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ABSTRACT OF THE THESIS

Learning-Based Trimap Generation for Video Matting

by

Kyoung-Rok Lee

Master of Science in Computer Science

University of California, San Diego, 2010

Professor Truong Q. Nguyen, Chair

Object extraction is a critical operation for many content-based video applica-

tions. For these applications, a robust and precise extraction technique is required. This

thesis proposes an efficient and accurate method for generating a trimap for video mat-

ting. We first segment the foreground using motion information and neighboring pixel

coherence via graph cuts. Also, we estimate the parameters of a Gaussian Mixture

Model for the foreground and background with segmented foreground and estimated

static background. Next, we classify the pixels of each frame into models by performing

maximum likelihood classification and generate a trimap which is an image consisting

of three regions: foreground, background and unknown. Finally, we use the trimap as

a guide in spectral matting for video matting. Our experimental results show that the

proposed method yields accurate and natural object boundaries.

vii



Chapter 1

Introduction

Extraction of moving objects from a video is an important issue in computer

vision and video processing. With object extraction, we are able to composite a scene

with background and foreground objects. The background can be a natural scene or

computer generated scene. The extracted object can be used for scene analysis such

as object recognition and classification. However, accurate foreground estimation is

an inherently ill-posed problem because there are a large number of unknowns in the

computation. Noise and imperfect motion estimation can affect segmentation results.

Although difficulty is found in the general case, the task can be simplified if the scene

has a static background with moving objects. Such situations can be found in many

applications, including video conferencing, security videos, video-based tracking, com-

positing video and motion capture. This is the focus of this thesis.

The simplest way to extract a moving object in a static background is using a

frame difference. Pixel colors in the current frame are compared to the colors in the

previous frame. If the colors are similar, they are classified as ”background” pixels and

if not, they are classified as ”foreground” pixels. However, the accuracy is affected by

noise, as noisy pixel can be incorrectly classified as an object pixel. Also, it fails to

detect an object when the object stops moving since the pixel difference is zero. For

example, the method only detects the moving head while ignoring the stationary body.

1
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Figure 1.1. Block diagram of the proposed algorithm.

Finally, if the surface of the object is flat, color differences exist only near the object’s

silhouette and the method yields a hole in the detected object.

Many computer vision and video processing research groups have produced use-

ful algorithms for robust and accurate object segmentation in video. One of the most

recent and relevant work is Simple Interactive Object Extraction (SIOX) proposed by

(Friedland et al., 2006). They utilize color characteristics for foreground segmentation

assuming that the foreground objects are perceptually different from the background.

The method creates a set of color representative for foreground and background by clus-

tering the color space driven by user input. Then it assigns all the image pixels to

foreground or background by a weighted nearest neighbor search. The algorithm yields

comparatively accurate object boundaries and copes well with noise. However, a draw-

back of the method is that it only yields a binary mask for segmented objects. Every

pixel is determined as either foreground or background. Simple binary classification is

not a good approach to segmentation since sometimes boundary pixels cannot be classi-

fied as either foreground or background. For example, complex structures such as hair

or fur are hard to be determined whether they belong to foreground or background. To
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obtain accurate and natural result, we should consider partial coverage of a background

pixel around the foreground object’s boundary, which might include transparency and

motion blurring of the foreground element. For accurate separation, image and video

matting techniques have been extensively studied (Chuang et al., 2002; Levin et al.,

2008b; Smith and Blinn, 1996). However, they require either user interaction such as

a trimap which is an image consisting of three regions of foreground, background and

unknown, or special setting, e.g. uniform background color and color restriction.

In this thesis, we propose an efficient and accurate object extraction method

without any user interaction or extra information. Figure 1.1 shows a diagram of our

proposed algorithm. Our method consists of three modules. The graph cuts module

segments objects using motion information and neighboring pixel coherence via graph

cuts. The GMM Module estimates the parameters of a Gaussian Mixture Model from

a segmented object and estimated background, and classifies pixels into each model by

performing maximum likelihood classification, generating a trimap. Finally, the trimap-

guided spectral matting module creates an alpha matte for video using the trimap as a

guide.

The remainder of the paper is organized as follows: Chapter 2 describes the

graph cuts algorithm for foreground segmentation, Chapter 3 describes learning-based

trimap generation, and Chapter 4 presents the trimap-guided spectral matting method.

Experimental results are provided in Chapter 5 and the thesis is concluded in Chapter 6.



Chapter 2

Foreground Object Segmentation via

Graph Cuts

2.1 Motion map

We use optical flow for estimating the inter-frame motion at each pixel in a video

sequence (Lucas and Kanade, 1981). Optical flow provides a vector field that shows the

direction and magnitude of intensity changes from one image to the other. Given two

neighboring frames, previous frame I t−1 and current frame I t, we can estimate motion

using the optical flow method. We create a motion map that presents the regions where

reliable motion exists. To get a more reliable result, an additional validity bit is added to

each pixel in order to indicate which motion vector of the pixel is relevant (Chuang et al.,

2002). If the color difference between the pixel in the frame warped by the estimated

motion vector and the pixel in the current frame is greater than a certain threshold, this

validity bit is set to 0, which implies unreliable. Otherwise, the validity bit is set to 1,

which implies that the pixel’s motion vector is trustworthy. In the motion map, a pixel is

labeled as 1 if the magnitude of motion vector is larger than a threshold and its validity

bit is 1. We ignore the direction of motion vector since we are interested only in the

4
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(a) (b)

(c)

Figure 2.1. Foreground segmentation via graph cuts (Nana sequence). (a) original im-

age; (b) motion map; and, (c) binary map of segmented foreground.

existence of motion.

Mp = Bp ∧ (‖Op‖ > τm) (2.1)

where Bp is the validity bit, Op is the motion vector, and τm is the threshold. Fig-

ure 2.1(b) shows the motion map of a frame using the proposed approach.

2.2 Graph cuts

Motion information alone is insufficient to segment moving objects. As shown

in Figure 2.1(b), the motion map is too sparse and inaccurate to identify the moving ob-

jects. A denser motion map is needed for accurate identification of moving objects. For

the foreground segmentation, we use the graph cuts algorithm to overcome inaccurate

and noisy motion measurement.

Every pixel p ∈ P in a frame is assigned a label fp in some label set A, where
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fp = 1 for the moving object and fp = 0 for the background. We hypothesize that the

pixels that have motion are likely to be object pixels, and the pixels are likely to have

the same label if neighboring pixels have similar color. Our goal is to find a labeling f

that assigns each pixel p ∈ P a label fp ∈ A satisfying that f is both consistent with the

motion information and piecewise smooth. The problem can be formulated in terms of

energy minimization.

E(f) = γEs(f) + Ed(f) (2.2)

where

Es(f) =
∑
{p,q}∈N

V{p,q}(fp, fq) (image smoothness term) (2.3)

Ed(f) =
∑
p∈P

Dp(fp) (motion data term) (2.4)

Parameter γ is the relative weight of the motion data and image smoothness terms and

N is a set of all pairs of 4-connected neighboring pixels. The value of γ specifies how

strongly neighboring pixels are correlated. A large value of γ causes pixels to group

strongly with nearby pixels with similar color, and the result will contain larger homo-

geneous clusters. On the contrary, if γ is small, then nearby pixels bond weakly and the

output will look much more like that obtained by simply thresholding the motion map.

Thus, if an input motion map contains a lot of noise, a large value of γ is needed, in

order to smooth over the larger clusters of noisy pixels.

The image smoothness term Es measures spatial coherence between nearby pix-

els by penalizing discontinuities.

V{p,q}(fp, fq) = e−‖Ip−Iq‖
2/σ2

(2.5)

This term V{p,q} indicates a penalty for discontinuity between pixel p and pixel q. The

function V{p,q} is large when nearby pixels are similar, and it approaches zero when the

color difference is much greater than σ.

The motion data term Ed indicates how appropriate a label fp is for the pixel p

given the observed data. We specifically use the motion map from the previous section
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as the observed data by using

Dp(fp) =

 (K −m)fp +m

m

ifMp = 1

ifMp = 0
(2.6)

where

K = max
∑
{p,q}∈N

V{p,q}(fp, fq) (2.7)

where M is the motion map. m is used for minimizing the risk of false motion estima-

tion. Even if a pixel has no motion, the pixel still has a possibility of being an object

pixel, andEs will capture spatial consistency and will connect constant intensity regions

with moving pixels. The term m makes it happen by assigning the small amount of en-

ergy to the pixel which has no motion. When the motion estimation is accurate, m can

be smaller. On the other hand, m has to be larger when motion estimation is inaccurate.

If the pixel has motion, the pixel is likely to have value 1 as its label fp.

The moving object segmentation can be achieved by finding the labeling that

minimizes the energy E and this can be solved by the graph cuts algorithm (Boykov

et al., 2001; Boykov and Kolmogorov, 2004; Howe and Deschamps, 2004; Ahn and

Byun, 2006).

Figure 2.2 illustrates the graph formed for a 3×3 image and the basic segmenta-

tion operations performed in graph cuts. The graph cuts algorithm begins by building an

undirected graph. The graph is defined as a set of nodes and a set of edges connecting

neighboring nodes. The nodes of the graph represent image pixels. There are also two

terminal nodes: a source node and a sink node, and they represent ”object” and ”back-

ground” labels, respectively. A node in the graph is connected to exactly six other nodes:

the source, the sink, and 4-connected neighbors. Each edge determines how strongly the

nodes are connected to one another.

The weights of the neighbor edges between pixel nodes are determined by Equa-

tion (2.3) and the edges between the pixel nodes and the source and sink can be obtained

from Equation (2.4). Once the graph is constructed, the push-relabel algorithm is used
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(a)
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(b)

t
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(c) (d)

Figure 2.2. A simple foreground segmentation example for a 3x3 image. (a) an image

with motion; (b) a graph where the weight of each each is reflected by the edge’s thick-

ness; (c) graph cut achieved by finding the labeling minimizing Equation (2.2); and, (d)

binary map for foreground.

for separating the source from the sink (Goldberg and Tarjan, 1986). The results of

foreground object segmentation are shown in Figure 2.1(c).

As shown in Figure 2.1(b), when only the optical flow method is used to estimate

foreground, the boundaries are not specific and estimation performance is poor. As a

result, the motion map is very ambiguous to determine the foreground. However, when

the graph cuts method is used, the quality of foreground segmentation is improved. This

is demonstrated by Figure 2.1(c).



Chapter 3

Trimap Generation Using a

Color-Learning Method

3.1 Background estimation

Background estimation is not an easy task since many factors can affect the re-

sults such as gradual illumination changes and camera noise. For example, an object’s

appearance might change slightly resulting in the case where some object pixels pro-

duce less pixel difference than the differences produced by artifacts. To distinguish real

movement and unexpected artifacts is an important task for background detection. In

our approach, we assume that the object pixels produce a large difference at least once

over a certain time period while the static background does not. First, we partition a

frame into 25 equal sections and accumulate the color changes in each section for a cer-

tain time interval. We assume that at least one of the sections has no foreground objects,

which means it is purely static background. We choose the section that has minimal

change and save its deviation per pixel as e, assuming that the minimal change is caused

only by illumination changes or camera noise. We use e as a threshold to determine

which pixels belong to the static background. The background estimation is based on

the pixel’s recent history. Pixels in each frame at current time t are compared with the

9
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(a) (b) (c)

(d) (e) (f)

Figure 3.1. Foreground and background color distributions (Nana and Natan sequence).

(a) Nana frame; (b) Nana foreground color distribution; (c) Nana background color

distribution; (d) Natan frame; (e) Natan foreground color distribution; and, (f) Natan

background color distribution.

previous N frames (N=15 in this thesis). If the difference is larger than e in any of the

frames, the pixel is regarded as an object pixel and it is pruned from the background

map. e is updated when the portion of background pixels in a frame becomes less than

35% to adapt to new illumination changes. Figure 3.3(a) shows background samples

after background estimation.

3.2 Trimap generation

We assume that the foreground and background colors are mostly distinctive.

In this assumption, each color distribution can be characterized by a Gaussian Mixture

Model (GMM). We estimate two GMM classes, Go and Gb, using the segmented object
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Figure 3.2. GMM cluster algorithm.

and estimated background. Figures 3.1(b) and (e) show the foreground color distribu-

tion of Nana (Figure 3.1(a)) and Natan (Figure 3.1(d)) sequences, whereas Figures 3.1(c)

and (f) show the corresponding background color distribution. Note that the foreground

colors and background colors are separately distributed. For example, in the Nana se-

quence, skin color and background color seem similar, but in Lab space these two colors

can be differentiated from each other.

For the GMM process, we use Lab color space (Labs, 1996), which is a con-

ceptually uniform color space. The number of clusters in each model is estimated by

using the expectation-maximization (EM) algorithm (Dempster et al., 1977) together

with an agglomerative clustering strategy (Bouman, 1997). The estimation is based on

the Rissanen order identification criterion known as minimum description length (MDL)

(Rissanen, 1983). Figure 3.2 shows the overview of clusting operation. For building a

model, the algorithm first initializes the number of clusters and cluster parameters. It
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calculates the cluster means by choosing a proper number of samples from training data,

and the covariances are assigned as the covariance of the whole data set. After this ini-

tialization, the algorithm enters a loop and combines the two nearest clusters until only

one cluster remains. The algorithm saves the set of clusters when a minimum of the Ris-

sanen criterion occurs. The estimated cluster parameters are used in the classification

process.

After the GMM process, we classify current frame pixels into the classes, Go

and Gb.

Tp =


1

0

0.5

if P (Ip|Go) > P (Ip|Gb) and |P (Ip|Go)− P (Ip|Gb)| > δG

if P (Ip|Go) < P (Ip|Gb) and |P (Ip|Go)− P (Ip|Gb)| > δG

otherwise

(3.1)

The term P (·) in Equation (3.1) is the log likelihood and it describes on how the pixel

Ip fits into the given two GMM classes.

P (Ip|G) = log(
K∑
k=1

πkS(fp|G)) (3.2)

where K is the number of subclasses in class G and the probability density function for

the pixel S(Ip|G) is given by

S(Ip|G) =
1

(2π)c/2
|Rk|−1/2 exp(−1

2
(Ip − µk)>R−1k (Ip − µk)) (3.3)

where the parameters are defined as

c : color channels

πk : the mixing coefficient represents the probability that a pixel has
subclass k.

µk : the c dimensional spectral mean vector for subclass k.

Rk : the c×c spectral covariance matrix for subclass k.
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δG in Equation (3.1) is a small constant which is required for determining the uncertain

region. In Figures 3.1(e) and (f), brown and blue colors are dominant in the foreground

color distribution, while the background color is generally green. However, since seg-

mented object includes some of the background pixels near its boundary, the foreground

color distribution contains green color. Thus, the boundary becomes an uncertain re-

gion. If the absolute difference between P (Ip|Go) and P (Ip|Gb) is less than or equal to

δG, the pixel belongs to the uncertain region. Figure 3.3 shows the results of the trimap

generation process for the two sequences. Note that generated trimaps are reasonably

accurate. The complex area such as hair in Figure 3.3(c) is determined as an uncertain

region since the thin hair may be transparent and it includes both foreground and back-

ground colors. Also, object boundary pixels and pixels that have similar color become

uncertain regions.
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(a)

(b)

(c)

Figure 3.3. Trimap generation (Nana and Natan sequence). (a) estimated background;

(b) segmented foreground from Chapter 2; and, (c) generated trimap.



Chapter 4

Trimap-Guided Spectral Matting

4.1 Closed-form natural matting

Accurate object extraction is an important task in computer vision and video pro-

cessing because it applies to image editing and video production. Many matting meth-

ods have been proposed to extract a high quality matte from video sequences. Alpha

matting or digital matting was first introduced by (Porter and Duff, 1984). Figure 4.1

shows a result of alpha matting. The method uses an opacity value alpha matte to con-

trol the proportion of foreground pixel values Fi and background pixel values Bi that

contribute to a single image pixel value Ii(i = (x, y)). The operation is summarized by

the compositing equation:

Ii = αiFi + (1− αi)Bi (4.1)

where αi is the foreground opacity. The alpha matting task is challenging since it is an

ill-posed problem; we must estimate not only the foreground color and the background

color, but also the alpha matte from a single color measurement.

One state of the art alpha matting methods is the Closed-form natural matting ap-

proach proposed by (Levin et al., 2008a). This method derives a cost function from local

smoothness assumptions on foreground and background colors F andB, and shows that

the terms F and B can be eliminated in the compositing equation, yielding a quadratic

15
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(a) (b) (c)

Figure 4.1. Alpha matting method. (a) the original image; (b) the alpha matte; and, (c)

the composite image and zoomed-in area of the image.

cost function in α, which can be solved as a sparse linear system. It is assumed that each

F and B is a linear combination of two colors over a small window (3×3) around each

pixel, which is referred to as the color line model (Omer and Werman, 2004). Under

this assumption, α values in a small window w can be expressed as

αi =
∑
c

acIci + b, ∀i ∈ w (4.2)

where c indexes the three color channels and ac and b are constants in the window. Thus,

the matting cost function (Levin et al., 2008a) is defined as

J(α, a, b) =
∑
j∈I

∑
i∈wj

(
αi −

∑
c

acjI
c
i − bj

)2

+ ε
∑

ac2j

 (4.3)

where ε
∑
ac2j is included for numerical stability. It is necessary that the image pixels

Ii are all constant values in the window w in order to determine ac and b uniquely.

To simplify this equation, let us define matrices Gj ∈ R(|wj |+|c|)×4 and αj ∈

R(|wj |+|c|). The first |wj| rows of Gj are given by
[
Ic>i 1

]
, i ∈ wj and the last three

rows are given by [
√
εId3 0], where Idn is an identity matrix of size n×n. The first

|wi| entries of αj are given by αi, i ∈ wj and the last three entries are all zeros. With

this notation, J(α, a, b) can be rewritten as

J(α, a, b) =
∑
j∈I

‖Gjvj − αj‖2 (4.4)
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where vj =

 acj

bj

. We can estimate vi for each window wj , as

vj = arg min
v
‖Gjvj − αj‖2 = (G>j Gj)

−1G>j αj (4.5)

Now, ac and b are eliminated from the cost function, yielding a quadratic cost in

parameter α alone:

J(α) =
∑
j∈I

[
α>j (Id|wj |+3 −Gj(G

>
j Gj)

−1G>j )αj
]

= α>Lα

(4.6)

where L is an N×N matrix, whose (i, j)th element is

L(i, j) =
∑

q|(i,j)∈wq

(δij −
1

|wq|
(1 + (Ii − µq)T(Σq +

ε

|wq|
Id3)

−1(Ij − µq))) (4.7)

δij is the Kronecker delta, Σq is a 3×3 covariance matrix, and µk is a 3×1 mean vector

of the colors in a window wk. The matrix L is called as the Matting Laplacian and

the constructed cost function is quadratic in the alpha mattes. Consequently, this cost

function can be minimized by solving a linear system.

4.2 Trimap-guided spectral matting

A new approach called Spectral Matting is proposed by (Levin et al., 2008b) as a

further analysis of natural matting. The approach generalizes the compositing equation

by assuming that the input image is modeled as a convex combination ofK image layers

Ii =
K∑
k=1

αki F
k
i (4.8)

The αki parameters are the matting components of the image. The paper proposed that

the smallest eigenvectors of the matting Laplacian L span the individual matting com-

ponents of the image, therefore recovering the matting components of the image can

be done by finding a linear transformation of the eigenvectors. They first initialize αk
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by applying a k-means algorithm on the smallest eigenvectors, and projecting the set of

binary vectors that indicate each resulting cluster onto the span of the eigenvectors. The

matting components are found by minimizing an energy function∑
i,k

|αki |ω + |1− αki |ω, where αk = Eyk (4.9)

However, one challenge in the method is determining the proper number of mat-

ting components for a given image. It is difficult to choose the number of matting

components automatically for a given video sequence. Also, performing a k-means al-

gorithm to determine the best combination of eigenvectors is time consuming. To solve

these problems, (Chan et al., 2010) uses guided information to obtain the alpha matte.

Given a trimap T , the task reduces to determining a linear combination vector y that

minimizes the cost.

min
y
‖T − Ey‖22 (4.10)

where E is a matrix of eigenvectors of L and y is a linear combination vector. A regu-

larization term is added to T to penalize the cost when the value α is not close to either

0 or 1. The cost function becomes

min
y
‖T − Ey‖22 + λ

∑
i∈I

(−α2
i + αi) (4.11)

where α = Ey. Placing this constraint into the objective function, we have

min
y
‖T − Ey‖22 + λ(−‖Ey‖22 + 1>Ey) (4.12)

where 1 denotes a vector of ones. Equation (4.12) is quadratic and can be solved by

a standard sparse linear system solver such as the MATLAB backslash operator. Fig-

ures 5.2 and 5.3 show the results for trimap-guided spectral matting.



Chapter 5

Results

All presented experiments are performed on an Intel Core2Duo 2.53GHz proces-

sor with 4GB RAM. We tested two sample sequences, Nana and Natan. The execution

time depended on the resolution of the sequence. For a 480 x 270 sequence, the total

computation time is 74 seconds; graph cuts, GMM, and the trimap-guided spectral mat-

ting algorithms took 2, 12, and 60 seconds, respectively. For comparison, the spectral

matting (Levin et al., 2008a) took about 7 minutes per frame. Figures 5.2 and 5.3 show

some results for video matting using a learning based trimap; original images, generated

trimaps, estimated object mattes, and composites into a new scene using the extracted

object based on the object matte. In Figure 5.1 we compared our result with a conven-

tional binary segmentation method, SIOX (Friedland et al., 2006). The proposed method

yields more accurate boundary of object since spectral matting is ideal for segmenting

complex structures such as hair or fur. Another advantage of our method is that this

algorithm doesn’t require any user interaction at all while other methods require user-

defined trimap selection or special setting. More experiments and results of our method

can be found at: http://videoprocessing.ucsd.edu/∼ultralkl/projects/VideoMatting/
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(a)

(b)

(c)

Figure 5.1. Comparison between proposed method and SIOX. (a) original image and

zoomed-in area of the original image; (b) proposed method and zoomed-in area of the

proposed method; and, (c) SIOX and zoomed-in area of SIOX.
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(a)

(b)

(c)

(d)

(e)

Figure 5.2. Results of Nana sequence: (a) original frames; (b) trimaps; (c) alpha mattes;

(d) composites; and, (e) zoomed-in areas of the composites.
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(a)

(b)

(c)

(d)

(e)

Figure 5.3. Results of Natan sequence. (a) original frames; (b) trimaps; (c) alpha mattes;

(d) composites; and, (e) zoomed-in areas of the composites.



Chapter 6

Conclusion

This thesis proposes a video matting method based on trimap generation in video

with stationary background. The method produces more accurate and natural results

than the currently prevailing approach based on binary segmentation. The graph cuts

method overcomes the effects of noise by aggregating information from a local neigh-

borhood around each pixel, while exploiting motion information. The learning method

using GMM generates reliable trimaps and trimap-guided spectral matting yields accu-

rate and high quality mattes which be used for a variety of applications. The proposed

method is tested on two sequences, Nana and Natan, and yields accurate object bound-

aries which are robust to motion estimation error.

However, the computation time of this method is still slow since it includes

some sophisticated algorithms that require intensive computation. Due to the size of

the Laplacian matrix L is W×H , where W and H are the width and height of the im-

age, the method requires a lot of memory which limits the input video’s spatial size.

Also, it often fails in some cases; when the motion of the object is too small to obtain

a reasonable motion map, where background and foreground are not distinctive. Fig-

ure 6.1 shows two examples of false extraction. In the case of Figure 6.1(a), the method

failed to generate a correct trimap because colors present in the jeans are similar to those

present in the background. Figure 6.1(b) shows an appropriate trimap of a person, but

23
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(a)

(b)

Figure 6.1. Limitations. (a) original frame, trimap, and alpha matte of Natan1 sequence;

and, (b) original frame, trimap, and alpha matte of Natan2 sequence.

the boundaries are blurry and inaccurate in the matte. If we take advantage of video

information, such as motion information and temporal coherence, and then use that in-

formation as additional constraints for spectral matting, we can achieve better results. In

the future, we plan to extend the proposed method to video with non-static background

using global motion estimation. In addition, we intend to apply the proposed work to

complicated video sequences which may fail to satisfy the requirement of distinctive

colors in the background and foreground. Finally, we will investigate depth estimation

techniques to generate multiple alpha layers from a single video sequence. With accu-

rate segmentation of alpha layers, we will be able to reconstruct the geometry of a scene,

ultimately being able to convert from 2D to 3D stereo video.
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