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Plant-to-plant volatile-mediated communication and subsequent induced
resistance to insect herbivores is common. Less clear is the adaptive signifi-
cance of these interactions; what selective mechanisms favour plant
communication and what conditions allow individuals to benefit by both
emitting and responding to cues? We explored the predictions of two non-
exclusive hypotheses to explain why plants might emit cues, the kin selec-
tion hypothesis (KSH) and the mutual benefit hypothesis (MBH). We
examined 15 populations of sagebrush that experience a range of naturally
occurring herbivory along a 300 km latitudinal transect. As predicted by
the KSH, we found several uncommon chemotypes with some chemotypes
occurring only within a single population. Consistent with the MBH, chemo-
typic diversity was negatively correlated with herbivore pressure; sites
with higher levels of herbivory were associated with a few common cues
broadly recognized by most individuals. These cues varied among different
populations. Our results are similar to those reported for anti-predator
signalling in vertebrates.
1. Introduction
Many organisms perceive reliable cues that indicate an increased risk of being
attacked and adjust their behaviour in response to these cues. It is well estab-
lished that animals including ants, birds and mammals emit alarm cues that
conspecifics and other co-occurring species use to evaluate the risk of predation
[1,2]. These cues involve olfactory, acoustical and visual modes of information
exchange. Animal behaviourists debate whether the emission of these cues rep-
resents intentional communication on the part of the sender or eavesdropping
by the receiver. The alarm cues of species that co-occur, such as mixed-species
flocks of birds, have often converged such that all species recognize and
respond to the alarm calls of the other co-occurring species [3–5].

When plants are attacked by herbivores, they emit a complex blend of
volatile organic compounds (VOCs) into the surrounding environment [6].
These damage-induced VOCs contain information regarding the emitter’s con-
dition, including the severity and location of damage and the identity of the
attacker (reviewed in [7]). Undamaged tissues of the emitting plant perceive
these volatile warning cues and respond by increasing defences to reduce sub-
sequent damage [8–10]. Nearby plants can ‘eavesdrop’ on these cues and
induce or prime their own resistance responses [11]. Perceiving and responding
to publicly available chemical information may give neighbouring plants a
competitive advantage; this eavesdropping may represent a costly consequence
of within-plant communication mediated by volatiles.

Plant-to-plant communication is common; over 50 species across diverse
taxonomic groups respond to volatile cues [12,13]. The adaptive significance
of these volatile-mediated interactions is not well understood. The benefits

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2021.1790&domain=pdf&date_stamp=2021-10-27
mailto:pgroftisza@ucdavis.edu
https://doi.org/10.6084/m9.figshare.c.5672376
https://doi.org/10.6084/m9.figshare.c.5672376
http://orcid.org/
http://orcid.org/0000-0002-0217-4253
http://orcid.org/0000-0002-5202-7657


royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

288:20211790

2
for receiver plants that perceive and respond to reliable
cues is intuitive and has been supported by a few empirical
studies (e.g. [9,14,15]). This benefit to neighbours raises the
question—why would emitters provide this information
to their neighbours with whom they probably compete?
Indeed, the selective mechanisms favouring the emission of
volatile cues are less obvious. It is possible that emitting vola-
tile cues is a non-adaptive consequence of damage or that the
cues mediate other interactions such as repelling herbivores
[16,17] or attracting the predators and parasites of herbivores
[18,19]. Volatile cues convey information over relatively short
distances and may primarily function to allow individual
plants to coordinate and integrate their own defences [20].
Two adaptive hypotheses have been proposed to explain
the conditions that could favour emission of informative
volatile cues to other individuals in the population and the
diversity of those cues: the kin selection hypothesis (KSH)
[21] and the mutual benefit hypothesis (MBH) [22,23].

Plants may avoid the consequences of alerting neighbours
by using relatively private communication channels that can
be perceived most effectively by individuals that are closely
related (kin). Under the KSH, information exchange is
improved or even exclusive to related individuals through
the private channels of communication where informative
signals have a genetic basis; consequently, emitters benefit
by increasing their inclusive fitness [24]. Decades of exper-
imental work with sagebrush (Artemisia tridentata) have
shown it to be a model system for studying volatile-mediated
induced resistance [8,25–28] and have important implications
for plant fitness [15]. Recent field studies of sagebrush found
that plants were able to distinguish volatile cues from itself or
closely related individuals, a form of kin recognition [21]. It
was later determined that related individuals often shared
the same non-plastic chemotype and that chemotypes were
highly heritable [29]. Additionally, it was found that the effi-
cacy of communication and subsequent strength of induced
resistance were dependent on the chemotypes of the emitter
and receiver plants [29]. Receiver plants exposed to the
induced volatiles of emitter plants of the same chemotype
experienced less herbivory compared to cues from a different
chemotype than the receiver. Here, the ‘private-channels’ are
represented by chemotype-dependent communication used
to privatize information exchange so as to only benefit kin
and minimize the interception of signals by competitors.
When herbivore pressure is relatively low, the costs of provid-
ing information to non-kin should favour the evolution of
private communication channels.

In contrast with the KSH, information is exchanged freely
between individuals through open channels of communi-
cation under the MBH. Induced resistance is elicited in the
majority of plants in a patch from the damage-induced cues
of just one or a few damaged plants regardless of their relat-
edness. All individuals benefit by sharing universally
understandable information about the risk of attack [22,23].
Herbivores are predicted to leave such defended patches
[22,30]. Goldenrod (Solidago altissima) individuals from popu-
lations that had been exposed to herbivores for 12 years
converged on a common cue that all individuals could per-
ceive and respond to [23]. Cues from individuals belonging
to populations that had been experimentally protected from
herbivory were not recognized by all members of the popu-
lation but were more effective at inducing resistance in kin
of the same genotype [23].
Here, we investigated the predictions of the KSH and the
MBH using survey data from 15 populations of sagebrush
(A. tridentata ssp. vaseyana) along a 300 km transect. For each
population, we estimated herbivore pressure by quantifying
leaf damage on a subset of plants and calculated chemotype
diversity indices based on the abundance and distribution of
chemotypes of the same plants used to estimate the damage.
In particular, we addressed the following predictions:

(i) when the risk of herbivory is low, selection should
favour private channels of communication and a diver-
gence of chemotypes predicted by the KSH; and

(ii) when the risk of herbivory is high, selection should
favour open channels of communication converging
on fewer chemotypes predicted by the MBH.

Both hypotheses predict that populations which experience
higher levels of herbivory should be associated with relatively
fewer chemotypes than populations which experience lower
herbivore pressure. Finding a negative correlation between
these variableswould lend support to the hypothesis that differ-
ent selection processes (i.e. MBH and KSH) are simultaneously
operating but at different levels of herbivory, leading to diver-
gent patterns of chemotypic diversity. We discuss our findings
in the light of the experimentalwork byKalske et al. [23], specifi-
cally the adaptive potential of plant-to-plant signalling and the
underlying selection mechanisms. Because of the limitations of
observational studies regarding causal inferences, we also dis-
cuss several alternative hypotheses that could explain the
observed patterns of chemotypic diversity in relation to herbi-
vore pressure reported here.

2. Methods
(a) Survey of herbivore damage
We estimated herbivory on a single branch from 20 haphazardly
selected sagebrush plants from 15 sites along a latitudinal trans-
ect, spanning over 300 km (figure 1). Herbivore damage was
determined by counting the number of leaves with visible chew-
ing or scraping damage and dividing this value by the total
number of leaves on a subsection of the branch. At least 60
leaves were observed for each branch. This method was estab-
lished previously by the authors to demonstrate plant-to-plant
communication and induced resistance in sagebrush [8,21,25]
and was shown to positively correlate with leaf area removed
[31]. After the damage was estimated, a subset of branches
from each site were shipped (in approx. 5 days) to the University
of Eastern Finland for volatile collection and chemotype assign-
ment. Previous work by P. Grof-Tisza, D.J. Blande, M. Freeman
and R. Karban 2019, unpublished, showed that shipping does
not affect chemotype determination.

(b) Chemotype determination
Fresh leaves (0.05–0.15 g) were finely chopped, placed into a
20 ml glass vial (Agilent Technologies, USA) and sealed. Vials
were then subjected to direct headspace sampling using an
Agilent G1888A network headspace sampler connected to an
Agilent 6890 N network gas chromatograph and Agilent 5973
inert mass selective detector (MS; Agilent Technologies, USA).
Gas chromatography (GC) conditions and details regarding
mass spectrometric analysis and compound identification are
provided in the electronic supplementary material. Chemotype
assignment methods are described elsewhere [32], but briefly,
chemotype assignments were based on motifs of discriminating
dominant compounds determined by GC–mass spectrometry
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(GC–MS) in the overall emission blend. For example, plants that
emitted β-thujone or α-pinene as the dominant compound by the
percentage of total emitted compounds were assigned to the β-
thujone and α-pinene chemotype, respectively (electronic sup-
plementary material, figure S1). These data (n = 202) were
combined with those from a pilot study (n = 98), where a
subset of the populations was sampled in 2016 (electronic sup-
plementary material, table S1). For this earlier study, we used
dynamic headspace sampling in the field (described in [29])
and did not estimate leaf damage. Details of this pilot study
are included in the electronic supplementary material.
Chemotype assignment was not affected by the method used.

(c) Chemotype diversity indices
We calculated two chemotype diversity indices, the Shannon–
Wiener index and richness, for leaves from 20 bushes of each
population. Our adaptation of the Shannon–Wiener diversity
index reflected the number of unique chemotypes and how
evenly chemotypes were distributed among those individuals
[33]. Richness was measured as the number of chemotypes
identified within each population.

(d) Historic surveys of herbivore damage
To demonstrate the relative temporal consistency of herbivore
pressure across populations, we included damage estimates
across several years for three sites: Mt Rose, Sagehen and
SNARL. We estimated the proportion of leaves on each plant
that showed any signs of chewing damage. Over this time
frame, chrysomelid leaf beetles (Trirhabda pilosa and Monoxia
grisea), caterpillars (particularly Aroga websteri), many generalist
grasshoppers and mule deer (Odocoileus hemionus) caused most
of this damage. Trirhabda pilosa have a tendency to outbreak and
are capable of killing sagebrush plants through defoliation [34]
(electronic supplementary material, plate S1). Several outbreaks
have occurred within the surveyed populations [25]. Even in
non-outbreak years, insect herbivores can reduce the fitness of
sagebrush plants [35]. Damage by herbivores of other feeding
guilds was not included in these estimates because their
damagewasmore cryptic or ephemeral. Our estimates of chewing
damage varied in terms of the number of plants analysed, the
number of total leaves counted and the researcher involved.
Owing to this variation in how these datawere collected, they pro-
vide a qualitativemeasure of the risk experienced by plants at each
population, but they were not used for statistical analysis.

(e) Statistical analysis
We assessed the influence of chemotypic diversity on the pro-
portion of damaged leaves using generalized linear models
(GLMs) in R (v. R-4.0.3) [36]. Specifically, we used a log-linked
gamma GLM to account for the truncated Shannon–Wiener
diversity index, which only contained positive numbers. We
used a negative binomial error distribution with a log-link to
model richness, based on the counts of chemotypes at each
site. To account for spatial autocorrelation of herbivory, we
used site-level averages of plant damage. Chemotype frequencies
within the sampled populations of sagebrush, a long-lived plant
(greater than 100 years), were unlikely to change between
sampling events. Consequently, we did not include time in our
model to account for the pilot study and main sampling events
occurring in separate years. Because both hypotheses predict
that herbivory would be negatively correlated with the diversity
indices, we performed a one-tailed test for the regression coeffi-
cient and provided the corresponding prediction interval.
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3. Results
Previously, two chemotypes had been characterised for this
subspecies [29,37]. We found 11 chemotypes across the latitu-
dinal transect in addition to those that had previously been
reported (figure 1). This increased the known number of che-
motypes in this subspecies of A. tridentata by 450%. A more
detailed description of these chemotypes is provided in the
electronic supplementary material, figure S1. Two undeter-
mined chemotypes were identified in the Valentine
population. These chemotypes were included as unique che-
motypes in the calculation of the diversity indices. This was a
conservative measure designed to ensure that chemotypic
diversity was not underestimated at this site. One sample at
Gold Lake resulted in a poor-quality chromatogram and
was subsequently omitted.

We found a strong negative relationship between the pro-
portion of damaged leaves in our surveys and both chemotype
diversity metrics (Shannon–Wiener index: GLM gamma (log),
β =−3.62, 95% confidence interval (CI) (−4.76, −2.35), T =−
5.17, p < 0.001; richness: GLM nbinom (log), β =−2.13, 95%
CI (−3.58, −0.64), T =−2.34, p < 0.001; figure 2). Sites with
high levels of chewing damage by herbivores had low diver-
sity of volatile chemotypes. Sites with relatively low levels of
damage had relatively higher diversity of volatile chemotypes.
Plants at the Mt Rose site had the lowest chemotypic diversity
and experienced the highest levels of damage from T. pilosa
beetles. To assess the influence of this site on our parameter
estimates, we omitted Mt Rose and refitted the models.
Although the strength of the relationship decreased without
this site, it remained significant (Shannon–Wiener index:
GLM gamma (log), β =−2.71, 95% CI (−4.96, −0.35),
T =−1.94, p = 0.03; richness: GLM nbinom (log), β =−3.43,
95% CI (−6.48, −0.30), T =−1.88, p = 0.03).
Historical surveys indicated that levels of herbivory
among populations have remained relatively consistent over
time (figure 3). While levels of chewing damage varied
among individual plants within each population and among
the different populations of this subspecies, the relative rates
of damage experienced by plants of the three populations
for which we have estimated damage were consistent over
multiple years. The populations at Mt Rose, Sagehen and
SNARL generally received higher, intermediate and lower
levels of chewing damage by herbivores, respectively.
4. Discussion
Emission of volatiles by plants is analogous to alarm calls
associated with some animal systems insofar as it elicits
responses in eavesdropping individuals leading to reduced
risk. For example, the emission of volatiles by damaged sage-
brush causes other branches on the damaged plant as well as
branches on neighbouring plants to induce resistance to
herbivory [8]. Alarm calls in animals are thought to have
evolved through kin selection [38,39]. The cost to the emitter
by exposing itself to a predator is outweighed by the benefit
of alerting close relatives that share genes. Several studies
with disparate species have demonstrated that individuals
will only signal the presence of a threat if kin are nearby
[40,41]. Often the intensity of signalling is proportional to
the risk [42,43]. For example in primates, the low risk may
be conveyed by non-verbal eye movement, where only a
nearby receiver such as a mate or kin will receive the mess-
age; high risk is conveyed through loud vocalizations that
alert a broader audience including unrelated conspecifics
and heterospecifics [42,44]. Many animal species can perceive
and respond to anti-predator signalling of heterospecifics
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[1–4]. This is in part owing to the convergence of warning
signals. For example, the acoustic similarity of mobbing
calls in passerine birds enables naive individuals to correctly
interpret calls of other species [5].

Our survey of 15 sagebrush populations revealed that
those populations which experienced high levels of herbivory
had lower diversity of chemotypes while those populations
which experienced low levels of herbivory had higher diver-
sity of chemotypes. There are several possible causal
explanations for the pattern that we observed. First natural
selection could favour convergence of signals when the risk
of herbivory is great and divergence of signals when risk is
low; we will explore this causal hypothesis first. Alternatively,
causation could proceed in the opposite direction and the
diversity of emissions could cause differences in rates of her-
bivory and we will consider this hypothesis later.

There are at least two mechanisms that have been pro-
posed in the plant–herbivore literature by which the risk of
herbivory can shape signal diversity and both predict the pat-
tern that we observed [21–23]. The MBH predicts that at high
risk, plants should converge on a few signals that all or most
individuals can recognize [22,23]. The KSH predicts that at
low risk, plant signals should diverge so that only kin can
benefit from private communication [21]. Our results were
consistent with both hypotheses. Because we do not know
the frequencies of chemotypes of these populations over an
evolutionary time-scale, we have no direct evidence of
population-level convergence of chemotypes; this limits our
ability to make inferences. It is interesting to note that the
MBH makes predictions about reducing high signal diversity
at high herbivory levels and the KSHmakes predictions about
increasing signal diversity at low herbivory levels. These two
hypotheses are thought to operate at different spatial scales
[21–23]. The MBH primarily operates between patches,
where patches comprised resistant individuals deter herbi-
vores or cause them to abandon the patch. The KSH operates
at smaller within-patch scales, where only the emitter and
nearby relatives capable of responding to emitted cues benefit.

Sagebrush plants respond most effectively to volatiles
from plants of the same chemotype [25,29,44]. We found
that all but one plant sampled from the Mt Rose population
(19 out of 20), had the Mt Rose chemotype. Most individuals
in those populations like Mt Rose that have experienced high
levels of damage are probably able to perceive and respond
to the few distinct VOC cues found at these sites. However,
the particular chemical nature of the cues was different for
different populations that experienced high herbivory. For
example, at Mt Rose, most individuals had a volatile profile
dominated by grandisol, while at nearby Spooner Summit,
most had a profile dominated by β-thujone. One possible
explanation for this pattern is that individuals in these at-
risk populations have not settled on a cue because it is the
most effective for repelling the herbivores or because it travels
most effectively in that environment. Rather, this pattern
suggests frequency-dependent selection of cues so that most
individuals share the same cue and are, therefore, able to
exchange information with a majority of their neighbours.
In the future, it would be interesting to test this hypothesis
and to examine the changes in the spatial distribution and
frequencies of cues in sites where dominant cues turnover
(e.g. the area between Mt Rose and Spooner Summit).

Our survey results corroborated the experimental study by
Kalske et al. [23]; in populations of goldenrod exposed to her-
bivores, selection favoured open channels of communication,
converging on fewer VOC signals universally recognized by
all individuals as predicted by the MBH [22]. Goldenrod indi-
viduals benefited more by eavesdropping on the damage that
all neighbours were experiencing relative to the costs of
providing this information to their competitors. Conversely,
in populations of goldenrod experimentally protected from
herbivores, selection favoured private channels of communi-
cation and a divergence of VOC signals as predicted by the
KSH. Under these conditions, goldenrod individuals presum-
ably benefited less by sharing information with neighbours
compared to the costs of eavesdropping by competitors.

Both the MBH and the KSH assume that herbivore inten-
sity causally influenced chemotypic diversity, but the inverse
is equally plausible. High variability (diversity) in plants can
reduce herbivory [45,46]. A population of sagebrush individ-
uals that share a single chemotype are likely to have low
diversity of defensive and nutritional traits, producing con-
ditions allowing herbivores to flourish [47]. In addition,
many of the volatile compounds emitted by sagebrush
[29,37,48] deter attacking arthropods [49,50] and are known
to specifically repel those that feed on sagebrush [51]. More-
over, greater volatile diversity may correlate with higher in-
leaf concentrations of these compounds, potentially reflecting
their level of defence. Previous work in other systems with
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volatile chemotypes found a large overlap between in-leaf
and headspace compounds, except for those that do not
readily volatilize (e.g. sesquiterpenes) and those that are bio-
synthesized in response to damage [52].

Manipulative experiments are needed to distinguish
between these alternative causal explanations that are inde-
pendent of volatile-mediated plant communication (i.e. KSH
and MBH) for the relationship between chemotype diversity
and herbivory. Long-term experimental suppression of herbi-
vores could be established across populations that differ in
levels of chemotypic diversity to test the hypothesis that herbi-
vore pressure drives the diversity of volatile chemotypes
and not the reverse. For example, if pesticide applications
increased chemotypic diversity at Mt Rose relative to controls,
this would be evidence of the KSH. Similarly, generating con-
ditions leading to high densities of T. pilosa (and accordingly,
high herbivory) in sagebrush populations historically associ-
ated with low levels of herbivory would test the MBH.
Here, we would expect a decrease in chemotypic diversity
associated with experimentally elevated levels of herbivory
relative to a control. Complementary experiments would test
the specificity of chemotypes at eliciting communication
between emitting and receiving plants of different chemotype
combinations. Under the MBH and the open communication
model, we would expect to see widespread recognition of
emitted VOCs. Under the KSH and the private communi-
cation model, we would expect to see selective recognition,
such that the strongest response should occur between geneti-
cally related individuals with the same chemotype. These
experimental manipulations over an appropriate time-scale
to affect changes in chemotypic frequencies across populations
of long-lived sagebrush plants are not easily accomplished.
Identifying plant–herbivore systems more amenable to
experimentation would provide a more tractable means to rig-
orously test the effects of herbivore risk on induced volatiles
used in plant-to-plant signalling and to identify the drivers
of warning signal diversity.

In conclusion, there are parallels between our finding of a
negative association between the diversity of volatile chemo-
types and levels of herbivory and anti-predator signalling in
animals. As has been found in some animal systems, the priv-
acy of alarm signals used is dependent on risk level and
relationship between emitter and receiver [2–5,41–44]. Warn-
ing signals may be as subtle as gestures between kin or as
public as loud vocalizations that are perceived by conspeci-
fics and heterospecifics alike in cases of substantial threat
[42,44]. In this latter case of high risk, alarm signals may con-
verge as seen in mixed flocks of birds [2–5]. In sagebrush, this
may be analogous to the reduction of chemotypic diversity as
seen in populations that were associated with the highest
levels of herbivory. This work suggests that regardless of
kingdom, when risk is high and equally shared among indi-
viduals, selection may favour cooperative interactions via
open channels of communication mediated by universally
recognized warning signals. Conversely, when risk is low
and not equally shared, selection may favour private chan-
nels of communication and diversification of warning signals.
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