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ABSTRACT OF THE DISSERTATION

Nonlinear Spin-Torque Oscillator Dynamics and Spin-Torque Microwave Detectors

By

Jieyi Zhang

DOCTOR OF PHILOSOPHY in Physics

University of California, Irvine, 2017

Professor Ilya Krivorotov, Chair

This dissertation mainly describes the study of the spin-torque induced magnetic dynamics

in patterned nanostructures from two aspects. The first study discusses the nonlinear damp-

ing effect in spin-torque oscillators(STOs). The direct time domain measurements on the

stochastic STO dynamics will be described. We apply the time domain data to reconstruct

statistical distributions of the STO free layer trajectories and analyze them in the framework

of the effective Fokker-Planck energy approach. The prior work has been investigated for

the dynamics near critical current[5]. This thesis will focus on the regime far above critical

current and explain the nonlinear damping effect on the dynamics in this regime.

The second session presents detection of microwave signals by magnetic tunnel junctions(MTJs)

based on the spin-torque diode effect. We show a wireless detection of microwave signals us-

ing a MTJ based detector. This MTJ detector is integrated with compact coplanar waveguide

antennas and non-magnetic, microwave-transparent, reusable antenna holder. We compare

the experimental results with MTJs of different magnetic layer structures. The tested struc-

tures can achieve comparable sensitivities to those of commercial semiconductor, diode-based

microwave sensors. The detection frequencies can be tuned by a permanent magnet attached

to the detector. In addition, we demonstrate a microwave frequency determination method

by a pair of MTJs as microwave detectors. A resonance-type spin-torque microwave detec-

xiv



tor (STMD) can be used to determine the frequency of an input microwave signal. But the

accuracy is limited by the STMD’s ferromagnetic resonance linewidth. By applying a pair

of uncoupled STMDs connected in parallel to a microwave signal source, we show that the

accuracy of frequency measurement is improved significantly.

xv



Chapter 1

Introduction and Background

The magnetic tunnel junction (MTJ)[6, 7, 8, 9, 10, 11, 12] based spin-torque microwave

detector (STMD)[13] relies on three fundamental properties of MTJs: (i) the tunneling

magnetoresistance (TMR)[14, 9, 15, 16] effect, (ii) the spin-transfer torque (STT)[17, 18] ef-

fect and (iii) the spin-torque diode effect[19, 20]. The STT effect in magnetic multilayers can

transfer spin angular momentum between magnetic layers separated by a thin non-magnetic

spacer when electrical current is applied. Magnetization dynamics can be excited in the free

magnetic layer (FL) of an MTJ structure by external microwave signal due to the transfer

of spin angular momentum. The magnetization dynamics lead to oscillating resistance of

the MTJ structure due to TMR effect, which furthermore generates a dc rectified voltage

when coupled with the ac microwave current injected to the system. This phenomenon is the

so called spin-torque diode effect[19, 20]. Because of this, MTJ becomes a very promising

candidate for making nano-scale ultra-sensitive microwave detectors[13].

Chapter 2 will report the design of wireless STMD based on MTJ devices and discuss about

the experimental results on detecting radiation microwave signals. MTJ devices have already

been employed as sensing elements for microwave detections[21, 22, 23, 24, 25, 26]. Wireless

1



detection of microwave signals by MTJs has not been demonstrated yet. Compared to mi-

crowave signals confined in a transmission line, a radiated microwave signal decays rapidly.

Thus, a MTJ device with relatively high microwave detection sensitivity is desirable. In addi-

tion, a special design of compact antenna is presented for the purpose of coupling microwave

signals to MTJ device and improving the impedance match. Furthermore, a detector assem-

bled with a pair of parallel MTJs will be shown, which is capable of detecting microwave

signals of different frequency ranges (around 1 GHz and 2.7 GHz).

Chapter 3 presents a signal frequency determination method based on a pair of uncoupled

STMDs connected in parallel to a microwave signal source, which dramatically reduces the

frequency measurement error. For a single STMD, the frequency detection error is quite large

and comparable to ferromagnetic resonance (FMR) linewidth (typically exceeding 100MHz)

[19, 20, 23, 27]. Meanwhile, the detector’s frequency operation range is also limited by this

FMR linewidth of the single MTJ. In this work, we demonstrate that by employing a pair

of uncoupled MTJs in parallel, the frequency detection error can be 2 - 5 times lower and

the frequency operation regime is expanded about 3 times. The theoretical investigation on

this phenomenon done in collaboration with Prof. Prokopenko will also be present.

1.1 Magnetization Dynamics

In the absence of any non-conservative torques, the overall energy of a small magnetic struc-

ture is governed by four energy terms:

E = Edemag + Eexch + Eanis + Eext (1.1)

2



where the four terms represent the energy contributions from demagnetizing field (Edemag),

exchange (Eexch), anisotropy (Eanis), and any external fields (Eext). The demagnetizing

and exchange energies govern the competition between achieving minimal micromagnetic

curvature and minimizing the magnetic charge accumulated at the sample boundaries. The

exchange length defines the length scale over which the magnetization remains constant:

lexch =

√
2A

µ0M2
s

(1.2)

where A is the exchange constant, µ0 is permeability in vacuum, and Ms is the saturation

magnetization of the sample. If the sample size becomes comparable or larger than lexch,

the system will undergo a transition toward to a non-uniform magnetization state. The

anisotropy energy has many potential contributions: crystalline anisotropy, perpendicular

anisotropy at the interface between certain materials, and exchange-induced anisotropy[28,

29, 16].

Based on the assumption that our system is uniformly magnetized, E can be expressed only

as a function of the magnetization ~M . The magnetization dynamics are governed by the

Landau-Lifshitz (LL) or Landau-Lifshitz-Gilbert (LLG) equation[17]:

∂ ~M

∂t
= −γL ~M × ~Heff −

αγL
Ms

~M × ( ~M × ~Heff ) (LL) (1.3)

∂ ~M

∂t
= −γG ~M × ~Heff +

α

Ms

~M × ∂ ~M

∂t
(LLG) (1.4)

3



where γL and γG are the gyromagnetic constans similar to the gyromagnetic ratio γ, α is the

constant damping term, ~Heff is the effective field which can be derived from Equation(1.1) :

~Heff = − ∂E
∂ ~M

(1.5)

Also, it can be easily proved that these two above equations are equivalent to each other by

a modification of the gyromagnetic constants:

γG = (1 + α2)γL (1.6)

Therefore, these two equations describe the identical magnetic dynamics. The first term

represents the conservative torque by the effective field. The second term describes the

damping torque caused by the energy lost during the magnetization precession. In the

absence of any damping torque, the magnetization will process along conservative trajectories

around the effective field ~Heff . When ~Heff only consists of an external field ~Hext, the

precession trajectory of ~M will be circular and with constant projection on ~Heff . This will

occur only when the system has spherical symmetry. In real systems, any anisotropy can

break the spherical symmetry, such as the shape anisotropy arising from the demagnetization

field, which is given by the equation below.

~Hdemag = −N · ~M (1.7)
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where N is the demag tensor. In systems with high-symmetry, such as thin cylindrical disks

or ellipsoids, N is diagonal, and therefore the shape anisotropy will lead to dynamics with

a uniaxial or biaxial symmetry. When the damping torque is included, the magnetization

vector will damp towards ~Heff – the energy minimum direction of the system.

1.2 Giant and Tunneling Magnetoresistances

Discovery of magnetoresistance enables a direct electrical read-out of the magnetization

orientation, which provides substantial opportunities of application. The origin of magne-

toresistance is due to the imbalanced populations of spin-up (↑) and spin-down (↓) electrons

caused by the Stoner energy splitting in some 3d transition metal ferromagnets. Thus, for

electrons incident into such a ferromagnetic layer, both the transport and scattering for

spin-up (↑) and spin-down (↓) electrons are spin-dependent. Interfacial scattering due to

different band structures is also one major contribution to this spin-dependent scattering

process. If the ferromagnet has a band structure like figure 1.1 typical for 3d transition

metal ferromagnets, spin-up (↑) electrons will be the majority. In this case, the spin filter

effect leads to a greater resistance for the incoming spin-down (↓) electrons, which points to

the opposite direction of the majority spins (↑)[14, 30, 17].
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Figure 1.1: [1]Band structure for ferromagnet. Due to Stoner energy splitting, the majority
and minority spins have different density of states at Fermi level.

Therefore, in a heterostructure composed of two ferromagnetic (FM) layers separated by

non-magnetic (NM) spacers, the total resistance across the structure depends on the relative

orientation of the magnetization vectors of the two FM layers[14, 6, 30]. Transport through

this stack can be modeled as a network of resistors with parallel channels for spin-up and

spin-down electrons shown in figure 1.2. When the magnetization of the two FM layers

are aligned in parallel, the majority spin channel is the same in both ferromagnets and is

therefore of lower resistance (Rp). Otherwise, when the FM layers are anti-parallel to each

other, the system will be in a high resistance state (Rap).
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Figure 1.2: [1]Spin-dependent resistance across a heterostructure. The structure consists of
two FM layers seperated by NMs. Left figure shows the parallel state (Rp), while the right
one represents the anti-parallel state (Rap). R1(R2) is the resistance when electrons transmit
through ferromagnet of the same(opposite) spin polarization. The interfacial resistance has
been merged into the overall layer resistance in this case. It is clear that Rap > Rp.

In case that the NM spacer is metallic, this effect is referred as the giant magnetoresistance

(GMR). It was first discovered in the current in-plane geometry[31, 32]. The full scale GMR

value is defined as below:

∆RGMR ≡
Rap −Rp

Rp

(1.8)

GMR is typically on the order of tenths of a percent of the total resistance of samples in

many materials. When the two magnetizations are in between parallel and anti-parallel

state, the resistance of the structure in the current-perpendicular-to-plane geometry with

any intermediate angle between the two magnetizations can be expressed by the angular
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dependence of GMR:

R = Rp + ∆RGMR
sin(θ/2)2

1 + χ cos(θ/2)2
(1.9)

where θ is the angle between the two magnetizations, and χ is a constant [33], which depends

on layers’ materials.

The motivation of looking for larger magnetoresistance drives the development of the het-

erostructure FM/NM/FM with a insulating barrier NM as the spacer. The tunneling mag-

netoresistance (TMR) was found in such magnetic tunnel junctions (MTJs). Originally this

effect was observed across amorphous AlO2 barriers, but later significantly larger TMR was

found across MgO barrier with crystalline interface adjacent to FeCo electrodes[9, 15]. Com-

pared to the previous metallic spin-valves, MTJs display much larger magnetoresistance and

can achieve several hundred percent TMR at room temperature. The cause of the large MR

lies in band structure of this FeCo/MgO/FeCo multilayer sandwich. There is only one major

tunneling channel through the particular ∆0 band in Fe electrodes. The tunneling channels

through other bands are strongly suppressed, resulting in a half-metallic like property of the

MTJ[7, 8]. The angular dependence of the conductance across an MTJ has a simple cosine

dependence:

G = G0(1 + P 2 ~m · ~p) (1.10)

where G0 is the average conductance, P describes the spin polarization efficiency. Meanwhile,

MTJs also have some drawbacks from the application perspective, especially the relatively
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low break down voltage[34]. It is typically around 1.0 V. Due to the high resistance of

MTJs, the critical current of the magnetization switching is always above or comparable to

this break down level. Therefore, it does not satisfy all the ideal requirements for memory

applications yet. However, MTJs are still believed to be one of the most promising candidates

for the next generation of non-volatile memories . In addition, the high impedance of MTJs

can cause difficulties in applications such as microwave communications, due to the poor

impedance match to the surrounding electrical circuits.

1.3 Spin Transfer Torque

As one of the consequences of spin-dependent scattering first proposed by Slonczewski and

Berger, electrons can transfer angular momentum to the ferromagnetic layer during the

transmission process[17, 18]. When a charge current is injected to a ferromagnetic thin

film, electrons will be either transmitted or reflected. Due to the band structure mismatch,

electrons will undergo spin filtering process. As illustrated in figure 1.3, all the transmitted

electrons are spin-up (↑) polarized, while the spin-down (↓) electrons will be reflected. Such

transmission/reflection process generates a spin polarized current. Electrons that enter the

ferromagnet are subject to a huge exchange field and will precess around the magnetization.

As different electrons travel along different paths in the ferromagnet, each electron would

process at different angles when they exit the ferromagnet. By summing over electrons

from the entire Fermi surface, the transverse components of the spins cancel out. Similar

behavior also applies to the reflected electrons. As a consequence, the total polarization of

the spin polarized current leaving the ferromagnet, summed over relevant states of the Fermi

surface, is approximately collinear with the magnetization of the ferromagnetic layer. Thus,

the entire transverse component of the spin current is absorbed at the interface, giving rise

to reciprocal spin transfer torque (STT) exerted on this ferromagnet, which can alter the
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orientation of the magnetization[17].

Figure 1.3: Electrons interact with a ferromagnetic layer.
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Figure 1.4: How spin torque acts in a magnetic multilayer heterostructure. FM1 and FM2
are the ferromagnetic layers. NM is the non-magnetic spacer in between two ferromagnetic
layers. FM1 and FM2 represent the thicker fixed layer and the thinner free layer, respectively.

As shown in the schematic diagram 1.4, when electric current interacts with ferromagnetc

multilayers, the current will first be spin polarized by FM1 layer. It then carries spin angular

moment to the second ferromagnetic layer (FM2) and becomes polarized along the direction

of magnetization in FM2. In return, a spin transfer torque (STT) is exerted onto the second

layer (FM2). Since FM2 layer is designed to be thinner (free layer), the magnetization of

FM2 will be pulled towards the polarization direction of the current, same with the direction

of FM1 (fixed layer). This procedure describes how a current going through a GMR structure

alters the free layer’s magnetization by spin transfer torque (STT).

The expression for this spin transfer torque is shown below[2]:

~τst = −β(I)g(θ)~m× (~m× ~p) (1.11)

where β(I) represents the spin torque strength as a function of current, g(θ) describes the

angular dependence arising from material properties of the heterostructure, and ~p is the
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normalized polarization vector. According to the equation above, the STT is an in-plane

torque and perpendicular to the magnetic moment. Its amplitude is proportional to the

current density[2].

It has also been demonstrated that an additional torque may arise from the spin accumula-

tion, which has a similar expression to the torque given by from effective field:

~τfl = −β′(I)g′(θ)~m× ~p (1.12)

where β′(I) and g′(θ) have the same meanings as before. This field-like torque was observed

to be negligibly small for metallic spin valves, however, its magnitude is generally much

larger and plays a more important role in magnetic tunnel junctions[35, 36].

Figure 1.5: a. schematic diagram showing the direction of conservative torque (τH), the
competition between spin transfer torque (τst) and damping torque (τd) during the magne-
tization precession; b. damped motion of magnetization at low current; c. steady state of
oscillation at relatively higher current; d. switching process under high current. Figure from
Ref.[2].

In reality, the dynamics of magnetization can be describe by the full version of LLG equation
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including the spin transfer torque[2]:

∂ ~M

∂t
= −γG ~M × ~Heff +

α

Ms

~M × ∂ ~M

∂t
− β(I)g(θ)~m× (~m× ~p) (1.13)

where the first term stands for the conservative field torque (τH), the second term is the

damping torque (τd), and the third part represents the spin transfer torque (τst). The

directions of these three torques are shown in figure 1.5(a).

In absence of any spin torque or damping, if the free layer’s magnetization is perturbed

away from ~Heff , it will begin processing around ~Heff . However, due to the existence of

the damping torque in real samples, ~M will always damp back towards the lowest energy

configuration along ~Heff [2].

When a charge current is applied, the direction of the spin transfer torque (STT) is either

towards or opposite to the damping torque, depending on the current polarization. When

the STT is parallel to the damping torque, the effective damping is enhanced by the applied

current, therefore the magnetization will be pulled back more rapidly toward ~Heff . On the

other hand, when the STT is anti-parallel to the damping torque, in case of a small applied

current, the STT can only reduce the effective damping slightly, leading to a longer damping

process till the magnetization reaches its equilibrium direction (shown in Fig. 1.5(b)). When

the magnitude of the charge current reaches sufficiently high such that the spin transfer

torque is comparable to or even larger than the damping torque, the magnetization will

oscillate away from ~Heff following any perturbations and two possible dynamic states will

occur depending on the strength of the spin transfer torque. The first scenario is when the

STT is comparable to the damping torque, a steady precession state occurs (Fig. 1.5(c)).

This phenomenon is called spin torque oscillation and was first found in experiments by
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Kiselev et al. in metallic spin valves [37], and subsequently by Rippard et al. in point contacts

thin film composed of NiFe/Cu/CoFe [38]. The other possible state is the magnetization

reversal, which occurs when the STT is much larger than the damping torque as illustrated

in Fig. 1.5(d)[2]. The first experimental discovery of magnetization reversal was performed

by Katine et al. in a Co/Cu/Co multilayer structure[39]. Later on, a large variety of

magnetic nano-devices have been developed as one of the most promising candidates for the

next generation of random access memories.

1.4 Spin Torque Oscillator

Spin torque oscillators(STOs) are one of the outcomes of the spin torque induced dynamics

in nano-scale spin valves and magnetic tunnel junctions. When the damping torque from

effective magnetic field and the spin torque from DC polarized current contribute equal but

opposite work along the oscillation trajectories, the magnetic moment will reach a steady

oscillation state – processing around the equilibrium magnetization direction along a constant

energy trajectory. This auto-oscillatory state has frequency determined by the eigenmode

frequency of the excited state[37]. These magnetic oscillations generate AC voltage signals

due to the oscillating magnetoresistance and the DC electric current, which can then be

measured by a spectrum analyzer or real-time oscilloscope.

Since STOs can generate microwave power at a frequency tunable by the DC current or

external magnetic field, these nano-devices exhibit application potentials in many fields,

such as nano-scale tunable microwave sources, ultra-fast spectrum analyzer, and magnetic

field sensors in hard drives[40]. Because of the nano-scale dimensions, thermal fluctuations

can strongly disturb the oscillation trajectories at room temperature and thus ruin the

coherence of oscillations[41, 42]. Moreover, strong nonlinearity can be induced at larger

oscillation amplitude, mixing amplitude noise in the magnetization dynamics into phase
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noise, which further reduces the coherence and broadens the oscillation line-width. Therefore,

quantitative understanding of these stochastic dynamics and nonliear effect becomes crucial

for the development of devices with desired properties such as narrow linewidth and high

frequency excitation. In chapter 2, we demonstrate a reconstruction method of a metallic

spin valve’s oscillation trajectories by collecting time domain data with a real-time scope.

Further investigation on the large angle oscillation dynamics will be described by applying

the Fokker-Planck effective energy approach to analyze the nonlinear damping effect at large

oscillating regime.

1.5 Spin Torque Ferromagnetic Resonance

So far, we have discussed how the LLG equation describes the magnetic processional dy-

namics in a ferromagnet. As mentioned before, in absence of any damping-like torque, the

frequency of the magnetization precession is (for a spherical sample) given by the Larmor

frequency ω = γHeff in the linear regime. Once the linear dynamics has been resonantly

excited, this is what is referred to as ferromagnetic resonance (FMR) frequency. FMR can

be detected via a number of approaches. We will discuss two of them in details in the follow-

ing. The FMR spectra can provide deeper insight of the physics properties of the magnetic

materials, such as the saturation magnetization, damping constant, magnetic anisotropy,

sensitivity, spin-torque vector, etc..

1.5.1 Conventional Ferromagnetic Resonance

Most of the prior ferromagnetic resonance measurements were made by determining the

microwave absorption of the ferromagnetic samples. This is so called the conventional ferro-

magnetic resonance[43]. Assuming there is a ferromagnetic ellipsoid placed in the Cartesian
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coordinate and a DC magnetic field applied along the longest axis (ẑ). The ferromagnetic

ellipsoid is also exposed to microwave radiation, which produces RF magnetic field perpen-

dicular to the DC field (along the x̂ axis). As discussed in the previous chapter, the RF

magnetic field drives the magnetization to process around ~Heff . When the microwave fre-

quency coincides with the eigenfrequency of the device, a large absorption of the microwave

power would appear. The applied magnetic field can be expressed as follows:

~Happ = ẑHDC + x̂HRF e
iωt (1.14)

Taking into account the demagnetization field in ~Heff , the x, y, z components of the effective

magnetic field are:

H ′x = Hx −NxMx (1.15)

H ′y = −NyMy (1.16)

H ′z = Hz −NzMz (1.17)

Ignoring any damping-like torques (they would not influence the resonance frequency signif-

icantly) and taking Hx = x̂ · ~Happ,Hz = ẑ · ~Happ, three orthogonal components of the LLG

equation become:

∂tMx = γ[Hz + (Ny −Nz)Mz]My (1.18)
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∂tMy = γ[MzHx − (Nx −Nz)MxMz −MxHz] (1.19)

∂tMz ≈ 0 (1.20)

The resonant frequency can be obtained theoretically by solving the equations above:

ω0 = γ
√

[Hz + (Ny −Nz)Mz][Hz + (Nx −Nz)Mz] (1.21)

In experiment, the microwave absorption can be measured by placing a ferromagnetic sample

in a microwave cavity under the drive of RF magnetic field. The microwave absorption is

generally measured as a function of the applied external field, and the magnetic resonance can

be determined from the peaks of the absorption curves. This technique has been adopted for

the study of various magnetic properties, such as the saturation magnetization, the exchange

constant, Gilbert damping, etc[44].

1.5.2 Spin Torque assisted Ferromagnetic Resonance

Spin transfer torque assisted ferromagnetic resonance(ST-FMR) [19, 20] is another technique

recently developed for the study of magnetic properties. It is similar to the conventional

FMR, except that the magnetization driving source is mainly the spin-torque instead of RF

magnetic field produced by the microwave radiation. Briefly, when a microwave current

is injected to a MTJ or spin valve, as discussed in the prior chapter, a microwave spin
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polarized current is induced and drives the free layer’s magnetization precession, leading

to an oscillating sample resistance caused by the magnetoresistance effect. A DC rectified

voltage is therefore generated by averaging the product of this oscillating resistance and the ac

current. The dependence of such a rectified voltage signal on the microwave drive frequency

can be measured as the ST-FMR spectrum. Under a certain circumstance, the frequency

of the external microwave drive coincides with the intrinsic frequency of the system, and

a voltage peak appears in the measured ST-FMR spectrum. Detailed derivation is shown

below:

R(t) = R0 + ∆R(t) = R0 +Re(
∑
n

∆Rnfe
in2πft) (1.22)

Then by Ohm’s law

Vdc =< Irf cos(2πft)R(t) >=
1

2
Irf |∆Rf | cos(δf ) (1.23)

where f is the driving frequency, δf is the phase difference between the ac resistance and

driven current[19, 20].

In terms of DC bias (I,V ), Vdc can be approximated as [45]

1

4

∂2V

∂I2
I2
rf +

1

2

∂2V

∂θ∂I

h̄γ0 sin θ

4eMsVσ
× I2

rf (ε‖S(ω)− ε⊥Ω⊥A(ω)) (1.24)

where

ε‖,⊥ =

[
2e/h̄

sin(θ)

]
dτ‖,⊥
dI

(1.25)

are dimensionless differential torques, S(ω) and A(ω) are symmetric and anti-symmetric
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lorentzians given by

S(ω) =
1

1 + (ω−ωm)2

σ2

(1.26)

A(ω) =
(ω − ωm)

σ
S(ω) (1.27)

Here, ωm is the resonance precession frequency of the magnetization, Ω⊥ = γ(4πMeff +

H)/ωm in case of an elliptical thin film. σ is the line-width of the ST-FMR spectrum given

by [45]

σ =
αωm

2
(Ω⊥ + Ω−1

⊥ )− cot(θ)
γτ‖(V, θ)

2MsV
(1.28)

This equation reveals that the damping constant α can be obtained from ST-FMR measure-

ment of the spectra line-width at V = 0:

αeff =
2σ

ωm(Ω⊥ + Ω−1
⊥ )

(1.29)

It is clear from equation (1.24) that by fitting the symmetric and antisymmetric components

of an ST-FMR spectrum, one can obtain both the contributions from the in-plane and out-

of-plane spin torque experimentally[45].

In ST-FMR measurement, usually we sweep the microwave frequency at a constant field

when obtaining the spectra. Compared to the conventional absorptive FMR technique, one

advantage of ST-FMR is that much smaller samples can be properly measured. The ST-FMR

measurement on MTJs provides the foundation for the development of microwave detectors

to be discussed in chapter 3 and chapter 4.
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Chapter 2

Nonlinear Spin Torque Oscillator

Dynamics

2.1 Experimental Methods

2.1.1 Microwave Probe Stations

In order to study the physics of magnetic dynamics ferromagnetic heterostructures, reliable

electrical connections to these magnetic devices must be established first. Moreover, mi-

crowave signals in the characteristic frequency range of magnetic dynamics (a few to tens

of gigahertz) must be able to be delivered and captured in the nanostructures. In practice

such connections are established using either a coplanar waveguide wire-bonded directly to

the sample leads, or using specially designed microwave probes to touch down on the lead

patterns of the sample. We use the latter method for the room temperature measurements

described in this chapter, which has several advantages. The wire-bonding approach enables

extremely stable electrical connections between the sample and the surrounding measure-
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ment circuits. However, it is prohibitively slow for testing on numerous samples, since each

wire bonding preparation to a sample is a time consuming process. In comparison, manually

positioned microwave probes doesn’t require any preparation and thus is much more efficient.

Such a measurement setup is shown in Fig. 2.1.

Figure 2.1: [1]Photograph of the probe station. The optics, ring light and a monitor are
hooked up to the CCD to project and enlarge the sample image. A 200 µm pitch microwave
probe is positioned to touch down onto a typical sample’s leads.

The essential components for the construction of the probe station are as follows:

GMW Electromagnet: Model 5403, designed with adjustable semi-tapered poles. The mag-

net is capable of producing a 3 kOe in-plane magnetic field at maximum. Power is supplied

to the coils by two Kepco BOP 20-20M power supplies. A hall bar is mounted on one of the
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pole pieces for field calibration. It enables the accurate deliver and read of the field value at

the center of the gap regardless of any pole hysteresis.

Cascade Micropositioners: Model RPP210, assembled with a probe arm of specially designed

length. Both the arm and the positioner are made with non-magnetic material. Vacuum

mounting is attached to its bottom.

GGB Microwave Probes: Model GSG-200/250, specially manufactured with no magnetic

material. This model is designed to have a 200 or 250 µm pitch, ground-signal-ground

configuration with minimal losses up to 40 GHz.

Diaphragm Pump: Supplying a low vacuum to hold the positioners and vacuum chuck.

Navitar Optics: With larger focus range to avoid placing any of the optics in between the

electromagnet coils. The model assembled with a 12X body with 1X adaptor, 0.5 Lens

adapter, and Sentech 1/3” CCD Analog Camera with S-Video output to a monitor nearby.

An LED ring light is applied to illuminate the sample stage.

Most of the system’s components do not need maintenance very frequently, except for the

probes. The microwave probes are very fragile and mechanically strained with every contact

procedure. Therefore, extreme protection is required to maintain reasonable lifetimes of the

probes.

2.1.1.1 Probe Usage and Maintenance

The standard operation procedures for the safe use of the probe are introduced in the follow-

ing. Nevertheless, the probe tips will be degraded anyway with frequent use and will require

replacement or repair eventually.

1. When installing (or removing) the probes onto the positioners, orient the positioners as
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in Fig. 2.2(b) such that the probe arm points to an empty space. Make sure that the probe

is always secured with at least one mounting screw before entirely releasing it.

2. To align the planarity of the probe, a contact substrate (with gold surface) is needed for

testing. Touch down the probe tips to the contact substrate and travel back and forth for

a little distance several times. Then observe whether the ground leaves of the probe make

equivalent marks on the substrate. If not, adjust the planarity control of the positioner

accordingly, until the marks are roughly about the equivalent size.

3. The probe must be retracted far away from the sample surface before moving the entire

positioner. Then one can move the positioner by releasing the vacuum mount and lifting up

the positioner with one hand holding the probe arm. One should not slide the positioner

along the stage, as the sliding motion is less controllable and will cause damage to the

vacuum seal. Clean the vacuum seal repeatedly after a certain period of time (use a cotton

swab with alcohol free cleanser).

4. The microwave cable connected to the probe must be secured by the cable clamp on the

positioner. The cable can be surrounded with a piece of foam for mechanical protection. To

tighten the cable properly, one need to make sure that smooth moving of the free end of the

cable does not lead to any substantial change in the probe orientation.

5. When trying to make contact to the sample, slowly move the z-axis control until a minimal

amount of over-travel is observed. Always keep the least amount of over-travel which still

allows for stable electrical connection. If excessive amount of over-travel is required for good

contact, the probe might need to be cleaned or repair.

6. Prevent the probe from touching any unclean or non-uniform surface, since it may cause

damage to the probe.
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Figure 2.2: [1](a) the microwave probe positioner (b) the probe mounted on the positioner
arm (c) the reversed positioner mounted through vacuum base attached to the stage bottom

Despite following the standard procedures above, the microwave probes will still become

dirty, or damaged after a while. If the probe is worn and cannot provide stable contacts, we

need to send it back to the factory for refurbishment.

If noisy contacts happens due to dirt on the probe leads, proper cleaning of the probe can

solve this problem. Firstly, one needs to float the probe leads over free space either as shown

in Fig. 2.2(a) or upsidedown as in Fig. 2.2, and take the optics to focus on the probe tips.

Loosen the fibers of a cotton swab and soak them in isopropyl alcohol, then gently clean the

leads of the probe. With further care, one may reverse the positioner and attach it to the

bottom of the stage, then observe the status of the bottom of the probe leads, where most

dusts tend to accumulate.

2.1.2 Time Domain Measurement of STO Dynamics

Typically magnetic dynamics in STOs are observed in the frequency domain, while some

features of the dynamics cannot be captured in the frequency domain. Time domain analysis

offers a direct look at the dynamics and therefore can provide wealthier information [46, 47].

When a STO device is excited by a DC electrical current, periodical voltage signals will

be generated due to the oscillating magneto-resistance and DC current. By recording the
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oscillating voltage signals, the ensemble of magnetization trajectories within the free layer

can be reconstructed. The required assumption is that the oscillating orbits are symmetric

with respect to the sample plane. Thus, those points where the magnetization crosses the

sample plane are corresponding to the extrema of the time-dependent resistance oscillations

(R(t)) [5].

Since our study focuses on the STO dynamics regime far above critical current, we ap-

ply this measurement for STOs based on metallic spin valves, which are able to survive

at much higher current range than MTJs. The sample we used are 90 nm × 90 nm cir-

cular GMR nanopillar with the fixed layer pinned by an anti-ferromagnet(IrMn). The

multilayer structure is composed of Substrate/IrMn(6)/Co(0.5)/CoFe50(1)/CoFeGe27(3)/

CoFe50(0.5)/Cu(4)/CoFe50(0.5)/CoFeGe27(4)/CoFe50(0.5)/Cap, with in-plane magnetization

in both free and fixed layer. The exchange bias field given by the anti-ferromagnet layer is

not very large such that the magnetization of pinned layer can keep its orientation fixed

all the time. Detailed charaterization of the sample’s properties is introduced in the next

section.

The circuit setup for this time domain measurement is shown in figure 2.3. In the circuit,

we separately measure both average and time-dependent resistance of the sample:

R = Rex+ < R > +∆R(t) (2.1)

where Rex represents all external resistance contributions(e.g. contact resistance, probe

impedance) to the sample itself. < R > is the average resistance measured by a Keithley 2400

sourcemeter. ∆R(t) stands for the oscillatory component which is recorded by a oscilloscope

with the highest possible bandwidth and sampling rate. We use an Agilent DSO81204B
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oscilloscope possessing a 12 GHz bandwidth and maximum sampling rate of 40 GS/s (giga-

sample-points per second), which is depicted in Fig.2.3(b).

In order to observe decent signal to noise ratio(SNR) at the scope, we utilize a certain

amplifier in the measurement circuit. The amplifier must be chosen based on its working

bandwidth, noise figure, and the gain value necessary for analysis of the particular sample.

In our experiment, we applied a Miteq model AFS5-00100800-14-1DP-5 with nearly con-

stant 40dB gain across the operational range of 0.1-8.0 GHz. The noise floor shown at the

oscilloscope with this type of amplifier is around 5 mV.

The amount of space for storing the real-time traces is not insubstantial: the maximum trace

length of 219 8 bit data points yields 0.5 MB of data, and multiple traces are usually required

for obtaining high statistics. The GPIB bus does not possess sufficient bandwidth to enable

rapid and continuous acquisition of these traces, hence alternative faster transfer protocol

is necessary. In the case of the older instrument the 100 Mb/s ethernet port may be used

for VISA communications, while on even more modern instruments USB 2.0/3.0 is also an

available option. Either of these communication ports increases the maximum rate of data

acquisition by nearly an order of magnitude. In addition, the controlling computer needs to

free up enough space on hard drive for the storage of data traces.
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Figure 2.3: [1](a) Microwave circuit for time domain measurements. The same instru-
ment(Keitheley 2400) is utilized to supply DC current and measure the sample resistance
across the inductor of the bias-T. The auto-oscillatory voltage signals generated by the spin
valve device are observed by the real-time scope, after 40dB amplification. To improve
bandwidth and communication rate, the scope is connected to the controlling computer via
its ethernet port. (b) Real-time oscilloscope used in the setup with 12GHz bandwidth and
maximal 40GS/s sampling rate. (c) Effective circuit diagram, including contact and probe
resistances in the Rex, as well as the 50Ω scope impedance. The voltage oscillations ∆V (t)
from the sample are evidently equal to I∆R(t).

According to the voltage signals measured at the scope, the oscillating component of the sam-

ple’s resistance can be expressed as following (after taking into account of the amplification

value):

∆R(t) =
V (t)

I

50Ω +Rex+ < R >

50Ω
(2.2)
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where the 50Ω resistance corresponds to the scope impedance shown in Fig.2.3(c).

Since the magnetization procession orbits are symmetric about the sample plane, those points

at which ~M cross the equator correspond to extrema of the ∆R(t) traces. Also, the metallic

spin valve resistance depends only on the projection of ~M onto the polarization vector ~P .

Therefore, the in-plane crossing angles between ~Mf and ~Mp can be mapped from the ∆R(t)

extrema, if the angular dependence of GMR is known. This angular dependence is described

as the formula below:

∆R(ϕ(t))+ < R > −Rp

Rap −Rp

≡ δR(ϕ(t))

∆R
=

1− cos(ϕ(t))

2 + χ+ χ cos(ϕ(t))
(2.3)

where ϕ(t) is the in-plane crossing angle between free layer’s magnetization and the polarizer,

Rp and Rap are the resistance of parallel(P) and antiparallel(AP) state accordingly. χ is a

constant asymmetry parameter of the giant magnetoresistance[33], which only depends on

the material of the ferromagnetic stack.

To fit the parameter χ, accurate measurement of P and AP resistance is required as well as

the curve of δR vs. ϕ composed of numerical points. The study of this angular dependence

relationship is fully described in the next section.

2.2 Angular Dependence of GMR

In order to obtain the fitting parameter χ as accurate as possible, one needs to lower the noise

in the resistance measurement. Compared to the measurement using Keitheley sourcemeter,

employing a Wheatstone bridge can provide better measurement accuracy. The circuit design

of this Wheatstone bridge measurement is shown in Fig.2.4.
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The main circuit is composed of two parallel paths. Both paths contain two arm resis-

tors(R), while the left path has one adjustable resistor box (Rchange) and the right path

includes the sample(Rs) in between. All the arm resistors are adjustable from 10 K to 1 M

and are normally set to the same values. The arm resistance is required to be nearly two

orders of magnitude larger than the sample resistance. Both of the two parallel paths are

connected to the lock-in amplifier, which is the AC voltage output from the amplifier’s in-

ternal oscillator(Vosc). Since the sample resistance is a lot smaller thatn the arm resistances,

the current going through each path can be considered as a constant value(I = Vosc
2Rarm

). In

the two parallel paths, one end of the adjustable resistor box and the sample is grounded; at

the other end, the lock-in amplifier is applied to measure the voltage difference between the

two paths. The voltage difference(V = I(Rs − Rchange)) reflects the difference between Rs

and Rchange. The sign of the difference indicates which resisntace is larger. By adjusting the

value of the resistor box and checking the reading output of the lock-in amplifier, one can

record the value of the resistor box when it is closest to the sample resistance. Resistance

vs. direct current can also be captured using this bridge by connecting a current source to

the voltage leads of the sample.

Figure 2.4: [3]Circuit design diagram for low noise bridge measurement of resistance.
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The step-by-step instruction for running this experiment is as following:

1. connect the ”sample current” and ”sample voltage” ports on the bridge to the device.

2. On the lock-in amplifier, either use remote control or manual setting, set the oscillator

output to a small AC value (depending on the range of sample resistance and the selec-

tion of arm resistors). Then set the oscillator frequency to a reasonable value (normally a

prime number within 800-1200 Hz), as well as the lock-in reference to internal. Connect the

”oscillation-out” port of the lock-in amplifier to the corresponding port on the bridge.

3. Connect the ”lock-in input” port on the bridge to the connection box separating signals

from one single port to two separate ports. Then connect the two ports correspondingly to

the lock-in input A and B. Set the lock-in measurement mode to ”A-B”.

4. If necessary, connect a current source directly to the ”current source” port on the bridge.

5. Use the LabView VI of the dV/dI vs. I at different H or dV/dI vs. H at different I. Fix

the applied field or direct current, sweep the current or field accordingly, then record the

sample resistance.

Fig.2.5 shows the resistance vs. field curves along easy axis for a 90 nm × 90 nm circular

GMR heterostructure measured by this Wheatstone bridge method. Fig.2.6 represents the

R vs. H dependence when field is applied along hard axis. The positive direction of easy

axis is pointing along the exchange bias, while the hard axis is the perpendicular to the

exchange bias direction. Such a bridge measurement lowers down the error of resistance to

about 1mΩ, which improves the fitting accuracy of the asymmetry parameter χ.

30



Figure 2.5: Resistance vs. field along easy axis of a 90 nm2 GMR device, measured by
Wheatstone bridge setup.
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Figure 2.6: Resistance of the same 90 nm2 GMR device at different fields along hard axis,
from Wheatstone bridge measurement.

To fit χ, one needs to know the relationship between R and ϕ. So far, the R vs. H along

hard axis is measurable. Thus, if the H vs. ϕ can be achieved by solving a macrospin energy

minimum model of the system, the R vs. ϕ should be mapped directly. According to the

schematic diagram of the sample’s structure shown in Fig.2.7, the total magnetic energy of

the entire structure can be expressed in the formula below:

E = − ~H · (~mf + ~mp)− ~Hex · ~mp − J · (−~mp · ~mf ) (2.4)
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where ~mf and ~mp describe the magnetization vector of the free and pinned layer correspond-

ingly, ~Hex is the exchange bias field acting on the pinned layer, J represents the constant

parameter within the dipolar interaction between ~mf and ~mp. The total energy contains

contributions from three fields seen in Eq.2.4: the applied field, exchange coupling field, and

dipolar field respectively.

Figure 2.7: Schematic diagram of the sample’s layer structure.

Two assumptions are associate with this model: 1. the exchange bias is fixed, which can be

considered as an external field acting on the pinned layer; 2. ~mp does change with ~H, not

always along exchange bias.
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Figure 2.8: Schematic diagram describing how magnetization vectors of free and pinned layer
response to external fields. Easy axis is defined as the axis along exchange bias; hard axis is
perpendicular to exchange bias.

As illustrated in Fig.2.8, Eq.2.4 can be derived in terms of scalar products as following:

E =−H ·Mf · Vf · cos(θa − θf )−H ·Mp · Vp · cos(θp − θa)

−Hex ·Mp · Vp · cos(π − θp) + J ·Mp · Vp ·Mf · Vf · cos(θp − θf ) (Hy > 0)

(2.5)

E =−H ·Mf · Vf · cos(π − θa − θf )−H ·Mp · Vp · cos(θp + θa − π)

−Hex ·Mp · Vp · cos(π − θp) + J ·Mp · Vp ·Mf · Vf · cos(θp − θf ) (Hy < 0)

(2.6)

Mp and Mf are on behalf of the magnitude of magnetization density. Vf and Vp are the

corresponding volumes for free and pinned layer. θf , θp and θa represent the angle of ~H, ~Mf

and ~Mf respectively in the coordinate shown in Fig.2.8. Several coefficients in the above

equations can be obtained through the R vs. H data along easy axis (Fig.2.5): J ·Mp · Vp is

equal to 430.4 G, as it represents the dipolar field from ~Mp, which is provided by the shift of

the switching field (P to AP) from zero; J ·Mf ·Vf is 366.9 G as J ·Mf ·Vf = J ·Mp ·Vp ·Mf

Mp
· tf
tp
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(Mp = 1208.5e3(A/m), Mf = 1030.1e3(A/m), tp = tf = 5(nm), according to sample’s

structure); ~Hex equals to 858.1 G, calculated by subtracting J ·Mf · Vf from the AP to P

switching field.

In the case of θa = 90◦ ( ~H along hard axis), by minimizing the energy model (Eq. 2.5 and

Eq. 2.6) with respect to θf and θp, one can obtain the numerical relationship between the

magnitude of H and cos(θm) (cos(θm) = cos(θp) · cos(θf )+sin(θp) · sin(θf )). θm stands for the

angle between free and pinned layer, which is equivalent to θp − θf . Combining the data of

cos(θm) vs. H from energy minimal model and R vs. H from experiment, both of which are

under hard axis applied field, numerical dependence between cos(θm) and R can be easily

achieved. Therefore, a cos(θm) vs. R curve is ready for fitting the asymmetry constant χ in

Eq. 2.3. The fitting procedure is depicted in Fig. 2.9, giving χ = 3.05.
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Figure 2.9: Fitting for the parameter χ in the angular dependence formula of GMR. The blue
dots are the numerical data points at different applied fields along hard axis. The red curve
is the best fitting result of the numerical data based on the angular dependent expression
R(θm)−Rp

Rap−Rp
= 1−cos(θm)

2+χ+χ·cos(θm)
, which gives χ = 3.05.

2.3 Characterization in Frequency Domain

Before the analysis of data in the time domain measurement, one should firstly under-

stand the auto-oscillatory modes excited in the GMR device measured in frequency domain.

Fig. 2.10 shows the maximal integrated power of the quasi-uniform mode excited at different

fields along hard axis. One can easily tell that maximum power occurs at 600 G. Thus, we

then focus on collecting data under 600 G applied field along in-plane hard axis.
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Figure 2.10: Blue circles represent maximal excitation power at several different applied
fields along hard axis. The DC current applied onto the sample is swept from 0 up to 6 mA
for each different field. The power is the integrated power of the quasi-uniform mode and
is normalized by the maximum value. Red curve shows the corresponding frequency of each
oscillating mode.

As illustrated in Fig. 2.11, two spin wave modes are observed in this STO device. We will

concentrate on the dynamics of quasi-uniform mode, which possesses higher power and lower

precession frequency.
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Figure 2.11: Power spectrum density (PSD) at different currents under H = 600G along
in-plane hard axis. Two oscillation modes are observed. The quasi-uniform mode is excited
around 6.4 GHz.

Fig. 2.12 provides the dependence of linewidth and integrated power of quasi-uniform mode

on DC current bias. The power reaches maximum at 2.8 mA, while the linewidth minimum

is also observed near this maximum output power. Fig 2.13 shows the inverse of output

power in Fig. 2.12 as a function of DC current. The crossing point with x-axis by the blue

fitting line estimates the critical current for the onset of self-oscillation to be around 0.8 mA

[4]. Meanwhile, in Fig. 2.12, an abrupt peak of linewidth also occurs around 0.8 mA, which

agrees with the theoretical prediction by Prof. Slavin in Ref.[4].
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Figure 2.12: Integrated power and linewidth of the quasi-uniform mode as a function of DC
current applied to the sample under 600 G field along in-plane hard axis.
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Figure 2.13: Inverse of the integrated power for the quasi-uniform mode in near-threshold
range of currents. Same external field is applied. Dashed blue line corresponds to the
approximate expression (1/p̄ ∝ (Ith− I) [4]) valid for small currents. Intersection of this line
with x-axis gives the value of the critical current: ∼ 0.8 mA.[4]
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Figure 2.14: (a) Part of the time trace of the generated voltage signals at 2.7 mA, show-
ing hoping between two modes; (b) zoom in oscillation signals of the quasi-uniform mode;
(c) separate fourier transform spectra for the corresponding time intervals shown in (a).
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Figure 2.15: (a) A schematic diagram describes the magnetization orbits across the sample
plane at both zero and room temperature; (b) generated output voltages according to the
oscillating orbits and magnetoresistance; (c) distributions of the extremes of the voltage
signals, corresponding to the left and right crossings over the sample plane by the orbits in
(a).

2.4 Analysis of Time Domain Data

Although magnetization dynamics in spin torque oscillators (STOs) are readily observed in

the frequency domain, time domain analysis can provide a comparative wealth of informa-

tion. Fig. 2.14(a) shows partially time domain data of the generate voltage signals. Mode

hopping is obviously captured in this time window. And respectively, fourier transforms of

the two time intervals of these modes are given in Fig. 2.14(c). The quasi-uniform mode pos-

sesses lower frequency and larger amplitude, while the 2nd mode has higher frequency and

much smaller amplitude. This mode hopping process is one contribution to the linewidth

broadening. The zoom in observation of the quasi-uniform mode is plotted in Fig. 2.14(b).
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The amplitude of this mode still fluctuates in time due to thermal kicks. We are interested

in understanding these intrinsic dynamics properties of this quasi-uniform mode.

Fig. 2.15 illustrates the procedure of reconstructing in part the ensemble of magnetization

trajectories followed by the sample’s free layer. At zero temperature, the trajectory of

magnetization is a well defined orbit symmetric with respect to the sample plane. Finite

temperature results in thermal fluctuations of the orbit, but doesn’t break its symmetry,

as shown in Fig. 2.15(a). Due to this symmetry, crossings of the sample plane by the orbit

correspond to maxima and minima of the time-dependent resistance of the device. Thus,

time domain data allow us to map these plane crossing angles by recording the left and

right crossing distributions. Like in Fig. 2.15(b), the maxima of the measured voltage signals

correspond to the right crossings, while the minima represent the left crossings. These voltage

extremes have a distribution shown in Fig. 2.15(c). Applying the angular dependence of GMR

provided by Eq. 2.3, these voltage distributions can be transformed into the crossing angle

distributions. This analysis relies on the error-free extraction of all successive extrema in

the emitted voltage signal of the STO and a reliable mapping of the measured voltage onto

the physical orientation of the free layer’s magnetization vector.

The trace shown in Fig.2.16 apparently exhibits noise signals due to electronic and ther-

mal fluctuations. Therefore, some manner of smoothing procedure is prerequisite for data

processing. Since the timescale of fluctuations in the data is clearly much shorter than the

oscillation period, it is feasible to smooth the data using a low-pass filter in Fourier space.

The cut-off frequency for this low-pass filtering can be slightly above the frequency where

the quasi-uniform oscillations produce no power. The noise feature of the amplifier increases

to well above its base value of 1.3dB below 300 MHz, and thus we also perform high-pass

filtering above this frequency as long as it is well separated from any spectral features of

the auto-oscillations. This procedure preserves the peak amplitudes and locations, and is

implemented easily using FFTs in any of a variety of free (or proprietary) libraries. After
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Figure 2.16: Raw data of volrage time trace. Some of the extrema near and far from the
polarization vector ~p are indicated.

inversely fourier transforming the data back to the time domain, the ringing artifacts will

be induced at the edges of the trace. The simplest methods to get rid of this artifact is to

throw away the data at the edges, as we have enough time traces for mapping the crossing

distributions.

In addition, about only 7 data points are recorded in each period using the maximal sampling

rate of the scope (40 Gs/s), which is not enough for accurate peak extractions. Therefore, we

also apply 10 times data interpolation on the filtered time traces to guarantee the accuracy

of peak selections. A python implementation of the procedures above can be accomplished

in just a few lines.

Band-Pass Filtering
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import numpy as np

# phi is the experiment data mapped to in-plane angles

fft = np.fft.fft(V)

# Find the maximum frequency value fmax

maxFreq = np.abs(fft[500:np.ceil(len(fft)/2)]).argmax()+500

# High frequency cutoff determined empirically as multiple of fmax

cutoffHigh = int(np.ceil(1.4*maxEl))

# Drop anything sub 300 MHz due to amp noise

cutoffLow = int(np.ceil(300.0e6/(1.0/time[-1])))

# Trim the Fourier spectrum, remembering it is two-sided

fft[cutoffHigh:len(fft)-cutoffHigh] = np.zeros(len(fft)-2*cutoffHigh)

fft[1:cutoffLow+1] = np.zeros(cutoffLow)

fft[len(fft)-cutoffLow-1:len(fft)-1] = np.zeros(cutoffLow)

# Transform back for the smoothed data

smoothV = np.real(np.fft.ifft(fft))

# Cut 7 osc periods’ data at both the beginning and end of

# the smoothed trace

smoothV_cutedge = smoothV[51:len(smoothV)-50]

#interpolation:

time_cutedge = np.linspace(0,timestep*(len(smoothV_cutedge)-1),

len(smoothV_cutedge))

V_inp = np.zeros(len(smoothV_cutedge)*10)

time_inp = np.zeros(len(smoothV_cutedge)*10)

func = interp1d(time_cutedge[:], smoothV_cutedge[:], kind = ’cubic’)
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time_inp = np.linspace(time_cutedge[0], time_cutedge[-1], len(V_inp))

V_inp[:] = func(time_inp[:])

Then these voltage signals can be converted into crossing angles quickly in Python according

to Eq. 2.3:

Angle Mapping

Rext = 5.0 # from probes, contacts, etc.

Ravg = Ravg - Rext

# Circuit properties

## ampl is the calibrated amplification value for different frequency

atten = -10.0**(-ampl/20.0) # -1 for inverting

refl = 50.0/(Ravg + Rext + 50.0)

attenoverrefl = atten/refl

deltaR_EA = 0.683 ## Rap - Rp

deltaR_HA = 0.256 ## R (600G, HA) + Roffset − Rp

X = 3.05 ## const symmetry parameter

# map voltage to in-plane crossing angles

deltaR = (V_inp*attenoverrefl/current) + deltaR_HA

phi = np.arccos((deltaR_EA-(2+X)*deltaR)/(deltaR_EA+deltaR*X))

One may still observe that there are local extreme in the signal which cannot be removed

by the Fourier filtering. The origin of such features may be either from electronic noise

or from the stochastic properties of the magnetization dynamics. A simple algorithm can
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be implemented for differentiating these causes: one retains local extrema (two subsequent

crossings on the same side of the average angle) only when they are widely separated and

on the same side of the average angle. This constraint is given by:

∆ϕi+1 −∆ϕi
∆ϕi

> a (2.7)

which must be satisfied for subsequent values of ∆ϕ = ϕ− < ϕ > as shown in Fig. 2.17.

The value of a for our data is chosen empirically as 0.2. To ensure that no artifacts result

from a sharp cutoff, one may instead implement a continuous probability distribution for the

rejection of observed local extrema instead of a constant a.

Figure 2.17: [1] Local extreme selection constraint. The ∆ϕ values are defined as ϕ minus
the average angle of the trace < ϕ >. (a) Accepted extrema, which satisfy the condition of
Eq. 2.7. (b) Rejected extrema based on the same critierion.

Following algorithm shows the implementation details for extracting the peaks based on the

above rejection criterion:

Peak Selection
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# Derivative of the smoothed signal

diffPhi = np.diff(phi)

# Find zero crossings in derivative (peaks in signal)

# these are the array indices of all the peaks

crossings = np.where(np.diff(np.sign(diffPhi)))[0]

# Find the heights and times of all extrema

peakPhis = phi[crossings]

peakTimes = time[crossings]

# Containers for crossings

phisUp = []

phisDown = []

timesUp = []

timesDown = []

# Loop over crossings, ignores peaks as necessary

for i in range(0,len(crossings)-8):

thisCrossing = smoothPhi[crossings[i]]

nextCrossing = smoothPhi[crossings[i+1]]

thisTime = time[crossings[i]]

nextTime = time[crossings[i+1]]

thisDiff = thisCrossing - avgPhi # ∆ϕi as defined in the text

nextDiff = nextCrossing - avgPhi # ∆ϕi+1 as defined in the text

thisSign = np.sign(thisDiff) # Which side of < ϕ >

nextSign = np.sign(nextDiff) # Which side of < ϕ >

if (ignore > 0):

# Decrement ignore counter, but ignore this peak

ignore -= 1
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else:

if (thisSign==nextSign and

np.abs((nextDiff-thisDiff)/thisDiff) < 0.2 ):

# Crossing on the same side, and the change is small

ignore = 2

# omit spurious R > Rmax

elif (resistance[crossings[i]] < Rmax[crossings[i]] - 0.02):

if (nextCrossing < thisCrossing):

# We are low at the next crossing, and are now high

phisUp.append(thisCrossing)

timesUp.append(nextTime-thisTime)

else:

# We are high at the next crossing, and are now low

phisDown.append(thisCrossing)

timesDown.append(nextTime-thisTime)

# Now the containers defined above hold all crossing events

However, this method needs to be employed on the time traces dominated by the low fre-

quency quasi-uniform mode, while our real time domain signals mingle with two modes

hopping randomly. To determine whether or not a certain time interval involves with the

lower frequency oscillation, one can implement a sliding FFT method to calculate the inte-

grated power within the quasi-uniform mode frequency range for each sliding time window

(5 ns is used). We define the threshold value of this power as half of the integrated quasi-

uniform power averaged over 20 traces. For each sliding window, only the time interval with

the power of the quasi-uniform mode higher than the threshold will be kept for mapping
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and recording of the crossing angle distributions. The entire data processing algorithm is

included in Appendix A.1.

Figure 2.18: In-plane crossing angle distributions for quasi-uniform mode at currents from
1.9 mA to 3.1 mA. External field is applied along in-plane hard axis. X-axis represents the
free layer’s oscillation cone-angle with respect to the equilibrium position.

Fig. 2.18 illustrates the result of angular mapping distributions for the regime far above

the critical current (1 mA). From 1.9 mA to 2.8 mA, the procession angle increases and then

decreases above 2.9mA. For current higher than 2.2mA the orbit almost never approaches the

static equilibrium point at ϕ = 0. Also, the equilibrium position of magnetization does not

change with the current bias, which is consistent with negligible field like torque in metallic

spin valves. Since the measured STO has circular shape and thus symmetric in-plane shape

anisotropy, the crossing distributions of the magnetization orbits should also be symmetric,
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unlike the probabilities shown in Fig. 2.18.

After further examination, we found that information loss occurs during the data collection.

The limited working bandwidth of our amplifier (0.1 MHz to 8 GHz) distorts the time traces

by cutting off the constant and 2nd harmonic mode in the frequency domain. Therefore,

some correction procedure is required to be supplemented during the data analysis. In reality,

the oscillating angle can be represented by a toy model:

ϕ(t) = ϕ0 + ∆ϕ sin(ωt) (2.8)

where ∆ϕ exists with Gaussian distributions. According to the angular dependence of GMR

(Eq. 2.3), one can convert this toy model ϕ(t) into resistance (R(t)). By filtering out the

higher order modes in the Fourier space and inversely transform back to the time domain,

the processed R(t) can reproduce the R(t) time traces recorded in experiment. Thus, a

numerical mapping relation between the extrema distributions of R(t) from experiment and

ϕ(t) from toy model is able to be established. This corrected mapping procedure solves the

discrepancies in our experiment and can be accomplished by some simulations in Python

(seen in Appendix A.2).

Based on the dependence of experimental R(t) extrema on the real ϕ(t) extrema, the crossing

angle distributions can be directly mapped from the distributions of R(t) extrema in exper-

iment. This corrected mapping result is shown in Fig. 2.19. Crossing distributions at each

current are symmetric and have the same trend with increasing current as seen in Fig. 2.18.

These same two dimensional histograms are also reproducible in deterministic simulations

with the magnetic Fokker Planck equation, as demonstrated in Section 2.6. We may then

perform direct comparisons of expected and observed non-linear dynamic properties, from
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Figure 2.19: Corrected in-plane crossing angle distributions for quasi-uniform mode under
currents from 1.9 mA to 3.1 mA. Inverse mapping from toy model of ϕ(t).

which one may garner information regarding the non-linear damping of the sample or other

quantities such as temperature.

2.5 Macrospin Simulations

As detailed in Chapter 1, the Landau-Lifshitz (LL) and Landau-Lifshitz-Gilbert (LLG) equa-

tions have provided the mathematical basis for explaining magnetization dynamics in nano-

scale ferromagnetic heterostructures. For systems that do not measure more than a few

exchange lengths in any direction (or those remaining uniform despite not meeting such a
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criterion), the magnetization profile can be considered uniform and therefore, of one con-

served overall magnetic vector. Such profile allows for a very straightforward treatment of

the dynamics. Additional non-conservative spin torque developed by Slonczewski [17, 33, 30]

can be included in the LL(G) equation, resulting in what is sometimes referred to as the

LL(G)S equation. In the LL form, this equation is given by

d~m = −~m× (~heff + α~m× (~heff + βst~p/α)) · dt (2.9)

where α represents the Gilbert damping parameter, dt is the time step measured in units

of γMs, fields (~heff ) and magnetic moments (~m) are normalized by Ms, and ~p is a unit

vector pointing along with the polarizer. The spin-torque coefficient βst is determined by

the mutual angle between ~m and ~p in the form of GMR angular dependence:

βst =
astIh̄

2eM2
s V ol

(
P · (χ+ 1)

χ+ 2 + χ(~m · ~p)
) (2.10)

where ast gives the strength of this in-plane torque, P stands for the polarization efficiency,

χ is the same asymmetry parameter in Eq. 2.3. This dependence only applies to the case of

metallic spin valves.

The damping term α will not always stay as a constant value when magnetization evolves

into a large (non-linear) oscillation regime. Generally, it is a function of the change of

magnetic moment, and for finite but not very large angles of magnetization procession, it
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can be represented as a Taylor series expansion:

α(ξ) = αG(1 + q1ξ + q2ξ
2 + ...); ξ ∼

∣∣ ∂ ~M
∂t

∣∣2 . (2.11)

Such a non-linear damping model is developed by Prof. Slavin in 2009 [4], where αG �

1 is the linear Gilbert damping parameter, qi ∼ 1 are the phenomenological parameters

characterizing nonlinear properties of the damping processes. One can tune the parameters

qi to both qualitatively and quantitatively match with our experimental results, and thus

observe how this non-linear damping factor behaves in the large angle oscillation regime.

Usually, this differential equation is not able to be solved analytically, except in a case of

iso-axial structure. On the other hand, numerical solutions are fairly easy to achieve. Either

an explicit or implicit integration step can be chosen for discretization of this equation. In

the former method, the left hand side of Eq. 2.9 describes the state at the future timestep

ti+1, while the right hand side is evaluated at the previous time ti. This procedure is the

so-called ”Forward Euler” integration method, which is expressed as following:

~mi+1 = ~mi − ~mi × (~heff + α~mi × (~heff + βst~p/α)) ·∆t (2.12)

Instead of the detailed version, one can simplify this expression as:

~mi+1 = ~mi + ~v(~mi, ti)∆t (2.13)

which emphasizes that the torques ~v in the new step must be calculated based on the

previous magnetization ~mi. The Forward Euler method cannot converge to a relatively
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proper level, unless a sufficiently small time step is implemented. The decent convergence

of the solution, as noted in Ref. [48], is proven with a particular renormalization procedure

of the magnetization. Since one cannot guarantee the conservation of |~m| = 1 during the

Forward Euler evaluation, this periodical renormalization of ~m is applied to reduce this

deviation.

Another choice for the discretization is the ”Backward Euler” method, which yields

~mi = ~mi−1 + ~v(~mi, ti)∆t (2.14)

which now contains the future ~mi on both sides of the equation. As generally there are no

analytic solutions, one can rearrange this equation as following:

0 = ~mi−1 − ~mi + ~v(~mi, ti)∆t (2.15)

and solve it with the Newton-Raphson methor or some other root-finding algorithm. The

convergence of this Backward method performs better as well as the stability for a larger

∆t.

At last we focus on an implicit midpoint integration method which preserves |~m| and always

yields a decreasing free energy in the presence of damping[49, 50]. This method relies on
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evaluating the derivative of Eq. 2.9 at the midpoint:

d~m

dt

∣∣
i+1/2
≈ ~mi+1 − ~mi

∆t
= ~v(~mi+1/2, ti+1/2) (2.16)

and thus leads to the midpoint stepping algorithm:

~mi+1 = ~mi + ~v(~mi+1/2, ti+1/2)∆t (2.17)

which is not useful at all due to the lack of knowledge of the intermediate step ~mi+1/2.

Taylor expansion of ~v(~mi+1/2, ti+1/2) with respect to ti provides a solution for this stepping

algorithm:

~mi+1 = ~mi + ~v(~mi +
∆t

2
~v(~mi, ti), ti+1/2)∆t. (2.18)

It can be demonstrated that this midpoint method is intrinsically norm preserving, and

also intrinsically energy preserving if all non-conservative torques are neglected. A Python

implementation of this implicit midpoint algorithm for a general case at room temperature

is shown in Appendix A.3.
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2.5.1 Interactions with Stochastic Field

At room temperature, thermal fluctuations plays an important role in the time evolution

magnetic dynamics. Thus, deep understanding of the nature of the stochastic process and

the corresponding interpretation in the differential equations are required. The noise is

incorporated as a random thermal field with uncorrelated Gaussian white noise vector com-

ponent, whose magnitudes are able to be learned by the fluctuation dissipation theorem.

The LL and LLG equations in the presence of these noise terms needs to be modified with

the calculus of random stochastic fields. Two of the most common interpretations for these

differential equations are those of Stratanovich and Itō. Followed by Stratanovich’s sense,

Eq. 2.9 becomes

d~m = ~v(~m, t) dt− ν ~m× (d ~W + α~m× d ~W ) (2.19)

while an extra deterministic drift term must be added in the version of Itō:

d~m = [~v(~m, t)− ν2 ~m] dt− ν ~m× (d ~W + α~m× d ~W ). (2.20)

Here ν is the magnitude of thermal fluctuations, d ~W stands for the isotropic Wiener (Guas-

sian white noise) process, and ~v(~m, t) contains all the deterministic torques described earlier.

The difference between these interpretations lies in the meaning of the sum required for the

solution. The integration is ill-defined with a measure of d ~W , so instead the limiting case

of a Riemann sum is applied as the definition. In fact, a choice like that between Midpoint

and Euler methods is made for the relative time steps at which the random and determin-
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istic torques are evaluated. The details of this choice is related to the system’s properties,

and salient discussion can be found elsewhere [48]. The midpoint algorithm is nevertheless

well adapted to the numerical integration, except that we don’t want to evaluate ~W at the

midpoint. Thus, a slightly different approximation has been made based on Eq. 2.18:

~mi+1 = ~mi + ~v((~mi+1 + ~mi)/2, ti+1/2) ∆t+ ~u((~mi+1 + ~mi)/2, ti+1/2) ·∆ ~W (2.21)

where function ~u() has absorbed the matrix representation of the stochastic torques in

Eq. 2.19 or Eq. 2.20. The random thermal fluctuation ∆ ~W is selected once per timestep

and the root-finding algorithm proceeds with that fixed variable. Appendix A.3 shows the

Python implementation of our Macrospin simulation with this midpoint method including

the stochastic field.

2.5.2 Analysis of Macrospin Simulation Results

Fig. 2.20 illustrates an example of the simulation result for a self-oscillation state at T = 0

(under 600 G in-plane applied field perpendicular to the exchange bias). The spectrum in

the frequency domain is shown in Fig. 2.20 (a); 2D- and 3D-oscillation orbits of the free

layer’s magnetization are shown in Fig. 2.20 (b) and (c) respectively. The orbit is almost

well defined and completely coherent. While Fig. 2.21 depicts the auto-oscillatory state at

room temperature. It is obvious that finite temperature induces thermal fluctuations in

the orbits, which results in the amplitude and phase diffusion during the oscillation. STOs

exhibit spectral broadening both from these phase noise and amplitude noise coupled into

phase noise by virtue of the strong nonlinearity of the system. Further investigations based

on the crossing angle histograms will be combined with the Fokker Planck effective energy
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approach in section 2.6.

Figure 2.20: A simulation example of the auto-oscillatory state for the free layer of our STO
device at T = 0. 600 G field is applied perpendicular to the exchange bias. (a) FFT of x
component of the oscillating magnetization. (b) Projection of the magnetization trajectories:
z-component vs. x-component. (c) 3D plotting of the magnetization trajectories.

One interesting phenomenon occurs for the macrospin simulation in the case of external

field Hext = 600G perpendicular to the exchange bias: auto-oscillation cannot be excited

with constant damping and correct angular dependence of spin-torque (χ = 3.05), while

self-oscillation does exist in experiment under the same applied field. Hence, we further

examine the effect of nonlinear damping [4, 51] on spin torque driven auto-oscillations in

our sample’s free layer by numerically solving Landau-Lifshitz equation with a nonlinear

damping term in the macrospin approximation. Fig. 2.22 describes the dependence of the

excited auto-oscillation frequency on the angle of effective field, which is defined with respect

to the opposite direction of the polarizer. Three regimes of self-oscillatory dynamics are

observed. For small applied field angles, the onset of self-oscillations is soft – the amplitude

of self-oscillations is small just above the critical current. For higher angles, hard onset of

self-oscillations is observed – large-amplitude in-plane oscillations are observed immediately

above the critical current. At yet higher angles, large-amplitude out-of-plane oscillations

are excited immediately above the critical current. Fig. 2.22 shows that nonlinear damping

significantly extends the angular range for the soft onset of the auto-oscillations and leads to

an extended angular range where auto-oscillatory dynamics are present. The same applied
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Figure 2.21: A stochastic simulation example of the auto-oscillatory state for the free layer
of our STO device at T > 0. 600 G field is applied perpendicular to the exchange bias.
(a) FFT of x component of the oscillating magnetization. (b) Projection of the magneti-
zation trajectories: z-component vs. x-component. (c) 3D plotting of the magnetization
trajectories.

field condition with experiment (Hext = 600G) corresponds to the HeffAng of 66◦ seen in

Fig. 2.22, at which the onset of auto-oscillation requires the nonlinear damping to balance

out the extra amount of spin torque contribution. Deeper study of the non-linear damping

term will be discussed within the framework of Fokker Planck approach in the next section.

2.6 Calculation in the Fokker-Planck Theory

2.6.1 Introduction of General Fokker-Planck Equation

Instead of concerning the stochastic variants in the LL or LLG equations, the time evolution

of the probability distribution p of the magnetic moment can be expressed deterministi-

cally through the magnetic Fokker-Planck equation, bypassing the integration of individual

random thermal field. This prescription was first proposed by Brown in 1963 [52]. The
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derivation of p,

∂p

∂t
= −(

∂Jθ
∂θ

+
∂Jϕ
∂ϕ

), (2.22)

is determined by the currents of probability:

Jθ = [− 1

sin θ

∂gL
∂ϕ
− α∂Φ

∂θ
+ ν2 cot θ] p+

ν2

2

∂p

∂θ
, (2.23)

Jϕ = [
1

sin θ

∂gL
∂θ
− α

sin2 θ

∂Φ

∂ϕ
] p+

ν2

2

1

sin2 θ

∂p

∂ϕ
(2.24)

where θ and ϕ are the polar and azimuthal angles, gL is the free energy, and Φ represents

the generalized potential of the system (including the non-equilibrium torques) [48]. The

field-like torque is always considered as an effective field contribution to gL. Since gL and Φ

are explicitly known, derivative of these equations with respect to the spherical coordinates

are readily evaluated.

The main problem now is that of drift and diffusion on the magnetization sphere starting from

some initial probability distribution of the magnetization. For convenience, we generalize

the Fokker-Planck equation into the form of

∂p

∂t
= ∇[−A · p+

1

2
∇(BBT · p)] (2.25)
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where A is the drift vector and BBT is the diffusion tensor in Cholesky form. The gradient

operator ∇ is not defined on the spherical manifold, but rather on the projected circular

surface of polar and azimuthal angles: ∇ ≡< ∂/∂θ, ∂/∂ϕ >. Thus, the drift vector and

diffusion tensor relate to the coefficients of Eq. 2.22 by:

A =

− 1
sin θ

∂gL
∂ϕ
− α∂Φ

∂θ
+ ν2 cot θ

1
sin θ

∂gL
∂θ
− α

sin2 θ
∂Φ
∂ϕ

 ,B =

ν 0

0 ν/ sin θ

 . (2.26)

Then one multiplies both sides of Eq. 2.25 by a test function q and integrates over the entire

spherical manifold (
∑

). Distribution p is recognized as the trial function in this procedure.

After integration and careful evaluation of the boundary conditions, the first term on the

right hand side (RHS) of Eq. 2.25 becomes

∫
∑ dx∇q ·Ap; (2.27)

meanwhile, the second term yields

−
∫
∑ dx[

1

2
(BBT · ∇q) · ∇p− [qB · (∇ ·B)] · ∇p] (2.28)

where the divergence is defined to proceed along rows of B. The time evolution is discretized
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by the Crank-Nicolson method before integration:

∂p

∂t
= F (x, t)

∂p

∂t
≈ p− p0

∆t
≡ pn+1 − pn

∆t
=

1

2
[F (x, tn+1) + F (x, tn)]

(2.29)

where p ≡ pn is the known solution for the previous time step and p0 ≡ pn+1 is the solution

for the current step. By assembling Eq. 2.27, 2.28, and 2.29, p can be solved implicitly

through the final time stepping algorithm:

∫
∑ dx(pq +

∆t

2
[−∇q ·Ap+

1

2
(BBT · ∇q) · ∇p− [qB · (∇ ·B)] · ∇p])

=

∫
∑ dx(p0q −

∆t

2
[−∇q ·Ap0 +

1

2
(BBT · ∇q) · ∇p0 − [qB · (∇ ·B)] · ∇p0]).

(2.30)

The left hand side of this equation is of the bilinear form a(p, q) which depends on both the

test and trial functions. The RHS is of the linear form L(p) which only depends on the test

function and the solution of the previous step. The initial probability distribution p0 must

be supplied, which is chosen to be a 2D Gaussian distribution in θ and ϕ. Detailed codes

and packages for the evolution of magnetization distribution p are shown in Ref [1].

While much information can be gained from solving this general Fokker-Planck formalism

for stochastic magnetization dynamics, much effort is lost due to the expensive computa-

tion and the physical meaning of the contribution from spin-torque or non-linear damping

term is blurred during the derivation. In next section, we demonstrate a simplified method

which transforms the calculation coordinate to the energy system, and therefore reduces the

computational burden as well as relates the physical terms to the non-linear behavior more
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directly.

2.6.2 Calculations in the Effective Energy Framework

In the circumstance of the steady state of self-oscillations, one can assume that magnetic

moment mainly evolves along conservative orbits, although it is induced by thermal torques

to slowly diffuse among these trajectories (on a timescale much longer than its oscillation

period). It turns out to be a valid assumption for many STO systems, as the non-conservative

terms like spin-torque and damping are fairly small compared to the conservative fields

from demagnetization and Zeeman interaction (besides, they will cancel out to some extent

since they are opposite to each other). Inspired by this assumption, one can collapse the

dynamics represented in the spherical coordinates onto the energy wells corresponding to

the conservative orbits [53]. This procedure relies on the one-to-one mapping between orbits

and energies according to the in-plane crossing angles, thus each well must be separated into

which the manifold may be divided and then subsequently be stitched together with these

separate solutions.

When a steady self-oscillation is being excited, one cannot ignore the non-conservative con-

tributions to the magnetization dynamics from spin-torque and damping torque. In this

scenario, the occupation of various orbits is not only determined by the conservative en-

ergy terms, but rather the effective energy which has been modified by the non-equilibrium

torques acting on the magnetization. The following steps illustrate the prescription on how

to calculate this effective energy surface of a nano-magnet:

1. Derive the conservative energy expression E(θ, ϕ) of the nano-magnet system, including

contributions from external field, dipolar field, demag field, etc.. ϕ corresponds to the in-

plane crossing angles.
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2. Find the corresponding effective field ~Heff (θ, ϕ) = −dE/d ~M . ~Heff = ~Hexternal+ ~Hdipolar+

~Hdemag for the free layer in our sample (detailed expression shown in appendix A.5).

3. Starting from the minimum of the energy well at ϕ0 (E0), numerically integrate over

all conservative trajectories of ~mj(t) based on the starting coordinate ϕj = ϕ0 + ∆ϕ, and

gradually farther from the bottom of the energy well by increments of ∆ϕ. The orbit

marked by the starting in-plane crossing angles ϕj can also be indexed by the corresponding

conservative energy Ej.

4. Calculate the work done by the spin-torque along each conservative trajectory,

IM(E) =

∮
β(ϕ)[d ~M × ~M ] · p̂, (2.31)

where p̂ is the unit polarization vector of the spin current. β(ϕ) = P (χ+1)
χ+2+χ cosϕ

gives the

angular dependence of spin-torque in metallic spin valve structures, in which P = 0.224

represents the polarization efficiency of our sample (calculated according to Ref. [33]), χ is

the asymmetry parameter fitted earlier, ϕ stands for the angle between ~mf and ~mp.

5. Calculate the work done by the damping torque along the same trajectories,

IE(E) =

∮
α(ξ)[d ~M × ~Heff ] · m̂, (2.32)

where α(ξ) provides the non-linear damping term, which is equal to αG(1+q1ξ+q2ξ
2+...); ξ ∼

∣∣
∂ ~M
∂t

∣∣2 described in Eq. 2.11. ξ ∼
∣∣ [ĥeff × m̂]

∣∣2 when spin torque and damping torque are

negligibly small in comparison to the conservative torques.

6. Numerical integrations of IM(E) and IE(E) for each trajectory can be easily accomplished
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in software packages as Python. Once we know the ratio of these two works,

η(E) =
IM(E)

IE(E)
, (2.33)

the effective energy surface is able to be obtained by integrating this ratio from the bottom

of the well up to the current energy value,

Eeff (E)− Eeff (E0) = E − E0 −
J

Ms

∫ E

E0

η(E
′
)dE

′
, (2.34)

which tunes the conservative energy well through the work done by non-conservative torques.

7. The energy distribution is normally non-Boltzmann, except for the case of conservative

torques only. However, the probability distribution can be expressed in the Boltzmann form

as

ρ
′
(E) =

1

Z
exp(−V [Eeff (E)− Eeff (E0)]/kBT ), (2.35)

where ρ
′
(E) shows the probability per unit area of the system existing at the energy level of

E, V is the domain’s volume, kB is the Boltzmann constant, and Z is the partition function

as following:

Z =

∫
dE

′
γMsτ(E

′
)ρ

′
(E

′
) (2.36)
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in which τ(E) gives the period of the trajectories.

So far, all of the basic machinery is ready for making any ensemble calculation in the Fokker-

Planck effective energy approach. For example, the ensemble of the averaged value of some

parameter y(E) (which depends on the occupation of a particular orbit) can be generalized

in the manner below:

< y >=

∫
dE

′
ρ

′
(E

′
)A(E

′
)δ(E

′ − y−1(E
′
)), (2.37)

where A(E)dE = γMsτ(E)dE is the area of the orbits between energy E and E + dE, and

δ represents the Dirac delta function.

Detailed derivation of the effective energy based on the LL equation and Fokker-Planck

theory is shown in Appendix A.4. In addition, the numerical calculation of Eeff at various

currents is implemented by Python programming, which is included in Appendix A.5.

2.6.3 Result Analysis in comparison with Experiment

According the macrospin energy model of the free layer of our sample (Eq. 2.4), one can

determine the oscillation trajectory corresponding to each conservative energy (equivalent

to the crossing angle of the sample plane). Thus, numerical integration over these trajectories

can be accomplished for our sample’s free layer. Fig. 2.23 shows the angular dependence of the

effective energy profiles calculated by the Fokker-Planck approach with constant damping

parameter. At zero current, effective energy is equal to the conservative energy and the

equilibrium angle is defined to be zero in our coordinate. As current increases, the effective

energy well becomes shallower due to the influence of spin torque. When current approaches
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the critical, the well becomes flat. Correspondingly, the crossing angle distributions turn to

be broadened in this region as the restoring torques on the orbits become smaller. When the

current exceeds the critical, the potential well splits into two wells and the plane crossing

angles become clustered near these two minima. These current (or spin-torque) dependent

effective energy profiles theoretically explain the dynamics of the magnetic moment from the

static state to the state far above the onset of auto-oscillatory regime.

Now, based on the measured crossing distributions, we can apply the Fokker-Planck approach

to calculate the experimental effective energy profile of the free layer in our sample. The

Fokker-Planck approach gives a Boltzmann-like energy distribution for the system shown

in Eq. 2.35. Meanwhile, the crossing angle distribution can be connected with the energy

probability as following:

ρcross(ϕ) = ρ(E(ϕ))

∣∣∣∣dEdϕ
∣∣∣∣ τ(E) (2.38)

Therefore, from these two equations, one can obtain the effective energy just by using the

angular distribution from the experiment. Fig. 2.24 describes the translating procedure from

the measured angular distributions to the experimental effective energy profiles.

In Fig. 2.25, we compare effective energies predicted by the macrospin Fokker-Planck the-

ory to our experimentally measured effective energy profiles. Two striking differences are

found between theory and experiment. First, the angular separation of the two effective

energy wells above the critical current is much smaller in the experiment than in theory.

In experiment, the largest oscillation cone angle is around 20◦ at 2.7 mA; while in theory

with constant damping, the cone angle already achieves 100◦ at only 1.5 mA. Second, the

inter-well separation starts to decrease at the highest current employed in the measurements,
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while it is a monotonically increasing function in the theory. One possible explanation of

the observed discrepancies would be that the theory does not take into account non-linear

damping which tends to decrease the precession amplitude.

As one can tell from Eq. 2.11, the nonlinear damping increases with the precession cone angle,

which to some extent indicates its importance for the large angle oscillation regime. Hence, in

the next step, we modify the Fokker-Planck model with the nonlinear damping term as well

as tune the characterizing parameters qi to achieve the best fit with experiment. Fig. 2.26

shows that with q1 = 4.35, the cone angles are almost consistent between experiment and

theory, which demonstrates the effect of non-linear damping on limiting the precession cone

angle in the regime far above critical current.

In conclusion, we have shown that time domain measurements are able to provide direct

mapping of the spin-torque dependent effective energy of the STO even at the regime far

above critical current. Also, we developed a macrospin Fokker-Planck effective energy model

which allows for a quantitative determination of the non-linear damping parameters (qi in

Eq. 2.11) through the comparison with experiment. We demonstrated that above the critical

current, the inter-well separation in the measured energy profile appears to be smaller than

that expected from Fokker-Planck approach with constant damping. However, a modified

Fokker-Planck model with nonlinear damping term is capable to reach qualitative agreement

with the experiment, which confirms the crucial effect of non-linear damping in oscillation

regime far above critical current.

69



Figure 2.22: Comparison of auto-oscillation frequency at the critical current for constant
Gilbert damping and nonlinear damping (q1 = 0.3) in the macrospin approximation. HeffAng
is the effective field angle with respect to the opposite direction of the polarizer. The effective
field is composed of external field and dipolar field from pinned layer. Three regimes of auto-
oscillatory dynamics at the critical current are observed: small-amplitude, large-amplitude
in-plane and large-amplitude out-of-plane oscillations. Nonlinear damping is found to extend
the angular range of auto-oscillatory dynamics.
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Figure 2.23: Effective energy profiles for various currents developed by the spin-torque de-
pendent Fokker-Plank model. Constant damping is applied.
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Figure 2.24: (a) Measured in-plane crossing angle distributions for currents far above the
critical. (b) Experimental effective energy profiles calculated by the Fokker-Planck method,
based on the measured crossing distributions shown in (a).

Figure 2.25: (a) Effective energies predicted by the macrospin Fokker-Planck theory with
constant damping applied. (b) Experimentally measured effective energy profiles.
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Figure 2.26: (a) Effective energies predicted by the macrospin Fokker-Planck theory with
implementation of non-linear damping (q1 = 4.35). (b) Experimentally measured effective
energy profiles.
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Chapter 3

Microwave Radiation Detector based

on Spin Torque Diode Effect

The microwave radiation detector discussed in this chapter is based on spin torque ferromag-

netic resonance (ST-FMR)[19, 20]. Some prior work has explored the use of tunnel junctions

as sensing elements [19, 21, 22, 23, 24, 25] using the spin torque diode effect. It has been

shown that high detecting sensitivity has already been achieved[26], however, so far wire-

less detection of microwaves using a magnetic tunnel junction has not been demonstrated.

It will be shown that the wireless microwave radiation detector discussed in this chapter

has a relatively high sensitivity[21] comparable to a semiconductor diode and is designed

to be frequency tunable by adjusting the magnet installed inside. Electrostatic discharge

(ESD) protection and mechanical protection have also been implemented in order to make

the detector ruggedized for normal use.

Unlike an electromagnetic signal confined in a transmission line (microwave waveguide, mi-

crowave cable, etc.), a radiated microwave signal decays quickly. As a result, in order to

measure microwave radiation signal, a relatively sensitive detector should be implemented.
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The control over source and cable impedances is possible when a source is connected directly

to a detector, allowing improved impedance matching and better overall detection efficiency.

However, the impedance of air is a constant so that some circuit optimization is required

to couple microwave signals to the sensing element. The design presented in this chapter

includes a compact antenna suitable for this purpose.

In this chapter I will describe the design of this microwave radiation detector and the char-

acterization of detectors with two different types of tunnel junctions. We compared their

sensitivities and demonstrated the frequency tunable function. Furthermore, a detector with

a pair of two parallel MTJs is developed for enlarging the frequency detection range. The

characterization result will also be discussed in this chapter. In this project, the formal group

member Brian Youngblood designed the detector and ran the basic performance comparison

between detectors with different types of MTJs. I have improved the ESD and mechanical

protection onto the circuit of the detector. I also accomplished the demonstration of the

frequency tunable function and the working detector with an MTJ array.

3.1 Detector Design

A schematic circuit diagram of the detector is given in Fig. 3.1. In our detector, we use MTJs

with MgO barrier due to its large magnetoresistance[9, 15, 54]. The source of RF current is

a coplanar waveguide (CPW) acting as an antenna, which is directly attached to the MTJ.

The top lead of the MTJ is connected to the AC+DC port of a bias-tee while the DC port

of the bias-tee is connected to the signal pin of a K-connector. The bottom lead of the MTJ

is connected to the flange ground and the chassis of the detector. The DC voltage across

the MTJ can be measured through the K-connector. The detector also includes an ESD

protection circuit. A permanent magnet is affixed to a set screw to provide DC magnetic

field.
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Figure 3.1: Schematic circuit diagram of an MTJ microwave detector. Part A: K-connector;
part B: ESD protection circuit; part C: bias tee; part D: magnet with tunable position; part
E: MTJ device; part F: coplanar waveguide antenna for receiving microwave signal.

The magnet inside provides a constant field that can be adjusted to obtain the best possible

response from the magnetic tunnel junction and to tune the detection frequency range. The

magnet is made from Nd2Fe14B (3.175 mm diameter× 3.175 mm long) with a nominal surface

field of 4 kG. The tunable position of the magnet provides a magnetic field range between 0

and 800 G applied at the MTJ. This range covers the fields which give the maximum response

for the two types of detectors in our measurement.

The CPW makes the detector capable of picking up ambient microwave radiation (of the

correct polarization) and, via the MTJ, converting it to a measureable DC voltage. It couples
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the microwave radiation to an input RF signal at the tunnel junction efficiently. This requires

reasonably good matching between the impedance of CPW and that of air.

Figure 3.2: Cross-sectional view of a coplanar waveguide showing relevant dimensions. The
yellow section stands for the metal part of the coplanar waveguide. The grey part represents
the dielectric substrate in the middle, which is made of Duroid.

In an analytic model, a grounded CPW as depicted in Fig. 3.2 with a dielectric (εr) substrate

of thickness h >> b = s+ 2w has an impedance [55]:

60π
√
εeff

1
K(k)
K(k′)

+ K(k1)
K(k′1)

(3.1)

εeff =
1 + εrκ

1 + κ
(3.2)

κ =
K(k′)

K(k)

K(k1)

K(k′1)
(3.3)

k = s/b (3.4)
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k′ =
√

1− k2 (3.5)

k1 =
tanh(πs/4h)

tanh(πb/4h)
(3.6)

k′1 =
√

1− k2
1 (3.7)

As indicated by these equations, the characteristic impedance of the CPW is proportional

to w and is inversely proportional to s. By modeling the coplanar waveguide structure in

the finite element calculation software CST Microwave Studio, we were able to determine

the parameters (s,w) showed in Fig. 3.2, which maximize the gain of the CPW antenna but

still render the sample relatively easy to fabricate. For the 0.254 mm thick Duroid substrate

we used, the optimal parameter set is s = 0.2 mm and w = 0.1 mm giving an impedance

of 76 Ω according to the modeling software. The impedance with the same dimension is

86 Ω according to the analytical model. This discrepancy between numerical modeling and

analytical approximation can be explained by the fact that our real CPW doesn’t fulfill the

condition h >> b.

An additional feature of this detector is the ESD protection circuit designed to prevent

damage to the delicate magnetic tunnel junction. The junction is susceptible to breakdown

and becomes shorted across its thin insulating layer when exposed to relatively large transient

voltages. The ESD protection circuit consists of two Schottky diodes connected in opposite

directions which will shunt large voltages of either polarity to ground.
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Fig. 3.3 shows the detailed design layout of our entire detector and the major dimensions are

given by Fig. 3.4.

Figure 3.3: Microwave detector layout components: (1) Coplanar waveguide antenna, (2)
MTJ device, (3) Bias-tee, (4) Brass screw holder, (5) Brass set-screw, (6) NdFeB magnet,
(7) K-connector flange
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Figure 3.4: Dimensions of the assembled microwave detector
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3.2 Experimental Results

For the detectors studied in this project, two different types of MTJs[9, 15, 54] were used,

which will be referred to as type A and type B. Both are elliptical MgO tunnel junctions with

CoFeB fixed and free layers. The layer structure is Substrate/buffers/SAF/MgO/FL. SAF

refers to the synthetic anti-ferromagnet layer. FL is the free layer in the MTJ device. For type

A junctions, the SAF is composed of PtMn(16)/Co70Fe30(2.5)/Ru(0.85)/Co60Fe20B20(2.4),

and the FL is Co60Fe20B20(1.8) which is magnetized entirely in plane. The SAF structure

for type B junctions is PtMn(15)/Co70Fe30(2.3)/Ru(0.85)/Co40Fe40B20(2.4). The FL of type

B junctions is composed of Co20Fe60B20(1.8) which has partially out of plane magnetization.

All thicknesses are given in nanometers. A type A junction has Co-rich free layer while type

B is Fe-rich.

The resistance of most type A MTJs is between 300 Ω and 350 Ω at zero applied field. For

type B junctions, resistances at zero applied field is higher, mostly ranging from 600 Ω to

620 Ω. Resistance vs. field plots for both types of junctions are shown in Fig. 3.5. The field

is along the in-plane hard axis, which is the short axis of our elliptical device.
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Figure 3.5: Resistance vs field curve for a typical type A(a), and type B(b) MTJ device,
with nominal lateral dimensions 160 nm × 65 nm and 150 nm × 70 nm, respectively. Both
fields are along in-plane hard axis.
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Tests on the full microwave detectors were run by placing the detectors at a set distance

(approximately 18 cm) underneath a microwave horn antenna which was in turn connected

to a microwave generator. The voltage signal was read by a Keithley 2182A nanovoltmeter

which can measure down to 1 nV. This DC voltage was recorded as the frequency of the

microwave emissions was varied. Fig. 3.6(a) shows the output voltage at the applied field

giving the best signal for a typical detector with a type A tunnel junction patterned into

160 × 65nm2 elliptical nanopillar. This result was obtained with an external field of about

650 G along in-plane hard axis and a signal generator power output of 15 dBm.
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Figure 3.6: Detector response to P = +15 dBm RF power: (a) Response of a type A detector.
(b) Response of a type B detector. (c) Response of the best detector, a type B detector.
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Next, Fig. 3.6(b) shows the typical response of a type B detector. The output power from

signal generator is also 15 dBm. Besides the stronger response of the type B detector, the

best resonance is at a lower frequency for this kind of MTJ with a lower in-plane hard axis

field of about 200 G, compared to fields at which the best response for type A samples occurs.

Fig. 3.6(c) shows the signal obtained from our best performing sample, which was of type

B. As the figure shows, the response of this sample was atypically strong under the same

generator output power and magnet position in Fig. 3.6(b), though the resonance frequency

was the same as for other type B samples. This best performing sample was larger than

the other type B samples tested, measuring 210 nm × 60 nm while the other type B samples

measured 150 nm×70 nm. Also, since these tunnel junctions were designed to have equal

resistance-area (RA) products regardless of size, the MTJ in the detector of Fig. 3.6(c) has

a lower resistance (340 Ω), closer to the impedance of the CPW antenna.

In order to calculate the sensitivity, we show in Fig. 3.7 the response of a type B sensing

element (150 × 70nm2) under controlled conditions with the microwave power applied di-

rectly to the MTJ via a set of RF cables and a titanium probe. The RF power applied was

-36 dBm and the applied field was 150 G along in-plane hard axis. The sensitivity is defined

by the formula below:

ε =
V

Pinc
(3.8)

where V is the output voltage signal, while Pinc is the power applied onto the sample. Thus,

the detector has a maximal sensitivity of 240 mV/mW when a power of 0.25µW is applied.

This is comparable to the best sensitivity for an MTJ-based detector reported to date[26]

under zero bias. It is also on the same order with the sensitivity of the commercial diode we

used for calibration, which is quoted as 400 mV/mW.
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Figure 3.7: Response of a type B MTJ to a direct microwave input at -36 dBm power.

Our detector is also a frequency tunable microwave detector. Fig. 3.8 shows the signal of a

type B detector (210 × 60nm2) for radiated microwave signal as a function of applied field

along the in-plane hard axis, which is provided by the attached magnet. By adjusting the

position of the magnet, the resonance frequency of the detector can be tuned from 0.73 GHz

to 1.28 GHz. The detection frequency range is determined by the intrinsic properties of each

tunnel junction used for each detector.
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Figure 3.8: Response of a type B detector under different applied field. Labels for each curve
represent the distance between the MTJ and the magnet surface which is closer to the MTJ.

Finally, we assembled a detector with two parallel tunnel junctions of different resonance

frequency ranges. In this case, we show in fig.3.9 that we can detect microwave signals with

two different frequencies at same time, which are around 1 GHz and 2.7 GHz. +15 dBm

RF power provided by the microwave generator was delivered to the horn antenna. This

type of detector fulfills the multi-range detecting function used to achieve by implementing

two separate sensing elements. The resonance frequency can also be tuned by adjusting the

inner magnet position, as described in fig. 3.9. The resonance signal around 1 GHz is not

as sensitive as the signal around 2.7 GHz. It is possibly due to the coupling between the

microwave signals from the MTJ and that transmitted in the rest of the detector circuit. For

the application purpose, reliability test on the ESD protection circuit and the mechanical

protection (vanish seal on all wire bonds) has also been done as following. First, we applied

1 mA DC currents with different polarities to the input port of the detector, and then tested

the detector performance. The results are shown in fig. 3.10. No significant changes in

characteristics were found after the ESD test. Second, we dropped the detector from three
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feet height after vanishing all the bonded wires. The performance after this mechanical test

is given by fig. 3.11. It demonstrates that no damage occurred to either the circuit holder or

the detecting function of the detector.

Figure 3.9: Response of a detector assembled with a pair of parallel MTJs (type B with
170 × 70nm2 and 170 × 60nm2 lateral dimensions) under different applied fields. The
detector is placed under a horn antenna connected to a microwave generator, which outputs
+15 dBm RF power. Labels for each curve represent the distance between the MTJ array
and the magnet surface which is closer to the MTJ array.

3.3 Discussion

To explain why the type B MTJs have a stronger response we can examine Fig. 3.7 and

note the asymmetry of the resonance peak. The asymmetric component of the spectrum

is a signature of an out-of-plane torque[45]. Such an out-of-plane torque could cause the

precession angle of the free layer magnetization to be larger, resulting in both a lower resonant

precession frequency and a larger change in resistance which would result in a larger signal.

The natural perpendicular-to-plane anisotropy of the type B junctions’ free layers can achieve
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Figure 3.10: Response of the same detector with a pair of parallel MTJs under the exact same
condition after ESD protection test. Labels for each curve represent the distance between
the MTJ array and the magnet surface which is closer to the MTJ array.

this effect. No such out-of-plane torque was observed in Ref. [45] for a non-biased system

with in-plane magnetized free layer, though one is predicted in Ref. [56]. We will explain

how this observable out-of-plane torque can arise at zero bias.

ST-FMR spectra obtained for other type B tunnel junction samples at various bias voltages

indicate that the antisymmetric component of the peaks is the result of voltage induced

magnetic anisotropy [57, 58, 16, 59, 60, 61], which is demonstrated in Ref. [62].

The RF voltage across the tunnel junction due to the oscillating RF current induces change

of perpendicular anisotropy, resulting in an additive time-dependent term to ~Heff in the

precession term of the Landau-Lifshitz-Gilbert equation for magnetization dynamics:

∂t ~M = −γ0
~M × ~Heff (3.9)

We can separate the contribution of voltage induced anisotropy from the rest of the effective
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Figure 3.11: Response of the same detector with a pair of parallel MTJs under the exact
same condition after vanish sealing and dropping test. Labels for each curve represent the
distance between the MTJ array and the magnet surface which is closer to the MTJ array.

field, which we label ~H0
eff , giving

∂t ~M = −γ0( ~M × ~H0
eff + ~M × ~Hvia sin(2πft) cos θ) (3.10)

Here, θ is the angle between the magnetizations of the free and pinned layers, and f rep-

resents the frequency of RF voltage. The voltage induced contribution to the anisotropy is

uniaxial, hence the factor of cos θ = Ĥvia ·M̂ makes the contribution zero when the sample is

magnetized in-plane. Equation (3.10) also shows us that this contribution is zero when the

sample is magnetized completely perpendicular to the sample plane. The effect of voltage

induced anisotropy is therefore important in MTJs with a significant component of magneti-

zation perpendicular to the layer planes like our type B junctions. This torque due to voltage

induced anisotropy change contributes to the antisymmetric part of the ST-FMR spectra.

This out-of-plane torque is not field-like spin-torque, but the voltage induced anisotropy

torque. Therefore, it appears at zero DC bias and is linear in applied DC bias to the extent
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that the out-of-plane anisotropy responds linearly to voltage.

In summary, we have demonstrated a compact, ruggedized, and ESD-protected microwave

radiation detector based on magnetic tunnel junctions as sensing elements. Also, we show

that the junctions’ sensitivity (240 mV/mW) under zero bias approaches that of current

commercial semiconductor diode based detectors. In addition, this MTJ-based radiation

detector has the feature of being intrinsically frequency tunable by adjusting the position of

its magnet. We have also shown that tunnel junctions with free layers partially magnetized

out of plane have enhanced sensitivity when compared to junctions with in-plane free layer.

This enhancement is due to the voltage induced anisotropy. Furthermore, a more advanced

detector based on two parallel MTJs has been demonstrated with the functionality of de-

tecting microwave signals at two different ranges of frequencies. Reliability test on both the

ESD and mechanical protection provided good feedback from the response of the detector.

For further improvement of the sensitivity, MTJs with partially perpendicular magnetized

free layer are recommended to be implemented as sensing elements in active, dc biased

detectors. Therefore, voltage induced anisotropy will play as a greater role and damping

can be reduced due to the current induced spin transfer torque[26] in the MTJ device.

Besides improvements to the MTJ sensing elements, impedance matching circuits can also

be applied to optimize the impedance match between air, antenna, and the sensing element

in the detector. Following the suggestions above, a microwave detector with a much larger

sensitivity could possibly be achieved in the future.
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Chapter 4

Frequency Determination by a pair of

Spin-Torque Microwave Detectors

4.1 Introduction

This work was done in collaboration with professor Prokopenko, who proposed the con-

cept of using a pair of MTJ detectors for microwave frequency measurements and per-

formed theoretical analysis. My contribution is experimental realization of the MTJ-based

microwave frequency meter and the corresponding data analysis. In typical experiments

[19, 20, 23, 26, 63] spin-torque microwave detector (STMD) operates in the dynamic regime,

where the spin transfer torque (STT) excites a small-angle magnetization precession about

the equilibrium direction of magnetization in the free layer (FL) of an MTJ (description of

the other possible non-resonance operation regime of an STMD is not considered in this work

and can be found in [27, 64, 24, 13]). In this regime the detector operates as a frequency-

selective, quadratic microwave detector with a resonance signal frequency f that is close to

the ferromagnetic resonance (FMR) frequency fres of the FL. The rectified dc voltage Udc

92



generated by an STMD is directly proportional to the input microwave power Prf , while the

detector’s frequency operation range has an order of the FMR linewidth Γ (here and below

specified in frequency units) [19, 20, 23, 26, 63]. This makes an STMD a natural microwave

frequency detector at frequencies that are close to the resonance frequency fres . However,

such a device has many limitations preventing its wide application in microwave technology:

(i) a valid frequency detection by an STMD is only possible for input microwave signals of

known power Prf only, (ii) the detection procedure is not completely unambiguous and gives

two possible frequency values, (iii) the STMD’s frequency detection error ∆f is quite large

and comparable to the FMR linewidth Γ, which in typical experiments can exceed 100 MHz

[19, 20, 23, 27, 65], (iv) the detector’s frequency operation range is also limited by the FMR

linewidth Γ.

This work introduces a simple and unambiguous method of the determination of a microwave

signal frequency. The method is based on the application of two uncoupled STMDs connected

in parallel to a microwave signal source and can be easily realized experimentally even for the

signals of unknown microwave power. We show theoretically and experimentally that such

pair of STMDs can act as a high-efficiency microwave frequency detector having substantially

reduced frequency determination error ∆f (2–5 times less) and greatly expanded frequency

operation range and thereby it may overcome the limitations of the frequency detector based

on a single STMD.

4.2 Theory

So far, a single STMD has been applied for determining frequencies of microwave signals. The

absolute value of a rectified output dc voltage Udc (neglecting the phase relations between

the input microwave signal and magnetization oscillations in the FL) of a resonance-type
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quadratic STMD is given by [21, 13, 19]

Udc = εresPrf
Γ2

Γ2 + (f − fres)2
. (4.1)

Here Prf is the input microwave power, fres and Γ are the FMR frequency and FMR linewidth,

respectively, and εres is the resonance volt-watt sensitivity of an STMD defined as Udc/Prf

at f = fres . In [21] εres is predicted to be approximately 104 mV/mW for a passive (no dc

bias) STMD, while the best experimental value achieved to date is εres = 630 mV/mW for

a conventional unbiased STMD [26] and εres = 970 mV/mW for a passive detector based

on MTJ having a voltage-controlled interfacial perpendicular magnetic anisotropy of the FL

[63]. The resonance volt-watt sensitivity of an STMD can be greatly enhanced by applying

a dc bias current to the detector sufficiently large to compensate the natural damping in the

FL of an MTJ. Recent experiments show that such dc-biased STMDs may have the resonance

volt-watt sensitivity of εres ≈ 1.2 · 104 mV/mW [26] and εres ≈ 7.4 · 104 mV/mW [63]. These

values of the resonance volt-watt sensitivity εres of an STMD are comparable to (passive

detector) or greater than (dc-biased detector) the volt-watt sensitivity of a semiconductor

Schottky diode.

According to Eq. (4.1) the frequency f of an input microwave signal can be determined

by measuring the output dc voltage of the detector Udc if the input microwave power Prf ,

the detector’s resonance volt-watt sensitivity εres, its resonance frequency fres and FMR

linewidth Γ are known:

f = fres ± Γ

√
εresPrf − Udc

Udc

. (4.2)

Typically the last three parameters, εres, fres and Γ, can be measured experimentally or

calculated theoretically for a particular detector prior to the measurement of the input

microwave signal frequency f . However, even for the signal of known microwave power Prf
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and arbitrary frequency f 6= fres it is impossible to clearly determine the frequency f from

the solution (4.2) of the second-order Eq. (4.1) using only one measured value – the detector’s

output dc voltage Udc . Although this problem could be solved by selecting a particular work

frequency range of the detector (f < fres or f > fres) and/or by using an additional low-pass

(f < fres) or high-pass (f > fres) microwave filter for input microwave signal subjected to

the detector, it also seriously affects the complexity and cost of the entire device. Regardless

of whether the microwave filter is used or not, the frequency determination error ∆f in

this case is significant, because it is comparable to the FMR linewidth Γ that can exceed

100 MHz in typical experiments [19, 20, 23, 27, 65]. In addition, the single STMD method

of frequency determination becomes unacceptable if the power Prf of the input microwave

signal is unknown.

Here we propose a simple model of the microwave frequency detector consisting of two un-

coupled resonance-type quadratic STMDs [13, 19, 20, 23, 26, 63]. In general, we assume that

the detectors have different volt-watt sensitivities εres,1 and εres,2 , the resonance frequencies

fres,1 and fres,2 , and the FMR linewidths Γ1 and Γ2 (here parameters of the first and second

detectors are labeled by indexes 1 and 2, respectively). Considering each STMD as an inde-

pendent device, the output dc voltages generated by the detectors, Udc,1 and Udc,2 , can be

written similarly to Eq. (4.1) as

Udc,1 = εres,1Prf,1
Γ2

1

Γ2
1 + (f − fres,1)2

,

Udc,2 = εres,2Prf,2
Γ2

2

Γ2
2 + (f − fres,2)2

,

(4.3)

where Prf,1 and Prf,2 are the input microwave powers acting on the first and second detector,

respectively. We can assume that the detectors are located quite close to each other (the

distance between them should be much smaller than the wavelength of detected microwave

signal), but the coupling between the detectors remains negligible. We also assume that

the detectors are connected in parallel to a microwave signal source and their microwave
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impedances are approximately equal. In this case, the input microwave power applied to

each detector is the same: Prf,1 = Prf,2 = Prf . Using these assumptions, the input microwave

powers Prf,1 and Prf,2 can be eliminated from Eq. (4.3) and the equation for the frequency

f of the input microwave signal could be written in the form:

f =
κfres,1 − fres,2 +

√
(κ− 1) (Γ2

2 − κΓ2
1) + κ∆f 2

res

κ− 1
. (4.4)

Here, we assume that fres,2 > fres,1, and introduce a dimensionless variable κ = (Udc,1/Udc,2)

(εres,2/εres,1)(Γ2/Γ1)2, which can be easily calculated for a particular set of detectors and use

anzatz ∆fres = fres,2 − fres,1 > 0. The presented solution (4.4) is unique in the frequency

range fres,1 ≤ f ≤ fres,2 and can be used for the determination of unknown frequency f of

the input microwave signal from the measured voltages Udc,1 , Udc,2 and known detector’s

parameters (εres,1 , εres,2 , fres,1 , fres,2 , Γ1 , Γ2). This solution is valid for the case κ 6= 1, i.e.

when we have detectors with different working parameters. Otherwise, in the case κ = 1,

expression (4.4) transforms to f = 0.5(fres,2 +fres,1)+0.5(Γ2
2−Γ2

1)/∆fres and becomes almost

equivalent to the solution (4.2) for a single STMD.

If we consider the detector’s parameters εres,1 , εres,2 , fres,1 , fres,2 , Γ1 , Γ2 as frequency-

independent values (at least in the frequency range fres,1 ≤ f ≤ fres,2), the expression

for the frequency error ∆f can be estimated from Eq. (4.4) as:

∆f =

√(
∂f

∂Udc,1

)2

∆U2
dc,1 +

(
∂f

∂Udc,2

)2

∆U2
dc,2 =

κ

2(κ− 1)2

|Q|
S

√(
∆Udc,1

Udc,1

)2

+

(
∆Udc,2

Udc,2

)2

.

(4.5)

Here Q = (κ−1)(Γ2
1−Γ2

2)+∆fres[2S− (1+κ)∆fres], S =
√
κ(Γ2

1 + Γ2
2 + ∆f 2

res)− κ2Γ2
1 − Γ2

2,

∆Udc,1 , ∆Udc,2 are the total intrinsic fluctuations of the output dc voltages Udc,1, Udc,2 (noise

voltages), respectively. Depending on the features of a particular experiment voltage fluctu-
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Figure 4.1: Schematic diagram of the amplitude-modulation ST-FMR setup.

ations ∆Udc,1, ∆Udc,2 may have contributions from a thermal noise, shot noise (important

for a dc biased STMDs), flicker noise etc. For the most typical case of a passive STMD

operating in the presence of a thermal noise the voltage fluctuations ∆Udc,1 and ∆Udc,2 can

be calculated from Eq. (3) in Ref. [66] (see also [13] for details).

The equation (4.5) for ∆f is complicated and nonlinearly depends on the detectors’ param-

eters. In the discussion section it will be simplified and used for the explanation of our

experimental data.
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4.3 Experiment

Fig. 4.1 shows the schematic setup of our amplitude-modulated spin torque ferromagnetic res-

onance

(ST-FMR) [67, 68] measurement of an MTJ based microwave detector. In the experiment,

the microwave generator applies a microwave current I(t) to the MTJ via a bias-tee and

a microwave probe. The generated STT drives the magnetization precession in the FL of

an MTJ, leading to concurrent resistance oscillation R(t) owing to the sample’s TMR. The

resistance oscillation R(t) then rectifies with the microwave current I(t) and produces a

dc voltage Udc . By keeping the external magnetic field applied to the MTJs constant and

sweeping the microwave drive frequency f , the amplitude of this dc voltage signal Udc changes

accordingly and reaches extrema when certain resonant conditions are met. In order to im-

prove the signal-to-noise ratio (SNR), lock-in detection technique was employed. We utilize

a pair of uncoupled MTJ detectors as a detector array for precision frequency detection.

In order to separately control the resonance frequencies of the two detectors, we can apply

different external fields, Bdc,1 and Bdc,2 to the first and the second detector, respectively.

Detailed description of the used experimental technique can be found in [68].

All MTJs discussed in this paper are of elliptical shape with both free and pined layers in-

plane magnetized. The sample stack structure is of the form: Substrate / SAF / MgO / FL / Cap

(SAF: synthetic anti-ferromagnetic layer). The compositions of SAF and FL are PtMn(15) /

Co70Fe30(2.5) / Ru(0.85) / Co40Fe40B20(2.4), and Co60Fe20B20(1.6 – 3.0), respectively (thick-

nesses in nanometers). In this paper, we discuss three detector arrays of different FL thick-

nesses: l = 3.0 nm [case (a)], l = 2.3 nm [case (b)], and l = 1.6 nm [case (c)].

In our experiment, ST-FMR was performed separately on each of the two uncoupled MTJ

detectors inside the same detector array. The microwave power Prf was carefully adjusted

so that both detectors received nearly equal power. External dc magnetic field was applied
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Table 4.1: The FL thicknesses l, applied external fields Bdc,1 , Bdc,2 and delivered microwave
power Prf for the three detector arrays studied in the experiment (see Fig. 4.2)

Case l, nm Bdc,1 , G Bdc,2 , G Prf , µW
(a) 3.0 −300 −700 1.51
(b) 2.3 −600 700 0.39
(c) 1.6 −900 1000 0.25

along MTJ FL hard axis in order to obtain the optimal volt-watt sensitivity εres [21]. The

delivered microwave power Prf and the applied external fields, Bdc,1 and Bdc,2 , used in the

experiment are summarized in table 4.1.

4.4 Results and Discussion

Fig. 4.2 summarizes the FMR measurement results of the three detector arrays: solid lines are

the measured FMR curves, while dashed lines are the fitted curves calculated from Eq. (4.1).

From these fitted curves we obtain the resonance frequencies fres,1 and fres,2 , FMR linewidths

Γ1 and Γ2 , and the resonance volt-watt sensitivities εres,1 and εres,2 for the three sets of

detector arrays shown in table 4.2. The insets in Fig. 4.2 represent the discrepancy between

the determined frequency fdet and real frequency freal (frequency error ∆f = |fdet − freal|)

as a function of the real frequency freal, where fdet is calculated from Eq. (4.4) based on the

measured frequency-dependent output dc voltages Udc,1(freal), Udc,2(freal) of the detectors

and the fitting of the corresponding FMR signals using data from table 4.2.

When the microwave drive frequency falls between the resonances of the two detectors, the

determined frequency error ∆f is generally smaller than the FMR signal linewidths Γ1 , Γ2

(Fig. 4.3). In Fig. 4.3 orange, violet and green points show the dependence of the frequency

error ∆f = |fdet− freal| on the real microwave driven frequency freal for the three mentioned

cases of studied detector arrays: (a), (b) and (c), respectively (see table 4.1 for details). The
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Table 4.2: The resonance frequencies fres,1 and fres,2 (in GHz units), FMR linewidths Γ1 and
Γ2 (in GHz units), and resonance volt-watt sensitivities εres,1 and εres,2 (in mV/mW units)
calculated from the fitted curves shown in Fig. 4.2 for the three detector arrays studied in
the experiment

Case fres,1 fres,2 Γ1 Γ2 εres,1 εres,2

(a) 4.810 6.515 0.199 0.202 5.30 5.97
(b) 4.242 5.813 0.218 0.248 28.20 17.72
(c) 5.419 6.019 0.232 0.148 35.71 59.21

values of Γ1 and Γ2 are shown in Fig. 4.3 by horizontal solid and dashed lines, respectively.

To explain the experimental results shown in Figs. 4.2 and 4.3 we make several simplifications

of the theoretical model considered in the two STMD model. First, we assume that for

both detector’s noise voltages, ∆Udc,1 , ∆Udc,2 in (4.5), have almost the same values and

can be replaced with a single quantity ∆Udc = ∆Udc,1 = ∆Udc,2 . In general, this is not

always the case. For instance, taking into account the existence of a thermal noise only,

the noise voltages ∆Udc,1 , ∆Udc,2 depend on the output dc voltages Udc,1 , Udc,2 of the

STMDs and the driving frequency [66]. On the other hand, in actual experiments there is

always coupling between the closely-located detectors that causes a deviation of the detector’s

output voltages from the value given by Eq. (4.1), so this coupling manifests itself as effective

frequency-dependent “coupling noise”. Fully accounting this noise is a complicated task

and, therefore, we employ a simplified approach in our analysis of the experimental data

assuming the noise voltage ∆Udc to be an adjustable parameter. This approximation gives

good qualitative agreement between the experimental data (green points in Fig. 4.3) and

theoretically calculated curve of ∆f from Eq. (4.5) (black dash-dotted line in Fig. 4.3, ∆Udc =

1µV) for the STMDs with closely-located resonance frequencies where one could neglect the

frequency dependence of ∆Udc,1 and ∆Udc,2 .

As one can see in Fig. 4.3, generally, the frequency error ∆f decreases substantially in

the range fres,1 + Γ1 ≤ f ≤ fres,2 − Γ2 , while at frequencies f that close to the detector’s

100



resonance frequencies it increases. This behavior can be explained by the effective increase

of the SNR in the mentioned frequency range fres,1 + Γ1 ≤ f ≤ fres,2 − Γ2 . In this case both

output dc voltages Udc,1 , Udc,2 of the detectors are similar and have values exceeding the

voltage fluctuations ∆Udc,1 and ∆Udc,2. Thus, the contribution of the first and the second

term under the square root in Eq. (4.5) are almost the same and the values of both terms

are substantially less than 1 forcing a small value of the frequency error ∆f . In contrast,

at signal frequencies f that are very close to one of the detector’s resonance frequencies

(f − fres,1 < Γ1 or fres,2 − f < Γ2) the total SNR ratio of the microwave frequency detector

decreases due to the deterioration of optimal work condition for both STMDs. As it follows

from Eq. (4.5) (see also black dash-dotted curve in Fig. 4.3), the frequency error ∆f increases

if Udc,1 � Udc,2 (f ≈ fres,1) or Udc,1 � Udc,2 (f ≈ fres,2). This situation is similar to the

case of a single detector operating in a frequency range near its resonance frequency, while

a signal from the other detector acts like a weak additional noise signal that slightly pushes

the first STMD from its optimal working point.

The advantages of the considered microwave frequency detector in the frequency range fres,1+

Γ1 ≤ f ≤ fres,2−Γ2 , however, disappear when previously introduced dimensionless parameter

κ becomes approximately equal to 1 (the case of almost identical detectors) or when one of

the detectors’s output dc voltages becomes comparable to its noise voltage (so, the SNR

becomes approximately equal to 1). For a system of two almost identical detectors (case (a)

of the studied detectors arrays, see Fig. 4.2(a) and table 4.2), Γ1 ≈ Γ2 , εres,1 ≈ εres,2 and κ is

close to 1 in almost the whole optimal frequency range fres,1+Γ1 ≤ f ≤ fres,2−Γ2 , which leads

to the substantial increase in the frequency error ∆f and the proposed method of frequency

determination becomes too inaccurate (see orange squares in Fig. 4.3). The considered

frequency determination method also loses its efficiency when the difference between the

resonance frequencies ∆fres becomes too large (∆fres � Γ1+Γ2) forcing a substantial decrease

of the measured output dc voltages at frequencies far from the resonance frequencies of

the detectors. In this case, the measured voltages could become comparable to the noise
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voltages leading to the considerable decrease of the SNR of the system and the increase of

the frequency error. Thus, a high-efficiency microwave frequency detector can be achieved

in case of two STMDs having substantially different FMR linewidths and/or resonance volt-

watt sensitivities, and closely-located resonance frequencies.

Furthermore, the analysis of data in Fig. 4.3 and numerical calculations based on Eq. (4.5)

show that the frequency error decreases as the FL becomes thinner. The frequency error

attributed to the enhanced resonance volt-watt sensitivity of an STMD for thinner FLs [21]

(see table 4.2) and to the change of the voltage fluctuations ∆Udc,1, ∆Udc,2 (the performance

of STMD operating in the presence of a thermal noise is considered in Refs. [66, 13]). As

one can see from Fig. 4.3, the frequency determination error ∆f reduces approximately by a

factor of 3 when the FL thickness l decreases from 3 nm to 1.6 nm. This result can be useful

for the development and optimization of high-accuracy microwave frequency detectors.
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Figure 4.2: Measured FMR signals (solid lines) and fitted curves (dashed lines) versus mi-
crowave drive frequency for three sets of detector arrays of different FL thicknesses: (a)
l = 3.0 nm, (b) l = 2.3 nm, and (c) l = 1.6 nm. The insets show the determined frequency
error ∆f as a function of the drive frequency.
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Figure 4.3: Frequency errors ∆f = |fdet−freal| (color points) calculated from the determined
frequency fdet [given by Eq. (4.4)] and real frequency freal as a function of microwave drive
frequency freal for three studied cases of detector arrays: (a) orange squares, (b) violet circles,
and (c) green triangles. The values of the detector’s FMR linewidths for three detector arrays
are indicated by color-coded solid (Γ1) and dashed (Γ2) horizontal lines, respectively. Black
dash-dotted line is the theoretically calculated dependence ∆f from Eq. (4.5) for the third
detector array (c).
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Chapter 5

Conclusion

This dissertation mainly demonstrated various experimental and computational techniques

for observing stochastic, nonlinear magnetization dynamics of the steady auto-oscillatory

state far above the critical current. For applying wide range of DC current, instead of

MTJs, metallic spin valves have been chosen as our STO in experiment. For our particular

sample, we developed a method for obtaining the asymmetry parameter of the angular

dependence of GMR based on our bridge measurement of the R-vs-H curve (with extra high

accuracy) and a macrospin energy model. We have shown that time-domain measurements

of the voltage generated by STO can be processed to rapidly map statistical ensembles of

STO magnetization trajectories and thereby determine spin-torque dependent Fokker-Planck

effective energy of the STO. Also, a macrospin Fokker-Planck effective energy model has been

derived theoretically including the non-linear damping term. The convergence of these two

approaches allows for a direct comparison of theoretical and experimental results at the

large angle oscillation regime. Therefore, to achieve the best matching with experiment, one

can quantitatively determine the nonlinear damping parameters in the theoretical model,

which was previously unattainable. We demonstrated that with constant damping in theory,

the inter-well separation grows a lot faster than that observed in the experimental effective
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energy profiles when the current exceeds the critical. In the meanwhile, with proper nonlinear

damping terms, theoretical model can agree with the experimental result qualitatively. Such

direct comparison proves the fact that nonlinear damping plays a very important role in the

large angle auto-oscillatory dynamics.

Since the macrospin Fokker-Planck theory relies on an uniform distribution of magnetic

moments, we may have neglect one discrepancy caused by the micromagnetic effect existing

in our sample. So for further improvement, micromagnetic simulation may be helpful since it

provides the spatially resolved oscillation trajectories, and therefore may be able to generalize

the effective energy Fokker-Planck model to non-uniform magnetized samples.

In the second part of this thesis, we have shown a successful design of a compact, ruggedized,

and ESD-protected microwave radiation detector using magnetic tunnel junctions as sensing

elements. The detection frequency range of this MTJ-based radiation detector can be tuned

via adjusting the magnet installed inside. Besides this additional feature, the detector’s

sensitivity (240 mV/mW) under zero current bias is comparable with that of current Schottky

diode detectors. We have also shown that MTJ samples with larger perpendicular anisotropy

of free layers performed with better sensitivity than in-plane MTJs. This improvement is due

to the voltage induced anisotropy. To achieve wider range detection function, detectors with

two parallel MTJs were assembled, which can detect two different ranges of microwave signals

simultaneously. The first-hand experimental results provided robustness and reliability for

application purpose.

For further performance enhancement, active dc biased detectors can be considered since i)

the voltage induced anisotropy can be more effective and ii) the effective damping can be

reduced by the current induced spin transfer torque[26]. In addition to the improvements

on the MTJ sensing elements, better impedance matching between the air, the antenna, and

the sensing element using a more optimized circuit design will also be helpful. On the other

hand, more investigation on the noise properties of these detectors is desired as it is another
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crutial factor for further increasing the sensitivity.

In addition, we introduced an effective approach for reducing the error in detecting the

frequency of the microwave signal based on two uncoupled STMDs connected in parallel

to a microwave signal source. This method is applicable for the signals of unknown mi-

crowave power and could determine the frequency with an error substantially smaller than

the detector’s FMR linewidth. In both theoretical and experimental work, we demonstrated

that when the two thin-free-layer STMDs have similar resonance frequencies, but different

FMR linewidths and resonance volt-watt sensitivities, the accuracy of microwave frequency

detection will be improved compared to a single STMD based detector.
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Appendix A

Appendices

A.1 Sliding FFT Angle Mapping for Time Traces for

Multi-currents

Sliding FFT Angle Mapping for Time Traces at Multiple Currents

#!/usr/bin/python

from scipy.interpolate import interp1d

# General libraries

import sys, os, glob, math

import numpy as np

import scipy as sp

def runAnalysis(initial_file, LargeV_file, LargeV_histFile, ampl,

freqlowcut, freqhighcut, P1avg):
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pickupInterval = 10.0e-9

FFTtime = 5e-9 ## sliding time window

FFTtimestep = 0.025e-9 ## sliding time step

totaltime = 524288*0.025e-9

steps = int((totaltime-FFTtime)/FFTtimestep + 1)

time = np.arange(0, steps*FFTtimestep, FFTtimestep)

for i in range(0,1):

f = open(initial_file)

Ravg = float(f.readline().split()[1])

field = float(f.readline().split()[1])

current = float(f.readline().split()[1])*0.001 # convert mA to A

print Ravg, current

Rext = 5.0 # from probes, contacts, etc.

Ravg = Ravg - Rext

# Circuit properties

atten = -10.0**(-ampl/20.0) # -1 for inverting

refl = 50.0/(Ravg + Rext + 50.0)

attenoverrefl = atten/refl

deltaR_EA = 0.683

deltaR_HA = 0.256

X = 3.05

if i==0:

n = int(float(f.readline().split()[1])) # no. of traces

timestep = float(f.readline().split(’)’)[1])
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FFTdatastep = int(FFTtimestep/timestep)

FFTdata = int(FFTtime/timestep)+1

cols = np.loadtxt(initial_file, unpack = True)

trace = []

phisUp = []

phisDown = []

# mark low freq mode in time traces

marker = np.zeros((n,steps))

for j in range(0,n):

for k in range(0,steps):

freqdata = 2.0*np.fft.fft(cols[j,(FFTdatastep)*(k):(k)*

(FFTdatastep)+ FFTdata])/float(FFTdata)

l1 = int(np.ceil(freqlowcut*FFTtime)) # df = 1/FFTtime

l2 = int(freqhighcut*FFTtime)

P1 = np.sum(np.abs(freqdata[l1:l2+1])**2)

if P1 > P1avg/2:

marker[j,k] = 1 # keep this data point

else:

marker[j,k] = 0

# record beginning and ending index of time domain data

# corresponding to low freq mode, LF means LowFreq,

# mat means matrix

length = int(pickupInterval/timestep)

LF_index_mat = []

for j in range(0,n):

LF_index = []
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flag = 0

for k in range(0,steps-length+1):

test = np.sum(marker[j,k:k+length])

if test < length and flag == 1:

LF_index.append(k+length-1)

flag = 0

if test == length and flag == 0 and k == steps-length:

LF_index.append(k)

LF_index.append(k+length)

flag = 1

elif test == length and flag == 0:

LF_index.append(k)

flag = 1

LF_index_mat.append(LF_index)

del LF_index

# Peak selection and angle mapping for qualified time intervals

for j in range(0,n):

for k in range(0,len(LF_index_mat[j])-1,2):

FFT = np.fft.fft(cols[j,LF_index_mat[j][k]:

LF_index_mat[j][k+1]])

timelen = float(LF_index_mat[j][k+1]-LF_index_mat[j][k])*

timestep

lowcutIndex = int(np.ceil(freqlowcut*timelen))

highcutIndex = int(freqhighcut*timelen)+1

# band pass filter the noise

FFT[0:lowcutIndex] = np.zeros( (lowcutIndex) )
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FFT[highcutIndex:len(FFT)-highcutIndex] =

np.zeros( ((len(FFT)-2*highcutIndex)) )

FFT[len(FFT)-lowcutIndex:] = np.zeros( (lowcutIndex) )

newtimedata = np.fft.ifft(FFT)

newtimedata_cutedge = newtimedata[51:len(newtimedata)-50]

partV = np.real(newtimedata_cutedge)

# interpolation:

partV_time = np.linspace(0,timestep*(len(partV)-1),

len(partV))

#print len(partV_time), len(partV)

partV_inp = np.zeros(len(partV)*10)

partVtime_inp = np.zeros(len(partV)*10)

# interpolate the trace piece by piece (400 data points)\

# and add together, as the interpolation time increases\

# exponentially with the length of data

for i in range(0,len(partV),400):

if len(partV[i:])<410:

func = interp1d(partV_time[i:],partV[i:],

kind = ’cubic’)

partVtime_inp[i*10:] = np.linspace(partV_time[i],

partV_time[-1], (len(partV[i:]))*10)

partV_inp[i*10:] = func(partVtime_inp[i*10:])

break

else:

func = interp1d(partV_time[i:i+400],partV[i:i+400],

kind = ’cubic’)

partVtime_inp[i*10:i*10+4000] =

117



np.linspace(partV_time[i],partV_time[i+399],400*10)

partV_inp[i*10:i*10+4000] =

func(partVtime_inp[i*10:i*10+4000])

# calculate the crossing angle distributions:

deltaR = (partV_inp*attenoverrefl/current) + deltaR_HA

# Clip results above the maxmimum and minimum values

clipping = np.where(deltaR > deltaR_EA)[0]

if np.alen(clipping)>0:

print "Number of clipped maxima:",np.alen(clipping)

for loc in clipping:

deltaR[loc] = deltaR_EA-0.001

clipping1 = np.where(deltaR < 0)[0]

if np.alen(clipping1)>0:

for loc in clipping1:

deltaR[loc] = 0.001

#Calculate phi

phi =

np.arccos((deltaR_EA-(2+X)*deltaR)/(deltaR_EA+deltaR*X))

diffPhi = np.diff(phi) # Derivative

crossings = np.where(np.diff(np.sign(diffPhi)))[0]+1

# Here are the extrema

avgPhi = np.mean(phi)

# Loop over all of these crossings

# Ignore peaks on the same side of avgPhi unless they are

# spaced out by some number greater than the factor given below
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ignore = 0

# Containers for crossings

for i in range(0,len(crossings)-8):

thisCrossing = phi[crossings[i]]

nextCrossing = phi[crossings[i+1]]

thisDiff = thisCrossing - avgPhi

nextDiff = nextCrossing - avgPhi

thisSign = np.sign(thisDiff)

nextSign = np.sign(nextDiff)

if (ignore > 0):

# Decrement ignore counter, but ignore this peak

ignore -= 1

else:

if (thisSign==nextSign and

np.abs((nextDiff-thisDiff)/thisDiff) < 0.2 ):

# Crossing on the same side, and the change is small

ignore = ignore + 1

elif (deltaR[crossings[i]] < deltaR_EA):

if (nextCrossing < thisCrossing):

# We are low at the next crossing, and are now high

phisUp.append(thisCrossing)

else:

# We are high at the next crossing, and are now low

phisDown.append(thisCrossing)

trace.append(partV_inp)

tracesave = np.concatenate(trace)

print "len(trace):", len(trace)
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print "len(tracesave)", len(tracesave)

# Save picked-up LargeV into file

if (LargeV_file!=""):

outputLargeV = open(LargeV_file,’w’)

np.savetxt(outputLargeV, tracesave[:596000], fmt="%12.6g")

#np.savetxt(outputLargeV, tracesave, fmt="%12.6g")

outputLargeV.close()

f.close()

phisAll = []

phisAll.extend(phisUp)

phisAll.extend(phisDown)

n1, bins1 = np.histogram(phisUp, bins=100, normed=True)

n2, bins2 = np.histogram(phisDown, bins=100, normed=True)

n3, bins3 = np.histogram(phisAll, bins=100, normed=True)

binCenters1 = np.abs(np.abs(bins1[0:-1] + (bins1[1]-bins1[0])/2.0))

# return every bin’s center

binCenters2 = np.abs(np.abs(bins2[0:-1] + (bins2[1]-bins2[0])/2.0))

binCenters3 = np.abs(np.abs(bins3[0:-1] + (bins3[1]-bins3[0])/2.0))

# Store to file

if (LargeV_histFile!=""):

RAVG = [Ravg + Rext]

output = open(LargeV_histFile, ’w’)

outputData = np.transpose(np.array([binCenters1, n1/np.max(n1),
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binCenters2, n2/np.max(n2), binCenters3, n3/np.max(n3)]))

np.savetxt(output, outputData, fmt="%12.6g")

output.close()

# Clear memory

del cols

del trace

del tracesave

del phisAll

del phisDown

del phisUp

del LF_index_mat

if __name__=="__main__":

print "RUNNING"

path = "directory contains a folder with all time traces files for\

different currents"

parameter_file = "a text file contains parameters for multiple\

currents: current, amplification value, lowcut_frequency,\

highcut_frequency, average power of quasi-uniform mode"

info = np.loadtxt(parameter_file)

filelist = sorted( glob.glob(

os.path.join(path+"/Timetrace 600G newfile/","*.txt") ) )

N = len(filelist)

print "no. of files corresponding to different currents: ", N

for i in range(0,N):

filename = filelist[i]
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current = info[i,0]

ampl = info[i,1]

freqlowcut = info[i,2]

freqhighcut = info[i,3]

P1avg = info[i,4]

print filename

print current, ampl, freqlowcut, freqhighcut, P1avg

runAnalysis(filename,

LargeV_file= path + "/Lowfreq V for

600G/"+"TimeTraces_HA-600G-"+

str(current)+"mA_"+str(freqlowcut)+"-"+str(freqhighcut)+

"_cutedge100_inp10.txt",

LargeV_histFile=path + "/Lowfreq V for 600G/"+

"/angle mapping/"

+"Histo_600G_"+str(current)+"mA_"+

str(freqlowcut)+"-"+ str(freqhighcut)+

"_cutedge100_inp10.txt", ampl=ampl,

freqlowcut=freqlowcut, freqhighcut=freqhighcut,

P1avg=P1avg)

A.2 Mapping distributions between real signals and

toy model

Mapping between extrema distributions of R(t)(1st harmonic) and ϕ(t) from toy model
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import sys, os, glob, math

import numpy as np

import scipy as sp

p = math.pi

X = 3.05

Phi0 = 1.9968 ## equilibrium position in experiment

dPhi = np.arange(0,0.8,0.01) ## oscillation range

Phi = Phi0 + dPhi

Phi1 = Phi0 - dPhi

Phi_tot = []

Phi_tot.append(Phi)

Phi_tot.append(Phi1)

Phi_tot = np.concatenate(Phi_tot)

parameter_file = "a text file contains parameters for multiple\

currents: current, amplification value, lowcut_frequency,\

highcut_frequency, average power of quasi-uniform mode"

info = np.loadtxt(parameter_file)

i = 8 ## choose the time trace file for a DC current

current = info[i,0]

ampl = info[i,1]

freqlowcut = info[i,2]

freqhighcut = info[i,3]

R_kei = 19.2407 ## Resistance read by keitheley source meter

R_filtered = []
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V_scope = []

n = np.arange(0,500000,1) ## length of time trace

f = 6.3e9 ## oscillation frequency in Hz

dt = 0.025e-9 ## time step corresponding to 40Gs/s sampling rate

timelen = dt*len(n)

df = 1/timelen

lowcutIndex = int(np.ceil(freqlowcut*dt*len(n)))

highcutIndex = int(freqhighcut*dt*len(n))+1

# Record Rt_filtered upcrossings/V_scope downcrossings which

# correspond to +dPhi #

for dPhim in dPhi:

print dPhim

Phit = Phi0 + dPhim*np.sin(2*p*f*dt*n)

Rt = ((1 - np.cos(Phit))/(2 + X + X*np.cos(Phit)))*0.683 +

13.533 + (14.275 - 14.216)

FFT = np.fft.fft(Rt)

FFTfreq = np.fft.fftfreq(len(n),dt)

FFT[0:lowcutIndex] = np.zeros( (lowcutIndex) )

FFT[highcutIndex:len(FFT)-highcutIndex] =

np.zeros(((len(FFT)-2*highcutIndex)) )

FFT[len(FFT)-lowcutIndex:] = np.zeros( (lowcutIndex) )

Rt_filtered = np.real(np.fft.ifft(FFT))

crossingRup = []

diffR = np.diff(Rt_filtered) # Derivative

crossings = np.where(np.diff(np.sign(diffR)))[0]+1

# Here are the extrema
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avgR = np.mean(Rt_filtered)

# Loop over all of these crossings

# Ignore peaks on the same side of avgPhi unless they are spaced

# out by some number greater than the factor given below

ignore = 0

# Containers for crossings

for i in range(0,len(crossings)-8):

thisCrossing = Rt_filtered[crossings[i]]

nextCrossing = Rt_filtered[crossings[i+1]]

thisDiff = thisCrossing - avgR

nextDiff = nextCrossing - avgR

thisSign = np.sign(thisDiff)

nextSign = np.sign(nextDiff)

if (ignore > 0):

# Decrement ignore counter, but ignore this peak

ignore -= 1

else:

if (thisSign==nextSign and np.abs((nextDiff-thisDiff)/thisDiff)

< 0.2 ):

# Crossing on the same side, and the change is small

ignore = ignore + 1

else:

if (nextCrossing < thisCrossing):

crossingRup.append(Rt_filtered[crossings[i]])

#due to the inverting -1

R_filtered.append(np.mean(crossingRup))

del crossingRup
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# record Rt_filtered downcrossings/V_scope upcrossings which

# correspond to -dPhi

for dPhim in dPhi:

print dPhim

Phit = Phi0 - dPhim*np.sin(2*p*f*dt*n)

Rt = ((1 - np.cos(Phit))/(2 + X + X*np.cos(Phit)))*0.683 + 13.533

+ (14.275 - 14.216)

FFT = np.fft.fft(Rt)

FFTfreq = np.fft.fftfreq(len(n),dt)

FFT[0:lowcutIndex] = np.zeros( (lowcutIndex) )

FFT[highcutIndex:len(FFT)-highcutIndex] = np.zeros(

((len(FFT)-2*highcutIndex)) )

FFT[len(FFT)-lowcutIndex:] = np.zeros( (lowcutIndex) )

Rt_filtered = np.real(np.fft.ifft(FFT))

crossingRdown = []

diffR = np.diff(Rt_filtered) # Derivative

crossings = np.where(np.diff(np.sign(diffR)))[0]+1

# Here are the extrema

avgR = np.mean(Rt_filtered)

ignore = 0

for i in range(0,len(crossings)-8):

thisCrossing = Rt_filtered[crossings[i]]

nextCrossing = Rt_filtered[crossings[i+1]]

thisDiff = thisCrossing - avgR

nextDiff = nextCrossing - avgR

thisSign = np.sign(thisDiff)

nextSign = np.sign(nextDiff)
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if (ignore > 0):

ignore -= 1

else:

if (thisSign==nextSign and np.abs((nextDiff-thisDiff)/thisDiff)

< 0.2 ):

ignore = ignore + 1

else:

if (nextCrossing > thisCrossing):

crossingRdown.append(Rt_filtered[crossings[i]])

R_filtered.append(np.mean(crossingRdown))

del crossingRdown

###### record the V_scope/R_filtered vs Phi_tot ######

RPhi_file = "a file recording the extrema of R_filtered vs extrema of\

Phi in toy model"

if (RPhi_file!=" "):

output = open(RPhi_file,’w’)

outputdata = np.transpose(np.array([R_filtered,Phi_tot]))

np.savetxt(output, outputdata, fmt="%12.6g")

output.close()

A.3 Macrospin Simulation with Stochastic Fields

Macrospin Simulation with Stochastic Fields
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import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

import numpy as np

import scipy as sp

from scipy.optimize import fsolve

import sys

import random

############# Parameters ############

# Damping

alpha0 = 0.011

ast = 1.0 #### strength of in-plane spin-torque

P = 0.224

X = 3.05

N = 50000

print ’total sim steps N: ’, N

q1 = 50

q2 = 0

# cutoff freqs for smoothing the time traces of angles

High = 10.0 ### in GHz

#####################################

# Constants in CGS, so watch out for AbAmps and such!

ech = 1.6022e-20

hbar = 6.6261e-27 / (2.0*np.pi)

muB = 9.2740e-21

kB = 1.3807e-16

g = 2.1
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gamma = g*muB / hbar

T = 300.0

# Saturation magnetization

Ms = 1030.1 ### in emu/cm3

# Geometry in cm

diameter = 90.0e-7

d = 5.0e-7

area = np.pi*(diameter/2)**2

vol = area*d

G = X + 1 ## X is the angular dependence parameter for metallic spin valve

# Demag tensor

Nxx = 0.0523*4.0*np.pi # Easy Axis

Nyy = 0.0523*4.0*np.pi # Short axis of the plane

Nzz = 0.8954*4.0*np.pi # adding perpendicular anistropy

# Dipolar offset field

Hdip = 430.4

# External Field

Hext = 600.0

HextTheta = 1.0*np.pi/2.0

HextPhi = -0.409*np.pi #### assume mp is along (1,0,0);

## Hext is perpendicular to the exchange bias direction (not same with mp)

hExtX = (Hext*np.sin(HextTheta)*np.cos(HextPhi))/Ms

hExtY = (Hext*np.sin(HextTheta)*np.sin(HextPhi))/Ms

hExtZ = Hext*np.cos(HextTheta)/Ms

timeUnit = 1.0/(gamma*Ms) # characteristic time of the system

dt = 10e-12/timeUnit # measured in units of (gamma Ms)^-1

dtSqrt = np.sqrt(dt) # For stochastic evolution
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nu = np.sqrt(alpha0*kB*T/(0.5*vol*Ms*Ms))

# Diffusion at room temperature

#nu = 0.0 # diffusion at zero temperature

# Other

ident = np.diag([1.0,1.0,1.0])

print "Simulation Time:", 10e-12*N

def matrixRep(Y):

# Matrix representation of the cross product. Much faster than np.cross

return np.array([[0, -Y[2], Y[1]],

[ Y[2], 0, -Y[0]],

[-Y[1], Y[0], 0]])

def heff(Y):

hd = -Y*[Nxx, Nyy, Nzz] ## demag field

hext = [hExtX, hExtY, hExtZ] ## external field

hdip = [-Hdip/Ms, 0.0, 0.0] ## dipolar field

return hd + hext + hdip

def hstt(Y):

return np.array([sttPreSlon*G/(G+1+(G-1)*Y[0]), 0.0, 0.0])

def functional(y, m, nudW):

c1 = 0.5*(y + m)

c2 = matrixRep(c1)

heffMidDt = heff(c1, conservative)*dt
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hsttMidDt = hstt(c1)*dt

consVec = np.dot(c2,heff(c1,conservative))

alpha = alpha0 + alpha0*q1*(np.dot(consVec,consVec))/16/np.pi/np.pi +

alpha0*q2*((np.dot(consVec,consVec))/16/np.pi/np.pi)**2 +

alpha0*q3*((np.dot(consVec,consVec))/16/np.pi/np.pi)**3

alphaCoeff = 1.0/(1.0 + alpha*alpha)

c3 = ident + alpha*c2

c4 = alphaCoeff

return (y - m) + c4*np.dot( c2, np.dot(c3, heffMidDt + nudW) +

np.dot(c2, hsttMidDt) )

def midpointEvolve(mx, my, mz):

nudW = np.random.randn(3)*nu*dtSqrt

# Weiner process, incorporating nu

Ynew = fsolve(functional, [mx,my,mz], args=([mx,my,mz], nudW),

xtol=1.0e-13) ## fsolve(func,x0,args,xtol); x0: ndarray,

## starting estimate for roots of func(x)=0; args: func(x,*args),

## doesn’t include the first variable x.

return Ynew

def run(arg):

# Seed the generator with uneccesary randomness

np.random.seed(random.randint(0,123129))

# Starting parameters Theta and Phi are with respect to mp(1,0,0)

# direction

startTheta = 90.0*np.pi/180.0

startPhi = -110*np.pi/180.0
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# Cartesian coords

mxs = [np.sin(startTheta)*np.cos(startPhi)]

mys = [np.sin(startTheta)*np.sin(startPhi)]

mzs = [np.cos(startTheta)]

times = [0.0]

print ’starting point: ’, [mxs,mys,mzs]

for n in xrange(0,N):

mx, my, mz = midpointEvolve(mxs[n], mys[n], mzs[n])

mxs.append(mx)

mys.append(my)

mzs.append(mz)

times.append(n*dt*timeUnit)

print "Finished #:",arg

return [mxs,mys,mzs,times]

if __name__ == ’__main__’:

# Only the main thread runs here...

print "Time Step: ", dt*timeUnit

Ilist = np.arange(1.9, 4.0, 0.2)

for I in Ilist:

I = float(I)*1.0e-3 #in mA

### leaving out the angular dependence of ST part

sttPreSlon = ast*(hbar*P*I)/(2.0*ech*Ms*Ms*vol)

print "current: ", I

results = run(1)

m = 0 ###### 0: mx; 1: my; 2: mz
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begin = int(np.floor(len(results[m])/10))

end = int(np.floor(len(results[m])))

#### Mapping the Max and Min of angles between mp and mf

trimmedX = np.asarray(results[0][begin:end])

trimmedY = np.asarray(results[1][begin:end])

trimmedZ = np.asarray(results[2][begin:end])

Phi = np.arccos(trimmedX/np.sqrt(trimmedX**2+trimmedY**2+

trimmedZ**2))

## smooth trace of Phi: filtering out higher order harmonics

## in freq domain

tottime = dt*timeUnit*len(Phi)

print ’tottime: ’, tottime

cutoffHigh = int(np.ceil(High*10**9/(1.0/tottime)))# np.ceil(f/df)

print ’cutoffHigh: ’, cutoffHigh

FFT = np.fft.fft(Phi)

FFT[cutoffHigh:len(FFT)-cutoffHigh] =

np.zeros( ((len(FFT)-2*cutoffHigh)) )

newPhi = np.fft.ifft(FFT)

newPhi_cutedge = newPhi[141:len(newPhi)-140]# eliminate 7 osc

# periods at both the beginning and end of smoothed time trace

smoothPhi = np.real(newPhi_cutedge)

print ’len of smoothPhi:’, len(smoothPhi)

diffPhi = np.diff(smoothPhi)

extremes = np.where(np.diff(np.sign(diffPhi)))[0]+1

print ’no. of extremes:’, len(extremes)

avgPhi = np.mean(smoothPhi)

phisHigh = []
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phisLow = []

phisAll = []

ignore = 0

for i in range(0,len(extremes)-8):

thisExtreme = smoothPhi[extremes[i]]

nextExtreme = smoothPhi[extremes[i+1]]

thisDiff = thisExtreme - avgPhi

nextDiff = nextExtreme - avgPhi

thisSign = np.sign(thisDiff)

nextSign = np.sign(nextDiff)

if thisSign==nextSign:

ignore = ignore + 1

else:

phisAll.append(thisExtreme*180/np.pi)

if (thisExtreme < nextExtreme):

phisLow.append(thisExtreme*180/np.pi)

else:

phisHigh.append(thisExtreme*180/np.pi)

print ’len of phisHigh: ’, len(phisHigh)

print ’len of phisLow: ’, len(phisLow)

## ----------- Hist of crossing Phis ----------- ##

fig2 = plt.figure(figsize=(8,8))

ax2 = fig2.add_subplot(111)

#ax2.set_xlim((60,180))

ax2.set_xlim((min(phisLow),max(phisHigh)))

134



ax2.hist(phisHigh,50,normed=True)

ax2.hist(phisLow,50,normed=True,alpha=0.5)

fft = np.fft.fft(results[m][begin:end])

spectrum = np.abs(fft)

freqs = np.fft.fftfreq(len(results[m][begin:end]),

d=results[3][begin]-results[3][begin-1])

# plot Mx trace

fig3 = plt.figure(figsize=(8,8))

ax3 = fig3.add_subplot(111)

ax3.plot(dt*timeUnit*np.array(range(0,len(results[m]))),results[m][:])

# plot mx vs mz

fig5 = plt.figure(figsize=(8,8))

ax5 = fig5.add_subplot(111)

ax5.plot(results[m][:],results[m+2][:])

# plot spectrum

fig4 = plt.figure(figsize=(8,8))

ax4 = fig4.add_subplot(111)

ax4.plot(freqs[0:int(0.25*len(freqs))],

spectrum[0:int(0.25*len(freqs))])

# Plot the 3D trajectory

fig1 = plt.figure(figsize=(8,8))

ax1 = Axes3D(fig1)

ax1.set_xlabel(’X’)

ax1.set_ylabel(’Y’)

ax1.set_zlabel(’Z’)

ax1.set_xlim(-1.05,1.05)
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ax1.set_ylim(-1.05,1.05)

ax1.scatter([1.05],[0],[0],color=’black’,marker=’o’)

ax1.scatter([-1.05],[0],[0],color=’black’,marker=’o’)

ax1.scatter([0],[0],[1.05],color=’b’,marker=’x’)

ax1.scatter([0],[0],[-1.05],color=’b’,marker=’x’)

ax1.plot(results[0][:], results[1][:], results[2][:])

ax1.scatter([results[0][0]],[results[1][0]],[results[2][0]],color=’g’,

marker=’o’, s=80) # Starting Point

ax1.scatter([np.sin(HextTheta)*np.cos(HextPhi)],

[np.sin(HextTheta)*np.sin(HextPhi)],[np.cos(HextTheta)],

color=’r’,marker=’o’, s=80) # Hext initial point

plt.show()

del phisHigh

del phisLow

del phisAll

A.4 Derivation of Eeff via Fokker-Planck Approach

The basic foundation is the LL equation as following:

~̇Mdet = −γ ~M × ~Hcons − γαMs · m̂× (m̂× ~Hcons)− γJβ(ϕ)Ms · m̂× (m̂× m̂p) (A.1)

ϕ is the angle between free and pin layer’s magnetization; ~Hcons is the component of ~Heff
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which is perpendicular to m̂:

~Hcons = −m̂× (m̂× ~Heff ) (A.2)

The current j( ~M, t) is the rate at which systems cross the length element d ~M . The total

crossing rate from lower to higher E is an integral over the orbit:

jE(E, t) =

∮
[j( ~M, t)× d ~M ] · m̂ (A.3)

The probability current j along the sphere has a convective and a diffusive part: (both the

divergence and gradient are two dimentional)

j( ~M, t) ≡ ρ( ~M, t) ~̇Mdet( ~M)−D∇ρ( ~M, t) (A.4)

So we obtain:

jE(E, t) =

∮
[ρ( ~M, t) ~̇Mdet( ~M)× d ~M ] · m̂−

∮
[D∇ρ( ~M, t)× d ~M ] · m̂ (A.5)

The conservative torque in the LLG equation (1) is along d ~M and does not contribute to

jE. So the energy current includes three terms:

jE(E, t) = jELL(E, t) + jESlon(E, t) + jEdiff (E, t) (A.6)

The first(Landau-Lifshitz damping) term comes from the Landau-Lifshitz damping torque:

jELL(E, t) = −
∮

[ρ( ~M, t) ·γαMs · m̂× (m̂× ~Hcons)×d ~M ] · m̂ = −γMsρ(E, t)IE(E) (A.7)
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IE(E) ≡
∮
α[d ~M × ~Hcons] · m̂ =

∮
αHconsdM (A.8)

Consider the nonlinear damping term:

α = αG + αGq1ξ + ...; ξ =

∣∣∣[ ~Heff × ~M ]
∣∣∣2

16π2M4
s

(A.9)

Thus

IE(E) =

∮
αGHconsdM +

∮
αGq1ξHconsdM = αGI

E
1 (E) + αGq1I

E
2 (E) (A.10)

IE1 (E) =

∮
HconsdM ; IE2 (E) =

∮
ξHconsdM (A.11)

The Slonczewski torque can be expressed here:

~̇MSlon = −γJMsβ(ϕ)m̂× (m̂× m̂p) = −γJMsβ(ϕ)[m̂(m̂ · m̂p)− m̂p] (A.12)

The energy current contributed from the Slonczewski torque is

jESlon(E, t) =

∮
[ρ( ~M, t) ~̇MSlon × d ~M ] · m̂ (A.13)

= −γJMs

∮
[ρ( ~M, t)β(ϕ)[m̂(m̂ · m̂p)− m̂p]× d ~M ] · m̂ (A.14)

= γJρ(E, t)m̂p

∮
β(ϕ)[d ~M × ~M ] (A.15)
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β(ϕ) =
P (χ+ 1)

χ(cosϕ+ 1) + 2
(A.16)

We define:

IM(E) =

∮
β(ϕ)[d ~M × ~M ] (A.17)

So the Slonczewski energy current can be expressed below:

jESlon(E, t) = γJρ(E, t)m̂p · IM(E) (A.18)

The diffusive term in (4) involves

∇ρ( ~M, t) = ∇ρ′(E( ~M), t) =
∂ρ′(E, t)

∂E
∇E( ~M) = −∂ρ

′(E, t)

∂E
~Hcons (A.19)

According to the fluctuation-dissipation theorem, the diffusivity D can be expressed as:

D = γMsαkBT/V ;D0 = γMsαGkBT/V ;α = αG + αGq1ξ (A.20)
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and gives the diffusive energy current as

jEdiff (E, t) =
∂ρ′(E, t)

∂E

∮
[D · ~Hcons × d ~M ] · m̂ (A.21)

= −∂ρ
′(E, t)

∂E
D0 ·

∮
(1 + q1ξ)[d ~M × ~Hcons] · m̂ (A.22)

= −∂ρ
′(E, t)

∂E
D0I

E
1 (E)− ∂ρ′(E, t)

∂E
D0q1I

E
2 (E) (A.23)

= −∂ρ
′(E, t)

∂E

D0

αG
· IE(E) (A.24)

Thus, the total energy current is

jE(E, t) =jELL + jEslon + jEdiff

=− γMsρ(E, t)IE(E) + γJρ(E, t)m̂p · IM(E)− D0

αG
· ∂ρ

′(E, t)

∂E
IE(E)

(A.25)

In the steady state, jE(E, t) = 0, so that

∂ ln ρ′(E, t)

∂E
=

γαG
D0

(−Ms + J · η(E)) (A.26)

η(E) =
m̂p · IM(E)

IE(E)
(A.27)

So that after integrate (28), we have

ρ′(E, t) = ρ′(E0, t)exp(−
V Eeff
kBT

) (A.28)

Eeff =

∫ E

E0

(1− J

Ms

η(E))dE (A.29)
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So finally,

Eeff = E − E0 −
J

MsαG

∫ E

E0

αGη(E)dE (A.30)

A.5 Eeff calculation via Fokker-Planck Approach

# General libraries

import sys, os, glob, math

import numpy as np

import scipy as sp

# J here equals to J/Ms/alphaG in the Eeff expression,

# represents a constant

Jlist = np.arange(0.0065,0.011,0.0005)

alpha0 = 0.011 # linear damping value alpha_G

q1 = 0

q2 = 0

print ’q1=’,q1

print ’q2=’,q2

p = math.pi

X = 3.05

H = 600 #### external field along HA

Hdip = 430.4

Ms_4p = 12938 ### Units in CGS (here this one is in Gauss)

Nz = 0.8954
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Nx = 0.0523

Ny = 0.0523

C = 0.5*Ms_4p*(Nz-Nx)

P = 0.224

ns = 100 # integration steps along each trajectory

PHI = np.linspace(1.9968,1.9968+3.14,501)

# PHI is in-plane crossing angle, each corresponds

# to a conservative trajectory

PHI2 = np.linspace(1.9968-3.14,1.9968,501)

En = Hdip*np.cos(PHI)-H*np.cos(PHI-0.409*p)

En2 = Hdip*np.cos(PHI2)-H*np.cos(PHI2-0.409*p)

Im = []

Ie = []

Id = []

## Coordinate : mp along (1,0,0) ##

for i in range(1,len(En)):

trajphi = []

trajtheta_up = []

trajtheta_down = []

phi = np.linspace(PHI[i],PHI[i]-2*(PHI[i]-PHI[0]),ns+1)

#### in-plane angle steps for each conservative trajectory

for j in range(0,ns+1):

A = -H*np.cos(phi[j]-0.409*p)

B = Hdip*np.cos(phi[j])
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x = (A+B+np.sqrt((A+B)*(A+B)-4*C*En[i]+4*C*C))/(2*C)

thetaup = np.arcsin(x)

thetadown = p-np.arcsin(x)

trajphi.append(phi[j])

trajtheta_up.append(thetaup)

## out of plane angle step corresponds to each in-plane angle

for one conservative trajectory

trajtheta_down.append(thetadown)

xup = np.sin(trajtheta_up)*np.cos(trajphi)

## Here assume polarizer P is along (1,0,0)

yup = np.sin(trajtheta_up)*np.sin(trajphi)

zup = np.cos(trajtheta_up)

xdown = np.sin(trajtheta_down)*np.cos(trajphi)

ydown = np.sin(trajtheta_down)*np.sin(trajphi)

zdown = np.cos(trajtheta_down)

Imdown = 0

Iedown = 0

Iddown = 0

Imup = 0

Ieup = 0

Idup = 0

s = len(trajphi)

## integrate over the trajectory ##

for j in range(0,s-1):

M1 = np.array([xup[j],yup[j],zup[j]])

M2 = np.array([xup[j+1],yup[j+1],zup[j+1]])

143



dM = M2-M1

## Here the polarizer P is assumed to be along (1,0,0) ##

Heff = np.array([(H/Ms_4p)*np.cos(0.409*p),(H/Ms_4p)*

np.sin(0.409*p),0])+ np.array([-Hdip/Ms_4p,0,0])+

np.array([-Nx*xup[j],-Ny*yup[j],-Nz*zup[j]])

Hcons = -np.cross(M1,np.cross(M1,Heff))

## Heff normalized by Ms_4p

#### nonlinear damping variable alpha

eta = np.dot(np.cross(Heff,M1),np.cross(Heff,M1))

alpha = alpha0 + alpha0*q1*eta + alpha0*q2*eta**2

#### angular dependence of ST parameter b

cosphi = np.dot(M1,np.array([1,0,0]))

b = (X+1)*P/(X*cosphi+X+2)

Imup = Imup +

(b/(1+alpha**2))*np.dot(np.cross(dM,M1),np.array([1,0,0]))

Ieup = Ieup + (alpha/(1+alpha**2))*np.dot(np.cross(dM,Hcons),M1)

Idup = Idup + alpha*np.dot(np.cross(dM,Hcons),M1)

for j in range(1,s):

M1 = np.array([xdown[s-j],ydown[s-j],zdown[s-j]])

M2 = np.array([xdown[s-j-1],ydown[s-j-1],zdown[s-j-1]])

dM = M2-M1

Heff = np.array([(H/Ms_4p)*np.cos(0.409*p),

(H/Ms_4p)*np.sin(0.409*p),0])+ np.array([-Hdip/Ms_4p,0,0])+

np.array([-Nx*xdown[s-j],-Ny*ydown[s-j], -Nz*zdown[s-j]])

Hcons = -np.cross(M1,np.cross(M1,Heff))

#### nonlinear damping variable alpha
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eta = np.dot(np.cross(Heff,M1),np.cross(Heff,M1))

alpha = alpha0 + alpha0*q1*eta + alpha0*q2*eta**2

#### angular dependence of ST parameter b

cosphi = np.dot(M1,np.array([1,0,0]))

b = (X+1)*P/(X*cosphi+X+2)

Imdown = Imdown +

(b/(1+alpha**2))*np.dot(np.cross(dM,M1),np.array([1,0,0]))

Iedown = Iedown + (alpha/(1+alpha**2))*np.dot(np.cross(dM,Hcons),M1)

Iddown = Iddown + alpha*np.dot(np.cross(dM,Hcons),M1)

M1 = np.array([xup[-1],yup[-1],zup[-1]])

M2 = np.array([xdown[-1],ydown[-1],zdown[-1]])

dM = M2-M1

Heff = np.array([(H/Ms_4p)*np.cos(0.409*p),(H/Ms_4p)*

np.sin(0.409*p),0])+np.array([-Hdip/Ms_4p,0,0])+np.array(

[-Nx*xup[-1],-Ny*yup[-1],-Nz*zup[-1]])

Hcons = -np.cross(M1,np.cross(M1,Heff))

#### nonlinear damping variable alpha

eta = np.dot(np.cross(Heff,M1),np.cross(Heff,M1))

alpha = alpha0 + alpha0*q1*eta + alpha0*q2*eta**2

#### angular dependence of ST parameter b

cosphi = np.dot(M1,np.array([1,0,0]))

b = (X+1)*P/(X*cosphi+X+2)

Imtot = Imup + Imdown +

(b/(1+alpha**2))*np.dot(np.cross(dM,M1),np.array([1,0,0]))

Ietot = Ieup + Iedown + (alpha/(1+alpha**2))*

np.dot(np.cross(dM,Hcons),M1)
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Idtot = Idup + Iddown + alpha*np.dot(np.cross(dM,Hcons),M1)

Im.append(Imtot)

Ie.append(Ietot)

Id.append(Idtot)

del trajphi

del trajtheta_up

del trajtheta_down

Im = np.array(Im)

Ie = np.array(Ie)

Id = np.array(Id)

PHItot = []

PHItot.append(PHI2[:])

PHItot.append(PHI[1:])

PHITOT = np.concatenate(PHItot)

PHITOT = np.array(PHITOT)

Entot = []

Entot.append(En2[:])

Entot.append(En[1:])

EnTOT = np.concatenate(Entot)

EnTOT = np.array(EnTOT)

print len(En[1:]), len(Ie)

Eeff_folder = "A directory stored all results of same q1 and q2"

if not os.path.exists(Eeff_folder):

os.makedirs(Eeff_folder)
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for J in Jlist:

EFFI = Ie/Id - J*Im/Id

EFFIintg = [] #### half of En_tot

EFFIintg_tot = [] #### corresponds to En_tot, add the other half

# when integrate from Emax

for i in range(1,len(En)):

effiintg = 0

for j in range(0,len(En)-i):

effiintg = effiintg +

EFFI[len(En)-2-j]*(En[len(En)-j-2]-En[len(En)-j-1])

EFFIintg.append(effiintg)

for i in range(0,len(EnTOT)):

# when integrate from Emax

if i == 0 or i == len(EnTOT)-1:

EFFIintg_tot.append(0)

if 0< i <(len(En2)):

EFFIintg_tot.append(EFFIintg[-i])

if i >= (len(En2)) and i < (len(EnTOT)-1) :

EFFIintg_tot.append(EFFIintg[i-len(En2)+1])

EFFIintg_tot = np.array(EFFIintg_tot)

#### Recording into file

Eeff_file = Eeff_folder +"/Eeff vs\

PHI_alphaEff_J="+str(J)+"_q1="+str(q1)+"_q2="+str(q2)+".txt"
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output = open(Eeff_file, ’w’)

outputData = np.transpose(np.array([PHITOT[:], EFFIintg_tot[:]]))

np.savetxt(output, outputData, fmt="%12.6g")

output.close()

E_file = Eeff_folder +"/Econs vs PHI.txt"

outputE = open(E_file, ’w’)

outputDataE = np.transpose(np.array([PHITOT[:], EnTOT[:]]))

np.savetxt(outputE, outputDataE, fmt="%12.6g")

outputE.close()

148


	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Introduction and Background
	Magnetization Dynamics
	Giant and Tunneling Magnetoresistances
	Spin Transfer Torque
	Spin Torque Oscillator
	Spin Torque Ferromagnetic Resonance
	Conventional Ferromagnetic Resonance
	Spin Torque assisted Ferromagnetic Resonance


	Nonlinear Spin Torque Oscillator Dynamics
	Experimental Methods
	Microwave Probe Stations
	Probe Usage and Maintenance

	Time Domain Measurement of STO Dynamics

	Angular Dependence of GMR
	Characterization in Frequency Domain
	Analysis of Time Domain Data
	Macrospin Simulations
	Interactions with Stochastic Field
	Analysis of Macrospin Simulation Results

	Calculation in the Fokker-Planck Theory
	Introduction of General Fokker-Planck Equation
	Calculations in the Effective Energy Framework
	Result Analysis in comparison with Experiment


	Microwave Radiation Detector based on Spin Torque Diode Effect
	Detector Design
	Experimental Results
	Discussion

	Frequency Determination by a pair of Spin-Torque Microwave Detectors
	Introduction
	Theory
	Experiment
	Results and Discussion

	Conclusion
	Bibliography
	Appendices
	Sliding FFT Angle Mapping for Time Traces for Multi-currents
	Mapping distributions between real signals and toy model
	Macrospin Simulation with Stochastic Fields
	Derivation of Eeff via Fokker-Planck Approach
	Eeff calculation via Fokker-Planck Approach




