
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Sequencing-based computational methods for identifying impactful genomic alterations in 
cancers

Permalink
https://escholarship.org/uc/item/5b86v8nc

Author
Joseph, Isaac Charles

Publication Date
2016
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5b86v8nc
https://escholarship.org
http://www.cdlib.org/


Sequencing-based computational methods for identifying impactful genomic
alterations in cancers

by

Isaac Charles Joseph

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computational Biology

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Lior Pachter, Chair
Professor Joseph Costello

Associate Professor Haiyan Huang
Professor Anthony Joseph

Fall 2016



Sequencing-based computational methods for identifying impactful genomic
alterations in cancers

Copyright 2016
by

Isaac Charles Joseph



1

Abstract

Sequencing-based computational methods for identifying impactful genomic alterations in
cancers

by

Isaac Charles Joseph

Doctor of Philosophy in Computational Biology

University of California, Berkeley

Professor Lior Pachter, Chair

Recent advances in collecting sequencing data from tumors is promising for both immediate
individual patient treatment and investigation of cancer mechanisms. A resultant central
goal is identifying changes in tumors that are impactful towards these ends. Here, we develop
two tools to identify impactful changes at different levels. We develop both methods in the
context of gliomas, a common form of brain cancer. Firstly, we develop and assess a tool for
assessing the impact of fusion genes, a type of common mutation using RNA-sequencing data.
We validate the tool by working with collaborators in The Cancer Genome Atlas. Secondly,
we develop a tool for an overall assessment of patient outcome by integrating data from
diverse sequencing platforms. We validate this tool using simulation, data from consortiums,
and collaborators at UCSF.
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To those that suffer

It is you that have convinced me that there is something still worth fighting for in this world.
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Chapter 1

Goal of collecting genomic data from
cancers

1.1 Context

In the start of the second millennium, scientific inquiry as a whole has remained relatively
absent from political discourse in the United States and relatedly, the collective consciousness
of the nation. Part of this may be due to the ending of the Cold War around 20 years prior,
which removed the impetus for international scientific competition; another part may be due
to the sufficient progress science has made in many fields, leading the way to technologies
and engineering to take the forefront and to translate discoveries into general comfort.

Human health remains an important area, although even here science seems to have
sufficiently addressed most realms – infectious diseases and most non-infectious diseases are
now much less deadly than they were in the recent past. To those with sufficient means in
the United States and most western countries, developments based on scientific inquiry serve
them well.

Arguably the biggest exception to this is cancer; in the last 100 years, cancer mortality
as a whole has only very slightly decreased. One reason for this may be the mechanistic
uniqueness of the disease in every individual.

Encouragingly, the sequencing of the human genome in 2001[31] and the subsequent
decreasing cost of genomic sequencing methods has yielded some promise in cancer treatment
possibilities. In particular, machines that can gather sequencing information from tumors
(“genomic data”) may be able to be used for an increasing amount of the population,
financially, and these might be able to lead to the appropriate handling of uniqueness to
decrease mortality.

Additionally, the study of cancer is central to the study of molecular biology as a whole;
the transformation of a collection of somatic cells into tumor tissue can be seen as a betrayal
of the fundamental contract underlying the constitution of a multicellular organism, in that
several semi-autonomous components cooperate towards a greater goal of organismal life and
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reproduction. All biological systems of organization involved in this transformation, and
therefore the study of cancer is equivalently the study of human disease as a whole. This
means the study of cancer has global reach, if not imminently, ultimately.

In 2015, United States’ President Barack Obama announced the Precision Medicine
initiative during his State of the Union address. During the same address in 2016, he
announced the National Cancer Moonshot Initiative. Both were rightfully meant to focus
attention on this problem.

In this dissertation, I make use of two large-scale multi-institutional consortium-based
efforts and one smaller-scale intra-institutional effort to idnetify impactful genomic alternations
using novel tools and approaches. First, I outline the overall goals of the collection of this
data, which are twofold:

1.2 Investigation

To successfully use genomics data for tumor prognosis and treatment decisions on a personal
level, much still needs to be collected, as the relationship between collectable genomics data
and above outcomes has not been well established. There are several ongoing and recently
completed large-scale efforts to collect this data in order to achieve this. These can be seen
as investigations towards understanding specific areas of unknown: the mechanisms of (1)
cancer onset (oncogenesis), (2) progression, and (3) metastasis (spread to regions of the body
distant from the original tumor site).

Identification of molecular subtypes

One area of unknown is the existence of molecular subtypes of tumors – groups of tumors
based on the molecular aberrations they share. This is in contrast with the classical tissue
definition of tumors, which is based on the type of tissue from which they originated. The
Cancer Genome Atlas (TCGA)[40], a major consortium which gathered 11,000 tumor samples
from 33 classically-defined cancer types, aims to help assess this difference. I later describe
identification of impactful features from one tumor type contained in TCGA.

Analyses under the TCGA, which gather sequencing data and compare it across tumor
types, have made findings suggesting that a significant fraction tumors defined classically
would be better assessed based on their molecular similarity with a non-classically equivalent
tumor.

One area of success in molecular subtype definition has been gliomas. Gliomas are one of
the most common forms of brain cancer, comprising 30% of brain and central nervous system
and 80% of all malignant brain tumors. Gliomas are classically classified by World Health
Organization (WHO) grade (II through IV for adults), and the glial subtype that the tumor
cells most resemble based on examining tumor tissue from biopsies under the microscope
(histopathology): oligodendroglioma, astrocytoma, or oligoastrocytoma for tumors appearing
similar to oligodendrocytes, astrocytes, or both, respectively.
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Somewhat expectedly based on prior related research which suggested yet was not able to
provide sufficient evidence for a definitive conclusion, TCGA researchers studying sequencing
information from over 300 lower-grade glioma (LGG) tumors identified three molecular
subtypes of the tumors based on sequencing information. LGG tumors were defined based
on histopathologists’ assessments of tumor tissue as being indicative of grade II of any
histopathology.

This led to finding consistent subgroups of patterns across all types of sequencing infor-
mation. Importantly, these subgroups were found to correlate more closely with important
patient outcomes than the classical classifications (grade and glial subtype resembled). Inter-
estingly, researchers were also able to find that subtypes, while evidenced by much sequencing
information across the entire genome, were well defined by a very small number nuclear
changes as well, suggesting possible targets for therapies. Researchers also identified that one
molecular subtype appeared very similar to tumors whose classical classification would have
indicated a higher grade, and these tumors had similarly poor prognosis as these higher-grade
tumors.

In addition to finding subtypes within one specific classical tumor diagnosis category
and comparing those subtypes with other classical categories in an ad-hoc manner, TCGA
has also implemented the search for subtypes with so-called Pan-cancer analysis[74] studies.
Based on clustering, researchers assessed classes of tumors in a classical category-agnostic
fashion. This is consistent with the molecular understandings of (initiation and onset of
tumor tissue (oncogenesis). In particular, the same general mutational patterns involving the
same classes of genes are likely to have the ability to initiate tumor-like properties across
classical tumor types.

In the context of cancer genomics, mutations are defined as changes in the DNA of a
tumor that are not also present in the DNA of non-tumor cells. These are sometimes termed
“somatic mutations,” to underscore their occurrence within the tumor tissue of the individual
in which they are detected, and are contrasted with “germline mutations.

The major finding here in terms of subtypes was the stratification of classical tumor
categories on a spectrum from tumors with a high mutational burden (many small aberrations
in genomic DNA present in tumor tissue as compared to normal tissue derived from blood)
to those with a high copy number change burden (many large-scale aberrations in genomic
DNA). Interestingly, no classical category appeared to have high amounts of both type of
mutation; this may point to similarities in oncogenesis mechanisms in tissues that are similar
in terms of mutational burden type, and two general oncogenic tumor categories.

Assessing clinical utility of molecular subtypes

A further area of investigation is whether subtypes identified based on consistent molecular
patterns have clinical utility.

One promising result is in gliomas, where the finding that molecular subtypes were more
accurate at distinguishing clinical outcomes can now be used by clinicians to treat patients
with the privilege of having had their genome sequenced; the WHO is in the process of
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updating the standard of care for LGG patients, which will formalize this new ability to treat
patients more effectively. In particular, those with a prognosis similar to higher grade tumors
based on molecular subtyping can be treated accordingly; this may involve more aggressive
use of chemotherapy and/or radiotherapy.

Towards this end, the Cancer Cell Line Encyclopaedia (CCLE)[5] and the Cancer Genome
Project (CGP) [20]are testing a variety of new targeted therapies in vitro in a relatively
knowledge-agnostic approach. I use data from both consortiums towards this goal, as well.
Targeted therapies are pharmaceutical agents that interrupt the activity of a particular
molecular process, typically by interfering with a protein. As part of the rational development
of cancer therapies, they are typically chosen in a strategic way to interrupt key pathways
that are important in particular types. The molecular similarities between tumors of different
types justifies the relatively unbiased approaches used by both studies, which contrasts with
a one-tissue-type, one-drug approach.

In particular, for example, drugs targeting the epidermal growth factor receptor (EGF)
pathway have been shown to be effective against multiple different tumor tissues of origin [5].

Assessing relative impact of genetic and epigeneitc changes

A second area of open investigation is the role of epigenetics in oncogenesis, tumor progression,
and metastasis. Epigenetic changes consist of non-base-pair DNA changes to the genome
based on modification of the genome’s surroundings; in particular, chromatin can be opened or
closed via a myraid of mechanisms, such as histone modifications and DNA methylation[28].

These have an unknown degree of impact; it is not known, for example, whether such
changes (“epimutations”) are sufficient for oncogenesis [43] [16].

Towards that end, Dr. Joseph Costello, Ph.D. is spearheading a University of California,
San Francisco (UCSF)-based approach to gather both genetic and epigenetic data on LGG
tumors. He has found already DNA methylation-based epigenetic changes correspond closely
with alternations in DNA base pairs[26].

Identification of driver mutations

Another general goal of collecting genomic data from tumors, and one of the first goals,
has been the identification of previously unobserved “driver” mutations. Driver mutations
are DNA changes that are “causally implicated in oncogenesis”[62]. Driver mutations are
typically validated via in vitro and in vivo experiments. The number of possible driver
mutations is as endless as the number of possible mutations, so therefore candidate driver
mutations need to be established in order to narrow down the search space of possible drivers.

One common prioritzation technique is to identify somatic mutations that occur more
often than what might be expected based on chance (“recurrent mutations”). This technique
requires statistical power, necessitating, in turn, the collection of many tumor samples[35].
In particular, power is required to identify candidate driver mutations with either low-impact
or rare occurence. Many of these are believed to exist, based on similar properties of variants
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detected during the conceptually similar genome-wide association studies (GWAS), which
search for germline variants associated with a particular phenotype, typically disease-related.

Further prioritization may be obtained based on somatic mutation annotations, which
may be based on prior knowledge of a particular mutation’s genomic context and its function.
In particular, intergenic status, knowledge of domain structure, or knowledge of regulatory
regions might be used to prioritize one candidate driver mutation for testing over another.
Most somatic mutations are point mutations[33], although many will involve normally
disparate genomic regions, which are used in a similar fashion.

Many tools have been developed to harness this data, and many have been applied to the
specific datasets I explore later (TCGA,CGP, UCSF), including MuTect [13].

Assessing relative impact of germline and somatic variants

Some cancers are known to have a strong germline genetic component in terms of incidence
risk [61]; this is especially true of childhood tumors. However, in general, it is unknown for
all cancer types how much of an effect germline variants, rather than somatic mutations, have
in terms of oncogenesis, tumor progression, and metastases. This question can be probed
with large scale data involving matched normals, which allows the separation of germline
variants from somatic mutations and also the tracking of tumor outcomes.

This is one of the aims of collecting sequencing data from glioma patients in the Costello
lab; importantly, follow-up information is present for patients, which is nontrivial due to the
high mean survival time of such patients (on the scale of 10 years, depending on molecular
subtype).

Molecular mechanisms explaining variance in treatment response

In some cancer types, there exist a wide variance in how patients respond to identical
treatment and identical cancers (modulo to classical clinical covariates). The molecular
reasons behind this are currently unknown in most cases.

Gliomas

This is especially true gliomas, and uncovering this is a major aim for collecting surgical
tissue by the Costello lab.

In particular, LGG patients of subtype astrocytoma (identified based on histopathology)
vary in their response to current chemotherapeutic agents.

Typically, LGG patients are treated by (1) surgical resection of the tumor, and (2)
“adjuvant” chemotherapy. Chemotherapy is typically temozolomide (TMZ), although may
also be procarbazine-lomustine-vincristine (PCV). The purpose of adjuvant chemotherapy is
to kill remaining tumor tissue that was not extracted during surgery, which is common due to
the difficulties of surgery in the context of vital brain areas (eloquent regions) that cannot be
easily removed or removed at all without substantially decreasing the patient’s quality of life.
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LGG has an almost 100% recurrence rate; surgical tissue from the recurrent tumor (second
surgery) is also collected by the Costello Lab for further study. Some patients that receive
adjuvant TMZ have been found to progress to a higher grade of glioma [26], which is termed
undergoing a malignant transformation (MT).

Towards the end of understanding why some patients undergo MT whereas others don’t,
the Costello lab is looking for clues in the genomic information collected on tumor tissue
collected during both sugeries.

One lead is a large fraction TMZ-treated patients that undergo MT have a drastically
higher rate of DNA mutations than those that do not undergo MT, termed hypermutation.
This suggests the existence of one molecular pathway relating to the deviating response
to TMZ in these patients involving hypermutation, possibly related to the inactivation of
particular DNA mismatch repair genes in these tumors.

An open question, then, is if this negative response (MT) can be predicted based on
surgical tissue collected during primary tumors; this is one I attempt to investigate, and
describe later in this document.

1.3 Making individualized treatment decisions

(“precision medicine”)

A complementary and ultimate goal of collecting genomic data from tumor samples is to
directly influence the course of an individual’s cancer treatment regimen. This is moti-
vated by the notion that cancer genomics can collect data that can distinguish previously
indistinguishable cases in a way that allows for their more successful treatment.

Methods for treatment of a particular tumor are based on standards of care, which
are roughly legally-defined and clinically-implemented notions of treatment regimens for a
particular diagnosis. These vary a substantial amount between treatment centers, may or may
not be formally established legally, and change due to new medical findings being published
in medical journals. They may also be set formally by global organizations, such as WHO
[42].

Non-genomic methods

Many standard methods for cancer treatment do not rely on the collection of genomic data
from a tumor.

clinical covariates are non-tumor, non-genomic attributes such as age and gender which
may affect which treatment regimen is proscribed for a particular patient according to a
standard of care. For example, a patient of advanced age with a new prostate cancer may
not be treated, as it will be assumed the patient will die with, rather than of, the tumor; a
younger patient, however, may be treated with surgery and/or cytotoxic chemotherapy.

Treatment decision methods involving properties of the tumor(s) themselves can be
divided into invasive and noninvasive procedures.
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noninvasive procedures don’t involve breaking the skin, which for tumor inspection means
imaging techniques. For gliomas, magnetic resonance encephalopathy (MRI) is used in order
to assess tumor grade, stage, and possible recurrence, which in turn influences treatment
decisions. Positron emission tomography, electroencephalography, and other similar imaging
methods are also used for various tumor types as well.These techniques generally involve
analysis of images to assess tumor location, size. Molecular properties can also be inferred
through the use of specific imaging able to detect various metabolites which may be present
in a tumor.

invasive procedures involve breaking the skin. All of these are typically considered to be
biopses, and involve collecting tumor tissue for physical examination. A typical method by
which biopsy tissue can be examined is histopathology, which involves examining a slice of
tumor tissue under a microscope after staining procedures. This is done in gliomas in order
to distinguish grades II, III, and IV based on the presence of necrotic tissue, cellularity, and
other visible properties.

Genomic methods

Increasingly, genomics data is being used clinically and therefore collected for the purpose of
making treatment decisions on an individualized basis.

Gene expression

Genomic approaches for treatment prognostication and stratification have focused on gene
expression, often estimated through the use of microarray or RNA-sequencing technologies
which measure the abundance of RNA in cells through sequencing. The successful discovery
of a 231-gene expression signature in 2002 related to breast cancer prognosis[70] spurred the
search for signatures in various tumor types for various outcomes. There are currently several
genomic signatures from various tumor types that allow for patient stratification. Several
metrics of interest exist in order to define impactful from the context of making treatment
decisions. Essentially, all are a method prognostication of patient outcome, conditioned on
specific treatment decisions: (1) survival time, (2) susceptibility to treatment with a specific
drug, (3) grading/ malignancy classification of a tumor, and (4) susceptibility to specific
events. Events of interest include (4.1) tumor progression, (4.2) tumor metastasis, which is
closely related to (4.3) tumor invasiveness, (4.4) functional status of a particular molecular
pathway within a tumor (related to (2)), and (4.5) likelihood of recurrence subsequent to
tumor resectilevel

In particular, several of these are currently used in the clinic for prognostication, including
MammaPrint® 70-gene signature and Genomic Health’s OncotypeDX® 21-gene signature
for breast cancer, and Veracyte’s Affirma® for thyroid cancer. These may be used to decide
whether to provide chemotherapy or other further follow-up treatment.
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Somatic mutations

Somatic mutations are also increasingly used in the clinic. Specific tests exist for signatures
involving a few genes such that they can be queried a patient-level without the use of
high-throughput sequencing. Common options include polymerase chain reaction (PCR) or
antibody stain of collected tissues. Also, companies such as Foundation Genomics ® perform
large-scale targeted sequencing for a handfull of genes known to be generally impactful or
targetable by specific therapies. Specific cancer tests include avian erythroblastic leukemia
viral oncogene homolog 2 (ERBB2) for breast cancer via AviaraDx ®.

In gliomas, both of these methods are used; an antibody stain for Isocitrate Dehydrogenase
1 (IDH1) are being used in some clinics for prognostic tests, including UCSF. In particular,
IDH-wildtype gliomas have a drastically lower survival time. This is a proximal use of the
tissue that is further analyzed by sequencing and by the Costello lab.

DNA methylation

DNA methylation-based collection is relatively new for the use of direct patient stratification;
signatures exist for Acute Myeloid Leukemia that relate to overall survival [17], but are not
currently used clinically.

Gliomas are at the forefront of this, where the status of the methylation of the promotoer of
the O6-Guanine Methyltransferase (MGMT) gene is queried by antibody, which has found to
be prognostic. In particular, lack of methylation here is associated with high MGMT activity
and therefore low chemotherapeutic benefit, so is often a major component in treatment
decisions [52]. This was a proximal use of tumor tissue further analyzed by the Costello lab
and myself later in this document.

Germline variants

Finally, properties of patients’ germlines are occasionally used for prognostication. In breast
cancer, the appropriately titled breast cancer 1 gene (BRCA1) and breast cancer 2 gene
(BRCA2) are queried for prognosis, as there are known heritable deactivating mutations in
these tumor-suppressor genes. In gliomas, there is a known heritability of MGMT-methylation
response, although this is not currently linked strongly enough to germline variants in order
to be used clinically.

Integrated sequencing methods

Integration of features are not currently used for stratification, although multi-type signatures
have been collected by CGP relating to response to targeted therapies, as outlined above.



9

Chapter 2

Data types for precision medicine

Data from several sources were analyzed for the purposes of identifying impactful sequencing-
accessible changes. In particular, data from TCGA [14], the Costello Lab at UCSF[26] and
the Cancer Cell Line Encyclopaedia[5] were used.

2.1 The Cancer Genome Atlas

TCGA is a collaboration formed in 2005 and lasting through early 2017 between the National
Cancer Institute and the National Human Genome Research Institute, both institutes of the
National Institutes of Health under the U.S. Department of Health and Human Services[51].
The mission of TCGA is to understand the molecular basis of cancer in order to improve
human health[45]. Efforts on behalf of TCGA have collected a wealth of molecular and
clinical information from 33 cancer types from 11, 000 patients.

Data from TCGA LGG were used to assess the fusion transcript expression estimation
tool described in chapter 3. 289 tumors were analyzed by the TCGA LGG Analysis Working
Group (AWG).

Raw molecular information

RNA-sequencing

RNA-sequencing protocol was standardized across TCGA data collection centers. In particular,
total RNA extraction was performed using 5×106 cells using Ambion® Ribopure™ kit. Reads
were sequenced with Illumina® HiSeq™ sequencers, collecting 2 × 50 base-pair paired-end
reads.

Exome sequencing

Exome sequencing on tumor tissue was performed using 0.5 to 3 of DNA from tumor and
normal blood, respectively. The Agilent®Sure-Select Human All Exon ™v.20, 44 MB kit was
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used for exome region-targeting, and 2× 76 base-pair paired-end sequencing reads were used,
again with Illumina®HiSeq™sequencers.

Deep whole-genome sequencing

This was performed on 21 of the 289 samples. 2× 101 base-pair paired-end reads were used
on the same sequencing platform as exome sequencing.

“Low-pass” whole-genome sequencing

This was performed on 52 of the 289 samples. Here, 0.5 to 0.7µg of DNA were extracted,
then KAPA Biosystems®kits were used for preparation. 2 × 51 base-pair pari-end reads
were produced with Illumina®HiSeq™, producing 5.2× average coverage. 39.5 average Phred
quality score was achieved, with a 96.5% average mapping rate.

Clinical information

To assess the impact of sequencing data relative to various outcomes and to also correlate
various molecular features with known features, classical clinical information was obtained in
addition to the molecular inforation. In particular, histologic type, age of diagnosis, race,
year of diagnosis, family history of cancer, extent of tumor resection, tumor location, white
matter percentage, and first presenting symptom were collected from all of the 289 patients,
with a few omissions. Most notable in terms of fusion expression analysis was survival time,
which correlated molecular tumor type and relatedly, the existence of fusions of interest.

Resulting datatypes and details of processing

The above molecular information was processed, resulting in several different high-level
genomic features.

DNA rearrangements

Several different DNA rearrangements sets were estimated from data; these were used in
order to prioritize resultant FJs.

genome-wide Two sets of genome-wide (as opposed to exome-limited) DNA rearrangements
were produced.

deep-sequencing-based

Here, BamBam[57] was used to estimate rearrangements based on exome-sequencing
and deep whole-genome sequencing reads. These reads were aligned and processed
using the aligners of BWA [37] and Picard [50] Broad Institute Firehose [18]

shallow-sequencing-based
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Criterion Accepted Value
split reads ≥ 3

spanning reads - split reads ≥ 0
probability from SVM classifier > 0.65

read through event false

p-value from supporting reads’ production from other genomic areas ≤ 0.1
fraction of supporting reads that are repetitive sequence < 0.78

number of spanning reads > 1

Table 2.1: Criteria for filtering fusions downstream of deFuse

As deep sequencing was only available on a minority of samples, shallow (“low-pass”)
sequencing was also used to call DNA rearrangements.

For this purpose, the CASAVA [9] tool was used, along with BWA for mapping and
BreakDancer[10] and Meerkat[78].

intragenic As more sequencing data was available to support genic region-based rearrangem-
nets, this was used to estimate rearrangemnets that was directly applicable to FJs.

MapSplice pipeline MapSplice[72] was used to call FJs as part of the general RNA-seq
alignment pipeline.

deFuse pipeline deFuse[41] was used by the Haussler lab at UCSC in order to call
FJs from RNA-sequencing data. As part of the deFuse pipeline, TopHat[67] was used,
along with a support vector machine (SVM) classifier to assess the probability of fusion
existence based on priors collected by a test set.

Reads were further filtered by Drs. Olena Morozova and Sofie Salama at UCSC based
on criteria outlined in 2.1. Beyond 2.1, specific FJs bisecting (1) protein kinases, which
have a known role in higher-grade gliomas and (2) genes significantly mutated by smaller
mutations were prioritized for validation.

PRADA pipeline

PRADA was developed and used by collaborators at the MD Anderson Cancer Center
as an independent method of assessing fusions to increase confidence. Briefly, the
pipeline involves RNA-seq read alignment, followed by filtering by the following shown
in 2.2

Gene expression

Gene expression data was used to validate and prioritize fusions for further fusion-transcript-
gnostic expression estimation. Gene expression resulted from RNA-sequencing data and was
produced based on the following pipeline:
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Criterion Accepted Value
exon-connecting reads > 1

spanning reads > 2
BLASTN[2]-computed inter-constituent sequence similarity < 0.01

Table 2.2: Criteria for filtering fusions as part of PRADA pipeline

1. MapSplice for mapping [72]

2. RSEM[36] for expression estimation

3. Filtering to genes expressed in ≥ 70% of samples

4. log2 transformation

5. Median-centering across samples

2.2 UCSF Department of Neurosurgery glioma

samples

Roughly one hundred samples (86 at time of writing) were collected by the UCSF department
of neurosurgery and analysed further by the Costello lab. Roughly fifty (48 at time of writing)
of these are relevant to the prediction problem that I formulate in chapter 4, based on arising
from patients with adjuvant Temozolomide chemotherapy.

Raw molecular information

Matched normal samples

For roughly 40 of the patients, samples from circulating blood were taken and sequenced via
a targeted exome sequencing platform with Illumina® reads.

Primary tumor samples

Primary tumor samples were tumor samples collected from the first surgery for LGG patients.
This was used in later analyses for the purpose of prognostication regarding outcomes following
primary surgery.

On several patients, several tumor sections from one tumor were sampled in order to
assess intratumoral heterogeneity. On a minority of these, sections were chosen to maximize
variance of metabolic positron-emission tomography (PET)-based imaging as a proxy to
maximize genetic variance of sections.
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In detail, PET assessed the presence of choline, which is a marker for cell membranes.
Cell membrane existence is a marker of cell turnover and therefore a marker fo tumor growth.

Choline is related to lipid isocitrate dehydrogenase 1 (IDH1) operation metabolism, which
is known to be altered in some gliomas, so is particularly relevant for glioma metabolic
assessment.

Exome sequencing For 27 patients, exome sequencing was performed on at least one
section of tumor tissue using identical protocol to 2.2.

RNA-sequencing For around ten patients, RNA-sequencing data was collected using
Illumina®paired-end read sequencing protocols. RNA-seq was not performed on more
patients due to degradation of RNA.

Human methylation 450k array For roughly 20 patients, the Infinium®HumanMethylation450
BeadChip Kit™(450k) was used to assess CpG methylation at around 500, 000 probe
sites.

Secondary tumor samples

Tumor samples were collected from secondary and following surgeries if available; the same
datatypes were available as was available on primary tumor samples.

Resulting datatypes and processing details

Germline variants

Germline variants were assessed from exome sequencing of the normal tumor blood samples
and processed via the GATK Unified genotype [39]. Briefly, this method works by aligning
reads and producing variants at sites differing from an input reference, and results in a list of
called variants for every sample on a base-pair resolution.

DNA methylation

Raw probe intensity values were processed by Methylumi[15]. In detail, probes were normal-
ized by removing probes with high p-values for detection tests, then background-corrected.
Sex chromosomes were filtered, as were probes mapping to SNPs and probes mapping to
multiple genomic locatons.

This resulted in per-sample vectors of β values representing average methylation level of
CpG site across a sample.

DNA copy number

Genomic copy number segments are called from exome-sequencing information due to newly
developed pipelines, and validated with intensity information from 450k.
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Type Unit
age binned into 5-year intervals

tumor location ∈ {frontal, parietal}
extent of resection ∈ {gross total, subtotal}

length of TMZ cycles months
time between surgery and TMZ administration months

time between TMZ administration and recurrence months
gender ∈ {male, female, neither}

Table 2.3: Clinical information available

This results in segments of floating point-numbers representing copy number, averaged
across cells in a sample. To further process, we took floating point numbers more than 0.5
away from 2.

Somatic mutations

Somatic mutations were called based on combining normal and tumor exome-sequencing
information, using GATK. This results each variant of one or more nucleotides on a base-pair
resolution between tumor and normal sequencing information.

There were a group of samples where the number of mutations was more than 10×
higher, on average, than the other group of samples; these samples were considered to having
undergone hypermutation (HM).

RNA-sequencing

RNA-seq data was analyzed via a pipeline using Kallisto[7] to generate expresion estimates.

Clinical information

A wealth of clinical information is available on the patients. This was used to select an
appropriate molecular phenotype that accorded well with clinical outcomes. HM was selected
as being related to malignant transformation and relatedly, decreased survival time.

Clinical information was also used as a predictor for the HM. See 2.3 for details.

2.3 Cancer Genome Project

The cancer genome project is a major consortium effort led by the Wellcome Trust Sanger
Institute to assess the sensitivity of various cancer types (2.4) to existing pharmaceutical
therapies.
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Names
Adrenocortical carcinoma

Acute lymphoblastic leukemia
Bladder Urothelial Carcinoma

Breast invasive carcinoma
Cervical squamous cell carcinoma and endocervical adenocarcinoma

Chronic Lymphocytic Leukemia
Colon adenocarcinoma and Rectum adenocarcinoma
Lymphoid Neoplasm Diffuse Large B-cell Lymphoma

Esophageal carcinoma
Glioblastoma multiforme

Head and Neck squamous cell carcinoma
Kidney renal clear cell carcinoma

Acute Myeloid Leukemia
Chronic Myelogenous Leukemia

Brain Lower Grade Glioma
Liver hepatocellular carcinoma

Lung adenocarcinoma
Lung squamous cell carcinoma

Medulloblastoma
Mesothelioma

Multiple Myeloma
Neuroblastoma

Ovarian serous cystadenocarcinoma
Pancreatic adenocarcinoma
Prostate adenocarcinoma
Small Cell Lung Cancer

Skin Cutaneous Melanoma
Stomach adenocarcinoma

Thyroid carcinoma
Uterine Corpus Endometrial Carcinoma

Table 2.4: Cancer Genome Project Tumor Types for Derived Cell Lines

Cancer types

At least one cell line each of from 29 cancer types were used (2.4). resulting in 1, 001 different
samples.
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Categories
ABL signaling

DNA replication
EGFR signaling

ERK MAPK signaling
Genome integrity
IGFR signaling

JNK and p38 signaling
PI3K signaling
RTK signaling
TOR signaling
WNT signaling

apoptosis regulation
cell cycle

chromain histone acetylation
chromatin histone methylation

chromatin other
cytoskeleton
metabolism

mitosis
other

p53 pathway

Table 2.5: Cancer Genome Project Compound Categories

Compounds information

Raw compound details

A total of 265 compounds were tested, consisting both of drugs under investigation and
established therapeutics. The compounds can be considered in several categories based on
their molecular targets (2.5) if available. Broadly, compounds were categorized as cytotoxic
or targeted.

We focus on analysis of the DNA replication and Cytoskeleton-based categories, both of
which are the only cytotoxic classes tested; the rationale for this was that these might be
more similar to the phenotype of interest in UCSF datasets.

Resulting sensitivity estimates

For each combination of compound and cell line, a call of resistant or sensitive was made
based on the half maximal inhibitory concentration IC50 values.

A heuristic outlier procedure with the following steps was used for each compound:
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1. upsampling For each cell line, a normal distribution was fit with mean equal to the
average IC50 over the different samples, and standard deviation equivalent to a 68%
estimated confidence interval. 1, 000 points were then sampled from the fit normal
distribution.

2. density estimation A density was estimated from the 1, 000 points using kernel density
estimation with normal kernels.

3. modeling resistant population Based on the shape of the resultant density estimation,
a resistant population of cell lines, for each compound, were identified in an automated
fashion. Briefly, a strong prior that the majority of cell lines would be resistant was a
major assumption that went into this; the method attempted to find bimodal structure
consisting of a mixture of normal distributions; it then assigned the node with the
higher IC50 as the resistant population.

4. calling threshold based on cumulative distribution function Finally, a threshold
was called using an empirical cumulative distribution on the estimated sensitive popu-
lation so as to include most of these.

Genomic information

Broadly, three different molecular assays were performed on each cell-line-derived sample.

Raw genomic information

exome sequencing A 64-gene panel was sequenced using capillary (Sanger®) sequencing.

copy-number array Affymetrix®SNP6.0™microarrays were used to assess copy number.

expression array Affymetrix®HT-U133A®microarrays were used to gather gene expression
information based on RNA transcript abundance-based annealing to predefined probes.

Resulting datatypes and processing details

variants Variants were called within the 64-gene panel as compared to reference. As matched
normals were not obtained, variants were a mixture of both somatic mutations and
germline variants, likely dominated by somatic mutations.

copy number Copy number information was assessed from the copy-number array using
Affymetrix®processing tools.

gene expression Array-based expression estimates were obtained for the 14, 500 genes
available on the platform panel.

gene fusions Fusions were called based on the Sanger®sequencing.
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Chapter 3

Identifying impactful fusion genes:
fusion expression analysis

3.1 Motivation

Acquisition of increasing numbers of somatic mutations on a rapid timescale and in a
heterogeneous fashion across different cells within a tumor or pre-tumor tissue, is widespread
and occurs in most cancer types. Resulting mutations are sufficient to induce tumorigenesis
and also to drive tumor progression and metastasis. This is done classically through the
activation of proto-oncogenes and through the deactivation of tumor suppressor genes.

There are several specific pathways by which mutations can be induced and several
corresponding classes of mutations[62]. One class is large-scale genomic rearrangement, which
involves the breaking and possible rejoining of multiple-megabase sections of DNA.

When large genomic regions dislocate, they may often rejoin in a predictable fashion to
regions either on other chromosomes or within the same chromosome (translocations). If
there are genic regions spanning the genomic breakpoints, RNA messages may be transcribed
that contain two genes from two constituent chromosomes. Such messages, if translated,
become fusion genes (FGs).

Due to fragile regions in DNA, specific FGs may be formed to a significant extent in
certain tissues during tumorigenesis[81]. In chronic myeloid leukemia (CML), a fusion between
breakpoint cluster region (BCR) and Abelson murine leukemia (ABL) virus genes leads to the
recurrent BCR-ABL fusion which is present in a large percentage of CML patients. This fusion
is known to have potential to transform normal cells into cells with tumor characteristics,
and has been successfully targeted by Imatinib, one of the world’s first successful targeted
therapies in terms of extending patient overall survival time. Several similar examples have
been discovered; identifying FGs is thus of primary interest [11].

One goal of major consortium efforts such as The Cancer Genome Atlas (TCGA)[74]
and The Cancer Cell Line Encyclopedia (CCLE)[5] is detecting recurrent fusion genes from
different caner types based on sequencing information. Recently, for example, recurrent
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receptor tyrosine kinase fusions were detected in gliomas[14].
One mechanism whereby fusion genes may have impact on tumor tissue is via the induced

expressional deregulation (ED) of the constituents. In particular, a sequence may be placed
under the control of regulatory regions that were not originally meant for a sequence, resulting
in, for example, the constitutive expression of a growth-factor related protein domain [73],
leading to oncogenesis or tumor progression.

3.2 Existing impact-assessment strategies

Detection

Typically, fusions are detected from RNA-sequencing (RNA-seq) reads, which are produced
due to its relatively low cost compared to whole genome sequencing and high interpretability.
Several computational tools to detect fusions from RNA-seq reads exist. Most identify fusion
junctions (FJs), which are the breakpoints of the associated genomic translocations.

Tools identify FJs in three steps: (1) finding chimeric reads (CRs), which is a single
read with two portions aligning to two separate genomic locations, (2) aggregating chimeric
reads into candidate fusion junctions through realignment-based grouping, and (3) filtering
candidate FJs based on heuristic filters.

While simple in concept, identifying FJs is an error-prone process. Firstly, incorrect read
mapping leads to spurious CRs. Incorrect mapping is often a result of repetitive regions in the
genome such as germline segmental duplications. Secondly, even if reads are correctly aligned,
false positives may be generated by read-through events, where genomically adjacent genes
are erroneously transcribed into one RNA message or reverse transcriptase template-switching
events and trans-splicing. These produce low but detectable baseline levels of fusion genes in
wild-type cells, but are usually not of interest in cancer sequencing efforts as they are not
causally involved in tumorigenesis, cancer progression, or metastasis[21].

Thus, candidate FJs must be filtered aggressively by heuristics based on knowledge of the
above. One problem is that it is not clear exactly which heuristics to use; many heuristics
based on ignoring FGs in repetitive regions, for example, may filter real fusions[30]. Another
is that given a set of heuristic filters, it is not clear how to best combine the heuristics in a
way that’s generalizable to most FG discovery use cases. This is due in part to the wide range
of genomic instability that tumors from different tissues have exhibited. A symptom of this
is that machine learning (ML)-based classifiers tuned on representative datasets have issues
generalizations to new tumor types. The high false-positive rate stymies further discovery
and assessment of FGs.

FJ identification is also a very computationally-intensive process, as every read must be
split in a number of ways and positions and matched against all possible regions of the genome
through alignment during CR-finding steps. One of the reasons for this is that existing fusion
discovery methods use computationally intensive first-generation alignment algorithms.
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Expression quantification

As ED is a major mechanism by which fusion genes impact tumors and patients, assessing
whether an individual fusion detected has also led to ED is a goal for prioritizing fusions for
per-patient impact and for further mechanistic study.

Unfortunately, there is no currently established method of doing so in a high-throughput,
unbiased fashion. Three methods currently exist:

Constituent gene summing

One approach to assessing whether a fusion gene or transcript is expressionally deregulated
is by summing the expression estimates of its constituent transcripts. If the sum of these
expression estimates substantially deviates from the same quantity in sample(s) without the
fusion, it is concluded that the fusion has led to ED.

However, this is inaccurate due to details involving how much of each constituent transcript
makes up the fusion. In particular, a fusion gene can consist of the entire transcripts of
the constituents bound, or it can consist of as little as a few bases of each gene. This wide
discrepancy leads to the lack of robustness of this method without substantial additional
human assessment, which is undesirable as the purpose of high-throughput and automated
assessment methods is to minimize human input. The presence of large numbers of false-
positive fusions exacerbates this necessity of visual inspection as well.

Per-exon inspection

A related but distinct method of assessing fusion genes is comparison between fusion-present
and fusion-absent samples by visually inspecting the per-exon expression of the constituent
transcripts. While not susceptible to the problems of the summing method in terms of
misestimation, this is even more labor-intensive as it is completely not automated.

Counting junction-spanning reads

One automated approach to assessing fusion expression estimation is by counting the number
of reads supporting the fusion junction. In particular, a read can support a fusion junction by
being a spanning read (PR) or split read (LR). A PR is a paired-end read wherein one end
maps to one transcript and another maps to a genomically distal genomic region, whereas
an LR is a read wherein a portions of one read (if applicable) map to at least two distinct
genomic regions.

Some method of counting these reads is a common method of prioritizing fusions; however,
this is very susceptible to multi-mapping reads. In particular, if a junction region is repeated
in another section of the genome, reads could spuriously seem to strongly support a fusion,
whereas in reality the reads were produced by different regions altogether. Thus, this method
can be inaccurate. One could imagine further difficult-to-set parameters describing heuristics
for filtering these reads[41], but this is a complicated and error-prone process in and of itself.
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Figure 3.1: Illustration of inaccuracy of constituent summing method
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fusion ) for estimating expression of fusion transcript (FPKMfusion), re-
sulting in underestimation by a factor of 2. µi := number of reads aligning to
transcript i; li := length of transcript i. µspanning/split :=: sum of number of PRs and
LRs.

Problems with all existing methods of fusion expression quantification

With all of the above method, a fusion’s expression is not directly comparable to the expression
of other genes or transcripts. In particular, fusion’s expression is not comparable to wild-type
constituents’ expression, which would be helpful in order to support functional activity
of a fusion for prioritization and also for the existence of the fusion. Furthermore, none
of the above methods are isoform-specific; all of these merely assess the expression of the
fusion gene as a whole, even though isoform-specific expression has found to be impactful in
cancer[12][23][63].
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3.3 Method

Thus, we propose an improved method for isoform-specific FG discovery and quantification
from RNA-seq reads.

In short, the method involves three steps, all of which involve k-mer-based pseudoalignment
methods: (1) discovering and aggregating LRs and PRs to predict FJs, (2) construction of
candidate fusion transcript isoforms (CFTIs) from FJs, and (3) realignment of reads in order
to quantify CFTIs along with all transcripts in the transcriptome.

Predicting Fusion Junctions

The first step of the method is to predict fusion junctions based on LRs and PRs. This is
achieved using pseudoalignment methods, which in turn involve the splitting of reads into
k-mers, the creation of a De Bruijn-graph transcriptome index for alignment, and aggregation
of hashed alignment counts per equivalence class, each of which represent a subset of all
possible transcripts.

First, reads with ends aligning to discordant equivalent classes are gathered as candidate
PRs. Then, these are aggregated along with non-aligning reads (which include LRs) using a
De Bruijn-graph alignment format to assemble candidate fusion junction regions. Finally,
these regions themselves are pseudoaligned to the transcriptome in order to find candidate
fusion junctions.

Note that this step can be replaced by the use of ordinary RNA-seq-read-based fusion
finding tools, such as DeFuse[41] or Tophat-Fusion[27]; results below show data generated by
this method.

Construction of Candidate Fusion Transcript Isoforms

Given specific FJs in terms of genomic location, CFTIs are constructed based on enumeration
of all possible unique isoforms downstream and upstream of this genomic region. These
isoforms can then be added to the alignment index. Note that this can be a De Bruijn-graph-
based transcriptomic index[8] for pseudoalignment, or a Bowtie Burrows-Wheeler-based index
[32].

Estimating Expression of Fusion Transcripts

Using the CTFI-appended transcriptome index, the classic generative-model based expression
estimation approach is used to estimate the expression of all transcripts, including CFTIs.

Briefly, this model[69][56][54] operates via the estimation of parameters representing
quantities of interest (transcript interest) and accounts for biases using other parameters,
other parameters including per-transcript positional bias and read-composition-based sequence
bias.
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Importantly, this probabilistic model makes assumptions that assist with the recreation
of transcript-wide, isoform specific expression estimation. Crucially, modulo the above
biases, the uniform coverage assumption is used in order to deconvolute the extent to which
non-junction spanning reads contribute to the expression of the fusion transcript.

The model is a likelihood-based approach which uses hidden data and the expectation-
maximization[65] algorithm to estimate parameters. The result is an estimation of the
expression of all transcripts in the CTFI-appended transcriptome, including, importantly,
the CTFIs and their constituents.

Checking for Impact of Fusion Transcript

There are three distinct tests that can be performed for the related states of existence,
expressional deregulation, and impact of a FJ and its candidate CTFIs:

Overall increase in likelihood of model for including fusion transcript

Since the probabilistic expression model gives a likelihood for a given set of transcripts and a
given transcriptome, the likelihood for a fixed transcript set can be seen as a function of a
transcriptome. The interpretation of this function is that it will take on a higher value if the
transcriptome is more compatible with the sequencing reads; this can be seen as evidence
that the transcriptome is the generating transcriptome.

Thus, the likelihood of the model can be compared between a transcriptome with and
without CTFIs; this is direct evidence for the existence of a particular FJ and the related
CTFIs.

Decrease in bootstrap variance of constituents when including fusions

Using the modern Kallisto[8] expression estimation model, an empirical variance that repre-
sents the uncertainty of a particular transcript’s expression is estimated. If these quantities
decrease for the constituents upon addition of CTFIs, this can be also taken as evidence for
FJ and CTFI existence.

Test of nonzero expression for fusion transcripts

Given the expression of all transcripts including CTFIs, one can validate the existence of a
particular fusion transcript in a sample based on comparing the expression of the CTFI to
the expression of its constituents. In particular, if the CTFI has high expression compared to
each constituent, this can be seen as evidence for existence of the fusion transcript. However,
if no CTFIs of a given FJ are expressed more than any of their constituent transcripts, this
can be seen as evidence against the existence of that fusion transcript.

Regardless, this method allows for the identification of expressionally-deregulated fusion
transcripts, in the sense that it allows for direct identification of expressional differences.
This can be achieved via comparison of the fusion transcript’s expression to the expression of
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constituents in a panel of matched normal cells known to be lacking the relevant FJ in their
DNA. One can use formal differneital expression tools to gather significance for such a test,
such as Cuffdiff[68] or DESeq[3].

3.4 Results

In order to prototype and validate the method, we worked with members of the TCGA
LGG AWG. In particular, collaborators at University of California, Santa Cruz and the MD
Anderson Cancer Center both ran FJ-discovery software and prioritized samples and fusions
for us to assess with our method.

Overview of Group Findings

The full analyses of LGG by the AWG were published in 2015 [14]. The major findings, to
which the above method contributed, were that there are three molecular categories of LGG
that are effective at predicting prognosis. There was great concordance between sequencing
datatypes in this regard. The mutation status, obtained through somatic mutations, of the
isocitrate dehydrogenase 1 (IDH1) gene plus the presence of chromosome arms 1p and 19q
were sufficient to divide patients into three categories: IDH wildtype, IDH mutant with
1p/19q intact, and IDH mutant with 1p/19 deletions.

This was in concordance with clusters obtained via several unsupervised analyses based
on DNA methylation, mRNA, copy number and reverse-phase protein assay. Thus, variance
between patients and the genome, epigenome, transcriptome, and proteome showed high
concordance.

Validation of Method

Several fusions were detected using DeFuse[41] and PRADA by collaborators in the group.
These fusions were detected within IDH mutant samples and were investigated as possibly
explaining within-group variation in prognosis based on known attributes of mechanism. One
major category of fusions detected were those involving receptor tyrosine kinases, which are
which are involved in cell signalling. As part of the mitogenic circuitry, activity of RTKs
leads to mitotic cell division. RTKs are often activated via proximity; thus, overexpression is
sufficient to induce activation, as it leads to a higher chance of proximity.

Case 1: FGFR3-TACC3 Fusion

First, we studied a patient with a fusion detected between the Fibroblast Growth Factor
Receptor 3 and the Transforming, Acidic, Coiled-coil-containing Protein 3 genes (an FGFR3-
TACC3 fusion).

This fusion was a good candidate for validation of our method as it has been identified as
undergoing fusion-modulated expressional deregulation [48].
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Figure 3.2: Model of deregulation for FGFR3-TACC3 fusion.

The mechanistic model is as follows: the regulation of FGFR3 is based on the annealing
of its 3’ untranslated region (UTR) to a micro-RNA (miRNA) (miR-99a, in particular)
(see figure 3.2). When miR-99a anneals to the FGFR3 transcript, the transcript is marked
for degradation. Thus, FGFR3’s expression is downregulated based on its 3’ UTR region.
However, the fusion is formed such that the FGFR3 constituent lacks its 3’ UTR, and
therefore loses its wild-type regulatory mechanism. This leads to the temporally and spatially
ectopically elevated expression of the FGFR3 sequence, leading to mitosis via mechanisms
explained above.

Upon applying the method using eXpress as our expresion quantification module[55] on
this specific paper, we were able to validate the results.

Firstly, we noted that isoforms of FGFR3-TACC3 fusion transcripts were among the
highest-expressed transcripts in the transcriptome (see figure 3.3). This was a sanity check
offering consistent evidence with the ectopically high expression of FGFR3-TACC3.

Secondly, we noted that we were able to differentiate between the expression of fusion
transcript isoforms. In particular, we found that one isoform’s expression dominated the
expression of all others (see figure 3.4)

Thirdly, we noted the correct assessment of the FGFR3-TACC3 fusion transcript isoform
versus an FGFR3-AC016733.1 transcript, also formed based on the same FJ (see figure 3.4).

Finally, we validated that the expression of the fusion transcript was higher in expression
than its constituents in the same cell (figure 3.5), finding that the fusion transcript’s expression
was more than 3 times the expression of FGFR3 and 100 times the expresion of the TACC3
transcript (see figure 3.5).

We also compared the fusion transcripts’ expression to its constituents in matched normal
tissue. This allowed for further evidence of the fusions’ leading to expressional deregulation.
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Figure 3.3: Expression of all transcripts in transcriptome for individual.

In order to make the comparison between the sample of interest and cerebral cortex
samples from the Genotype-Tissue Expression project (GTEx)[38], we transformed expression
estimates from fragments per kilobase per million-reads-mapped (FPKM) to transcripts per
million (TPM), then applied middle-50th-percentile-normalization[75]. We validated this
normalization by using a housekeeping gene, heat-shock protein, 90-kilodaltons, alpha, class
b, member 1 (HSP90AB1), for which strong evidence exists of relatively stable expresion
temporally, spatially, and inter-cell-type. We saw that the expression in the sample of interest
of HSP90AB1 was similar to that of the normal tissue.

We validated that the expresson of the highest-expression FGFR3-TACC3 fusion transcript
isoform was much higher than that of its constituents the matched normals – on the order of
10 to 1000 times higher.

EGFR-SEPT14 Fusion

We also studied a fusion between the epidermal growth factor receptor (EFGR) and septin
14 (SEPT14) genes (EGFR-SEPT14 fusion). EGFR is another RTK with similar activity to
FGFR3, and was thus another candidate for a fusion having similar oncogenic properties to the
FGFR3-TACC3 fusion, although unknown in its ability to expressionally deregulate. EGFR3-
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Figure 3.4: Expression of fusion transcripts in the transcriptome showing isoform-resolution
expression discrimination.

SEPT14 is also known to have oncogenic properties in glioblastoma, which is equivalent to
grade IV glioma and related as a progression result to LGGs[47].

Once again, we noticed that the expression of the fusion transcripts were above their
constituents in many cases (see figure 3.6). This suggests expressional deregulation occurred
for this fusion.

3.5 Discussion

Outlook

The validation of a known expressionally-deregulated fusion and the identification of a
candidate expressionally-deregulated fusion is promising that the method will be useful at
identifying expressionally-deregulated fusions in the future based on the metric of assessing
the expression of the fusions to be significantly higher than their constituents.

Future Work

Much future work could be done on this method; firstly, one could create a formal statistical
test of the expression of a fusion transcript being higher than its constituents (a) within
sample and (b) a matched panel of normals. This would expedite the identification of
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Figure 3.5: Expression of fusion transcript is higher than constituents in same cell and in
related normal cells.

expressionally deregulated fusions and would complete the requirement for not requiring
manual user assessment of results.

Secondly, one could expand on this method to both identify FJs and lead to their expression.
Currently, this is being done by Shannon Hateley and Dr. Páll Melsted, Ph.D. by adapting
the Kallisto pseudoalignment algorithm[7] to identify FJs based on discordantly-mapped
k-mers.

Thirdly, one could also use modern k-mer-mapping-based expression methods to perform
expression quantification, which are much faster and would be useful as well for providing
variance-based evidence for fusion existence.

Fourthly, one could integrate this into one tool, such that pipelining, which is a tedious
and error-prone process, would not have to be implemented by the user.
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Figure 3.6: Expression of all transcripts in patient with EGFR3-SEPT14 fusion.
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Chapter 4

Integrating genomics data for
prediction, with application to
gliomas

4.1 Background

One specific prediction problem in gliomas, specifically LGGs, is related to response to
chemotherapy. Currently, there is no suggested guideline, according to the World Health
Organization and no standard practice between care centers as to whether or not to give
chemotherapy following initial resection of the primary tumor in LGG patients.

In particular, temozolomide (TMZ) is given to about 50% of patients being given TMZ
following primary therapy. Confounding this decision is the recent finding by Johnson et
al. that TMZ appears to be inducing mutations in certain patients which may increase the
severity of the recurrent tumor in terms of grade.

However, it is possible that high-throughput (HT) genomic data might be able to assist
in this treatment decision-making problem via predictions. Empirically, several survival
time-related HT features have been identified by TCGA; since some of these patients have
been treated with TMZ, it is possible that said molecular features might inform recurrence
grade decisions for these patients as well, since recurrence grade is associated statistically
with survival time. Molecularly (theoretically), the mechanism behind TMZ-induced greater
recurrence is partially known.

Candidate molecular mechanism

In particular, TMZ induces cytotoxicity by inducing nuclear genomic mutations, which then
cause cells to induce apoptosis. In particular, TMZ adds a methyl group to (methylates)
guanine bases in the genome, creating an adduct. The adducts lead to recognition during
replication by MMR genes, which recognizes the resulting mismatches but then repeatedly
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attempts to repair the region ineffectively by reinsertion of the incorrect base, leading to
genomic double-strand breaks and apoptosis.

This apoptosis of quickly replicating tumor cells is the desired effect of TMZ. However,
there are several reasons why this might not occur, due to other potentially extant yet testable
genomic changes. Firstly, if apoptotic cell cycle checkpoint machinery is not functioning
normally, this leads to consequently genomic instability and large-scale structural rearrange-
ments. Secondly, TMZ-created adducts are removed by MGMT if available and functional.
However, if MGMT has a promoter region that is itself methylated, this leads to decreased
MGMT expression and persistence of the TMZ-added methylation adducts beyond that
which is normal, leading to increasing numbers of mutations possibly beyond even wild-type
MMR machinery’s ability to detect and control. These two potential issues with TMZ-related
apoptosis are thought to be related to the hypermutation phenotype (quantified by much
higher mutations per base rates than other tumors), which is correlated with the recurrence
as high-grade. Evidence for this is based on TMZ-related mutational patterns having been
observed in tumors with hypermutation phenotypes, and the existence of these patterns in
regions relating to the above machinery.

4.2 Problem formulation

Underlying this prediction problem in abstraction is a prediction problem: in particular,
given high-dimensional clinical and molecular data, can one predict, for a particular patient,
whether TMZ-induced hypermutation will occur?

Finding associations can be generalized as a prediction of one random variable y from
another, ~x, by a function f . The goal is to estimate f . f ’s performance can be assessed
by expected predicted error from true f , which is a function of the complexity of f . f ’s
complexity raises with the dimensionality of its input ~x, which leads to an estimate of y that
has high variance, which confounds interpretation of any one association as being significant.

In order to address this issue, smoothing parameters can be added to f in order to decrease
the variance of f ; these are tantamount to making specific assumptions about the underlying
probabilistic model that generated the data, which can, in turn, bias the estimate of the
association. However, this may still lead to an overall reduction in the expected predicted
error, which is a function of both bias and variance of f .

One of the model assumptions that we make is linearity (specifically, that f uses first-order
linear terms to manipulate ~x for performing predictions of y, which is a common assumption
[19] useful for simplification of f . This is implemented by linear dimensionality reduction
techniques – specifically, the factor association analysis (FAA) method.

Heterogeneity challenge

A fundamental challenge with this prediction problem is the heterogeneity of data types
involved the prediction problem. In particular, there is molecular data which may include
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germline variants of various forms detected by various different exome sequencing pipelines,
gnomic copy number data based on arrays and/or DNA-sequencing, expression detected
by a RNA-seq and/or microarray platforms, methylation detected by microarrays and/or
sequencing-based techniques, and uni-dimensional clinical covariates.

In particular, this will manifest as different underlying distributions that best approximate
each data type, both between patients within a specific modality (due to heterogeneity of
platforms) and between modalities within a specific patient.

Unsupervised solutions

Unsupervised machine learning approaches, which seek to more clearly represent variances in
a dataset without any explicit inclusion of specific outcomes of interest, have been used to
assess multi-platform genomic data.

Consensus clustering Consensus clustering or cluster-of-cluster [29] methods combine
datatypes by hierarchically clustering samples within each datatype, then using the
specific cluster assigned per data-type as a feature for a meta-clustering approach. This
is best used successfully in situations where variance is shared among multiple different
genomic datatypes, and that shared variance is mostly or largely a component of the
outcome of interest.

Consensus clustering was used successfully by collaborators Drs. Olena Morozova and
Sophie Salamaa at UCSC as part of the TCGA LGG AWG [14], where shared variance
across datatypes was associated with survival time.

factor analysis-based approaches Approaches such as iCluster [59][58] use an explicit
probabilistic generative model in order to reduce dimensionality and simultaneously
find shared variance among a different number of sequencing datatypes, allowing for
parametric assumptions useful for sequencing data type distributions (for example,
modelling mutation calls as Bernoulli random variables). This approach has not been
heretofore expanded into a supervised setting.

PARADIGM PARADIGM models explicit interactions between sequencing datatypes using
existing models of gene interaction networks as well as assumptions about functionality
[71] [44]. In particular, the activity of every gene is predicted based on the status of
its corresponding copy number, mutation status, and gene expression, assuming, for
example, that a deleted gene should not be functional, or a gene that is mutated but
is not expressed should not be directly functional. PARADIGM effectively reduces
high-dimensional datasets to inferences about the activity level on a per-pathway basis
for further manual investigation. PARADIGM suffers from a wealth of parameters, and
therefore necessitates a relatively large amount of data to prevent overfitting.
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One limitation of all unsupervised approaches is the necessity of the outcome of interest
to correspond to the shared variance among the sequencing datatypes, which may not be the
case. This is addressed by supervised methods.

Supervised solutions

Many supervised approaches merely add features from multiple platforms without specific
inclusion of special related assumptions into the model.

This is appropriate for some models, for example, random survival trees, which are robust
to different feature distribution assumptions.

This is less appropriate for linear models. Thus, a few linear supervised machine learning
models have been created in order to address the use of heterogeneous sequencing data types
as features in order to predict an outcome of interest. This is an area of intense current
research.

regression on residuals Yuan, Allen, and Omberg et al. [80] looked at the improvement
from adding single molecular datatypes to a clinical variable model of predicting overall
survival time in four cancer types with data from TCGA, using a cox multivariate
proportional hazards model. In particular, after regressing out the predictive clinical
information from the feature set on the outcome, individual genomic features were
selected by choosing those that explained the residual variance in the survival time
outcome, and added as regular features to the model. However, this was not found to
be more accurate than merely using the additional features in random forest models
without any special annotation of sequencing data types.

canonical correlation analysis-based approaches Canonical correlation analysis, which
is originally an unsupervised technique to find shared variance between two feature
sets, has been adapted into supervised models by adding an outcome of interest [60]
[4][79][76]. This was used with some success by Drs. Robert Tibshirani and Samuel
Gross as a predictor for diffuse B-cell lymphoma prediction of copy number. Recently,
an extension was proposed: the Collaborative Regression method[22]. This method
addressed shortcomings of previous methods by formulating the problem in a way that
is convex, and therefore algorithmically efficient.

However, these methods were not specified probabilistically, and therefore are not
as amenable to extensions involving explicit data type distribution specifications. In
addition, the adaptation of CCA used above was approximate, and thereby is possibly
less statistically powerful than a precise (probabilistic) specification. Furthermore, not
being probabilistic, these models cannot be used generatively, preventing them using
simulation to assess model performance parameters, such as requisite N , p, and effect
size.
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Dimensionality challenge

A perhaps bigger fundamental challenge with this prediction problem is what is referred to as
“the curse of high-dimensionality,” that is to say, there are many more covariates/predictors
(number of predictors := p) than observations (N) (i.e., p � N). This is inherent to this
problem due to the wildly high-dimensionality of the molecular datasets, which at their
current maximum for even a single modality is about 500, 000 with reasonable granularity,
but could theoretically be on the order of 109. This is manifests as an issue by leading to
overfitting or equivalently, high variance in estimators of associations.

Fortunately, these problems are not unique to this particular prediction problem, and
consequently, several techniques have been developed to deal with both of these fundamental
challenges.

Subset selection approaches

Subset selection involves using only a subset of available features, which must be selected.
There are several methods for doing so in order to address the exponential number of possible
subsets, including forward and backwards stepwise regression, which iteratively adds or
removes predictors based on relationship to the outcome. However, these methods suffer from
relatively high prediction error due to the high variance imposed by the discrete inclusion or
exclusion of a specific parameter[19].

Shrinkage approaches

A standard method of addressing high-dimensionality and related high variance of any
estimated fit parameters that stymie attempts to generalize is by adding a model term
that explicitly adds a penalization on the use of each parameter. An optimization is then
performed over this adjusted function. Relatedly, a constraint can be placed on the size of
the features and solutions within a particular constraint can be sought. Parameters involving
the degree of regularization are selected based on a model selection step, which typically
attempts to assess the expected prediction error of a model with several different parameter
settings in order to identify the most accurate combination.

The specific penalty that is applied to each feature may be Lasso, which uses the L1-norm
of the vector of coefficients:

∑p
j=1 |βj| ≤ t, where βj is each coefficient on the p parameters,

and t is a pre-specified constant. Another common approach is Ridge, which uses the L2-
norm of the coefficient vector:

∑p
j=1 β

2
j ≤ t. These have different properties, with Lasso

generally leading to more sparsity. However, this may be an incorrect assumption that
hurts generalizability; to address this, Elastic Net regression was created, which involves
a hyper-parameter that is specified to address the relative contribution of ridge and lasso
constraints.
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Dimensionality-reduction approaches

Dimensionality-reduction approaches offer a natural method of dealing with large numbers of
correlated features – modeling the high dimensionality of these features by a small number
of independent features, and using these as new prediction features. Approaches such as
principal components regression and partial least squares achieve this.

However, existing dimensionality reduction techniques typically do not also directly
address heterogeneity in the feature space.

4.3 Developed method

Inspiration from unsupervised dimensionality reduction models

This method’s development came about due to the observation by Novembre and Stephens[46]
that when taking the principal component analysis (PCA) of the single nucleotide variants
present in individuals, the first few components correlated highly with geographic location of
the individual. Briefly, PCA finds a ranked list whose entries consist of linear combinations
of variables that explain decreasing components of the variance in a given matrix; in this
case, that matrix V (people × genomic variants).

Novembre’s result can be interpreted as much of the first two statistically independent
sources of variance in the common gene variants “explains” their geographic location. This
knowledge can then be used to decrease geographically-related variance in the germline
variants of patients in GWAS studies, increasing their statistical power by decreasing noise.

Recently, gene expression information has also begun to be collected on a large sale,
enabled by recent decreases in technology price. Dr. Lior Pachter, Dr. Nicholas Bray,
Brielin Brown, and Dr. McCurdy consequently wondered if gene expression information
also contained significant geographic signal, and consequently performed PCA on the gene
expression matrix G (people× genes). However, the first few components did not correlate
directly with geography.

This then led to the application of canonical correlation analysis (CCA) to this dataset
in order to directly find shared variance between the two-dimensional geographic origin
(R : people× (latitude, longitude)) of the individuals and their high-dimensional associated
gene expression vector (i.e., CCA between G and R). Briefly, CCA is analogous to PCA,
except for linear combinations are taken of both matrices (termed “canonical functions”
(CFs)) instead of just one matrix, and they are taken in ways that maximize the correlation
between the linear combinations of one matrix with the other. The first two canonical
components (CCs) in the above analysis therefore, by construction, should have significant
correlation with the geographic coordinates, at least inasmuch as the component on the
geographic matrix.

This was indeed found to be the case; however, it was quickly realized when doing
permutation testing that the p� N issue resulted in overfitting (i.e., no CFs were statistically
significant), due to the high dimensionality of G. This was addressed with a specific type
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of regularization. In particular, G’s dimensionality was first reduced using PCA to G′,
and then CCA was performed between G′ and R, resulting in statistically significant CFs.
Visualization of these then revealed the desired correlation with geography.

Formulation based on PCA and CCA

Out of this was borne an inspiration to use a probabilistic model to create more nuanced
dependency relationships between various datatypes.

PCA[66], which can be interpreted as probabilistic graphical model with a latent variable
emitting an observed variable based on a dimensionality expansion plus diagonal noise.

CCA can be viewed as a dimensionality reduction technique similar to PCA the sense that
both matrices are reduced in dimensionality such that they correlate most with one another.
One can also, relatedly, formulate CCA probabilistically as finding a maximum likelihood
solution for a probabilistic general model in which a low-dimensional latent space expanded
into higher dimensions with added noise of a specific structure – positive semidefinite noise
and with two observed variables. Thus, some combination of these two (PCA and CCA)
noise constraints was indicated in order to simulate the PCA/CCA combination above in a
probabilistic fashion.

One way that these can be combined in a probabilistic model is through simply adding an
intermediate node between the observed data and the latent data, and have the intermediate
node be generated from the latent node with diagonal noise, and the observed node be
generated from the intermediate node with positive semidefinite noise.

As a generalization to more than two datatypes, one can imagine recursively applying
this, such that, for example, if G′ and R are predicted to have been generated from H, a
lower-dimensional space, and then performing FAA on H and S to find T, etc. We define
this as a hierarchical factor association model (HFAM). This lends FAA to more complicated
association problems than merely two datasets with two datatypes.

This successful application of HFAM in geographic explanation of gene expression setting
and the recognition of its non-setting-specific theoretical nature as a framework led to the
idea of applying it in other datasets, in particular those in cancer genomics in prediction
problems. Thus came the inspiration for applying it to the prediction problem related to
severity of recurrence upon application of TMZ given several HT genomic datatypes.

Formal model specification

In more concrete terms, the proposed HFAM consists of a latent factor model with nz > 1
latent multidimensional variables ~z1, ...~znz and nx > 1 observed variables ~x1, ..., xnx .

~z1 is taken to be generated by a normal prior wtih identity variance: ~z1 ∼ N(0, I)
Variables are generated from other variables as follows: ~γ is a dimensionality expansion

of ~δ , plus noise: ~γ ∼Wγ
~δ + ~εγ. ~εγ ∼ N(~0,Ψγ), where Ψγ can be specified to be diagonal

or unconstrained. We are using the normal distribution ~γ ∼ N(Wγ
~δ,Ψγ), although other

distributions could be used as an extension.
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Figure 4.1: Three-node HFAM. Here our outcome ~y is represented by ~H.

One specific observed variable is set to be the outcome of interest: ~xi := ~y.
In general, observed variables are specified to have diagonal noise in their generation from

latent variables, whereas latent variables are specified to have unconstrained noise in their
generation from other latent variables (other than ~z1).

As a graphical model, this can be viewed as a multifurcating tree, with root ~z1 and leaves
~x1, ..., xnx , where an arrow from δ to γ indicates the relationship outlined above. As an
example, see an instance of the model with three observed nodes and two hidden nodes
(nz = 2, nx = 3) (figure 4.1).

This model can be seen as imposing a specific structure on the covariance matrix of the
data which is appropriate for the supervised modeling of sequencing data towards a specific
response. In particular, it imposes a block joint covariance structure. See appendix for an
example.

Inference is done using the expectation-maximization (EM) algorithm in order to estimate
the parameters: Θ := {Wi,Ψi}nx+nz

i=1 as well as the latent variables ~z1, ...~znz . See the appendix
for EM parameter updates derived for a three-node model.

After learning parameters Θ, one can predict y from input observed variables. See the
appendix for details.

Consistency of model structure and genomics assumptions

The above model specification if used with one multifurcating second-level latent variable
and one high-level latent variable of relatively low dimension induces model assumptions
we feel are consistent with reasonable assumptions for the datatype, and simultaneously
address the challenges of heterogeneity and high-dimensionality. In particular, dimensionality
is addressed through the use of relatively low-dimensional latent variables zi – on the order
of 100 in our simulations and 101 on CGP data.

Heterogeneity is handled as follows: when diagonal noise variances are used for observed
variables, this forces covariance within-feature set to be reflected in the latent variable and
consequently sibling variables; thus, the latent variable can be seen as storing covariance
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Figure 4.2: Bayes’ ball depiction of difference of hierarchical model layout.

that is both within-feature type and between-feature type. This is reflected in the associated
variable W. In addition, the multi-level hierarchical nature with unconstrained variance
between the latent nodes leads to a variable amount of shared-sequencing variance to be used
to explain the outcome of interest.

This is consistent with intuitive and established notions about empirical shared variance
between sequencing types and outcomes: some of the shared variance between shared data
types will be relevant for the outcome, but not all. It can also be seen as using each additional
sequencing datatype as further evidence for a particular variance structure. It differs from
a single latent-node model, which will expect all covariance within feature-datatype to be
explained in the outcome variable. This can be seen using Bayes’ ball approach for studying
dependencies in probabilistic graphical models (see 4.2).
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Implementation

The above model was implemented with a set of python classes and associated script. It
allows for the specification of a general-structure model and its parameters (number of nodes,
their associated dimensions, and the diagonal or non-diagonal variance structure of noise).
See the Bitbucket®repository
(https://bitbucket.org/ijoseph/factorassociationanalysiscancergenomics/) for de-
tails.

Briefly, the GaussianLatentFactorModel class includes logic for inference and prediction,
and ThreeNodeGaussianModel shows an example of a three-node implementation with
minimal specification.

4.4 Results

We present the results on three different datasets of increasing difficulty: (1) simulated
data with arbitrary parameters, and in order to discover necessary parameters for accurate
prediction, (2) data from the Cancer Genome Project[34] with around 1, 000 samples and
100, 000 features, and the Costello Lab (see chapter 2 for details of all).

Assessment

Machine learning assessment is a rich field, with many options available.

Expected prediction error motivation

Essentially, one important metric to measure is expected prediction error, which describes
the expected accuracy of a given fit model on predicting from data arising from the same
distribution under which it was trained [19].

Under situations with unlimited data size and resources, one would estimate this by using
a training/ validation/ test split of the available data, where 50% of the data is used for
training, 25% is used for validation, and another 25% is used for testing.

The training set would be used to fit the model. The validation set would be used to
estimate the expected prediction error for a given setting of model tuning parameters (related
to model complexity and therefore tendency to over or underfit). Different tuning parameters
would be assessed until one with acceptable expected prediction error were found on the
validation set. The testing set would be used to confirm the expected prediction error.

However, under a relatively limited number of samples, one might perform cross-validation
in order to assess the prediction error from a limited number of samples. This eschews the
need for a validation set, and estimates one based on iteratively holding various small subsets
of the data and assessing prediction error on the small subsets.

For expediency and data-size reasons, we chose to use cross-validation in this manner in
order to estimate prediction error.

https://bitbucket.org/ijoseph/factorassociationanalysiscancergenomics/
https://bitbucket.org/ijoseph/factorassociationanalysiscancergenomics/
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Practically, we assessed the below performance by interfacing with scikit-learn[49], a
package with built-in assessment tools, and also used existing machine learning models in
this package for comparison.

AUC metric

For a given set of predictions on data, one can assess accuracy based on the area under
the [receiver-operating characteristic (ROC)] curve (AUC), a common measure of classifier
efficacy[19]. Briefly, the ROC curve’s axes specify the particular specificity achievable for a
given setting of sensitivity. An AUC of 1 indicates perfect classification, whereas 0.5 indicates
a classifier that is no better than chance.

Confusion matrix

In order to complement the ROC curve and AUC, we also studied confusion matrices based on
cross-validation predictions, which show, for a given fixed sensitivity/specificity, the number
of true positives, false positives, false negatives, and true negatives.

Simulated data

We sought to validate that the model was performing as expected, and also to assess the
necessary effect size for a given setting of N and p. Effect size was approximated through
the setting of a specific parameter of element-wise average e := W

Ψ
for parameter generation,

where a larger setting of this quantity indicated higher signal-to-noise ratio and effect size. In
essence, this means that the latent variables of the model explain more about the association
between the datatypes than the noise specific to each datatype.

For simulations, we chose the dimension of z1 to be 2 and z2 to be 3. For logistic regression,
we set left the Lasso regularization strength at C = 1, its default.

Since we are interested in a classification problem and the model as specified generates
floating-point numbers as observed data, we made the additional step of binarizing one of
the one-dimensional output nodes based on the empirical mean of the simulated distribution.

p� N

First, we sought to assess whether the model would lead to more accurate recovery of its
simulated data than other models. We chose logistic regression with lasso penalty as a model
for comparison.

N = 1,000,p = 10 We used N = 1, 000 and p = 10 (nx = 3, with two 5-dimensional feature
nodes). N = 1, 000 corresponds to the approximate number of samples in the Cancer
Genome Project[34] dataset.

We found that the model was slightly superior from an AUC perspective, especially
with relatively low effect size (e← 1.25).See figures 4.3, 4.4, 4.5, 4.6.
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Figure 4.3: HFAM ROC curves from HFAM-simulated N = 1000, p = 10.
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Figure 4.4: Logistic regression ROC curves from HFAM-simulated N = 1000, p = 10.
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Figure 4.5: HFAM confusion matrices from HFAM-simulated N = 1000, p = 10.
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Figure 4.6: Logistic regression confusion matrices from HFAM-simulated N = 1000, p = 10.
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Figure 4.7: HFAM ROC curves from HFAM-simulated N = 30, p = 10.

N = 30,p = 10 This number of samples roughly corresponds to that which is available from
the Costello Lab. Here, we see a greater advantage of the model in terms of AUC,
especially at relatively low effect-sizes (see figures 4.7, 4.8, 4.9, 4.10).
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Figure 4.8: Logistic regression ROC curves from HFAM-simulated N = 30, p = 10.
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Figure 4.9: HFAM confusion matrices from HFAM-simulated N = 30, p = 10.
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Figure 4.10: Logistic regression confusion matrices from HFAM-simulated N = 30, p = 10.
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p� N

Secondly, we sought to assess the model’s performance for data with dimensions that approx-
imated the dimensions of real genomic data.

N = 1,000,p = 50,000 First, we assessed its performance on p = 50, 000, which is similar
to two datatypes’ dimensions from the Cancer Genome Project.

Here, we found the model slightly superior than logistic regression, and requisite e to
be 1.25 for what we consider adequate prediction accuracy (AUC 0.85) (see figures 4.11,
4.12, 4.13, 4.14).

N = 30,p = 500,000 Secondly, we attempted to assess the model performance on N = 30,
p = 500, 000, which is similar to Costello’s data size, but found performance prohibitive
without further algorithmic optimization. In lieu of this, we opted to preemptively
reduce dimensionality for the Costello dataset (see below).

Cancer Genome Project

We assessed the efficacy of the model using both copy-number variation and mutation features.
Mutation information was used on a genic level from any of 64 preselected “cancer genes”

by CGP[20]. In particular, any mutation occurring anywhere within a gene body resulted in
a binary 1 for that gene in that sample.

Copy-number variation was converted to a natural number representing copies, and was
most often ∈ {0, 1, 2}.

We chose to assess the model on compound “Y-39983”, as this compound had a relatively
balanced outcome of sensitivity across cell lines, easing model assessment. Briefly, this
compound is an experimental targeted rho-associated protein kinase inhibitor. 658 cell lines
had available sensitivity information for this compound.

Missing data in sequencing features was handled by column-imputation, such that a
missing feature for a sample was replaced with the average over all samples for that feature.

After processing, this resulted in 469 features overall, 47 of which were mutations and the
remaining of which were copy number variations, meaning our feature space was a matrix of
dimension 658× 469.

In order to address possible overfitting or underfitting, we chose a variety of different
model complexities for both logistic regression and HFAM. HFAM performed superior to
logistic regression according to AUC metric at all levels of model complexities chosen, with a
difference of about 0.07 in AUC-space at the best-found complexities (see figures 4.15, 4.16,
4.17, 4.18).

Glioma outcome prediction

The model’s favorable performance is auspicious for its utility in the prediction of second-
surgery hypermutation prediction using first-surgery sequencing data. However, time con-
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Figure 4.11: HFAM ROC curves from HFAM-simulated N = 1000, p = 50 000.



CHAPTER 4. INTEGRATING GENOMICS DATA FOR PREDICTION, WITH
APPLICATION TO GLIOMAS 51

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e 
P

os
iti

ve
 R

at
e

ROC curve (AUC = 0.871)

(a) e = 1.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e 
P

os
iti

ve
 R

at
e

ROC curve (AUC = 0.910)

(b) e = 1.25.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e 
P

os
iti

ve
 R

at
e

ROC curve (AUC = 0.990)

(c) e = 10.

Figure 4.12: Logistic regression ROC curves from HFAM-simulated N = 1000, p = 50 000.
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Figure 4.13: HFAM confusion matrices from HFAM-simulated N = 1000, p = 50 000.
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Figure 4.14: Logistic regression confusion matrices from HFAM-simulated N = 1000, p =
50 000.
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Figure 4.15: HFAM ROC curves for different levels of model complexity.
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(c) Over-fit: C = 1× 1015.

Figure 4.16: Logistic regression ROC curves for different levels of model complexity.
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Figure 4.17: HFAM confusion matrices for different levels of model complexity.
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Figure 4.18: Logistic regression confusion matrices for different levels of model complexity.
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Figure 4.19: Accuracy as assessed by true positives+true negatives
false positives+false negatives

for two sequencing datatypes ac-
cording to HFAM approximation. Results similar for logistic regression and linear discriminant
analysis models.

straints and the relatively small number of samples available at the time of this writing
preempted our ability to assess the model on combined datatypes.

Assessment of single datatypes using existing methods, such as linear discriminant analysis
and logistic regression, yielded that high AUC was not necessarily possible in this problem.
We also assessed a non-probabilistic approximation of HFAM and found similarly inauspicious
results (figure 4.19)..

Thus, we might choose to use sequencing data collected post-second surgery to see
if we could assess hypermutation as having already occurred (versus prediction of future
hypermutation), as preliminary attempts to predict outcome from first-surgery tissue were
unpromising. The utility of this would be the greater use of public datasets in order to assess
the hypermutation phenotype when it is not explicitly accessible.

We chose to use methylation and mutation information, as these datatypes were available
for the highest number of samples.

In order to reduce dimensionality for the purposes of computational tractability and
biologically mechanistic interpretability, we would choose the 50, 000 most variable methylation
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probes, pursuant to suggestions from Dr. Matthew Grimmer as to the most cogent way
to reduce methylation dimensionality. In particular, this is hypothesized to be superior to
alternate approaches. One possible alternate approach would be to binning based on specific
regions, as related glioma methylation changes often occur on a single-CpG-site basis, rather
than on a large scale basis.

4.5 Discussion

This approach shows promise; we feel that further refinement of the approach could yield to
more accurate prediction than what is shown above. In particular, we would like to implement
a model tuning phase above in order to assess dimensions; we would like to use the model
to integrate more than two feature types – a relatively simple addition on what is currently
implemented. We would like to use different distributions for our observed datatypes that
work more cogently with mutation information – chiefly, the multinomial distribution.

We would like to assess the model versus existing non-probabilistic methods for heteroge-
neous, regularized supervised prediction as well, such as collaborative regression[22].
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Chapter 5

Concluding statements

5.1 Conclusion

Both methods described herein bring us closer to both of our goals: investigation and
individualized treatment.

Both goals can be seen in a generalized learning framework, wherein either humans
or machines develop and gather evidence towards models of molecular behavior that is
inaccessible by direct, real-time observation.

For both human and machine learning, one needs to firstly identify low-level properties of
a phenomenon; this can be seen as feature extraction in the machine learning. One secondly
needs to then use such low-level properties in order to form a coherent model of a phenomenon;
this model could be described in words and be the result of several distinct perturbations of
related as in the human case, or it could be pre-specified in form mathematically and features
could be used as evidence in order to fit a given mathematical model.

A classical example could be in vision, wherein spatial regions of light intensity and color
correspond to features, and these are used to fit a model of possible structures in the world.
The model fitting could be done in a human’s brain based on pre-specified, empirically learned
constraints on what physical object configurations are possible, or in computer vision by
using a model pre-fit with such empirically-learned constraints.

Here, we make progress on both regards, by (1) extracting the new features of fusion
genes’ expression and (2) creating a new model for fitting through abstract specification of
how sequencing datatypes might correspond to an outcome of interest.

Feature extraction advances

Features extracted from genomic data may be used individually by investigators with extensive
knowledge of current cellular phenomena to generate more accurate causal models of various
phenotypes, including oncogenesis, tumor progression, metastases, and survival. Here, we
described the extraction of fusion genes’ in a more accurate manner based on the use of
expression information. The advance is thus twofold: (1) the addition of new features
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describing fusion gene expression where noen previously existed, and (2) more accurate
presence of absence of intermediate features.

Specifically, the existence of RTK fusions in gliomas helped advance our knowledge of the
centrality of such proteins in tumor progression within certain molecular classifications of
LGG. Our developed method allows for ease of doing so from future datasets.

These features might also be included in a classifier consisting of a model to be fit,
assessing survival time or progression.

Automated modelling advances

Models to be fit must accurately depict basic assumptions of the phenomenon or at least
be robust to violations therein in order to be useful. Here, we successfully created a model
that appears to be constitute useful baseline assumptions about how several sequencing
datatypes available might relate to one another in ways meaningful for outcomes constituting
the reactions to specific compounds.

5.2 Outlook

There is much further work to be done to further the use of genomic data for cancer
investigation and individualized treatment. This work broadly involves possible advances in
data collection, feature extraction, and models.

Data collection opportunities

As evidence for a phenomenon increases with greater numbers of available observations,
more observations would be of great use to increase evidence for relatively weak or rare yet
important associations. More data would allow for models of higher complexity to be fit,
which may more accurately represent the reality of tumor-related biological processes. It
would also manifest in terms of more statistical significance for specific parameters related to
increasing human understanding of these processes.

Economic opportunities

The cost of collecting genomic information from every patient still remains high in late 2016.
In particular, whole genome sequencing (WGS) is typically infeasible for the majority of
patients. WGS could be helpful to more accurately assess fusion gene existence and non-genic
mutations and variants of interest. Sequencing with longer reads than around 100 base-pairs
also remains problematically expensive, which limits our ability to resolve features related to
fusion genes and repetitive regions of the genome in general. More detailed epigenetic data,
such as histone modifications, could also be of use.

This cost is particularly concerning due to it excluding the majority of humanity, which
does not live in a so-called “developed” country able to fund such collection[1]; even within
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“developed” countries, the majority of diagnosed cancer patients do not have access to facilities
performing or organizing sequencing-based assessment. Even if access is possible, the high
cost of sequencing (on the scale of 104) not covered by insurance is prohibitive[53]. This
concern is compounded by the fact that such populations also typically lack access to other
medical resources and that such lack is arguably not a direct result of any inaction or action
by individuals in these populations. Thus, much progress is possible in terms of collecting
high amounts of sequencing information from a greater subset of the global population.

Data sharing opportunities

Currently, accessing large amounts of high-quality, well-curated genomic tumor sequencing
data is difficult. This is, according to this author, largely due to scientific incentive schemes
which are developed around the idea of an individual investigator only directly using data
that he or she collects in his or her individual facilities.

Such incentives manifest in the form of manuscript-based compensation assessments,
wherein the vast minority of contributors receive the majority of credit. Individualistic
incentives also manifest in the form of funding allotments which focus on individual researchers’
goals and accomplishments. These incentives are inconsistent with the cost of sequencing
and the ability to directly increase the utility of any specific scientific inquiry or model
development through the use of others’ data. Thus, much rethinking and adaptation of such
incentives would be fruitful.

Additionally, knowledge-sharing necessary for investigations that span disciplines such as
this one is disincentivized in the above schemes, as are managerial competencies.

A small handful of institutions such as the Broad Institute, the Institute for Systems
Biology, the Memorial Sloan-Kettering Cancer Center, and the Fred Hutchinson Cancer
Research Center have made some progress in reframing the context in which tumor genomic
data is assessed in order to address these issues by providing common funding for a segment
of researchers and common incentive schemes across groups of researchers. Consortium efforts
modeled after the Human Genome Project[31] such as TCGA also provide important progress
in this area, but much room for improvement still remains.

Feature extraction opportunities

There is room for improvement in terms of both the accuracy of current feature assessment
and in terms of the collection of new, potentially orthogonal sources of information.

Opportunities for increased accuracy of current features

All sequencing datatypes mentioned above could be more accurately converted into features
than they are currently.

Higher-depth and longer-read sequencing would provide more confident detection of
specific mutations. This would lead to improvement in the detection and assignment of fusion
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genes; some of this may come with an increased availability of more robust datatypes, such
as sequencing that uses longer reads or higher depth.

Gene expression features could be collected in a way that more closely relates to which
proteins exist in or on the cell at a given point in time, as expressed RNA is merely a surrogate
for this true parameter of interest. Ribosomal profiling[24] and reverse-phase protein assay[64]
are currently developing technologies for doing so, but limited information exists from these
technologies as of this writing.

Additional feature opportunities

New sequencing technologies will also be able to shed light on additional features of interest.
In addition to those mentioned above, more epigenetic information could be extracted,

such as using as through the use of HI-C[77] or histone mark-based assessment strategies.

Model improvement opportunities

There exists substantial room for improvement in terms of the specification of integrative
models involving several different sequencing datatypes. As the availability of new and more
features increases rapidly, model specification innovation needs to follow in order to adapt
these new features most effectively towards the goals of investigation and individualized
treatment. This will involve the study of these new features’ behavior and their relationship
to known biological mechanisms.

One area of possible development that may become useful in this sphere is the use of
non-linear models, which may more accurately reflect the behavior of enzymes outside of
certain regions and other nonlinear biochemical processes. One promising way that this
may be accomplished is through the use of multilayer neural networks models, which can
be viewed as automatically extracting higher-level features via nonlinear combinations of
existing features [25].
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Appendix A

Three-node model formulation

A.1 Model

P
(
{~xi,n}3i=1, {~zj,n}2j=1|{Wk}3k=0, {Ψ`}3`=0

)
= P (~z1)P (~z2|~z1)P (~x1|~z2)P (~x2|~z2)P (~x3|~z1);

~z1 ∼ N(~0, I) ∈ Rm×1;

~z2|~z1 ∼ N(W0~z1,Ψ0) ∈ Rp0×1;

~x1|~z2 ∼ N(W1~z2,Ψ1) ∈ Rp1×1;

~x2|~z2 ∼ N(W2~z2,Ψ2) ∈ Rp2×1;

~x3|~z1 ∼ N(W3~z1,Ψ3) ∈ Rp3×1.

W0 ∈ Rp0×m; Ψ0 ∈ Rp0×p0 ;

W1 ∈ Rp1×p0 ; Ψ1 ∈ Rp1×p1 ;

W2 ∈ Rp2×p0 ; Ψ2 ∈ Rp2×p2 ;

W3 ∈ Rp3×m; Ψ3 ∈ Rp3×p3 .
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A.2 Complete log-likelihood

For N samples,

`n(Θ) =
N∑

n=1

log
(
P
(
{~xi,n}3i=1, {~zj,n}2j=1|{Wk}3k=0, {Ψ`}3`=0

))
=

N∑

n=1

−p1
2

log(2π)− 1

2
log(|Ψ1|)−

1

2

(
(~x1,n −W1~z2,n)T Ψ−11 (~x1,n −W1~z2,n)

)
+

− p2
2

log(2π)− 1

2
log(|Ψ2|)−

1

2

(
(~x2,n −W2~z2,n)T Ψ−12 (~x2,n −W2~z2,n)

)
+

− p3
2

log(2π)− 1

2
log(|Ψ3|)−

1

2

(
(x3,n −W3~z1,n)T Ψ−13 (~x3,n −W3~z1,n)

)
+

− p0
2

log(2π)− 1

2
log(|Ψ0|)−

1

2

(
(~z2,n −W0~z1,n)T Ψ−10 (~z2,n −W0~z1,n)

)
+

− m

2
log(2π)− 1

2
~zT1,n~z1,n;

(A.1)

⇒E{~zj}2j=1|{~xi}3i=1

[
N∑

n=1

log
(
P
(
{~xi,n}3i=1, {~zj,n}2j=1|{Wk}3k=0, {Ψ`}3`=0

))
]

=

N∑

n=1

−p1
2

log(2π)− 1

2
log(|Ψ1|)−

1

2

(
~xT1,nΨ

−1
1 ~x1,n − 2~xT1,nΨ

−1
1 W1E[~z2,n] + Tr

(
E[~z2,n~z

T
2,n]WT

1 Ψ−11 W1

))

− p2
2

log(2π)− 1

2
log(|Ψ2|)−

1

2

(
~xT2,nΨ

−1
2 ~x2,n − 2~xT2,nΨ

−1
2 W2E[~z2,n] + Tr

(
E[~z2,n~z

T
2,n]WT

2 Ψ−12 W2

))

− p3
2

log(2π)− 1

2
log(|Ψ3|)−

1

2

(
~xT3,nΨ

−1
3 ~x3,n − 2~xT3,nΨ

−1
3 W3E[~z1,n] + Tr

(
E[~z1,n~z

T
1,n]WT

3 Ψ−13 W3

))

− p0
2

log(2π)− 1

2
log(|Ψ0|)−

1

2

(
Tr
(
E[~z2,n~z

T
2,n]Ψ−10

)
− 2Tr

(
E[~z1,n~z

T
2,n]Ψ−10 W0

)
+ Tr

(
E[~z1,n~z

T
1,n]WT

0 Ψ−10 W0

))

− m

2
log(2π)− 1

2
E[~zT1,n~z1,n].

.

(A.2)
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A.3 M-Step: finding critical points

W

∂

∂W0

=
N∑

n=1

∂

∂W0

Tr
(
E[~z1,n~z

T
2,n]Ψ−10 W0

)
− 1

2

∂

∂W0

Tr
(
E[~z1,n~z

T
1,n]WT

0 Ψ−10 W0

)

= E[~z1,n~z
T
2,n]Ψ−10 − E[~z1,n~z

T
1,n]WT

0 Ψ−10 ;

⇒ ŴT
0 MLE =

(
N∑

n=1

E[~z1,n~z
T
1,n]

)−1( N∑

n=1

E[~z1,n~z
T
2,n]

)
.

∂

∂W1

=
N∑

n=1

∂

∂W1

~xT1,nΨ
−1
1 W1E[~z2,n]− 1

2

∂

∂W1

Tr
(
E[~z2,n~z

T
2,n]WT

1 Ψ−11 W1

)

= E[~z2,n]~xT1,nΨ
−1
1 − E[~z2,n~z

T
2,n]WT

1 Ψ−11 ;

⇒ ŴT
1 MLE =

(
N∑

n=1

E[~z2,n~z
T
2,n]

)−1( N∑

n=1

E[~z2,n]~xT1,n

)
.

By pattern-matching,

ŴT
2 MLE =

(
N∑

n=1

E[~z2,n~z
T
2,n]

)−1( N∑

n=1

E[~z2,n]~xT2,n

)
;

ŴT
3 MLE =

(
N∑

n=1

E[~z1,n~z
T
1,n]

)−1( N∑

n=1

E[~z1,n]~xT3,n

)
.
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Ψ

∂

∂Ψ0

=

N∑

n=1

(
− ∂

∂Ψ0

1

2
log (|Ψ0|)−

1

2

∂

∂Ψ0

Tr
(
E[~z2,n~z

T
2,n]Ψ−10

)
+

∂

∂Ψ0

Tr
(
E[~z1,n~z

T
2,n]Ψ−10 W0

)
− 1

2

∂

∂Ψ0

Tr
(
E[~z1,n~z

T
1,n]WT

0 Ψ−10 W0

)
00

=
N∑

n=1

(
−1

2
Ψ−10 +

1

2
Ψ−10 E[~z2,n~z

T
2,n]Ψ−10 −Ψ−10 E[~z2,n~z

T
1,n]WT

0 Ψ−10 +
1

2
Ψ−10 W0E[~z1,n~z

T
1,n]WT

0 Ψ−10

)
;

⇒ Ψ̂0MLE =
1

N

N∑

n=1

(
E[~z2,n~z

T
2,n]− 2E[~z2,n~z

T
1,n]WT

0 + W0E[~z1,n~z
T
1,n]WT

0

)
.

By pattern-matching,

Ψ̂1MLE =
1

N

N∑

n=1

(
~x1,n~x

T
1,n − 2~x1,nE[~zT2,n]WT

1 + W1E[~z2,n~z
T
2,n]WT

1

)
;

Ψ̂2MLE =
1

N

N∑

n=1

(
~x2,n~x

T
2,n − 2~x2,nE[~zT2,n]WT

2 + W2E[~z2,n~z
T
2,n]WT

2

)
;

Ψ̂3MLE =
1

N

N∑

n=1

(
~x3,n~x

T
3,n − 2~x3,nE[~zT1,n]WT

3 + W3E[~z1,n~z
T
1,n]WT

3

)
.

Using a generalized EM algorithm, and therefore substituting W with ŴMLE in Ψ̂MLE:
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Ψ̂0MLE =
1

N

N∑

n=1

(
E[~z2,n~z

T
2,n]− E[~z2,n~z

T
1,n]
(
E[z1,n~z

T
1,n]
)−1 E[~z1,n~z

T
2,n]
)

;

Ψ̂1MLE =
1

N

N∑

n=1

(
~x1,n~x

T
1,n − ~x1,nE[~zT2,n]

(
E[~z2,n~z

T
2,n]
)−1 E[~z2,n]~xT1,n

)
;

Ψ̂2MLE =
1

N

N∑

n=1

(
~x2,n~x

T
2,n − ~x2,nE[~zT2,n]

(
E[~z2,n~z

T
2,n]
)−1 E[~z2,n]~xT2,n

)
;

Ψ̂3MLE =
1

N

N∑

n=1

(
~x3,n~x

T
3,n − ~x3,nE[~zT1,n]

(
E[~z1,n~z

T
1,n]
)−1 E[~z1,n]~xT3,n

)
.

Note that in the case of assuming diagonal errors Ψi, we simply take the diagonal component of every Ψi when
performing each update.

Ψ̂i,MLE := diag
(
Ψ̂i,MLE

)
. (A.3)
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A.4 E-Step: finding posterior conditional distribution

By inspection,

~z1, ~z2, ~x1, ~x2, ~x3 ∼ N(~µ,Σ),where

Λ := Σ−1 =

~z1 ~z2 ~x1 ~x2 ~x3





~z1 WT
3 Ψ−13 W3 + WT

0 Ψ−10 W0 + I −WT
0 Ψ−10 0 0 −WT

3 Ψ−13

~z2 −Ψ−10 W0 WT
1 Ψ−11 W1 + WT

2 Ψ−12 W2 + Ψ−10 −WT
1 Ψ−11 −WT

2 Ψ−12 0
~x1 0 −Ψ−11 W1 Ψ−11 0 0
~x2 0 −Ψ−12 W2 0 Ψ−12 0
~x3 −Ψ−13 W3 0 0 0 Ψ−13

,

(A.4)

:=

(
Λzz Λzx

Λxz Λxx

)

, where ~x :=



~x1
~x2
~x3


 , ~z :=

(
~z1
~z2

)
.

(A.5)
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Working with precision matrix

We know that

~z|~x ∼ N(~µz|x,Σz|x) ,where (A.6)

~µz|x = ~µz −Λ−1zz Λzx (~x− ~µx) ; (A.7)

Σz|x = Λ−1zz :=

(
Σz1z1|x Σz1z2|x
Σz2z1|x Σz2z2|x

)
. (A.8)

Finding ~µz|x by expanding (5)

~µ = ~0d×1, where d := m+
3∑

i=0

pi; (A.9)

~µ :=

(
~µz
~µx

)
, where ~µz ∈ R(m+p0)×1, ~µx ∈ R(p1+p2+p3)×1;

⇒ ~µz|x = −Λ−1zz Λzx~x. (A.10)

Now we have what we need for the E-step:

E[~z1|~x] = ~µz1|x ; (A.11)

E[~z2|~x] = ~µz2|x ; (A.12)

E[~z1~z
T
1 |~x] = Σz1z1|x + ~µz1|x~µ

T
z1|x ; (A.13)

E[~z2~z
T
2 |~x] = Σz2z2|x + ~µz2|x~µ

T
z2|x ; (A.14)

E[~z1~z
T
2 |~x] = Σz1z2|x + ~µz1|x~µ

T
z2|x . (A.15)
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A.5 Finding conditional distribution of outcome

observed variable given input observed variables

For the purposes of classification, we observe ~x1 and ~x2 and would like to predict ~x3 based on

parameters learned during fitting on training data Θ̂ :=
{
{Ŵk}3k=0, {Ψ̂`}3`=0

}
. Thus, we’re

interested in obtaining an expression for:

E[~x3|~x1, ~x2,Θ]. (A.16)

We obtain this first based on partitioning the joint covariance matrix and partitioned
Gaussian identities (A.5), and then based on the direct integral form of the expectation (A.5).

Partitioning

By equation A.4 and by partitioning,

Σ = Λ−1 (A.17)

=

(
Σzz Σzx

Σxz Σxx

)
. (A.18)

, where ~x and ~z are defined as in A.5.
Since the marginal distribution of a partition of a Gaussian has the joint covariance of

that same partition, the joint distribution of the observed variables will have covariance Σxx.
We can then obtain the marginal observed precision matrix (Λ′) by inverting, can expand

this into blocks for each observed variable, and partition between observed and prediction
variables:

Λ′ := Σ−1xx (A.19)

=




Λ′x1x1 Λ′x1x2 Λ′x1x3
Λ′x2x1 Λ′x2x2 Λ′x2x3
Λ′x3x1 Λ′x3x2 Λ′x3x3


 . (A.20)

By partitioned Guassian identity (2.97 of Bishop’s Pattern Recognition[6]), ~x3|~x1, ~x2 is
distributed as a Gaussian with expectation:

E[~x3|~x1, ~x2,Θ] = ~µx3 −
(
Λ′x3x3

)−1 (
Λ′x3x1 Λ′x3x2

)((~x1
~x2

)
−
(
~µx1
~µx2

))
. (A.21)

(A.22)

, where ~µxi are additional parameters learned during fitting step.



APPENDIX A. THREE-NODE MODEL FORMULATION 81

Direct

Starting with the general form for conditional expectation,

EΘ [~x3|~x1, ~x2] =

∫
~x3P (~x3|~x1, ~x2)d~x3 (A.23)

=

∫
~x3
P (~x1, ~x2, ~x3)

P (~x1, ~x2)
d~x3 (A.24)

=

∫ ∫ ∫
~x3
P (~x1, ~x2, ~x3, ~z1, ~z2)

P (~x1, ~x2)
d~z1d~z2d~x3 (A.25)

=

∫ ∫ ∫
~x3
P (~x1, ~x2, ~x3, ~z1, ~z2)

P (~x1, ~x2)
d~x3d~z1d~z2 (A.26)

=

∫ ∫
P (~x1, ~x2, ~z1, ~z2)

P (~x1, ~x2)

(∫
~x3P (~x3|~z1)d~x3

)
d~z1d~z2 (A.27)

=

∫ ∫
P (~x1, ~x2, ~z1, ~z2)

P (~x1, ~x2)
(EΘ [~x3|~z1]) d~z1d~z2 (A.28)

=

∫ ∫
P (~x1, ~x2, ~z1, ~z2)

P (~x1, ~x2)
(W3~z1 + ~µ3) d~z1d~z2 (A.29)

=

∫ ∫
P (~x1, ~x2, ~z1, ~z2)

P (~x1, ~x2)
(W3~z1 + ~µ3) d~z2d~z1 (A.30)

=

∫
(W3~z1 + ~µ3)

(∫
P (~x1, ~x2, ~z1, ~z2)

P (~x1, ~x2)
d~z2

)
d~z1 (A.31)

=

∫
(W3~z1 + ~µ3)

(
P (~x1, ~x2, ~z1)

P (~x1, ~x2)

)
d~z1 (A.32)

=

∫
(W3~z1 + ~µ3)P (~z1|~x1, ~x2)d~z1 (A.33)

= W3

∫
~z1P (~z1|~x1, ~x2)d~z1 + ~µ3

∫
P (~z1|~x1, ~x2)d~z1 (A.34)

= W3EΘ[~z1|~x1, ~x2] + ~µ3. (A.35)

, where line A.27 follows based on partial factorization of complete joint probability based
on model dependency structures.



APPENDIX A. THREE-NODE MODEL FORMULATION 82

A.6 Finding Θ for warm starts where child node is of

lower dimension than parent

This ignores all variance contributed to a node by its grandparents.

Using the example of nodes ~x3 and ~z1 above of dimension p3 and m, respectively.
Decomposing variance of a variable into related parameters:

Var(~x3) = Var(W3~z1 + Ψ) (A.36)

= W3Var(~z1)W
T
3 + Ψ3 (A.37)

= W3ImWT
3 + Ψ3 (A.38)

= W3W
T
3 + Ψ3. (A.39)

Thus, for a warm start, for a computed variance A← Var(~x3) we need to find Ŵ3,warm start

and Ψ̂3,warm start such that

Ŵ3,warm startŴ
T
3,warm start + Ψ̂3,warm start = A. (A.40)

One possible solution is to break half of the diagonal variance into Ŵ3,warm start and half

into Ψ̂3,warm start, and keep all the non-diagonal variance in Ψ̂3,warm start:
Now, we take:

Ψ̂3,warm start ← non-diag(A) +
1

2
diag(A) ; (A.41)

Ŵ3,warm start ←
1√
2

( √
diag(A) 0

)
. (A.42)

, where 0 on line A.42 is p3 ×m− p3.

Proof

all variance is recovered by this scheme:
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Var(~x3) = W3W
T
3 + Ψ3 by (A.39) (A.43)

= Ŵ3,warm startŴ
T
3,warm start + Ψ̂3,warm start (A.44)

=
1√
2

( √
diag(A) 0

) 1√
2

( √
diag(A) 0

)T
+ non-diag(A) +

1

2
diag(A)

(A.45)

=
1

2

(
diag(A)

1
2 0

)( diag(A)
1
2

0

)
+ non-diag(A) +

1

2
diag(A) (A.46)

=
1

2
diag(A) + non-diag(A) +

1

2
diag(A) (A.47)

= diag(A) + non-diag(A) (A.48)

= A. (A.49)

Example

p3 = 1,m = 2⇒ A = (a1):

Ψ̂3,warm start ← non-diag(A) +
1

2
diag(A) (A.50)

=
1

2
(a1) . (A.51)

Ŵ3,warm start ←
1√
2

( √
diag(A) 0

)
(A.52)

=
1√
2

( √
a1 0

)
. (A.53)

(A.54)

Var(~x3) = Ŵ3,warm startŴ
T
3,warm start + Ψ̂3,warm start (A.55)

=
1

2

( √
a1 0

)( √a1
0

)
+

1

2
(a1) (A.56)

= a1 (A.57)

= A. (A.58)
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