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etection of Cisoids Usi 
uare Error Funct 

Qi Cheng and Yingbo Hua, Senior Member, IEEE 

Abstract-In this paper, we propose a new hypothesis testing 
method for detection of cisoids (complex sinusoids) from a single 
measurement of data. The testing is performed on the least square 
error. The least square error is shown to exhibit 1' distribution, 
which leads to an efficient threshold setup for the proposed 
method. The new method is a combined detection-estimation 
technique and provides improved performance over several ex- 
isting techniques. 

I. INTRODUCTION 

ETECTION of cisoids from the following single mea- 
surement of data 

,=l 

is commonly encountered in harmonic retrieval, sensor array 
processing, and nuclear magnetic resonance imaging. In (l), v, 
( f 0 )  and 8, (0 5 8, 5 27r) are the unknown complex ampli- 
tude and frequency associated with the rth complex sinusoid, 
I is the unknown number of cisoids, and w ( l ) ,  
are independent complex Gaussian noise with zero mean and 
the same variance a2. The real and imaginary parts of ~ ( n )  
are also independent Gaussian variables with zero mean and 
variance a2/2. a' is assumed to be known (as in [5] and [6]). 
In practice, o2 can be estimated from noise-only data, e.g., 
output of the same system without excitation. The estimation 
of the integer I is the focus of this paper. 

Several methods have been developed for this detection 
problem. They include the methods by Kumaresan, Tufts, 
and Scharf (KTS) [l], Zhao, Krishnaiah, and Bai (ZKB) [2], 
Hwang and Chen (HC) [3], DjuriC [4], Konstantinides and Yao 
(KY) [5], and Tufts and Shah (TS) [6]. The KTS method is 
based on a test of linear prediction errors but performs much 
worse than the recently developed TS method. The ZKB and 
HC methods apply the so-called efficient detection criterion 
but perform much worse than the DjunC method, especially 
for short data sequences In the rest of this paper, the KTS, 
ZKB, and HC methods will not be further addressed. A short 

Manuscript received November 27, 1995, revised December 9, 1996 This 
work was supported by the Australian Cooperative Research Center for Sensor 
Signal and Information Processing and the Australian Research Council The 
associate editor coordinating the review of this paper and approving it for 
publication was Dr Ananthram Swami 

Q Cheng was with the Department of Electrical Engineering, University 
of Melbourne, Victoria 3052, Australia He is now with the School of 
Electrical Engineering, Northern Territory University, Darwin, Australia (e- 
mail chenga@darwin ntu edu au) 

review of the DjuriC, KY, and TS methods will be shown in 
Section IV. 

The new method that we will show in this paper applies 
a similar concept as used in the KY and TS methods. The 
KY and TS methods perform some hypothesis testing on the 
singular values of a Hankel data matrix. Instead of using the 
singular values, the new method performs a test on the least 
square error between the data and the reconstructed signal. As 
will be shown, the least square error asymptotically exhibits 
x2 distribution when the estimated number of cisoids is equal 
to the true one. This leads to an efficient threshold setup for 
testing on the least square error. As will be shown, the new 
method performs better than both the KY and TS methods. A 
comparison between the new method and the DjuriC method 
will also be discussed. 

In the next section, the new method is described. The 
theoretical basis for the new method is shown in Section 
111. In Section IV, the procedures of the DjuriC, KY, and TS 
methods are first summarized, and their performances are then 
compared with that of the new method. 

11. DESCRIPTION OF THE NEW METHOD 

Let H k  be a hypothesis that the number of cisoids is equal 
to k .  Under Hk,  the least square error of fitting the signal 
model to the measurement is 

1 1 %  - AI,b1I2 ( 2 )  

A where X = [5(l), " ' ,  5(N)IT,  b = [ b l ,  " ' ,  b k I T ,  

AI, = [al, " ' ,  ak], and a, = [1, eJ4T, 
, k .  q51, . . . ,  41, are k unkno 

easy to show that the least square amplitude estimates are 

A A 

b = arg min IIX - Akb1I2 
b 

= ( A C A ~ A F X .  (3) 

Substituting (3) into (2), we obtain the following least square 
error function in terms of frequencies: 
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function L k  (4) and calculated via a k-dimensional search. 
The minimum value of the least square error function L k ,  i.e., 

will be called the least square error. Note that L k  is a 
monotonically decreasing function of the likelihood function 
of x and is proportional to the maximum likelihood function 
of X since the noise is white and Gaussian. 

As will be shown by Theorem 1 in the next section, in the 
case of high SNR (or small a2) and N > 31/2 

(7) 

where M denotes the first-order approximation (i.e., keeping 
the nonzero terms of the lowest order).‘ Equation (7) indicates 
that the least square error LI is x2 distributed with the 2N - 31 
degrees of freedom. 2N is the number of (real) data points, 
and 31 is the number of (real) unknowns (complex amplitude 
and frequency). It will also be shown by Theorem 2 in the 
next section that in the case of high SNR 

L k  M positive value independent of noise (8) 

for IC = 0, , I - 1. Equation (8) shows that the least 
square error L k  for = 0, 1 . ’ )  I - 1 is independent of 
noise. Therefore, for small 02, LI is separable from L k  for 
k = 0, . . . , 1 - 1. Based on this observation, our new method 
for finding 1 is as follows. 

Define a threshold T k  such that 

where I . L ~  = (o2/2)&-3k and a (0 < a < I) is a user 
chosen value of “confidence.” Then, we estimate I by 

For the high SNR case (small c2), the probability of 
underestimation is very small because of (8) and the fact that 
T k  is proportional to o2 and the probability of correct detection 

P ( i  = I )  M P(L,  5 TI) = a. (1 1) 

Note that T k 2  can be easily obtained using MATLAB or 
by just table lookup [9], as only the distribution of 
is involved. In contrast, the computation of a threshold used 
in the TS method is a much more tedious task because the 
distribution of a weighted sum of xz random variables is 
required there. 

’ This convention will be followed throughout this paper. 
2The determination of T k  requires the knowledge of u2.  If this information 

is not available, it can be estimated using the method proposed in [7] based 
on a different measurement or using another as suggested in [8] based on the 
same measurement. 

111. ASYMPTOTIC PROPERTIES OF THE LEAST SQUARE ERROR 

In this section, we provide a number of properties of the 
least square error L k  [which is defined in (6)]. These proper- 
ties constitute the theoretical basis for the method described 
in Section 11. For brevity, we need to show the following 
additional list of symbols: 

Notations: 

(12) a: the real part of a 
6: the imaginary part of a (13) 
A = Ar I+,=e,, %=I, ..., I (14) 

(15) 

- 

Pf =IN - AI(A,HAI)-~A,HI*,=B,,~=~,.. , I  

V = diag [q, s + 2/11 

w = [w( l ) ,  . . . , W(N)]T 
G =PfDVl&=e*,Z=l,. . , I  

H = G H G .  

H is the Hessian matrix of L( 191, . . . , 01)  [which is defined 
in (4)] for the noiseless case (w = 0). TO ensure that 
(el, . . . , 19,) is a global minimum point of LI for the noiseless 
case, H should be nonsingular. Lemma A1 in Appendix A 
shows that if N 2 31/2, H is nonsingular. 

The following Lemma 1 is concerned with the quadratic 
approximation of L I .  

Lemma 1: If c << min(lw11, . . . l  12/11} and N 2 3 1 / 2 ,  

LI M ~ ~ ( 1 2 ~  - B~(BTBI)-~BT - B2(BTB2)-lB:}p 
(21) 

where p = [WT, WTIT 

B i z  

B2 = [g] 
2 N x 1  

Proof: See Appendix A. 
In the proof of Lemma 1, it is shown that 

pT(12N - B1(BTB1)-lBT}p L(01, ’ ’  ’ , 01) (24) 

is the (first-order) fitting error given noisy data and the true 
frequencies, and 

H L H  pT{B2(B;B2)-’B;}P x PI x I$4&it,%=1, . . . , I  (25) 

is the (first-order) fitting error given noise-free data and the 
least square frequency estimates. Thus, the fitting error (21) 
can be interpreted as the difference between these two kinds 
of errors. 

It is shown in Lemma B2 that B1 and B2 are orthogonal 
to each other. Then, we have 
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When N = 3112, PAlB2 = 0, and then, the first-order 
approximation of i~ is zero, and the two kinds of errors cancel 
each other. 

Let u1, . . . , u2N-31 be real unitary eigenvectors of pbIB2 
corresponding to its eigenvalue 1, U0 = [ul, . . .  , u ~ N - ~ I ] ,  

and 6 = ( 2 / a 2 ) p T q .  Then, Lemma 1 leads to 

Since . . . , [ Z N - ~ I  are independent Gaussian random vari- 
ables with zero mean and unit variance, the following theorem 
holds. 

Theorem 1: LI M (a2/2)X&,-31 when << min(Jv11, 

Theorem 2: L k  M positive value independent of noise for 
k = 0, 1, ...)I - 1 when o << min(lvl1, ” ‘ ,  I v I I }  and 
N > 31/2.  

Proof: Since x = AV, where 1v21 # 0 for i = 
1, 2 ,  . “ , I ,  then for any $1, “ ’ ,  $k  

(28) 

. . .  , IvII} and N > 3112. 

x ~ [ I N  - Ak(AFAk)-lAF]~ > 0. 

Since the noise variance is small, for any (deterministic) 
$1) . . . , 4k, we know that 

-1 H 
L($l, ’ ” ,  4 k )  = X H [ l N - A k ( A f A k )  

+ 2Re {xHI I~  - Ak(AfAk)-’Af]w} 
+ w ~ [ I N  - Ak(AfAk)- lAf]~  

M X ~ [ I N  - Ak(AfAk)-lAf]x (29) 
i k  =min+b,, ,$J(41, ’ ” ,  $ k )  

zmin+l ,  . ,br ,xHII~  - A~,(AfAk)-~Aflx 

> 0. (30) 

The expectation of L k  is generally a decreasing function 
of k .  The statistical properties of i k  for k > I seem hard to 
obtain as L k  involves spurious frequency estimates. The lack 
of this information however does not significantly affect the 
procedure of the new method, when SNR is high and Q is 
close to 1, as can be seen from (1 1). 

IV. SIMULATION 
In this section, we will compare the performance of the new 

method shown in Section I1 to those of the DjuriC [4], KY [5], 
and TS [6] methods. For the reader’s convenience, these three 
methods are briefly described below. 

The KY method [5] estimates the number of frequencies by 
determining a number f ~ y  of “effective singular values,” i.e. 

fKY { k l X k  > EKY 2 X k + l }  (31) 

where XI. XZ, . . .  , XK are singular values of an K x ( N  - 
K + I) data matrix X, in descending order with 

rZ(1)  Z(2) . . .  Z(N - K + 1 ) 1  

and is given by 

c is determined by P{S2 5 e} = a,  where S2 = \ w ( l ) l z  + 
. . .  + Iw(K)I2 = 0 . 5 0 ~ ~ ; ~ .  In simulation, K = 17. 

The TS method [6] works on the forward-backward version 
of X,, i.e., [X,, PX:], where P is the permutation matrix 
obtained by reversing the column order of the identity matrix. 
The estimate of the number I of frequencies given by the TS 
method is obtained as 

f I  K 

, p K  are singular values of [Xe, PX:] in 
descending order, and ~ T S  is chosen such that P(S0 5 QS) = 
Q with So = CrzF k[lw(k)12 + Iw(K - k + 1)12 + ( N  - 
K + 1) Cf=N-K+l 1w(k)I2 (see [6, eq. (ll)] for details). 

The DjuriC method [4] is based on the Bayesian principle. 
It computes BAY(k) = ( N  - L )  log 2, + ( 5 k / 2 )  log ( N I L )  
and then estimates the number of frequencies by 

= arg min{BAY(k)} (35) 
k 

where 0 5 k 5 7, r is the maximum possible value of I, and 
L is another user-chosen parameter [4]. 

In our simulation, the following signal parameters were 
used: 

I = 2 ,  
N = 25,  
01127~ 0.5, 
82127~ = 0.52, 
211 = 1, 
v2 = p 1 4 .  

SNR is defined as -10 log a2. The probability of correct 
detection was computed from 3000 runs of simulations. 

Fig. 1 shows the probability of correct detection as a func- 
tion of SNR using the new method, the KY method, and the 
TS method. As seen from this figure, the KY method gives 
a very low probability of correct detection even for SNR at 
14 dB, the TS method significantly improves the performance 
of the KY method for SNR larger than 10 dB, and the new 
method yields almost perfect detection for SNR as low as 4 
dB. This is because bounds EKY given by (33) and E T S  in [6] 
were so large that EKY 2 Xk and E T S  2 xz=k+l pf for some 
k 5 I - 1 at medium SNR, whereas the threshold given by 
the new method was small enough to separate LI from L k  for 

Fig. 2 presents a comparison of the new method with the 
DjuriC method for f = 3 and r = 9. It is not surprising to 
see that the DjuriC method performed better for small f (but 
larger than I) than for large 7. For f = 9, the DjuriC method 
performed worse than the new method. 

The DjuriC method requires more computations than the new 
method because the DjuriC method needs to compute L k  for 

According to [ 5 ] ,  this boundjs the tightest among the three bounds derived 

17 

k = 1 > ,  . ’ ’  I -  1. 

therein for correlated noise in X, 
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KY method. CY = 0.99 for all. 

Performance comparison of the new method, the TS method, and the 

0.0 
-4 -2 0 2 4 6 8 10 12 14 

SNR (dB) 
Fig. 2. Performance companson of the new method and the Djurl6 method. 
For the new method, a = 0.99, and for the Djurit method, L = 4. 

- 
k = 0, 1, . a + ,  I ,  whereas the new method computes i, for 
k = 0, 1, . e - , 1. Note that 1 is, in general, smaller than 7. 

Furthermore, the Djuri6 method requires the choice of L, 
for which there is no theoretical guideline. An advantage of 
the DjuriC method is, however, that it does not assume the 
knowledge of 0’. 

In the above simulations, the probabilities of underestima- 
tion and overestimation using the new method are shown 
in Fig. 3(a) and (b), respectively. It can be seen that when 

0 

0 

0.0 1 1  

SNR(dB) 

(a) 

0.00 I I I I I I 
- 4 - 2  0 2 4 6 8 i n  

SNR( dB) 

(b) 

Fig. 3. 
Probability of overestimation versus SNR for CY = 0.99. 

(a) Probability of underestimation versus SNR for CY = 0.99. (b) 

a = 0.99, the probability of underestimation is zero at SNR 
larger than 4 dB, and the probability of overestimation is 
around 0.01. 

The relative phase [ = arg(v2/q)] has some effect on 
the detection performance of the new method when SNR is 
relatively low. Fig. 4 shows the probability of correct detection 
as a function of the relative phase $ for SNR = 4 dB (low), 
where v2 = eJG, and all other signal parameters remain the 
same as in the previous simulations. The poor performance of 
the new method for $ E [270°, 315O] is due to the fact that 
the high SNR condition is violated, and the least square error 
is no longer x’ distributed. 

Finally, it is important to note that the new method does not 
necessarily depend on the least square frequency estimates. In 
fact, the computations required by the new method can be 
drastically reduced if the least square (optimum) frequency 

A 
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least square and matrix pencil frequency estimates cy = 0 99 

Performance comparison of the new method using, respectively, the 

estimates are approximated by using near-optimum methods 
such as the matrix pencil method [ll], [12]. Fig. 5 shows that 
the detection performances using the least square frequency 
estimates and the matrix pencil frequency estimates are nearly 
the same. 

APPENDIX A 
PROOF OF LEMMA 1 

Lemma A l :  N 2 3112 is a sufficient condition such that 
€3 is nonsingular. 

Proorf: Note that 

H = GHG = [ET G T ]  E1 = BcB2 (36) 

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 7, JULY 1997 

where H, G ,  and B2 are defined in (20), (19), and (23), 
respectively. Lemma B1 will show that B2 has the rank I 

4 
LemmaA2: If 0 << min(lvl1, . ' . ,  I W I ~ } ,  the least square 

when N 2 3112, and hence, H is nonsingular. 

frequency estimate errors are given as 

A A  where A0, = 4: - 0, for i = 1, . . .  , I ,  H ,  6, and w are 
defined in (20), (19), and (18), respectively. 

Proof ofLemma A2: For the noiseless case (w = 0) ,  
[e l ,  02,  . . . , Q I ]  is a global minimum point of L I .  For small 
noise variance, the global minimum point of LI will be close 
to [e,, 02,  . . . , 611. Expanding LI around the true frequency 
values in the Taylor series and retaining the zero and first-order 
terms result in 

Observe that 

d L I  I 

where 

x 

x = x - w  (41) 
p I  = A ~ ( A ? A ~ ) - ~ A ? .  (42) 

By Theorem 4 of [lo, p. 1531, we know that 
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It is easy to prove that 

(44) 
dPI 
a4Z 

X H  - X(4,=B1, k1,  ..., I = 0. 
We then have 

or, in vector form 

M -2GHw. (46) 

where 
(47) 

or, in matrix form 
(49) 

= 2GHG = 2H. (50) 

Lemma. 4 
Plugging (46) and (50) into (38) leads to the statement of the 

Proof of Lemma 1: Theorem 4 of [lo, p. 1531 shows an- 
other difference form 

API = A(AHA)-l A AHPf + Pf A A(AHA)-lAH 
(51) 

where A is defined in (14) 
H 1 H  A P I  =AI(AI -41)- AI 141=J;,z=1, , I  

- AI(A,HAI)-1AF141=,1,z=l, , I  (52) 
AA =All$l=J;,z=l, , I  - A  

MD [,,l ... 1 .  (53)  
no, 

Making use of (51) and the high SNR condition, we have 

X H P k  R5 W H P f  - X H  A Pf 
= wHPf - xHA(AHA)-l A AHPf 
= wHPf - vH A AHPf 

Let 

Then, we have (56), shown at the bottom of the page, where 
we used Pf-G = G. UsingH = GHG [from (20)], we have 

=IzN - (AHA)-l[AH j A H ]  

- E] H-l [ET GT ] 

= 1 2 ~  - BlFlBT - BzH-lB; (57) 
where B1 is defined in (22), B2 is defined in (23), and - 

F 1 = [  -(AHA)-' (AHA)-' - (AHA)-'] (AHA)-' ' ( 5 8 )  

Note that 

-AHA AHA (59) 
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