mixture of markers from marker sets 1, 1d, 1r and 1dr. For example, if a linkage group
consisted of ‘M1, M2d, M3r, M4dr’ with M1-4 being markers, the three corresponding linkage groups comprised
markers ‘M1d, M2, M3dr, M4r, ‘M1r, M2dr, M3, M4d’ and ‘M1dr, M2r, M3d, M4’ Marker ordering and genetic
map construction was done for only one of the linkage groups. The colinear order of the comparative markers
showed that this mapping approach resulted in valid maps. The rationale for generating maternal, paternal as well
as HH maps was to allow future mapping of QTL for traits that were segregating only in the female parent, only
in the male parent, or in both parents, respectively.

GBS reference vs. genome reference. One of the advantages of GBS is that this methodology can be
applied to species without a reference genome. Because not all GBS reads are assembled into reference tags,
possibly because of allelic differences or sequencing errors, more SNPs will be identified when a whole-genome
sequence assembly is used as reference compared to a GBS reference®®. However, we wondered whether this was
still true when the available reference genome sequence was highly fragmented. The seashore paspalum genome
assembly available when we conducted our investigation consisted of a total of 117,840 scaffolds, only 1855 of
which were larger than 50kb (J. Schmutz and J. Schnable, unpublished data). Following comparable SNP filter-
ing approaches, the number of markers identified using the fragmented genome sequence as reference was 8%
higher for the maternal map and for the HH map, and 44% higher for the paternal map compared to using the
GBS reference. Because of marker consolidation, we could not directly compare SNP markers identified with the
two methods. We therefore determined the number of seashore paspalum scaffolds that could be anchored by
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Figure 3. HH genetic map comprised of markers that were heterozygous in both 509022 and HI33. SNP
markers were identified using a fragmented seashore paspalum genome sequence as reference. Only one marker
per set of cosegregating markers is shown.

the Genome maps and GBS maps. Anchoring to the GBS maps was done by BLASTN analysis (e-value < 1e~°) of
GBS tags corresponding to mapped SNPs against the seashore paspalum genome sequence. On average, 52% of
the anchored scaffolds were common to both maps (Fig. 5 and Supplementary Fig. S5). Although 8% to 44% more
SNP markers were mapped in the Genome maps than in the GBS maps, around 16% of the anchored scaffolds
were secured to only the GBS maps. This can likely be explained by the fact that the genome sequence we used was
an early draft from which not all allelic regions had been filtered out. The presence of two alleles in the reference
used for aligning the GBS reads leads to the reads corresponding to each allele in a heterozygous individual being
aligned to a different scaffold. Consequently, the two alleles are scored as monomorphic®.

When marker numbers were compared between the Genome and GBS maps per linkage group, there were
significant differences between linkage groups, but these differences were not consistent across the maternal,
paternal and HH maps. For example, the marker difference was highest (more than one standard deviation differ-
ent from the mean) for LG 5 and LG 7 in the maternal map, for LG 3 and LG 8 in the paternal map, and for LG 2,
LG 3, LG 4 and LG 7 in the HH map. Contrary to the overall pattern of lower marker numbers in the GBS maps
than in the Genome maps, the reverse was observed for LG 2 and LG 3 in the HH maps.

Marker numbers in the maternal map were some 14% higher than in the paternal maps when the genome
sequence was used as reference. This difference increased to 52% when the GBS reference was used. The overall
lower number of markers in HI33 (paternal parent) compared to 509022 (maternal parent) in both the Genome
map and the GBS map suggests that fewer loci were heterozygous in HI33 than in 509022. However, it is unclear
why marker number differences between the maternal and paternal maps were considerably higher in the GBS
maps compared to the Genome maps.

Relationship between the seashore paspalum and sorghum genomes. The use of
methylation-sensitive restriction enzymes for GBS ensured that the GBS tags were enriched for genic regions,
and hence could be used for comparative analyses. Some 55% of GBS tags had hits in the closest sequenced rel-
ative, sorghum. We expect that the number of genic tags is actually higher because tags derived from promoter
regions and introns would likely be too diverse to have homology across species. This is supported by the fact that
1kb paspalum fragments, extracted from the paspalum genome sequence to span 500 bp on either side of mapped
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Figure 4. Dot plots showing the relationship between the seashore paspalum genetic maps (HA-Genome and

AH-Genome) (X-axis) and the sorghum genome sequence (Y-axis). Markers flanking centromere locations in
sorghum are indicated in red.

HA-Genome HA-GBS

Figure 5. Venn diagram showing the number of scaffolds from the fragmented seashore paspalum reference
genome assembly that were anchored to the HA Genome and HA GBS maps.

SNPs, were able to detect putative orthologs in sorghum at frequencies of, on average, 80.2%. When we reduced
the region extracted from the paspalum genome sequence to 150 bp (75bp on either side of a SNP), the percent-
age of query sequences that had blast hits (e-value < 1e-5) in sorghum was reduced to 42.7%. Overall, a high level
of gene order conservation was observed between seashore paspalum and sorghum. Each seashore paspalum
chromosome corresponded to a single sorghum chromosome. Only four intrachromosomal inversions were
identified. The two largest inversions (on LG 4 and LG 7) had previously been shown to have occurred in sor-
ghum?. The two smaller putative inversions on LG 1 and LG 5 likely occurred in the seashore paspalum genome.

The comparative analyses showed almost complete coverage of the sorghum chromosomes by seashore
paspalum markers (Supplementary Fig. S6). For most linkage groups, the most distal markers were located less
than 5% from the ends of the sorghum chromosomes. Notable exceptions were LG 2 in the HH Genome map,
which lacked ~18% of the short arm of the corresponding sorghum chromosome, LG 9 in the AH GBS map,
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which lacked ~17% of the short arm of the corresponding sorghum chromosome, and LG 6, which lacked the
entire sorghum short arm in both the HH Genome and HH GBS maps. Sorghum chromosome 6 is acrocentric,
and the majority of the short arm consists of pericentromeric heterochromatin®'. A low frequency of loci that are
heterozygous in both parents combined with the presence of fewer genic tags on this chromosome likely account
for the absence of the short arm of LG 6 in the HH maps. GBS tags were almost completely absent from the cen-
tromeric regions in sorghum (Fig. 4 and Supplementary Fig. S4). This can be explained by (1) the majority of GBS
tags being derived from genic regions and (2) repeat sequences being largely species-specific*>. These marker-free
regions, together with the centromere locations in sorghum were useful in determining the location of putative
centromeres on the seashore paspalum genetic maps (Fig. 4, Supplementary Fig. S4 and Supplementary Table S3).

LG 5 had significantly fewer comparative data points than the remaining LGs. In earlier comparative analyses,
fewer rice BACs could be anchored to sorghum chromosome 5 than to the other sorghum chromosomes*. We
hypothesize that this orthology group contains a higher proportion of fast-evolving genes than other orthology
groups. One such group of fast-evolving genes are disease resistance genes, which are overrepresented on both
sorghum chromosome 5 (16% of annotated disease resistance genes*!) and on its ortholog in rice, chromosome
11 (25% of annotated disease resistance genes®®). We anticipate that paspalum LG 5 also carries a disproportionate
number of disease resistance gene clusters.

Conclusions

GBS made it possible to generate the first genetic maps of seashore paspalum, an obligate outcrossing species,
comprising several thousand SNP markers. Three maps were generated for each linkage group that represented
recombination events in the female parent, the male parent, and both parents. The markers were distributed
genome-wide and enriched for the genic regions of the paspalum genome. The maps demonstrated that seashore
paspalum is largely colinear with sorghum, despite representing the more distant Paspaleae clade. These genetic
maps will be useful for future quantitative trait loci (QTL) mapping in seashore paspalum and improvement of
the paspalum genome sequence. Furthermore, the comparative relationship will help to identify regions and,
ultimately, genes that vary between seashore paspalum, a halophyte, and its glycophytic relatives such as sorghum,
maize and Setaria.

Data Availability
GBS reads have been submitted to NCBI-SRA (Acc. PRINA514362). SNPs with flanking sequence and the geno-
typic scores for each SNP marker are provided as Supplementary Information.
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