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Abstract

The enantioselective synthesis of α-disubstituted N-heterocyclic carbonyl compounds has been 

accomplished using palladium-catalyzed allylic alkylation. These catalytic conditions enable 

access to various heterocycles, such as morpholinone, thiomorpholinone, oxazolidin-4-one, 1,2-

oxazepan-3-one, 1,3-oxazinan-4-one and structurally related lactams, all bearing fully substituted 

α-positions. Broad functional group tolerance was explored at the α-position in the morpholinone 

series. We demonstrate the utility of this method by performing various transformations on our 

useful products to readily access a number of enantioenriched compounds.

Graphical Abstract

N,O-heterocycles such as morpholine, oxazolidine, and isoxazolidine are important 

pharmacophores in medicinal chemistry (figure 1).1–11 Notable morpholine-containing 

pharmaceuticals include edivoxetine2, an antidepressant and a treatment for ADHD; 

linezolid5, a synthetic antibiotic; and gefitinib4, an EGFR inhibitor used to treat certain 

breast, lung and other cancers. 5-Membered isoxazolidinone is the core structure of 

cycloserine8, an antibiotic for the treatment of tuberculosis. Quinocarcin7, possessing an 

oxazolidine ring in the 3,8-diazabicyclo[3.2.1]octane framework, has shown remarkable 
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antiproliferative activity against lymphocytic leukemia. An antibiotic, FR-669799, isolated 

from Streptomyces sandaensis No. 6897, contains a 1,2-oxazinane moiety.

In addition to a wide variety of biological activity, N,O-heterocycles shown in Figure 2 are 

commonly used as synthetic intermediates, which provide various hydroxy acid moieties 

after acetal removal or N-O bond cleavage. Oxazolidin-4-ones have been reported as good 

platforms to α-hydroxyacids.12 For example, Ye et al.12a reported that the formal [3+2] 

cycloaddition between ketenes and oxaziridines could be applied in an enantioselective 

fashion to synthesize oxazolidin-4-one derivatives, which could be converted into the 

corresponding α-hydroxy acids. 1,2-Oxazinan-3-ones have proved to be excellent precursors 

to γ-hydroxy acid and γ-butyrolactone derivatives.13

Our group has a sustained interest in the enantioselective synthesis of α-quaternary carbonyl 

compounds,14 – 16 which offers a novel solution for these challenging chiral centers in 

natural product synthesis. Influenced by our results, the Lupton group17a and the Shao 

group17b simultaneously reported that carbazolones are suitable substrates under our allylic 

alkylation conditions and applied the resulting chiral building blocks to total syntheses of 

indole alkaloids. Significant work in our laboratory has identified conditions for the 

enantioselective allylic alkylation to provide α-quaternary lactams in exceptional yields and 

enantioselectivities.14b As part of that endeavor, we reported that 2-allyl-2-

methylmorpholin-3-one 2a was obtained in a similar manner in high yield (91% yield) and 

outstanding enantioselectivity (99% ee). We sought to extend the substrate scope to 

morpholine derivatives and postulated that a broadly expanded array of chiral N,O-

heterocyles might be readily accessible using our palladium-catalyzed allylic alkylation. 

Herein, we describe enantioselective allylic alkylation of heterocycles, including 

morpholin-3-one, thiomorpholine-3-one, oxazolidin-4-one, 1,2-oxazepan-3-one and 1,3-

oxazinan-4-one.18 Furthermore, the enantioenriched products obtained were successfully 

converted into useful asymmetric building blocks containing quaternary and tetrasubstituted 

tertiary chiral centers.

We prepared a collection of racemic morpholinone substrates 1a-e19 and performed 

palladium-catalyzed decarboxylative allylic alkylation with Pd2(dba)3 (5 mol %) and (S)-

(CF3)3-t-BuPHOX ligand20 (12.5 mol %, PHOX = phosphinooxazo-line) in a 0.033 M 

solution of toluene (Figure 3). Simple α-benzyl substitution performed well in this 

chemistry; the desired 2-benzyl α-tetrasubstituted morpholinone 2b was obtained in 95% 

yield and 99% ee. Gratifyingly, other functionalized substrates (benzyl ether, methyl ester, 

nitrile) are well tolerated, affording α-functionalized morpholinones 2c, 2d and 2e in 

uniformly excellent enantioenrichment (99% ee), although the yield of 2d was moderate 

(60%). Having demonstrated a broad functional group tolerance within the side chain, we 

explored other ring sizes and frameworks. Replacement of oxygen with sulfur gave 

thiomorpholinone 2f in good yield, but slightly decreased enantioselectivity (79% yield, 

86% ee). Like morpholinone, benzomorpholinone is also a good substrate class, delivering 

allylated product 2g in 76% yield and 95% ee. Additionally, α-tetrasubstituted oxazolidin-4-

one 2h is produced in 82% yield and 96% ee with higher temperature applied (60 °C).21 

Benzyloxazolinone 2i is also produced in good yield and enantioselectivity.
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With excellent results on α,α-dialkyl 2-oxa- and thia-linked lactams in hand, we started to 

investigate allylic alkylation using cyclic hydroxamic acid derivatives to obtain a-quaternary 

N,O-heterocycles (Table 1). Isoxazolidin-3-one 3a (R = Bz), 3b (R = Boc) and 3c (R = 

CO2Ph) produced the desired alkylated compounds 4a-c in excellent yields (95–98%), but 

with modest enantioselectivities (72–73% ee) (entries 1–3). Benzoyl protected 1,2-

oxazinan-3-one 3d underwent an unexpected side reaction, and produced only small 

amounts of 4d (entry 4).24 Despite of the low yield, the enantioselectivity of 4d is still 

satisfactory (88% ee), which encouraged us to identify an effective N-protecting group to 

circumvent the undesired reaction. A bulky pivaloyl group somehow suppresses the side 

reaction, but decreases the enantioselectivity (entry 5). An electron-rich N-benzylated 3f was 

a poor substrate for decarboxylative alkylation (entry 6).25 Finally, we discovered that 

carbamates 3g-i produced the desired products in good yields (67–89%) and acceptable 

enantioselectivities (84–87% ee) (entries 7–9), with little or none of the undesired side 

reactivity observed. We were delighted to find that 7-membered 3j is an excellent substrate 

in this class, furnishing 4j in a good yield and excellent enantioselectivity (entry 10, 81% 

yield, 93% ee).

As shown in Scheme 1, we have also demonstrated allylic alkylation with 1,3-oxazinan-4-

one 5 as an alternative β-hydroxy acid synthon of 3a. To our delight, 5 was successfully 

converted into 6 in 90% yield and 94% ee.

We anticipate that our newly developed heterocycles could play important roles in medicinal 

agent discovery and also serve as useful chiral building blocks. To demonstrate the value and 

versatility of this new class of α-tetrasubstituted heterocycles, we implemented a number of 

product transformations (Scheme 2). For example, removal of the benzoyl group followed 

by reduction using LiAlH4 can readily convert morpholinone 2c into N-H morpholine 7. 

Acid treatment of 2h in methanol provided α-tertiary-hydroxy ester 8 in 71% yield without 

erosion of enantiopurity.26 a-Quaternary δ-lactone 9 was synthesized from 4j in a good yield 

by zinc mediated reduction of the N-O bond followed by acid catalyzed cyclization.

In conclusion, we have developed a variety of new classes of substrates for catalytic 

enantioselective allylic alkylation to generally form α,α-disubstituted 2-keto heterocycles, 

such as morpholinones, oxazolidinones, cyclic hydroxamic acid derivatives, and 1,3-

oxazinanones. The asymmetric products formed in this communication are envisioned to be 

valuable pharmacophores in medicinal chemistry and their transformations afford a variety 

of important structures such as chiral hydroxy acid derivatives. Studies utilizing this method 

toward the synthesis of complex natural products and other bioactive small molecules are 

ongoing in our laboratory.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Representative N,O-heterocyclic-containing pharmaceuticals and natural products
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Figure 2. 
α-Tertiary and quaternary N,O-heterocycles
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Figure 3. Substrate Scope of α-Tertiary Heterocyclesa

aReaction performed with 0.1 mmol of 1, 5 mol % of Pd2(dba)3, 12.5 mol % of (S)-(CF3)3-

t-BuPHOX at 0.033 M in toluene at 50 °C bDetermined by chiral SFC analysis. cReactions 

were performed on 1g, 1h and 1i at 60 °C. dThe ee of 2g was determined by chiral SFC 

analysis after Bz removal (see supporting information). ePd2(pmdba)3 (pmdba = bis(4-

methoxybenzylidene)acetone) was used instead of Pd2(dba)3. fAbsolute configuration was 

assigned by vibrational circular dichroism (VCD) spectroscopy22 supported by theoretical 

calculations (see supporting information). gAbsolute stereochemistry assigned by conversion 

into (–)-methyl 2-hydroxy-2-methylpent-4-enoate.23
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Scheme 1. 
Synthesis of 1,3-oxazinan-4-one 6
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Scheme 2. 
Derivatization of Allylic Alkylation Products
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Table 1.

Substrate Scope of α-Quaternary Cyclic Hydroxamic Acid Derivatives
a

entry substrate R yield (%)
b

ee (%)
c

1 Bz (3a→4a)
d 98 73

2 Boc (3b→4b) 95 72

3 PhO(CO) (3c→4c) 95 73

4 Bz (3d→4d) 29 88

5 Piv (3e→4e) 48 73

6 Bn (3f→4f) trace ND

7 Boc (3g→4g) 67 85

8 Cbz (3h→4h) 89 84

9 PhO(CO) (3i→4i) 70 87

10 81 93

a
Reaction performed under the conditions of Figure 3 at 60 °C.

b
All reported yields are for isolated products.

c
Enantiomeric excesses were determined by chiral SFC analysis.

d
Absolute configuration was assigned by VCD spectroscopy22 supported by theoretical calculations (see supporting information).
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