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Abstract

We price corporate debt from a structural model of firm default. We assume that the

capital market brings about efficient firm default when the continuation value of the

firm falls below the value it would have after bankruptcy restructuring. This character-

ization of default makes the model more tractable and parsimonious than the existing

structural models. The model can be applied in conjunction with a broad range of

default-free interest rate models to price corporate bonds. Closed-form corporate bond

prices are derived for various parametric examples. The term structures of yield spreads

and durations predicted by our model are consistent with the empirical literature. We

illustrate the empirical performance of the model by pricing selected corporate bonds

with varied credit ratings.

∗We thank Amit Goyal, Bing Han, Matthias Kahl, Alessio Saretto, Eduardo Schwartz, and Elena
Sernova for helpful comments. Please address correspondence to the authors at: The Anderson Grad-
uate School of Management at UCLA, 110 Westwood Plaza, Los Angeles, CA 90095-1481. E-mail: ja-
son.hsu@anderson.ucla.edu, pedro.santa-clara@anderson.ucla.edu.



Traditionally the credit risk literature has taken two approaches to the valuation of

corporate debt. The ‘structural’ approach models the bankruptcy process explicitly. It

defines both the event that triggers default and the payoffs to the bond holders at default

in terms of the assets and liabilities of the firm. Substantial abstraction of the bankruptcy

game is required to retain tractability. The structural approach to firm default has only been

able to produce closed-form prices under extremely simplistic capital structure assumptions.

The ‘reduced-form’, or ‘statistical’ approach treats default as an event governed by an

exogenously specified jump process.1 The statistical approach is very tractable. Duffie and

Singleton (1999) show that any default-free term structure model can be used to price bonds

with default risk. One simply models the spot interest rate to include an instantaneous

default spread. Affine term structure models can then be tweaked to produce closed-form

corporate bond prices.

The tradeoff of realism for tractability in structural models has, so far, generated less

than satisfactory empirical pricing performance. As a consequence, the applied literature

has favored statistical models over structural models. However, beyond good in-sample fit,

we are ultimately interested in linking the determinants of default to firm characteristics.

For this purpose, the reduced-form approach is less suitable; hence, the appeal of structural

models.

Our paper offers a highly tractable structural model of default which performs well

1Since this paper is structural in nature, we refer readers interested in the statistical models to Litterman

and Iben (1991), Madan and Unal (1993), Fons (1994), Das and Tufano (1995), Jarrow and Turnbull (1995),

Jarrow, Lando and Turnbull (1997), Lando (1997, 1998), and Duffie and Singleton (1999), and Duffie and

Lando (2001) amongst other excellent treatments on the topic.
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empirically. Like other papers in the structural literature, we characterize default as the

first time the firm value V crosses a default boundary K. This approach begins with Black

and Scholes (1973), Merton (1974) and Black and Cox (1976), continues with Longstaff and

Schwartz (1995) and, more recently, with Briys and Varenne (1997), Taurén (1999) and

Collin-Dufresne and Goldstein (2001).

In Black and Scholes (1973) and Merton (1974), all debts mature on the same day, and

the firm defaults when its value is lower than the payment due. Hence, the default boundary

K consists of a single point, equal to the face value of the maturing debt. If default occurs,

the claimants receive the liquidation value of the firm in order of priority. Unfortunately,

the model becomes intractable when debt obligations mature at various points in time.

Black and Cox (1976) and Longstaff and Schwartz (1995) assume that the firm is forced

into default by its debt covenants the first time its value falls below a constant threshold

K.2 In this case, K can be viewed as the face value of the liabilities of a firm that has a

constant dollar amount of debt outstanding at all times. Here, default may occur at any

point in time, even when no payment is due. Black and Cox (1976) model the default payoffs

like Black and Scholes (1973), which again makes the model intractable for realistic capital

structures.

Longstaff and Schwartz (1995) introduce an innovative way of dealing with default

payoffs. At default, the corporate bond is exchanged for a fraction (1−W ) of a default-free

bond, where W may depend on the priority and the maturity of the original corporate bond.3

2Black and Cox (1976) actually consider a default boundary of the form K(t) = ke−c(T−t), where T is

the time to maturity and k is the face value of the maturing debt.
3This assumption is consistent with empirical studies (Franks and Torous (1989), Eberhart, Moore, and

Roenfeldt (1990), Weiss (1990), and Betket (1995)), which suggest that priority rules are almost always
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This allows the treatment of corporate coupon bonds as a portfolio of corporate zeros. More

importantly, it allows the pricing of a corporate bond without a detailed specification of the

rest of the firm’s capital structure. Along a similar vein, Briys and Varenne (1997) respecify

the default boundary of Black and Cox (1976) to allow for stochastic default-free interest

rates, while adopting the default write-down treatment of Longstaff and Schwartz.4 .

In both Black and Cox (1976), Longstaff and Schwartz (1995) and Briys and Varenne

(1997), the debt issued by the firm is assumed to remain constant irrespective of the firm

value. This suggests an unreasonable waste of the firm’s debt capacity as the firm grows in

value. Taurén (1999) and Collin-Dufresne and Goldstein (2001) realize that in reality the

dollar amount of the firm’s liabilities does not remain constant. They propose alternative

models to reflect the firm’s tendency to maintain a stationary leverage ratio. Following

the interpretation that K is the face value of the firm’s liabilities, the ratio V/K can be

interpreted as the inverse debt ratio. V/K is then modeled as mean-reverting, and the

firm is assumed to enter into default when V/K falls ‘dangerously low’. However, Taurén

(1999) concedes that empirical estimation with his model is almost impossible due to the

computational intensity.5,6 Further, the empirical performance of the model is poor, with

pricing errors in yields in excess of 100 basis points.

Our model, by comparison, is both more realistic and more parsimonious than previous

violated, with junior claimants receiving payments even when senior claimants are not paid in full.
4Briys and Varenne (1997) model the boundary as K(t) = kα exp(

∫ T

t
r(u)du), where k is the face value

of the debt maturing at time T
5Collin-Dufresne and Goldstein (2001) do not address the empirical performance of their model.
6Many parameters in Taurén (1999) could not be estimated directly from corporate bond prices but must

be separately assumed or calibrated. The high dimensionality of the estimation also makes it infeasible to

estimate more than one zero coupon corporate bond.
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approaches. The innovation in our model comes from the characterization of firm default.

In an efficient capital market, default occurs when the continuation value of the firm under

the current management and capital structure is less than the value that the firm would

have after bankruptcy. Specifically, bankruptcy can result in a Chapter 7 liquidation, a

Chapter 11 reorganization or liquidation, or a private debt restructuring. We assume that

the bankruptcy code and corporate governance mechanism, coupled with the market for

corporate control, ensure that bankruptcy occurs efficiently.

We concede that the ex ante efficiency of firm bankruptcies is a controversial subject.

We briefly present objections to the efficiency hypothesis here and argue our case. Critics

of the efficient bankruptcy theory argue that the cost of financial distress (estimated at 3%

of firm value by Weiss (1990) and 10 − 20% by Andrade and Kaplan (1998)) is too large

for economic efficiency.7 However, Easterbrook (1990) argues that the loss from distress

is small in comparison to the loss that would occur if alternative resolutions are pursued.

Critics of efficient bankruptcy also point out that distress can occur for firms with healthy

operating incomes and margins; in which case, distress seems to arise from high leverage

rather than bad firm performance. However, Andrade and Kaplan (1998) find that for firms

which appear to suffer purely from financial distress, distress has lead in many cases to cost

cutting initiatives and changes in the management. Chen and Wei (1993) also find that

creditors are willing to waive violations of debt covenants (such as low book asset value or

late interest payments) for firms with healthy operating ratios. These evidence suggest that

economic efficiency does play an important role in effecting distress.

7In general, estimating the cost of financial distress is an extremely noisy exercise due to the difficulty of

differentiating the impact in firm performance from economic distress and financial distress.
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We define the default boundary K as the ‘bankrupt’ firm value, which can be either

the value of the firm’s liquidated assets or a recapitalized going concern. Market efficiency

then predicts default to occur when the firm’s continuation value V falls below K. This

characterization of the default boundary necessarily makes K stochastic and correlated with

V . Additionally, since K represents the value of an asset, its risk-adjusted return can be

modeled to equal the default-free interest rate.

Other structural models focus on the physical events leading to default, rather than

the equilibrium characteristics of default. As a result, K must reflect the firm’s outstanding

liabilities and simultaneously account for the bargaining game between the shareholders and

the equity holders.8 Therefore, the modeling of K becomes inevitably complex.

We follow Longstaff and Schwartz (LS, 1995) in assuming that at default a corporate

bond is exchanged for an equivalent default-free bond at a write-down W , which depends

on the bond’s priority and maturity. As we mentioned, this feature allows the valuation of

each debt issue independent of the rest of the firm’s capital structure.

Our model of default can be coupled with virtually any model of the default-free term

structure to price corporate bonds. In particular, when the default-free term structure has

non-stochastic volatility, we are able to derive approximate analytical bond prices. The

approximate analytic pricing solution is rapidly convergent and achieves high accuracy with

only second order expansion terms. This reduces the computational intensity substantially.

For other default-free term structure assumptions, we provide simple numerical methods for

computing bond prices.

8See Leland (1994), Leland and Toft (1996), and Mella-Barral and Perraudin (1997) for models on the

strategic game between the equity holders and the debt holders.
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We estimate our model with bond data from individual firms with different credit

ratings. Until now, the estimation problem has been extremely difficult due to the high

dimensionality of the structural models. We cast the estimation problem in a GMM frame-

work. We specify moment restrictions and a weighting matrix in a way which substantially

reduces the dimensionality of the estimation. This makes the estimation fast enough to study

multiple bond issues. The pricing errors from the model average 45 basis points, represent-

ing a substantial improvement over previous structural models. The quality of the corporate

bond data makes a better fit unlikely. More importantly, the estimated parameters have a

natural interpretation.

Our model predicts a monotone increasing term structure of credit spreads for high

quality corporate bonds and hump shaped credit spreads for low quality bonds, which is

consistent with the empirical findings of Sarig and Warga (1989) and Bohn (1999). Durations

for bonds of identical promised cash flows are predicted to be increasing in credit quality,

which is consistent with the findings of Chance (1990). However, we do not necessarily predict

negative durations for extremely risky bonds, which is a crucial prediction of Longstaff and

Schwartz (1995). Our model does allow for the seemingly counter-intuitive result predicted

and empirically observed by LS that credit spreads narrow as default-free interest rates

increase. However, our reason for this prediction is very different from LS. In LS, since the

default boundary K is constant and V/K = 1 defines default, the ratio V/K has a risk

neutral drift of r; intuitively, the greater the r, the more V/K drifts away from 1. Therefore,

it follows immediately that the probability of default and the credit spread decrease as r

increases; intuitively, leverage mechanically decreases with r in LS. In our model, both V

and K are asset values and therefore have risk neutral drifts equal to r. The risk neutral
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drift of the ratio V/K therefore, does not depend on r. However, V/K can be positively

correlated with r if the bankruptcy value K is more sensitive than the continuation value V

to interest rate shocks.

The remainder of this article is organized as follows. Section I develops the modeling

framework. Section II derives closed-form solutions for risky corporate bonds under two

particular parameterizations of the model and analytical approximate solutions and simula-

tion methods for more general model specifications. Section III discusses the term structure

of yield spreads and durations predicted by our model. Section IV examines the empirical

performance and illustrates applications of the valuation method. Section V concludes the

article.

I. The Valuation Framework

In this section, we present the assumptions about the firm value dynamics and the default

boundary dynamics. We assume trading occurs continuously in a frictionless market. We

also make the necessary assumptions for the existence of a unique equivalent martingale

measure (EMM) Q under which the instantaneous expected rate of return on all assets is

the default-free short rate r. Finally, we assume that two sources of risk – shocks to the

firm fundamentals and shocks to the default-free interest rate – drive the variations in the

continuation and the bankruptcy firm values. The shocks to the firm fundamentals under Q

are characterized by the Brownian motion Zv, while the shocks to the default-free interest

rates are characterized by the Brownian motion Zr. The instantaneous correlations between

dZv and dZr is ρrvdt.
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A. The Continuation Value Dynamics

We define V as the continuation value of the firm. It refers to the value of the firm

without entering into bankruptcy restructuring. This will be distinguished from the bank-

ruptcy value K, which refers to the value that the firm would have after the bankruptcy

proceeding. We introduce the dynamics of V first. Under the unique EMM assumption, the

instantaneous total return of V under the Q measure must equal the default-free short rate

r. We also make additional restrictions. In particular, the shocks to the firm value deliv-

ered by changes in the firm fundamentals and the interest rates have constant volatilities.

Summarizing, the risk-neutral dynamics of V are governed by:

dV (t)

V (t)
= [r(t) − δe(t, V,K, r) − δd(t, V,K, r)]dt + γvdZv(t) + γrdZr(t) (1)

where δe(t, V,K, r) and δd(t, V,K, r) are the pay out rates to the equity and the debt holders

and can be arbitrary functions of t, V , K and r. γv and γr are loadings on the shocks to

firm fundamentals (dZv) and shocks to the default-free short rate (dZr). Note, δe(t, V,K, r)

and δd(t, V,K, r) can reflect complicated dividend and debt servicing policies. In addition,

δe(t, V,K, r) and δd(t, V,K, r) may be negative to reflect additional equity or debt issuing.

This freedom in the modeling of δe(t, V,K, r) and δd(t, V,K, r) cannot be achieved in other

structural models, except for the stationary leverage ratio model of Collin-Dufresne and

Goldstein (2001). We will see later that δe(t, V,K, r) and δd(t, V,K, r) do not enter into the

computation of the default probability and thus do not need to be explicitly modeled.

B. The Bankruptcy Value Dynamics
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We wish to characterize the default boundary to reflect efficient bankruptcies. We

assume that the capital market is efficient, which suggests that firm default occurs when

the continuation value of the firm falls below the value the firm would have if it enters

bankruptcy restructuring. The institutional features and mechanisms of the financial market

such as bankruptcy codes, debt covenants, and the market for corporate control are suppose

to bring about efficient defaulting.

We define the default boundary K(t) as the time t bankruptcy value of the firm.

Efficiency then predicts that default occurs the first time V (t) falls below K(t). We now

make exact the definition of K(t). For simplicity of exposition, suppose one specific plan

of bankruptcy restructuring is available for each firm.9 For some firms, if default occurs,

bankruptcy results in a Chapter 7 or Chapter 11 liquidation. Suppose that the firm faces

certain liquidation in the event of default. K(t) then represents the sum value of the physical

assets of the firm. Prior to default, the continuation value of the firm is greater than the

value of the assets in a piecemeal sell off. However, at default, when V (t) hits K(t) for

the first time, the firm is liquidated to generate K(t), which is then distributed to the

claimants of the firm. For other firms, bankruptcy results in a Chapter 11 reorganization.

Suppose the reorganization plan liquidates the non-cash generating long term investments

and retains only the cash generating assets. K(t) then represents the value of this stripped

down company, plus the sales proceeds, at t. When V (t) hits K(t), the firm defaults and is

reorganized, and the claimants receive securities of this new entity.

So defined, K represents an asset value. Therefore, under Q, K’s instantaneous total

9Alternatively, one might imagine that one particular form of liquidation/restructuring dominates the

other forms of liquidation/restructuring for all t.
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return must be equal to r. Again, we make the additional restriction of constant volatility

on the K process and write the dynamics of K under Q as:

dK(t)

K(t)
= [r(t) − δe(t, V,K, r) − δd(t, V,K, r)]dt + βvdZv(t) + βrdZr(t) (2)

where γv and γr are loadings on the shocks to firm fundamentals (dZv) and shocks to the

default-free short rate (dZr). It should be clear that K’s drift is also adjusted by δe(t, V,K, r)

and δd(t, V,K, r).

We argue before that K(t) represents the value of the firm in a piecemeal liquidation if

the firm has no economic value as a going concern. Under this scenario, K(t), for estimation

purposes, might be proxied by the book value of the firm’s asset. The ratio V/K can then

be crudely interpreted as Tobin’s q. A low V/K would indicate low economic value added.

Financial distress and economic distress therefore occur at the same time. However, when

the firm is expected to continue as a going concern in the event of a bankruptcy, V/K does

not have the interpretation of a Tobin’s q anymore. Financial distress is then a corporate

control mechanism which forces reorganization of resources to deliver higher economic value

added and can occur without obvious signs of economic distress.

It is important to stress that bankruptcy occurs when the firm’s asset is insufficient

to cover its liabilities. Our model is consistent with that definition of bankruptcy though

it does not explicitly model the firm’s liabilities. Note that K(t) is not modeled as the

outstanding debt of the firm as is done in the traditional structural literature. However,

K(t) is nonetheless related to the firm’s outstanding debt. Recall that the creditors receive

a fraction of the bankruptcy value K(τ) when the firm defaults at time τ > t. Naturally,

the firm’s ability to finance its operations with debt (or its debt capacity) must be closely
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related to K(t), which is the conditional expected discounted value of K(τ); this linkage is

substantiated in Williamson (1988) and Shleifer and Vishny (1992). We expect a decrease

in K(t) to lead to a reduction in the firm’s debt capacity, which forces the firm to substitute

some debt financing with equity financing. Similarly, we expect an increase in K(t) to

increase debt capacity, which encourages the firm to substitute some equity financing with

debt financing. Consequently, when K(τ) increases or decreases without a proportional

movement in V (t), we expect the debt ratio to also move in the same direction. To some

degree then, it is convenient to think of the bankrupt firm value K(t) as (1 − W ) fraction

of the firm’s current book liability. Under this interpretation, our model is similar to a

generalized version of Briys and Varenne (1997), where the book liability of the firm follows

a diffusion process. In addition, insofar that γv, γr, βv and βr are selected such that the

process K(t) tracks V (t), our model also captures the notion of the firm trying to maintain

a stationary leverage.

C. The Solvency Ratio

We now define a new variable, the log-solvency ratio:

X(t) ≡ log
V (t)

K(t)
. (3)

We note that when X(t) hits 0 for the first time, the firm enters into default. Restating

default this way avoids having to keep track of both V (t) and K(t). The evolution of X(t)

completely describes the default probability.

The dynamics of X(t) are given by:

dX(t) = µXdt + σXdZX(t) (4)
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where ZX is a new Brownian motion defined by:

σXZX(t) = (γr − βr)Zr(t) + (γv − βv)Zv(t) (5)

and

(σXdZX)2 = [(γr − βr)
2 + (γv − βv)

2 + 2ρrv(γr − βr)(γv − βv)]dt (6)

and where the drift coefficient is given by:

µX =
1

2

(
σ2

K − σ2
V

)
(7)

where σK is the volatility of the bankruptcy value process:

σ2
K = β2

r + β2
v + 2ρrvβrβv (8)

and where σV is the volatility of the continuation firm value process:

σ2
V = γ2

r + γ2
v + 2ρrvγrγv (9)

Note, that dZQ
X is correlated with dZQ

r . The instantaneous correlation coefficient is given by:

ρXrdt =
ρrv(γv − βv) + (γr − βr)

σX

dt. (10)

We can now define the condition of default in terms of X. Default is defined to occur at τ ,

where τ is the first time X hits zero. Note that default does not depend on δe(t, V,K, r) and

δd(t, V,K, r). This arises because the firm’s dividend and debt interest payments impact both

the firm value V and the bankrupt value K equally. This feature is distinctively different

from other structural models with the exception of stationary leverage models.

D. Debt Write Downs when Default Occurs
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We assume that debt restructuring occurs simultaneously for all debt issues once the

firm defaults. This is in accordance with cross default provisions that are widely adopted

in practice. Next, following Longstaff and Schwartz (1995), we assume that, at default, the

holder of a corporate coupon bond receives 1−W of an otherwise equivalent Treasury bond;

where the write down W is sometimes referred to by ratings agencies as the loss severity

(see Cantor and Fons (1999)), and where W is larger for bonds with lower priorities. For

example, consider two corporate bonds – a senior secured and a junior note. The write

down W1 for the senior note would be less than the write down W2 for the junior note. For

modeling simplicity W is assumed deterministic; equivalently, we may assume that W is

stochastic but uncorrelated with other stochastic processes in the model.

Since a corporate coupon bond, in default, is exchanged for an equivalent Treasury

bond, which is a portfolio of Treasury zeros, it can be replicated by a portfolio of corporate

zeros in an obvious way. The firm’s outstanding debt issues can then be modeled as a

collection of corporate zeros that are defaulted on at the same time, and each corporate zero

coupon bond can be priced independent of the other zeros. This formulation allows each

corporate bond to be priced independently of the firm’s other liabilities, making the detailed

description of the firm’s capital structure unnecessary for the pricing of the corporate bonds!

We write the time t value of a corporate zero coupon bond with maturity T as:

C(t, T ) = EQ
t [(1 − W1({τ ≤ T}))e−

∫ T

t
r(u)du]

= P (t, T ) − WEQ
t [1({τ ≤ T})e−

∫ T

t
r(u)du] (11)

where P (t, T ) is the price of the T-maturity Treasury zero, τ is the first time X hits zero,

1({τ ≤ T}) is an indicator function which takes on the value 1 if τ ≤ T , and the expectation
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is taken over Q.

E. The Short Rate Dynamics

We now specify the dynamics of the default-free term structure. For now we specify a

general process for the default-free short rate. We will study particular parameterizations of

the process when we solve for analytical pricing formulas.

The dynamics of the instantaneous default-free interest rate r are governed by:

dr(t) = µr(r, t)dt + σr(r, t)dZr(t) (12)

where µr(r, t) and σr(r, t) can be functions of r and t (and are left unspecified for now), and

Zr(t) is the same Brownian motion that shocks V and K. The introduction of stochastic

default-free interest rates is important for examining the impact of interest rate risk on the

default probability and for explaining the observed differences in credit spreads for firms with

similar credit ratings. Jones, Mason and Rosenfeld (1984) and Ogden (1987) conclude from

their empirical studies that the nonstochastic default-free interest rate specification may

contribute to bond overpricing of the Merton model. Empirically, Eom, Helwege and Huang

(2003) find that adding interest rate volatility has significant pricing impacts. However, for

the structural models studied in Eom et. al., the pricing errors do not seem to be attenuated

by the addition of stochastic default-free rates–suggesting rooms for improving how default-

free interest rates are incorporated into structural credit risk models.
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II. Valuation of Corporate Debt Securities

Examining (11), we need to specify a model of the term structure of default-free interest

rates to compute the pure discount bond price P (t, T ). We need to further characterize

the first hitting time τ to evaluate the expectation EQ
t [1({τ ≤ T}) exp(− ∫ T

t r(u)du)]. We

postpone specifying the interest rate process until later since our framework is compatible

with most commonly used default-free term structure models.

A. Bond Pricing Formula Under the Forward Measure QT

As is often true, using the discount bond with price P (t, T ) as the numeraire simplifies

the algebra. We re-write the formula for a corporate discount bond in (11) as:

C(t, T ) = P (t, T )EQT
t [(1 − W1({τ ≤ T})]

= P (t, T )(1 − WEQT
t [1({τ ≤ T})])

= P (t, T )(1 − WΠ(t, T )) (13)

where the expectation is taken under the forward measure QT and where we define Π(t, T )

(the forward default probability) as the probability that default occurs between t and T

under QT .10 This formulation of the bond prices is easier to work with.

To make use of equation (13) to price corporate bonds, we need to re-express the

dynamics of X under QT :

dX(t) = (µX + ρXrσXs(t, T )) dt + σXdZQT
X (t) (14)

where s(t, T ) is the volatility of the T-maturity discount bond and ZQT
X is a standard Brown-

ian motion under QT (See Appendix A for an elaboration on (14)). The drift of X under
10See Baxter and Rennie (1996) or Duffie (1996) for references to the forward probability.
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QT has an additional term ρXrσXs(t, T ) that serves to correct for the interest rate risk.

For ρXr > 0, the shocks to the log-solvency ratio are positively correlated with the

shocks to the short rate. So increases in the default probability (decreases in the log-solvency

ratio), which reduce corporate bond prices, are likely associated with decreases in the interest

rate, which increase corporate bond prices. Intuitively, the two sources of risk partially offset

each other, resulting in lower credit spreads than if ρXr ≤ 0

The forward risk adjusted probability of default Π(t, T ) can, in general, be computed

by simulation, although closed-form and analytic approximation solutions are available under

more restrictive assumptions. We present these special cases in the next section.

C. Computing Bond Prices

1. Independent Default Risk and Interest Rate Risk

Under specific parameterizations of the firm value process V and the default boundary

process K, ρXr will be zero, indicating that the default probability is independent of r under

QT .11 An equivalent assumption is made in Jarrow and Turnbull (1995) and is implicit in

models where r is non-stochastic. When ρXr = 0, Π(t, T ) can be computed in closed-form for

any prescribed term structure model; it is simply the probability of an arithmetic Brownian

motion, starting from the initial value X(t), with drift µX and volatility σX , hitting zero

before time T .

The first-passage time density of X evaluated at τ > t is (See Karatzas and Shreve

11Recall from (10) that ρXr is zero when ρrv(γv − βv) + (γr − βr) = 0
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(1991)):

φ(τ) =
X(t)

σX(2π)1/2(τ − t)3/2
exp

{
− [X(t) + µX(τ − t)]2

2σ2
X(τ − t)

}
(15)

so that

Π(t, T ) = 1 −N
(

X(t) + µX(T − t)
σX

√
T − t

)
+ exp

{
−2µXX(t)

σ2
X

}
N
(

X(t) − µX(T − t)
σX

√
T − t

)
(16)

where N denotes the standard normal cumulative distribution function.

We note that this model gives closed-form corporate bond prices when coupled with

any model of the default-free term structure that produces closed-form Treasury bond prices.

We will examine the validity of the assumption that ρXr = 0 in the empirical portion of the

paper.

2. Deterministic Bond Volatilities

We are also able to derive analytical approximate bond prices when the volatility of the

T-maturity Treasury bond is a deterministic function of time. Term structure models like

Vasicek (1977), Ho and Lee (1986), Hull and White (1990), or other models in the Heath,

Jarrow and Morton (1992) framework produce bond prices with deterministic volatilities.

With this assumption, the first-passage time problem can be restated as the first-passage

time of a standard arithmetic Brownian motion through a deterministic boundary. The

formula for the boundary is given by:

B(τ) =
X(t) + µX(τ − t)

σX
+

ρXr

σX

∫ τ

t
s(u, T )du (17)

where, again, s(t, T ) is the T-maturity Treasury bond return volatility (see Appendix B for

the derivation).
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The default probability ΠT
t can be approximated very efficiently in closed form. Durbin

(1992) shows that the first-passage time probability can be approximated to a high degree

of accuracy by the following approximation12:

Π(t, T ) ≈
∫ T

t

(
B(u)

u − t
− B′(u)

)
ϕ(u)du

−
∫ T

t

∫ u

t

(
B(v)

v − t
− B′(v)

)(
B(u) − B(v)

u − v
− B′(u)

)
ϕ(u, v)dvdu (18)

where B′(u) denotes the slope of the boundary at u; ϕ(u) is the density of the Brownian

motion at time u, evaluated at B(u); and ϕ(u, v) is the joint density of the Brownian motion

at times u and v, evaluated at B(u) and B(v):

ϕ(u) = (2π(u − t))−1/2 exp

{−(B(u) − B(t))2

2(u − t)

}
(19)

and

ϕ(u, v) = ϕ(u)(2π(u − v))−1/2 exp

{−(B(u) − B(v))2

2(u − v)

}
(20)

The first-passage time probability can be easily computed with simple numeric quadrature

methods to evaluate the integrals in equation (18).

III. The Term Structure of Yield Spreads and Duration

A. Yield Spread

In this section we plot the term structure of yield spreads for varying values of the

parameters. We consider our model in conjunction with the Vasicek and the CIR short rate

12Additional expansion terms may be added to further improve accuracy.
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processes. For the Vasicek case, corporate bond prices can be approximated analytically.13

For the CIR case, we compute bond prices numerically. The yield spread is computed as

y(t, T ) =
1

T − t
log

P (t, T )

C(t, T )

=
1

T − t
log

1

1 − WΠ(t, T )
(21)

We note that the yield spread depends positively on the write down rate W and the forward

default probability Π(t, T ). Since we can interpret W as a proxy for priority and the forward

probability as a proxy for default risk, the model predicts yield spreads to be increasing in

default risk and decreasing in priority, which agrees with intuition.

In figure 1, we plot the yield spread for various values of the solvency ratio X(0). We

find that less solvent firms display a humped credit spread term structure, while the term

structure is monotone increasing for firms with high solvency. This is consistent with the

empirical results of Sarig and Warga (1989) and Bohn (1999).14 In addition, we find that

shorter term bonds are more sensitive to changes in the solvency of the issuing firms and the

sensitivity is highest for the low solvency (rating) bonds. For a corporate bond of four year

maturity, a fall in the solvency ratio from five to three increases the yield spread from 10 to

80 basis points. A fall in solvency ratio from three to two increases the yield spread from

80 to 330 basis points. For a corporate bond of twenty year maturity, the similar changes

in the solvency ratio raise the credit spread from 60 to 115 to 180 basis points, respectively.

Note that as maturity goes to zero, credit spread also goes to zero. This is standard in a

13See Appendix C for the application of Durbin’s rapidly convergent approximation formula for the Vasicek

specification
14Helwege and Turner (1998) find no empirical support for humped credit spread. However, Bohn (1999),

using a larger sample of low quality issues, finds strong evidence for humped credit spread.
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perfect information environment where investors observes the firm’s asset level.15

The intuition for the humped credit spread term structure is clear. For very low grade

bonds, the probability of default does not increase dramatically with maturity beyond the

first few years. More specifically, we can write the T year forward default probability Π(0, T )

as Π(0, T
2
) + Π(T

2
, T ), where Π(T

2
, T ) is the default probability conditional on no default in

the first T/2 years. In our model, Π(T
2
, T ) < Π(0, T

2
). In particular, for bonds with X(0)

close to 0, we have Π(T
2
, T ) << Π(0, T

2
). The easiest way to understand this decreasing

conditional default probability is through a simple binomial example. Assume that X(t)

can go up or down by 25 percent with equal probability each period. We see that the lower

support of the conditional distribution (conditional on surviving up to time t) is curtailed

at X(t) = 0. However, the upper support is increasing with t. The decreasing time t condi-

tional default probability is then a trivial consequence. Since our modeling approach allows

the firm to migrate between credit classes as its solvency changes, the decreasing conditional

default probability reflects a higher conditional expected credit worthiness. The prediction

of a decreasing conditional probability of default and the associated humped-shape yield

spread term structure for low solvency firms are, however, absent in the statistical mod-

els. Traditional statistical models assume instead a constant conditional default probability,

which is appropriate for the examination of the swap spread or generic corporate spread for

15However, in a noisy environment, such as the one described in Duffie and Lando (2001), a firm with asset

level lower than its book liability may be able to raise additional debt capital. In which case a credit spread

would exist even for a debt of zero maturity. Huang and Huang (2002) find empirical evidence that yield

spread does not shrink to zero with decreasing maturity. This empirical observation cannot be reconciled

with any of the known structural models and is a defect of this literature. We investigate in the empirical

section the degree to which this issue impacts our model’s pricing performance.
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a portfolio of bonds belonging to a given credit class, but is less well-suited for studying

individual firm default. Fons (2002) reports that annually, on average, 25% of all rated

corporate bonds migrate to different credit categories, suggesting that for the average firm,

X(t) is rather volatile.

In figure 2, we see that the yield spread is decreasing with µX . This is obvious. While

there is no ex-ante reason to expect a positive or a negative µX , we would expect µX to be

small in magnitude relative to the level of X for a firm not near bankruptcy. A large negative

µX would indicate a capital structure policy, which leads quickly to bankruptcy – a scenario

that appears unlikely. In the empirical section, we see that the estimated µX is small relative

to the level of X (usually 1/100th the value of X) and is typically insignificantly different

from zero. Contrasting to models with constant default boundaries, where the log-solvency

ratio has a positive drift due to the firm value’s risk-adjusted drift r, our model suggests a

higher yield spread for corporate bonds.

In figure 3, we plot the term structure of yield spreads for various values of ρXr. We see

that the yield spread is decreasing in ρXr. This observation has important implications for

the yield spreads paid by counter-cyclical firms (ρXr < 0) and cyclical firms (ρXr > 0) which

have otherwise identical credit ratings. For ρXr > 0, the firm’s default probability increases

(or X decreases) when interest rate decreases. The former effect decreases the corporate

bond price while the latter increases it, creating offsetting effects. It is worth noting that

ρXr impacts the default probability substantially in our static comparison, and the effect is

intensified by both maturity and solvency. The difference in yields between the following

two sets of parameters {X(0) = log(2), ρXr = 0} and {X(0) = log(2), ρXr = 0.15} at 4

year maturity is around 35 bps, while the difference between {X(0) = log(5), ρXr = 0} and
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{X(0) = log(5), ρXr = 0.15} at the same maturity is less than 5 bps. So a less solvent firm

suffers a larger increase in yield spread when ρXr decreases. However, the yield difference

between {X(0) = log(5), ρXr = 0} and {X(0) = log(5), ρXr = 0.15} at 20 year maturity

increases to around 40 bps. So a longer maturity corporate debt suffers a larger increase in

yield spread when ρXr decreases.

Recall the formula for ρXr:

ρXrdt =
ρrv(γv − βv) + (γr − βr)

σX

dt, (22)

where γr and βr are, respectively, the sensitivity of the continuation (V ) and the bankruptcy

(K) values of the firm to interest rate shocks, and γv and βv are, respectively, the sensitivity

to firm fundamental shocks.

Positive shocks to the firm’s fundamentals should increase both the firm’s continuation

value and bankruptcy value. Therefore, γv and βv should be positive. In addition, we expect

the continuation value of the firm to have a higher loading on firm fundamental shocks,

resulting in γv − βv > 0. We also expect the correlation between the shocks to the firm

fundamentals and the interest rates (ρrv) to be negative. Therefore, for ρXr to be positive

(which is observed in seven out of the nine firms in our empirical study), βr must be more

negative than γr, suggesting that the bankruptcy value of the firm is more sensitive to

interest rate shocks than the continuation value of the firm. This scenario is unlikely if the

bankruptcy value represents the value of a portfolio of liquidated plants and equipments.

However, if the bankruptcy value represents, instead, the value of a restructured new going-

concern, then it is possible that the shadow value of the new going-concern (which is K)

would have a higher sensitivity to interest rate shocks.
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Kahl (2002) reports that a significant fraction of the firms in bankruptcy emerge out

of Chapter 11 as restructured going-concerns rather than being liquidated. The process of

restructuring often recapitalizes the new concerns (almost entirely) with short-term debt

financing and then rolls the bridge financing into longer term loans as the firm’s credit

quality improves. Equity financing usually is not an option for these firms fresh out of

Chapter 11. From the discussion above, we can extract the market’s expectation of the

bankruptcy outcome of the firm conditional on default from the estimated ρXr. A positive

ρXr would suggest that the firm would likely restructure to become a new going concern

upon entering bankruptcy, while a negative ρXr would suggest that the firm would likely be

liquidated.

In figure 4, we see that the yield spread is increasing with σX . The more volatile is the

firm’s log-solvency ratio, the more likely default occurs. From equation (6) we know that:

σ2
X = (γr − βr)

2 + (γv − βv)
2 + 2ρrv(γr − βr)(γv − βv). (23)

Therefore, the volatility of the solvency ratio depends most importantly on the relative

responses of V and K to the firm fundamental shocks and the interest rate shocks. If V and

K respond in near tandem to the two shocks, then σX is small and vice versa. We note that

for a growth firm, V is likely to be substantially more volatile than K, suggesting a high

cost of debt financing even if X is high.

In figure 5, we plot the yield spread for various values of the write down ratio W . The

yield spread increases with W as expected. The greater the loss of value to the principal

during the debt renegotiation, the greater the risk premium demanded up front. We note,

however, that since W does not impact the default probability; it also does not impact
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the curvature of the yield spread. Thus, insofar as yield spreads and credit ratings issued

by rating agencies reflect both the default probabilities and debt write downs, our model

can disjoin the two effects easily by examining the shape and the level of the yield spread.

For statistical models, disjoining the effects of the write down ratio W from the default

intensity is impossible. The ability to estimate the write down ratio provides some real

advantages. Traditionally, the recovery rates (1 − W ) for different debt priority classes can

only be estimated from bond issues that have been defaulted on (see Altman (1992), Frank

and Torous (1994), and Fons (2002) for studies on recovery rates for different priority and

rating classes). This severely limits the size of the sample. With our model, we can estimate

the recovery rates using all traded debt issues, which significantly increase the size of the

sample.

B. Duration

We now turn our attention to the duration of corporate bonds. We can write the

duration of the corporate discount bond as:

∂C(t, T )/∂r

C(t, T )
= −∂P (t, T )/∂r

P (t, T )
− ∂(1 − WΠT

t )/∂r

(1 − WΠT
t )

(24)

where it is convenient to interpret 1−WΠ(t, T ) as the risk and interest rate adjusted recovery

rate on the loan. Bond prices respond to changes in the short rate through two channels.

First, the discounted value of the bond’s promised cash flows depends critically on r; this

is the Treasury component of the corporate bond. Second, the adjusted recovery rate may

also depend on r since the probability of default may depend on r. For the Vasicek model,

Π(t, T ) does not depend on r, so the duration is always equal to the duration of a Treasury
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bond. For the CIR model, Π(t, T ) does depend on r. From equation (??), we see that X(t) is

increasing in r(t) (or Π(t, T ) is decreasing in r(t)) when ρXr > 0, and vice versa. Therefore,

when ρXr > 0, the risk and interest rate adjusted recovery rate is increasing in r(t), suggesting

a duration for the corporate bond that is lower than the Treasury discount bond, which is

consistent with the observation of Chance (1990). However, numerically, the impact of an

increase in the instantaneous short rate is non-existent on the forward default probability

Π(t, T ). Numerically, we are unable to produce negative durations within reasonable or even

extreme ranges of parameters. So we do not predict negative durations. This prediction

distinguishes our model from credit models with constant default boundaries, where negative

duration is easily produced for low grade bonds. We consider the prediction of non-negative

durations intuitive and desirable; there is no empirical evidence substantiating the existence

of negative duration bonds.

IV. Empirical Analysis

The tractability issue has limited the empirical analysis of structural models. To re-

duce the computational complexity of the estimation problem, model parameters are often

calibrated rather than estimated from actual price data. The calibrated model is then used

to fit the price data to determine model performance. Using this approach, Jones, Mason

and Rosenfeld (1984), Ogden (1987) and Lyden and Saraniti (2000) have found Merton type

models to overprice corporate bonds. In an expanded study, Eom, Helwege and Huang

(2002) examine five structural models (including also Geske (1977), Longstaff and Schwartz

(1995), Leland and Toft (1996), and Collin-Dufresne and Goldstein (2001)) and find that
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Longstaff and Schwartz (1995), Leland and Toft (1996) and Collin-Dufresne and Goldstein

(2001) models is able to deliver higher yield spreads because of the inclusion of stochastic

default-free rates; however, the pricing error is large (the average error for the models is

more than 100% of the predicted yield spreads), and extremely large or small spreads are

common. The poor performance may be attributed partly to the accuracy of the parameter

calibration exercise. However, more interesting is the evidence that all five models are found

to have particular difficulties pricing bond issues from firms with low leverage ratios and

low firm value volatilities; bonds with short durations are also priced with greater errors. In

this section we explicitly address the calibration concern by estimating all model parameters

with price data. We find that our model produces pricing errors that are the same size as

the bid-ask spreads of the bonds. In addition we do not find difficulties pricing bonds from

firms with low leverage ratios and asset volatilities or with low durations.

For our empirical study, we use the parametric model with the Vasicek default-free

term structure specification. We note that no essential benefits are gained by adopting the

CIR specification, which is computationally much more intensive. Since our focus is on the

term structure of the yield spread rather than on the Treasury yield curve, we adopt the

more convenient Vasicek specification here.16 We derive the approximation to the forward

default probability for the Vasicek specification in Appendix C.

A. The Data

16In a numerical exercise, we find that term structures of yield spreads produced under the CIR specification

can be reproduced almost exactly using the Vasicek specification. The average root mean square error

between the CIR and the Vasicek term structures of yield spreads is 0.8 basis points.
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We estimate the model for corporate bonds issued by nine different issuers with S&P

bond ratings ranging from AAA to BB. The empirical exercise is not exhaustive due to the

computational intensity of the estimation. We seek instead to illustrate the applicability of

the model for various risk classes. Firms represented in this sample are selected to satisfy

the following screening criteria.

1. NYSE listed and traded – A numbers of corporate bonds are now listed and traded on

the NYSE Automated Bond System. Daily closing prices on these bonds are available

from Datastream. In addition, the traded volume as well as the bid-ask spreads are

available from the NYSE quote reporting system. This requirement ensures that the

reported prices are traded prices rather than soft quotes or matrix inferred prices.

2. Liquid issues – as determined by examining the trading volume and daily price move-

ments.

3. Dollar denominated.

4. Non-callable.

5. No sinking fund requirement.

6. Have at least 5 years of daily data ending in December 1999.

7. Have more than two bond issues in the same claimant class satisfying 1-6.

Bond issuer and issuance information are collected from SDC and cross-referenced

against information in Datastream and the S&P Bond Guide. The summary statistics of the

selected bond issuers and issues are listed in Table 1.
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It is worth noting that the average bid-ask spread (quoted in yields) for the bond

issuers in our sample is about 40 basis points. The bid-ask spread data are collected from

the NYSE Automated Bond System for all currently traded bonds issued by the 9 firms in

our sample. The large bid-ask spread alerts us to micro-structure problems such as return

auto-correlation arising from bid-ask bounce. The concern, however, is moderated by using

monthly frequency data.

The price data for the selected bonds are obtained from Datastream. To avoid the

problem with stale data resulting from non-trading, we create monthly price data from daily

data. Specifically, we mark consecutive days of identical prices as stale and then create

monthly price data using the first trading day of the month. If the first trading day price

is stale, a missing data flag is inserted and the particular data point is discarded in our

estimation. Finally, prices are adjusted for accrued interest. For the Treasury rates, we

construct the appropriate default-free term structure for each first trading day in the sample

using the Vasicek model and the yield information from the corresponding Treasury strips.

The fitted error of the Vasicek model in yield is 11 basis points, which is consistent with

what is reported in Duffee (1999), who also calibrates a Vasicek model for computing credit

spreads.

B. The Method

The time t price of corporate bond j with face value $1, coupon rate D, and M

remaining coupon payments is computed as:

Vjt =
∑
m=1

D · C(t, Tm; θ,Wj , X(t)) + C(t, TM ; θ,Wj , X(t)) (25)
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where C(t, Tm; θ,Wj , X(t)) is computed by (11), and we make explicit the dependence on

the parameter vector of firm characteristics θ = (µX , σX , ρX), the write down Wj, and the

state variable X(t).

Under the null, at the true vector of firm characteristics θ∗, true write down W ∗
j , and

the true realized state variable X∗(t), the observed bond yield Ỹjt for bond j at time t is:

Ỹjt = Yj(θ
∗,W ∗

j , X∗(t)) + ε̃jt. (26)

where ε̃jt is measurement error.

Since we do not observe the true log-solvency ratio X∗(t) directly, we must impose

moment restrictions to estimate X̂t for each time t.17 This leads naturally to the following

set of conditional orthogonality conditions (one restriction for each time t observation for

each corporate bond j):

E
[
Ỹjt

]
= Yjt(θ

∗,W ∗
j , X∗(t)) for j = 1 · · · J and t = 1 · · ·T (27)

where j indexes over the J bonds issued by the firm, and t indexes over the T price obser-

vations.

To further restrict the filtered time series of the state variable X̂, the following orthog-

onality conditions on the conditional mean, variance, and covariance are needed:

E [∆X∗(t)] = µ∗
p for t = 1 · · · T (28)

and

E
[(

∆X∗(t) − µ∗
p

)2
]

= σ∗2
X for t = 1 · · ·T (29)

17We use ∗ to indicate the true parameter vector or state variable. We useˆto indicate the sample estimates

for the true parameter vector or state variable.
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and

E
[(

∆X∗(t) − µ∗
p

)
(∆r(t) − a(r(t − 1) − b))

]
= σrσ

∗
Xρ∗

Xr for t = 1 · · · T (30)

where µ∗
p is the physical drift of the process X∗ and a, b, and σr are parameters of the Vasicek

short rate process.

Additionally, we impose the restriction that, for a given issuer, bonds which belong to

the same priority class, have the same write down Wj. This restriction is imposed directly

in the bond pricing formula and does not appear in the set of moment restrictions.

Summarizing, for each time t observation, we have J + 3 orthogonality conditions,

where J is the number of bonds included in the sample for the given issuer. Suppose we

have 120 months of observations for four bonds in two priority classes from the same issuer;

we would have 120 ·(4+3) = 840 moment restrictions, with which to estimate 126 unknowns

(120 X̂t’s, 2 Ŵj’s, and 1 µ̂p, µ̂X , σ̂X , and ρ̂X).

While there are other ways to impose the restrictions on the filtered state variable X̂,

the point restrictions defined above prove to be convenient for stating the estimation problem

in the context of GMM. The dimension of the estimation problem appears to be extremely

high at first glance. However, with the judicious selection of a special block diagonal matrix,

we can reduce the dimension of our minimization problem. We now state the objective
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function to be minimized:18

Q(θ,W,X, µp) =




ũ1(θ,W,X1, µp)

ũ2(θ,W,X2, µp)

...

ũT (θ,W,XT , µp)




′ 


Ω̂ 0 · · · 0

0 Ω̂ · · · ...

...
...

. . .
...

0 · · · · · · Ω̂




−1 


ũ1(θ,W,X1, µp)

ũ2(θ,W,X2, µp)

...

ũT (θ,W,XT , µp)




(31)

where ũt(θ,W,Xt, µp) is the time t vector of sample moments corresponding to the restrictions

defined in (27) to (30). We postpone the discussion on how to estimate Ω̂ until a few

paragraphs later.

We know that the GMM estimates {θ̂, Ŵ , X̂, µ̂p} associated with our particular choice

of weighting matrix converges in probability to the true parameters {θ∗,W ∗, X∗, µ∗
p}. In

fact, the block diagonal weighting matrix improves efficiency over the standard unrestricted

weighting matrix from a two stage procedure when the pricing errors are uncorrelated across

time (See Cochrane (2001) for a detailed discussion on choosing the GMM weighting matrix).

The benefit of our block diagonal weighting matrix is most evident when we rewrite

equation (31) as:

Q(θ,W,X, µp) =
T∑

t=1

[ũt(θ,W,Xt, µp)]
′ Ω̂−1

t [ũt(θ,W,Xt, µp)] (32)

Note, for a particular choice of {θ,W ,µp}, the t-th term in the summation depends only on

X(t). Therefore, minimizing Q, given {θ,W ,µp}, is the trivial task of minimizing the sum-

mation term by term – or performing one variable minimization T times. This, then, allows

us to treat Q(θ,W,X(θ,W, µp), µp) as a function of only θ, W , and µp in our minimization.

We make the additional restriction {Ωt = Ω; t = 1 . . . T}.
18Note, we estimate each issuing firm separately, since our model does not specify the interactions between

firms.
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We estimate Ω̂ using the following two stage procedure. In the first stage, the identity

matrix is used as the weighting matrix for the GMM estimation. Corresponding to the

consistent first-stage parameter estimates {θ̂1, Ŵ 1, X̂1, µ̂1
p} we have the following sample

moments {ũ1(θ̂
1, Ŵ 1, X̂1

1 , µ̂1
p), . . . , ũT (θ̂1, Ŵ 1, X̂1

T , µ̂1
p)}. The inverse weighting matrix Ω̂ is

then estimated as:

Ω̂ = Γ̂0 +
2∑

n=1

(
1 − n

3

)(
Γ̂n + Γ̂′

n

)
(33)

where

Γ̂n =
1

T

T∑
t=n+1

[
ũt(θ̂

1, Ŵ 1, X̂1
t , µ̂1

p)
] [

ũt(θ̂
1, Ŵ 1, X̂1

t , µ̂
1
p)
]T

. (34)

Note that the weighting matrix we estimate is adjusted for serial correlation between

observations (see Hamilton (1994)).

Finally, it is important to realize that given the orthogonality conditions that we have

defined and the pricing formula associated with the Vasicek specification of the default-free

interest rate, some parameters can be reliably estimated while others cannot. From the

formula for the default probability Pi(t, T ) presented in Appendix C, we see that we cannot

separately identify X∗
t , µ∗

X , ρ∗
Xr and σ∗

X using only the moment conditions specified in (27),

(28), and (29). Using these restrictions, only the standardized parameters
X∗

t

σ∗
X

,
µ∗

X

σ∗
X

and
ρ∗Xr

σ∗
X

can

be estimated. The moment condition defined in (30) is required to disjoin these parameters.

Performing the GMM estimation (to estimate only the standardized parameters) without

the orthogonality condition defined in (30), we find that
µ∗

X

σ∗
X

and
ρ∗Xr

σ∗
X

can be estimated very

accurately, while µ∗
X , ρ∗

Xr and σ∗
X are estimated with much lower degrees of confidence.

C. The Results
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Table 2 presents the parameter estimates and their standard errors for each of the 9 corporate

bonds. The row RMSE reports the average bond pricing errors in yields for each firm. The

average pricing error is 39 basis points. Recall that the average bid-ask spread for the firms

in our sample is 41 basis points, so the RMSE is quite low compared to the precision of the

data.

We report the average solvency ratio V/K and log-solvency ratio X̂t also. Observe

that both the estimated µ̂p and µ̂X are between 1/10th to 1/100th the size of X̂t. In fact,

we cannot conclude that µ̂p and µ̂X are different from zero! We expect this to be the case. If

the µ’s were large compared to X, then the firm drifts deterministically toward 100 percent

equity financing or 100 percent debt financing. This cannot represent a stationary (or even

reasonable) capital structure policy.

The estimated ρ̂Xr is significantly different from zero for only 3 out the 9 firms; we have

alerted the reader to the difficulty of estimating the non-standardized parameters before. The

standardized estimates ˆρXr

σX
, which are not separately reported here, are all significantly non-

zero, suggesting that the interaction between the default-free interest rates and the default

probability is important in determining the corporate yield spreads. (though the resulting

pricing impact may be small).

In addition, for 7 out of the 9 firms, the estimated ρ̂Xr is positive. A positive ρXr

indicates that the forward probability of default is negatively correlated with the interest

rate, or that changes in the yield spread are negatively correlated with the changes in the

interest rate. This is observed in Longstaff and Schwartz (1995) and confirmed in Taurén

(1999) and Duffee (1999). However, in contrast to LS, increases in r do not necessarily reduce

the default probability and the yield spread (and in the Vasicek case, interest rate shocks
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do not ‘cause’ any change to the default probability and the spread). We emphasize that

there is no causal relationship between the interest rate and the firm default probability (in

the model we estimated). The observed negative correlation between yield spread changes

and interest rate changes indicates that the firm’s bankruptcy value K is more sensitive to

interest rate shocks than the firm’s market capitalization value V . Recall that K is more

sensitive to the interest rate if, at default, the firm is expected to emerge from the debt

renegotiation with high leverage. The ‘shadow’ value of this new going-concern (which is

K) would then have a higher sensitivity to interest rate shocks than would the current firm

value V .

As we mentioned before, our model allows W and the forward default probability to be

estimated separately. Of the 9 issuers in our sample, 7 issuers had junior debts outstanding

only. Franks and Torous (1994) and Altman (1992) report that the average write downs for

junior debt issues are 0.693 and 0.720 respectively. In our sample, the average write down

for junior debt issues is 0.7582. In addition, Franks and Torous (1994) also finds that the

average write down for guaranteed issues is 0.395. We have only one issuer with 4 guaranteed

notes outstanding, and we estimate a write-down of 0.3852 for those issues. For senior issues,

Franks and Torous (1994) find an average write down of 0.530. We have one issuer with 2

senior bonds, and we estimate a write down of 0.4982 for those issues. One useful empirical

feature of the model is the estimation of default write downs using bond data from non-

defaulting firms. In Altman (1992) and Franks and Torous (1994), the samples include only

firms that have filed for bankruptcy protections. The current method, by comparison, can

estimate write downs using bond data on solvent issuers, which provides researchers with

more cross-sectional observations.
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We now present evidence that the model does not show systematic pricing errors with

respect to the time to maturity of the corporate bonds or the leverage ratio or the volatility

of the firm value. To examine the relationship between the model pricing errors and the time

to maturity of the bond, we regress the pricing errors on time to maturity for each bond

(33 regressions in total). The average absolute value of the t-statistic for the coefficient is

1.18, suggesting no statistical significant relationship. In our data sample, the shortest time

to maturity was more than two years. Therefore, it is possible that mispricing at the very

short maturities suggested by Duffie and Lando (2001) and Huang and Huang (2002) cannot

be observed clearly. To address the pricing error bias reported by Eom, Helwege and Huang

(2003), we examine the RMSE for each of the nine firm with respect to the volatility of the

equity value and the book debt ratio as well as with respect to the volatility and the level

of the log-solvency ratio. No discernable relationships are observed.

These results combined with the smaller pricing errors, relative to what have been

empirically measured using other structural models, give us confidence that our model can

be applied fruitfully in practice when combined with our proposed estimation technique.

Specifically, our model can be used to determine the price of a firm’s new or infrequently

traded bond issues. We can estimate the bond pricing parameters for the issuer by applying

the model to its liquidly traded bonds. The estimated parameters can then be used to

compute the bond prices of the non-traded or less liquid bond issues that the issuer has

outstanding.

Finally, we document the relationship between the extracted log-solvency and other

firm characteristics. The extracted time series of the log-solvency ratio Xt is, of course,

highly correlated with the time series of the firm’s yield spreads. In Table 3, we report the
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regression of ∆Xt

Xt
on the firm’s excess equity returns (Rt−RTbill,t) and changes in the 10-year

yields (∆Y10yr,t). This is similar to the analysis that is performed by Longstaff and Schwartz

(1995) for average corporate yield changes (which reports R2 of 0.65)–but performed on

individual firms. We note that the Xt’s are increasing with the equity returns in 6 out of

8 issuers.19 The measured relationship between changes in the firm’s log-solvency and its

equity value is likely capturing the relationship between log-solvency and the firm’s market

debt ratio, since changes in firm’s market debt ratio and equity value are highly correlated.

The positive coefficient is therefore natural and should be expected. However, the regressions

are extremely noisy and we are unable to produce small enough standard errors to conclude

significance.20 Firms which report positive ρXr also have positive coefficients on the changes

in the 10-year yields (with the exception of ARCO); this, of course, is tautological and serves

as a check on our empirical procedure. However, only 2 of the 8 issuers have significantly

positive coefficient estimates. The results from the regressions are unfortunately mostly

insignificant. The low average R2 further suggests that we are far from understanding the

factors which drive the solvency of the firm.

From the empirical results, we believe that future structural models should attempt

to identify the factors which drive the firm value V and the default boundary value K. In

doing so we can place additional restriction on the solvency process X. This will allow us to

examine more carefully the relationships between the firm’s capital structure evolution and

the firm’s solvency as well as the costs of the firm’s financing.

19Pacific Bell is not a publicly traded entity.
20The average number of the time series observations is 80.
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V. Conclusion

This article presents a structural model of default risk that allows for tractable pricing of

corporate fixed rate debts. The model can be specified in conjunction with a wide range

of default-free term structure specifications. The theoretical properties of the model are

attractive and consistent with the empirical literature on default yield spread and risky

bond duration. In addition, the model compares favorablely with and offers improvement

over the existing structural models. We also estimate the model using panel data of bond

prices from 9 firms, and illustrate a relatively fast estimation technique as well as some

useful applications of our model. Our estimation technique offers obvious advantages over

the calibration techniques that have been applied to study structural models. We find that

our model, combined with our GMM estimation, produces low pricing errors and do not

suffer from the pricing biases observed by recent empirical studies on existing structural

models.

Appendix

A. Proof of Equation (14)

Under the spot risk adjusted probability measure Q, we can decompose Zx into ρxrZr and

√
1 − ρ2

xrZo, with Zo a standard Brownian motion orthogonal to Zr. Shifting the processes

to the forward risk adjusted measure QT the appropriate drift adjustments are:

d




ZQT
r (t)

ZQT
o (t)


 = d




Zr(t)

Zo(t)


−




s(t, T )

0


 dt (A1)
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The two Brownian motions ZQT
r and ZQT

o are still orthogonal and therefore constitute a two-

dimensional standard Brownian motion under QT . The dynamics of XQT can be written

with respect to ZQT
r and ZQT

o as:

dXQT (t) = (µX + ρXrσXs(t, T )) dt + ρXrσXdZQT
r (t) +

√
1 − ρ2

XrσXdZQT
o (t) (A2)

To simplify, we can define a standard Brownian motion ZQT
X :

ZQT
X (t) = ρXrZ

QT
r (t) +

√
1 − ρ2

XrZ
QT
o (t) (A3)

and (14) follows.

B. Proof of Equation (17)

Recall equation (14),

dXQT = [µX + ρXrσXs(t, T )]dt + σXdWQT
X (B1)

rewriting, we have

dWQT
X =

1

σX

(
dXQT (t) − µXdt − ρXrs(t, T )dt

)
(B2)

integrating (and noting that XQT (y) = 0), we have:

WQT
y − WQT

t =
XQT (t) + µX(y − t)

σX

+
ρXr

σX

∫ y

t
s(u, T )du. (B3)

C. Durbin’s Rapidly Convergent Approximation for the Forward Default Probability

38



We apply Durbin’s rapidly convergent approximation method to compute the default prob-

ability for the Vasicek specification of our model. The Vasicek short rate process is

dr(t) = a(b − r(t))dt + λdZQ
r (t) (B4)

Applying equation (17) and realizing autonomous nature of our problem, the boundary

formula is:

B(u) =
X(0) + µX(u)

σX
+

ρXr

σX

∫ u

0
λ

1 − e−a(T−s)

a
ds (B5)

=
X(0)
σX

+
ρXr

σX

λe−aT

a2
(1 − eau) +

(
µX

σX
+

ρXr

σX

λ

a

)
u (B6)

Applying Durbin’s approximation (18), the second order approximation is given by:

Π(0, T )({τ < T}) ≈
∫ T

0

(
X(0)
σX

1
u

+ C1

(
1
au

− eau

au
+ eau

))
ϕ(u)du (B7)

−C2
1

∫ T

0

∫ u

0

(
X(0)
σX

1
vC1

+
(

1
av

− eav

av
+ eav

))(
eau − eau − eav

a(u − v)

)
ϕ(u, v)dvdu (B8)

where

ϕ(u) =
1√
2πu

exp

{
−1

2

(
x(0)
σX

1
u

+ C2 + C1
1 − eau

au

)2
}

(B9)

ϕ(u, v) = ϕ(v)
1√

2π(u − v)
exp

{
−1

2

(
C2 − C1

eau − eav

a(u − v)

)2
}

(B10)

C1 =
ρXr

σX

λ

a
eaT (B11)

C2 =
µX

σX
+

ρXr

σX

λ

a
(B12)

We note from the formula above, it is not possible to simultaneously determine X(0),

µX , ρXr, and σX . Only the standardized parameters X(0)
σX

, µX

σX
, andρXr

σX
can be determined.
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Table 3: Regressing log-solvency Ratio (X) on Stock Returns and Changes in the 10-yr
Treasury Yield

Xt−Xt−1

Xt−1
= a + b1 (Rt − Rf) + b2 ∆Yt + ε

a b1 b2 R2

IBM 0.0016 0.5903 0.0564 0.0280
(0.0177) (0.4239) (0.0938)

Ford -0.0069 0.0743 -0.0966 0.0510
(0.0128) (0.1581) (0.1541) (0.0740)

RJR -0.0032 0.1888 0.1715 0.1611
(0.0094) (0.0996) (0.0528)

Eli Lilly 0.0040 -0.0315 0.0521 0.0081
(0.0147) (0.1652) (0.0878)

ARCO -0.0004 0.1308 -0.0114 0.0216
(0.0070) (0.1188) (0.0393)

UAL 0.0066 0.0885 -0.0590 0.0277
(0.0108) (0.1070) (0.0625)

Exxon 0.0036 -0.2145 0.0301 0.0302
(0.0096) (0.1981) (0.0575)

Safeway 0.0056 0.0714 0.2294 0.1639
(0.0121) (0.1249) (0.0726)

This table reports the coefficients and R2’s from regressing changes in the log-solvency ratio on the excess
firm stock returns and the changes in the 10-year Treasury yield. Standard errors are reported in the
parentheses. Note that the regression is performed for only 8 out of the 9 firms in our sample, because Pac
Bell is not a publicly traded entity.
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Yield Spread for Different Values of X
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Figure 1. This figure plots the term structure of yield spread for different values of the
log-solvency ratio X. The other parameters of the model are held fixed at µX = 0, ρXr =
0, σX = 0.3, and W = 0.5.

50



Yield Spread for Different Values of µX
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Figure 2. This figure plots the term structure of yield spread for different values of the risk
neutral drift µX of the log-solvency ratio process at X = log(2) and X = log(5). The other
parameters of the model are held fixed at ρXr = 0, σX = 0.3, and W = 0.5.
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Yield Spread for Different Values of ρXr
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Figure 3. This figure plots the term structure of yield spread for different values of ρXr

at X = log(2) and X = log(5). The other parameters of the model are held fixed at
µX = 0, σX = 0.3, and W = 0.5.
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Yield Spread for Different Values of σX
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Figure 4. This figure plots the term structure of yield spread for different values of σX

at X = log(2) and X = log(5). The other parameters of the model are held fixed at
µX = 0, ρXr = 0, and W = 0.5.
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Yield Spread for Different Values of W
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