UC San Diego

Technical Reports

Title
S2Sim: Smart Grid Swarm Simulator

Permalink
https://escholarship.org/uc/item/5b87{380

Authors

Akyurek, Alper Sinan
Akslani, Baris
Rosing, Tajana Simunic

Publication Date
2015-05-01

Peer reviewed

eScholarship.org

Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/5b87j38b
https://escholarship.org
http://www.cdlib.org/

S2Sim: Smart Grid Swarm Simulator

Alper Sinan Akyurek*, Baris Aksanlif, Tajana Simunic Rosing?
University of California, San Diego
*aakyurek@ucsd.edu, baksanli@ucsd.edu, ftajana@ucsd.edu

Abstract—The Smart Grid is drawing attention from various
research areas. Distributed control algorithms at different scales
within the grid are being developed and deployed; yet their
effects on each other and the grid’s health and stability has
not been sufficiently studied due to the lack of a capable
simulator. Simulators in the literature can solve the power flow
by modeling the physical system, but fail to address the cyber
physical aspect of the smart grid with multiple agents. To answer
these questions, we have developed S’Sim: Smart Grid Swarm
Simulator. S?Sim allows any object within the grid to have its
own independent control, transforming physical elements into
cyber-physical representations. Objects can have any size ranging
from a light bulb to a whole microgrid and their representative
data can be supplied from a real device, simulation, distributed
control algorithm or a database. S2Sim shields the complexity of
the power flow solution from the control algorithms and directly
supplies information on system stability. This information can be
used to give feedback signals like price or regulation incentives by
virtual coordinators to form closed-loop control. Using three case
studies, we illustrate how different distributed control algorithms
can have varying effects on system stability, which would go
undetected in the absence of our simulator. Furthermore, the
case studies show that a control algorithm cannot be justified
without being tested within the grid picture.

I. INTRODUCTION

With the growth in information technology and increasing
demand for power, interest in the smart power grid has
risen rapidly. As smarter loads, devices, appliances, storage
elements and generators, or, in general, a swarm of objects
with sensing and/or actuation capabilities connect to the grid,
the need for scalable, stable and distributed control algorithms
rises rapidly. There is large body of research on the control of
both the client side and the utility-provider side of the smart
grid separately. This multi agent system is shifting the physical
electrical grid into a Cyber Physical System (CPS). One of
the most important aspects of the smart grid is the electrical
stability of the system. The classical power grid model has
more concrete separation of the demand and generation sides.
The smart grid, in contrast, with its CPS side of distributed
control, distributed generation and energy storage devices [7]
is forced to be smarter to address the dangers of instability
that can cause major problems as blackouts and equipment
damage.

The elements in the smart grid are moving towards a
more autonomous and distributed structure, with more diverse
control algorithms. Home automation [20], office buildings
with HVAC controllers, microgrids, datacenters using Pho-
tovoltaic (PV) [9] or energy storage devices at substation
levels [10] are examples of increasing autonomous decision
making within the grid. But, majority of the control algorithms

are designed from a local perspective, modeling the grid as
an uninterruptible power supply. This approach has two major
flaws: 1) The cross-effect of multiple controllers on each other
is not studied, 2) The cumulative-effect of the control decision
on the grid itself is left out. It is crucial to test and evaluate
any control solution not only from its own point of view
in an isolated environment, but also with respect to the big
picture of the constituent smart grid in order to get a more
realistic success metric. Recently, a white paper from a multi-
institutional collaboration mentions a need for a smart grid
simulator that can connect loads from different physical loca-
tions, including real hardware to bring the physical aspect into
the loop [14]. In order to achieve these goals, there is a need
for a smart grid simulation tool, which can handle the swarm
of objects with distributed, diverse (possibly heterogeneous)
control algorithms in a dynamic fashion, without introducing
any constraints on the objects.

In order to address these needs, we designed and imple-
mented S2Sim , Smart Grid Swarm Simulator. S2Sim al-
lows real-time co-simulation of distributed control algorithms
within the smart grid and studying the grid’s behavior and
health under various desired conditions. To the best of our
knowledge, existing simulators in the literature either don’t
support dynamic, real-time object behavior [3] or constrain the
object control strategies to predefined libraries with predefined
behavior [1][2][4]. Section II has a detailed analysis of existing
tools and their limitations. The main contributions of this paper
are as follows:

o A smart grid simulator, capable of evaluating independent
distributed control algorithms to analyze stability and
control issues in the smart grid with heterogeneous ob-
jects connected to it. The simulator shields the complexity
of the non-linear power flow equations from the control
algorithms.

« A multitude of objects within the grid can be represented
as an external (possibly real-time) data stream, a real
hardware, simulation code or control algorithm over a
reliable TCP/IP connection. These objects can represent
any type of grid element, ranging from loads, generators,
microgrids to energy storage elements at any scale, such
as a single light bulb or a whole microgrid. In contrast
to classical simulators, the objects enable the simulation
of the CPS aspect of smart grid.

e Multiple coordinators can connect and access system-
wide information to emulate coordination logics such as
the microgrid or a home control hub. These coordinators
can provide feedback signals such as real-time pricing or

stability related information to the objects.

« S2Sim handles time synchronization among objects de-
spite their different time constants such as an air condi-
tioner and a photo-voltaic (PV) cell simultaneously.

e Our simulator provides an application layer commu-
nication protocol for remote access over any network
interface. This enables objects that are physically distant
from each other to form a virtual grid, enabling parallel
and remote computing capabilities. We used this property
to perform a US-wide case study.

II. RELATED WORK

There are various smart grid power flow simulators in the
literature: open source simulators OpenDSS [3] and GridLab-
D [1] or commercial products as RTDS [4] and Paladin
Live [2]. The objects in these simulators are static objects
with fixed behavior, predefined with a time series throughout
the simulation. This static behavior prevents any reaction
from either the objects or the utility, making it impossible
to co-simulate distributed control algorithms. The only way to
overcome this is to set the simulation time to a single step
and readjust the scenario for the next time step. One common
point of the mentioned simulators is that they can all solve the
complex non-linear power flow equations efficiently.

OpenDSS and GridLab-D represent the grid by impedances
and lines connecting them. There are two ways to control
object behavior. The first pre-loads the object behavior as
time series before the simulation. The second uses a Dynamic
Link Library (DLL) that represents the object behavior during
the simulation. The main disadvantage of the first method
is the static simulation, where the objects cannot react to
anything due to preset object behavior. The second method
adds dynamism to the object behavior, but is constrained by
the implementation guide of the DLL.

None of the simulators have an interface for a coordinator
that can give feedback signals like price or regulation incen-
tives back to the objects. These simulators are thus limited to
an open-loop control in nature. RTDS is very powerful in terms
of connecting actual devices to the simulation environment.
But it is again limited to the libraries provided by the simulator
and thus constrains the control application scenarios. Paladin
Live allows real-time system monitoring and provides tools to
analyze the system health. However, its simulation mode is for
general power system design and is not able to do distributed
control simulations.

Other studies on specific load models and their real time
simulations also exist in the literature [12], but they fail to
consider general and heterogeneous control cases, but rather
concentrate on specific scenarios. In [11], the authors introduce
a real-time combined power flow simulator and electromag-
netic simulator, but the scenarios and the system are all static,
i.e. flow of simulation is preset before run-time. In [15], Real
Time Digital Simulator (RTDS) [4] has been used to simulate a
fuel cell vehicle, where the operation is limited to the specific
load scenario of a fuel cell vehicle.

As a summary, existing simulators have very powerful non-
linear power flow solvers that can calculate the voltage drops

efficiently in the physical system. Yet, they lack the ability
and the interface to connect and test dynamic online scenarios,
distributed control algorithms, reactive control algorithms and
feedback based (closed-loop) control algorithms, representing
the emerging cyber physical aspect of the smart grid. Further-
more, classical simulators fail to address time synchronization
since the scenario is a static simulation. To answer all these
missing points and still maintain the powerful aspects, we have
developed S?Sim.

III. S2SIM ARCHITECTURE

The classical power grid is a network of many different
grid elements connected to each other over the electrical lines.
This graph is mostly represented by an impedance matrix. We
use this physical circuit as the basis of our architecture. But,
with the emergence of Smart Grid, we need to add additional
concepts on top of the physical electrical circuit in order to
represent the resulting CPS.

The first concept we introduce with S?Sim in the object.
An object is the cyber/virtual representation of a physical
circuit element. It controls the behavior and the loadshape
of the physical element it is representing. It is of crucial
importance to represent these elements correctly for power
system simulation [6]. The second concept is the optional
component of coordinator. The coordinator is a completely
virtual entity, which implements the feedback logic that will
be present in the CPS. Figure 1 shows an example scenario
for the overall architecture of SSim.

Circuit Representation

Wi

Neighbor
Coordinator

Microgrid
Coordinator

Object 1
San Francisco

Object 2
Pittsburg

Object 5
Storage

Object 3
UCSD Microgrid

Object 4
Solar Panel

Fig. 1. Example Architecture of 3 main elements

A. Object

An object is the cyber representation of any physical entity
defined on the physical circuit. It can represent any type, such
as loads, generators, energy storage devices or a combined
system as a single entity. Objects can be of any size in the grid,
ranging from a toast machine to a whole microgrid. Objects
can be self-aware and implement distributed control algorithms
to adjust their behavior, such as real-time consumption of a
building, output of a solar panel, charging characteristic of
a battery or the output of any simulation. Object behavior
is controlled over a TCP/IP communication interface, which
allows it to be virtually anywhere. S?Sim does not implement
the behavior of the objects, but provides the communication

Coordinators Coordinator 1

(Cyber)

Objects Object 1 | | Object 2 | | Object 3 |

(Cyber-Physical)

Electrical Circuit
(Physical)

S2Sim Components

Fig. 2. CPS Layers of S?Sim.

framework the objects have to use in order to co-simulate their
outputs. The minimum requirement for an object implemen-
tation is for the object to output consumption values, which
will be used to adjust the physical representation of it. There
is no limitation on the frequency of the output as all time
synchronization is done by S?Sim.

B. Coordinator

A coordinator is a special virtual element that can oversee
and get information regarding the whole or a part of the grid at
any time. It is an optional component that provides feedback
information to the objects, such as dynamic pricing or stability
related sensor information. As an example, it can represent
the grid perspective, a home control hub or a microgrid
coordinator and serves as a feedback provider to its intended
operation region. The coordinator constructs the missing link
in a closed-loop control scheme, providing various feedback
signals required for normal daily operation on different scales.
The simplest of these is price. Each coordinator has a different
strategy for different types of consumers. Another common
signal is regulation incentive, which guides the consumption
of participating customers by giving incentives. The specific
implementation of a coordinator is external to S?Sim , but
requires a specific communication framework to connect to the
simulation. The complex solution of the power flow equations
is completely shielded from the coordinators and is handled
by S?Sim.

C. Electrical Circuit

The only physical and static part of the simulator is the
electrical circuit itself. The circuit represents the networked
connection of objects and is determined statically before the
simulation starts. This component represents the classical
power flow simulators. Any electrical grid item can be de-
fined ranging from loads, generator, energy storage devices
to transformers and circuit breakers. The electrical circuit is
implemented within the simulator and is one of the essential
components. The three layers of components of the composite
simulated CPS is shown in Figure 2.

D. Internal Architecture

For modular structure and flexibility, the internal structure of
S%Sim has three major engines, corresponding to three major

S2Sim Engines

Feedback Communication Engine

to Objects
OREZTD] I ittty

le—
(0.2$/kWh) N —1. - Feedback
- Time Synchronization Power Flow Engine From

/ﬁ\ Engine Coordinators
From (Power Grid Circuit) (0.18/kWh)

‘ Y (0.2$/kWh)
Object 1 . gk L,
(500 > J .

- -

i y ey

) ject
Fro_m - Information
(?l?(Jeth - — — b B i
(rW) ; N q Coordinators

(500W, 2%)
(1kW, 3%)

Fig. 3. Functionalities of S?Sim divided among its internal components.

tasks: Communication, Time Synchronization and Power Flow
Engines. Figure 3 shows how these engines interact with each
other as well as the external components, namely objects
and coordinators. At any time, the simulation’s information
flow starts from the objects into the simulator. The incoming
information is parsed and processed through the Communi-
cation Engine and is supplied into the Time Synchronization
Engine. The data is then time filtered and time synchronized,
and passed to the Power Flow Engine in order to obtain the
power flow solution for the current time interval. The Electrical
Circuit component is modeled within the Power Flow Engine.
All obtained information is then forwarded to the respective
Coordinators for feedback calculation. Finally, any feedback
is sent back to the Objects, closing the information flow loop.
During the process, the information flow from/to the external
components can happen asynchronously, as this is handled by
the Time Synchronization Engine.

1) Communication Engine: Communication engine main-
tains end-to-end communication using TCP/IP between the
objects and S?Sim. Since the exchanged data can be sensitive
such as the consumption information of a residential building,
we provide an optional security layer with end-to-end encryp-
tion. The encryption is performed using Secure Sockets Layer
(SSL).

We create a common message structure as an application
layer messaging protocol to regulate the communication be-
tween the simulator and the objects. The protocol is flexi-
ble, extensible, lightweight, low overhead and has minimal
dependency on the underlying infrastructure. This protocol
establishes the minimum framework required by the imple-
mentation of every object. Every communication command is
represented by a separate packet. Examples to these commands
are registration message, consumption reporting message or
price notification message. Although each command has a
unique internal structure, all messages have a common header
and ending for message identification. The common structure
is shown in Figure 4.

Start and End of Message: A communication protocol
must be independent of the communication layers underneath
it. These two fields mark the start and end of a single message.
Since a periodic field may endanger the keys of the encryption,
this field must be transmitted unencrypted.

Sender & Receiver IDs: Each object is assigned a unique
identification number when it registers to the simulator. This

Sender ID
Message Type

Receiver ID 8

o

Start of Message

(o)

Sequence Number
16 Data Size (N)

Message ID |16
End of Msg. |N+24

Unique Structure

Fig. 4. Common structure of S”Sim messages.

ID will be used for every communication for end-to-end
identification.

Message Type & Message ID: The unique structure of
a message is decoded through a two-level hierarchy. Mes-
sage Type defines the higher level (e.g. System Messages),
whereas the Message ID value determines the lower level
(e.g. Registration Message). The specific values are defined in
the Interoperability Document of the simulator in a separate
document, obtainable from the author.

Any control algorithm that wishes to be represented in the
system, needs only to implement this communication protocol
framework.

2) Time Synchronization Engine: Multiple Objects with
various behaviors imply a distributed sense of timing. They
may have different time resolutions and time constants. Con-
sider 2 objects: A phasor measurement unit (PMU) connected
to a PV and a simulated office building with heating ventilating
and air conditioning (HVAC). PMU provides high resolution,
on the order of seconds, near real-time data and has a small
time constant due to rapid solar variations. In contrast, HVAC
simulation has low time resolution, on the order of hours,
may provide simulated information for the future and has
a large time constant due to the slow adapting nature of
thermodynamics. Time Synchronization Engine enables both
objects to connect in real-time and be represented in the same
simulation environment.

Time Synchronization Engine filters out past incoming data,
stores future data and provides the current information. It
integrates different resolutions by linear interpolation and time
averaging for low and high resolutions respectively. It uses
any future information as a prediction and provides it to the
coordinator as an input. The prediction can be updated if the
actual information changes as time advances. For the previous
example, the PMU’s measurements are processed in real-time,
whereas the low-resolution information from the HVAC is
interpolated to obtain the missing points compared to the high
resolution PMU. To represent a broad scale of objects, S2Sim
defines 2 types of object connections:

Active Connection: The object is time synchronized to the
simulator and provides real-time information or future predic-
tion. In return, the object receives feedback information sent by
the local coordinator. If the object fails to communicate within
a time interval, previously sent information or prediction is
used automatically.

Passive Connection: The object connects to the system,
uploads bulk consumption data and disconnects. The bulk data
is filtered and processed. But the coordinator does not provide
feedback, as the object is disconnected and is assumed to be
irresponsive to any feedback. This type of connection enables
the connection of consumption databases or data sources

Passive Object 1
L~
)

t
start t simulation end

Object 2
AN~

Next Data Point =
f (feedback signals)

Active Object 3

simulation

S

Local Coordinator

Object 4

+||___,I
]

Fig. 5. Example circuit with passive and active connections. Passive connec-
tion sends bulk consumption data, whereas the active connection determines
the next interval using feedback signals.

requiring no feedback and is an easy way to represent an object
without any control or automation.

Figure 5 explains the timing with an example. The pas-
sive object provides bulk consumption data for the whole
simulation, whereas the active object is time synchronized
and determines its behavior based on the feedback signals it
receives at every time step.

3) Power Flow Engine: Since one of the purposes of
S2Sim is to provide abstraction of the power flow problem
to the coordinators, the coordinator may require an additional
”sandbox” or “’playground” environment. As an example, the
coordinator knows the current voltage deviation of an object’s
terminal and the object’s consumption. But it does not know
what the deviation of the same terminal or the cross-effect on
any other terminal will be if the consumption is changed as the
result of a control decision. Simply put, the coordinator cannot
calculate possible states of the power-flow under different
conditions that the current ones. The playground environment
is provided for this purpose. The Power Flow Engine uses the
power flow solution interface of OpenDSS [3] over a DLL
and constantly maintains two parallel instances of it. The real
circuit handled on the first instance is modified only to reflect
the actual behavior of objects and any modification represents
actual snapshots of the physical circuit. The second instance
has the exact same circuit at the beginning of each time interval
as the real circuit, but is used as a sandbox to be modified
and reset multiple times to get answers to different "What if”
scenarios that the coordinator might be interested in.

E. Graphical User Interface

We implemented a web-based graphical user interface (GUI)
that visualizes the outputs of our simulation environment. The
website can be accessed to get real-time runtime information
at http://seelabc.ucsd.edu:26995. The GUI gives information
on the system health and all individual objects, in both real-
time and historical modes. Sample snapshots of the GUI is
showin Figure 6.

Fig. 6. 6 Snapshots from the GUIL

IV. DISTRIBUTED CONTROL SIMULATION

In this section, we demonstrate multiple case-studies how
our simulator, S2Sim, can be used to show how heterogeneous
distributed control algorithms can affect each other and the
grid. We first simulate an average sized U.S. town to show
that a complete greedy distributed control of loads may lead
to unstable conditions given static time of use (ToU) pricing. In
response, we show that introducing adaptive pricing heuristic
on the coordination side to guide the grid to stable operating
regions can avert this situation. In the second case, we use
the test bed of a joint project between 6 universities [§]
to test a distributed heterogeneous control scenario. Each
university from different regions of the United States deploys
its own control algorithm. S>Sim combines and synchronizes
all objects and provides a smart pricing heuristic from the
coordinator to guide the grid to stable operating regions. In
the third case, we use HomeSim [20], a residential energy
simulator to simulate multiple houses in a neighborhood to
test various control strategies.

A. Validation and Performance Overhead

The simulator has been validated against University of
California, San Diego campus Microgrid measurements, by
comparing measured and simulated voltage deviation infor-
mation at building terminals.

To give an estimate for the communication overhead, we
look at a sample problem size of 100.000 simultaneous objects.
At each simulation time step, the default communication
overhead is the consumption message from every object to
the simulator and, a price and a regulation message from the
simulator to every object. The messages are only 28 bytes in
total. This results in 56N bytes of overhead for N objects in
every time step. The default setting runs one time step per
second, so for a circuit with 100000 simultaneous objects,
this results in 5.6M B/s of communication overhead, easily
maintainable with an everyday home network.

The processing overhead of the 3 main engines are as
follows: Communication Engine has O(N) message process-
ing complexity for parsing and distributing messages. Time
Synchronization Engine has O(N) complexity for filtering
and interpolation. Power Flow Engine has at least O(N?) due
to the power flow solution. Extra overhead caused by S%Sim
besides the power flow solution is only O(N).

B. Time of Use vs. Adaptive Pricing

We use a university campus distribution circuit with both
residential and office buildings as the loads. The average total
grid consumption is 10M W, about the size of an average U.S.

town with 81 buildings represented as individual objects. Each
object runs a distributed control algorithm, unaware of its sur-
roundings or the grid and only uses the price signal provided
by the utility to adjust its consumption. The distributed control
algorithm of the objects is a greedy heuristic, which adjusts the
consumption in proportion with the ratio of the average price
to the current price. The remaining consumption is adjusted
to fix the total energy consumption, in order to give a fair
comparison among different pricing strategies. The algorithm
at it step is given below:

Avg(Price) (1)

AdjustedPower; = Power; —5 —

_ AdjustedPower; —Power; . .
Power; = Power; + N1t LVie (i, N) (2

This scheme is a simple heuristic assuming an energy storage
device connected to the load, capable of reacting to price
changes. We consider two pricing strategies: 1) Completely
static pricing, open loop without feedback and distributed
control case; 2) adaptive consumption, dynamic price guided,
distributed closed control loop case.

Static pricing uses a ToU pricing scheme with 3 price
regions dividing the day into 4 intervals representing peak,
off-peak and super off-peak hours [5]. The price is static
as it doesn’t react to the state of the grid and is the same
for every object. Adaptive pricing computes a dynamic price
for each individual object. The heuristic uses the information
of object’s terminal voltage deviation as a stability metric,
then multiplies it with the object’s current consumption and
maps the value to a price range. The heuristic not only
penalizes high consumption, but also takes into account the
voltage deviation, which is affected by every object in the
grid. High deviation caused by any object thus has a higher
price effect on all objects, yet the object that has caused
the condition will have the highest penalty. To avoid rapid
variations in pricing, we pass the immediate price values
through an exponentially weighted moving average filter to
smooth out the price decisions. We take the maximum voltage
deviation within the grid as our stability metric and mark the
widely accepted 10% value as the limit of danger and start of
instability.

Figure 7 shows that the result of combined greedy behavior
under ToU pricing in a completely distributed scenario leads
to unstable system behavior, pushing the voltage deviation
beyond its safe limits. The initial spike is largely due to the
fact that the controllers are unaware of each other and react
to the low price in a greedy manner.

Figure 8 shows the results for the adaptive pricing scheme.
As with previous results, there is a spike in consumption
due to the greedy distributed control in the low price region.
However, the price adapts to consumption and stability val-
ues and, guides the system to be within stable boundaries
to avoid instability. Although both consumption and pricing
control algorithms are simple heuristics, we show that good
performance for a control algorithm under isolated conditions
is misleading. S>Sim enables each algorithm to be designed
and simulated within the greater picture of the grid, exploring
cross-correlated effects in more depth.

Time of Use Pricing - Greedy Distributed Control: Unstable
[

UNSTABLE!!!

Voltage Deviation (pu)
=
8

°

8
T
L

Som—————
o %% 100 2 ‘00

8:00 14:00 20:00
Time of Day

Fig. 7. Time of Use Pricing resulting in unstable system behavior.

Smart Price Feedback - Greedy Distributed Control: Stable
I

011} 4
‘Smart Pricing guides to stability

©

. —,

Voltage Deviation (pu)
gereeeg
8 S 8

°

05

8:00
Time fo Day

Fig. 8. Adaptive Pricing resulting in stable system behavior.

C. Distributed Heterogeneous Control

We use a university Microgrid circuit with 12 major build-
ings represented by a combination of real and simulated
objects from 6 different universities. Their physical locations
are in California, Michigan and Pennsylvania, all connected
remotely over TCP/IP to S?Sim. We use home automation con-
troller simulation [20], actual battery bank controller [16], real-
time consumption of an actual building with actuation [19]
and 3 different HVAC control simulations with different strate-
gies [13][17][18], summarized in Figure 9. We use the same
heuristic pricing as in the previous section.

Figure 10 shows that the independent distributed controllers
increase their consumption leading in an increasing voltage
deviation (solid line) within the system, endangering the

Caltech Building HVAC[18] CMU Office[19]
I :Elx I :EI
o |
UPenn Demand Response Umich Battery Bank[16]
) I ETI .
#x " M

1
UCB HVAC[17] UCSD Residential Buildings [20]

| EEI lm‘ul_.
L2 1

Fig. 9. Joint collaborative simulation of heterogeneous control algorithms.

Effect of Independent Distributed Control on Stability N
! ' [—Maximum System Deviation] -
- - Deviation Limit
- -Price

14%

S R 1 600

Voltage Deviation (Percentage)

6% - q

' ' Jso0
0 1 Minute 2 Minutes 3 Minutes

Time
Fig. 10. Effect of Distributed Heterogeneous Control on system stability.

Maximum Voltage Deviation Observations
T T

N

T (= ~Random Shift 1 Hour
-~ -Random Shift 2 Hours
~ -Random Shift 3 Hours
——No Feedback

Active Feedback
- - 10% Limit

® =5

Maximum Voltage Deviation Percentage
>

0 L L L L
0:00 5:00 10:00 15:00 20:00 24:00
Time

Fig. 11. Effect of Distributed Heterogeneous Control on system stability.

system health by coming close and exceeding the 10% limit
(horizontal line) for a short time. The adaptive price (dashed
line) increases to guide the system back into the stable region
and later achieves it. S2Sim in this study shows that, well
performing algorithms in isolated situations, may lead to an
unstable system, when working together.

D. Neighborhood Simulation

To demonstrate the abilities of our simulator even further,
we extend the first case study for time of use pricing by
eliminating the coordinator entirely and randomizing the con-
sumption intervals of each object in order to distribute the
total consumption amount over time. We consider a residential
neighborhood with 160 buildings. The consumption values are
obtained from a residential simulator called HomeSim [20]. To
decrease the probability of a high consumption correlation,
each building selects a random shifting amount without any
further knowledge and shifts its consumption value by the
selected value in time. The random value is a uniformly
distributed value drawn from three different intervals for the
three cases considered: 1) [0,1] Hour, 2) [0,2] Hours, 3)
[0, 3] Hours. Furthermore, we use the two algorithms used
in the first case, where the buildings implement greedy dis-
tributed control and the coordinator is providing static and
dynamic pricing feedback. 50 iterations have been averaged
to get stable results.

Figure 11 shows the results for all 5 control algorithms con-
sidered. The maximum observed deviation values are shown in
Figure 12. The only algorithm that fails the voltage deviation
limit is the greedy control case with static pricing as in the
first case. Furthermore, the greedy control with active feedback

Maximum Voltage Deviation Observed in Time
T T T

Voltage Deviation Percentage

Shift 1 Hour

Shift 2 Hours Shift 3 Hours

Techniques

No Feedback Active Feedback

Fig. 12. Effect of Distributed Heterogeneous Control on system stability.

again manages to keep the stability within the limit as in the
first case. The additionally tested randomization algorithms
without feedback manage to decrease the deviation and the
peak is decreased by increased randomization. This is an
expected result, as increased randomness results in a more
uniform consumption, decreasing the peak consumption in
the grid. Although wider randomization intervals decrease the
deviation, it is also harder to implement them, creating a
tradeoff.

V. CONCLUSION

The classical physical power grid is transforming into a
cyber physical system, the smart grid. Distributed control
algorithms for different platforms are being developed and
deployed in different scales. Existing grid simulators solve
the power flow of the physical aspect of the grid efficiently,
but fail to address the co-simulation of distributed control
algorithms, thus the CPS aspect of the smart grid. There
is a need for a flexible simulator to co-simulate and test
independent distributed control algorithms in order to observe
their effects on both each other and the health of the system.
To answer this need, we have developed S2Sim. SZSim allows
the co-simulation of any object connected over TCP/IP, which
can represent any type and any size of grid elements, with
distributed independent control strategies. S>Sim takes care
of communication, time synchronization and introduces an
interface for multiple coordinators to construct closed loop
feedback controlled system. S2Sim is extensible, scalable
and has low overhead. We present 3 different case studies
specifically possible with our simulator, where the first case
shows, why it is necessary to have closed loop control for grid
stability. The second case shows that we cannot justify the
performance of a control algorithm under isolated conditions
alone, without testing it within the grid picture. The third case
shows that we can use S*>Sim to compare the performance of
different heuristics using our tool.

REFERENCES

[1] http://www.gridlabd.org/.

[2] poweranalytics.com/paladin-software/paladin-live.

[3] sourceforge.net/projects/electricdss/.

[4] www.rtds.com.

[5] www.sdge.com.

[6] Standard load models for power flow and dynamic performance simu-
lation. Power Systems, IEEE Transactions on, 10(3):1302-1313, 1995.

[7]
[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

EPRI Smart Grid Demonstration Initiative Two Year Update. Technical
report, Electric Power Research Institue, 2010.

B. Aksanli, A. S. Akyurek, M. Behl, et al. Distributed control of a swarm
of buildings connected to a smart grid: Demo abstract. In Proceedings
of the 1st ACM Conference on Embedded Systems for Energy-Efficient
Buildings, BuildSys 14, pages 172-173, New York, NY, USA, 2014.
ACM.

B. Aksanli, J. Venkatesh, and T. Rosing. Using datacenter simulation to
evaluate green energy integration. Computer, 45(9):56-64, Sept 2012.
A. Akyurek, B. Torre, and T. Rosing. Eco-dac energy control over divide
and control. In Smart Grid Communications (SmartGridComm), 2013
IEEE International Conference on, pages 666-671, Oct 2013.

F. Angstmann, A. Bracher, S. Bhat, and S. Ramaswamy. A smart grid
simulation framework for electricity trading. In Networking, Sensing and
Control (ICNSC), 2013 10th IEEE International Conference on, pages
609-614, 2013.

J. Arrinda, J. Barrena, and M. Rodriguez. Distribution network simula-
tion method based on a combination of dynamic power-flow simulation
and electro-magnetic simulation. In EUROCON, 2013 IEEE, pages
13361343, 2013.

W. Bernal, M. Behl, T. X. Nghiem, and R. Mangharam. Mle+: A tool for
integrated design and deployment of energy efficient building controls.
In Proceedings of the Fourth ACM Workshop on Embedded Sensing
Systems for Energy-Efficiency in Buildings, BuildSys 12, pages 123—
130, New York, NY, USA, 2012. ACM.

E. Dall’Anese, J. Doyle, S. Dhople, et al. Federated smart grid testbed.
Technical report, March 2015.

Y. Deng, S. Foo, and H. Li. Real time simulation of power flow
control strategies for fuel cell vehicle with energy storage by using real
time digital simulator (rtds). In Power Electronics and Motion Control
Conference, 2009. IPEMC °09. IEEE 6th International, pages 2323—
2327, 2009.

X. Jiang, S. Dawson-Haggerty, P. Dutta, and D. Culler. Design and
implementation of a high-fidelity ac metering network. In Proceedings of
the 2009 International Conference on Information Processing in Sensor
Networks, IPSN *09, pages 253-264, Washington, DC, USA, 2009. IEEE
Computer Society.

M. Maasoumy, C. Rosenberg, A. Sangiovanni-Vincentelli, and D. Call-
away. Model predictive control approach to online computation of
demand-side flexibility of commercial buildings hvac systems for supply
following. In American Control Conference (ACC), 2014, pages 1082—
1089, June 2014.

V. Raman, A. Donze, M. Maasoumy, et al. Model predictive control with
signal temporal logic specifications. In Decision and Control (CDC),
2014 IEEE 53rd Annual Conference on, pages 81-87, Dec 2014.

A. Rowe, M. Berges, G. Bhatia, et al. Sensor andrew: Large-scale
campus-wide sensing and actuation. IBM Journal of Research and
Development, 55, Jan 2011.

J. Venkatesh, B. Aksanli, J.-C. Junqua, P. Morin, and T. Rosing.
Homesim: Comprehensive, smart, residential electrical energy simula-
tion and scheduling. In Green Computing Conference (IGCC), 2013
International, pages 1-8, June 2013.

