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Abstract 

A 5-year STS project in geography, starting in 1999, evolved into 20 years of data collection 

about scientific data practices in sensor networks, environmental sciences, biology, seismology, 

undersea science, biomedicine, astronomy, and other fields. By emulating the ‘team science’ 

approaches of the scientists studied, the UCLA Center for Knowledge Infrastructures 

accumulated a comprehensive collection of qualitative data about how scientists generate, 

manage, use, and reuse data across domains. Building upon Paul N. Edwards’s model of ‘making 

global data’ – collecting signals via consistent methods, technologies, and policies – to ‘make 

data global’ – comparing and integrating those data, the research team has managed and 

exploited these data as a collaborative resource. This article reflects on the social, technical, 

organizational, economic, and policy challenges the team has encountered in creating new 

knowledge from data old and new. We reflect on continuity over generations of students and 

staff, transitions between grants, transfer of legacy data between software tools, research 

methods, and the role of professional data managers in the social sciences.  
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Collaborative Data Practices 

This Special Issue on “Ethnographic data generation in STS collaboration” invited STS 

researchers to reflect upon ways in which their own research echoes the collaborative practices 

they study. Our team, under one PI (Borgman), has conducted collaborative qualitative studies of 

scientific practices since the late 1990s, accumulating a rich trove of interviews, ethnographic 

notes, documents, and publications on studies of data practices in the physical and life sciences. 

As our focus has evolved from active data collection to consolidation of our findings, we write 

this article to reflect on our research methods, in theory and in practice, to offer lessons learned 

and guidance for others who may embark on similar journeys. We write in the first person, using 

“the royal we,” to represent the many members of the research team who have conducted this 

body of research over a 20-year period. The authors of this article are current or very recent 

members of the UCLA Center for Knowledge Infrastructures and its predecessors. Earlier 

members of the team, and our collaborators at UCLA and other universities, are represented by 

references to publications and projects in which they participated.  

What is now apparent as a 20-year project on scientific data practices began as a five-

year (1999-2004) effort to study the design and use of digital libraries in physical geography, 

conducted in collaboration with geographers and computer scientists. That project, known as the 

Alexandria Digital Earth Prototype (ADEPT), was not designed to frame a longitudinal study 

that would span many scientific domains, field sites, and research questions. As our data and our 

findings accumulated, their collective value become apparent. While our findings on uses of 

ADEPT in physical geography are reported in numerous publications (Borgman et al., 2000, 

2005; Borgman, Leazer, et al., 2004; Borgman, Smart, et al., 2004), the ethnographic notes, 

documentation, and interviews on which those papers are based languish in boxes of paper, 
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printouts, and legacy formats such as cassette tapes. The materials enshrine the body of work, but 

cannot be readily repurposed or integrated with data collected in subsequent studies.  

Mid-way into the ADEPT project, we became founding members of the Center for 

Embedded Networked Sensing (CENS), a National Science Foundation Science and Technology 

Center from 2002 to 2012 (Borgman et al., 2012, 2015; Borgman, Golshan, et al., 2016; 

Mayernik et al., 2013; Wallis et al., 2013a). Because our information-studies-based team was 

studying how CENS scientific teams collected and managed their data, we became more 

deliberate in managing our own data. We have digital records of our CENS data, along with 

codebooks for documenting them.  

As we expanded from geography, environmental sciences, biology, and seismology into 

astronomy and astrophysics, undersea science, and the biomedical sciences in later years, with 

other grants, more collaborators, and more staff, our methods became more systematic – and 

more problematic (Borgman, 2019b; Borgman, Darch, et al., 2016; Darch & Borgman, 2016; 

Pasquetto et al., 2017).  

Conducting each of these projects individually, and starting anew with data collection 

each time, would have been far simpler than combining them into a long-term research program 

that requires continuous data management. We experienced many of the data-handling problems 

encountered by our research participants, such as tradeoffs between resources spent on data 

management vs. new data collection, protecting data of dissertation-stage students vs. sharing 

data with our faculty collaborators, discontinuities in research questions between projects and 

sites, maintaining continuity in our research program while proposing innovative new directions 

to obtain new funding, recoding data to make comparisons, migrating data to new platforms, 

dealing with software and hardware upgrades, handoffs between personnel, and so on.  
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We discuss these challenges and tradeoffs, comparing our experiences with those of the 

scientists we study. As Paul N. Edwards (2010) learned in the climate science community, 

“making global data” is a prerequisite to “making data global.” Global data are those collected in 

consistent forms, usually based on agreements of methods and measures, so that they can be 

combined or compared. Investments in making global data span the entire research life cycle, 

from research design to data reuse. To make data global, which is the process of comparing, 

combining, and integrating data for scientific purposes, requires data science expertise. Whereas 

the importance of data science expertise is now being recognized in scientific domains, the 

prerequisite skills in curation and stewardship necessary to make global data rarely are part of 

graduate training in the sciences or social sciences.  

Research data are scientific assets that can be mined, combined, and bartered, but they 

also are liabilities. Maintaining and servicing data are continuing challenges for scientists and 

social scientists alike. The payoff for investing in data management is the ability to integrate data 

across projects to address larger research questions. After nearly 20 years of investing in global 

data, we are achieving the payoffs of making data global in our own research, while facing 

similar challenges in data integration and stewardship as those of our scientific research 

participants. This special issue is a timely opportunity to offer our reflections on these 

challenges.  

Open Science, Data Reuse, and Knowledge Infrastructures 

Open science policy, which includes open access to publications, data management plans, and 

data release with publications, is based on arguments for the value of replication, reproducibility, 

transparency, and reuse of research data for education and innovation (Borgman, 2015a; 

European Commission High Level Expert Group on Scientific Data, 2010; Networking and 
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Information Technology Research and Development, 2009; Organisation for Economic Co-

operation and Development, 2007; U.S. National Science Board, 2005). However, releasing 

scientific data often creates large burdens on researchers due to the labor and expertise involved 

in managing, curating, documenting, and providing access to those data (Borgman, 2015b; 

Mayernik, 2016a; Mayernik et al., 2013; Mello et al., 2020; Pasquetto et al., 2017, 2015; Wallis 

et al., 2013b). Many scientists view data sharing and release as unfunded mandates. Thus, the 

larger questions that drive our research agenda are to identify where the value lies in data 

acquisition and reuse, how costs and benefits are distributed among the many stakeholders in 

those data resources, and the practices by which scientists steward their data.  

Disciplines and Data 

Some disciplines invest heavily in maintaining data resources, such as astronomy, genomics, 

seismology, and certain areas of the environmental sciences. Other disciplines are characterized 

by local data management, sometimes keeping samples and digital data indefinitely and 

sometimes discarding them after associated publications are released. Our most consistent 

finding about data practices across disciplines is heterogeneity. Individuals keep some kinds of 

data and discard others. Disciplinary repositories acquire some kinds of data and reject others 

(Borgman et al., 2019). Scale is also a factor. Larger teams, especially those that generate larger 

volumes or varieties of data, are better able to invest in data management. Identifying these 

patterns, and theorizing relationships among them, is central to our agenda. 

Another STS finding of our research is that data practices are embedded in complex 

social and technological contexts. The theoretical lens through which we view scientific data 

practices is knowledge infrastructures, a term first coined by Edwards (2010, p. 17) as “robust 

networks of people, artifacts, and institutions that generate, share, and maintain specific 
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knowledge about the human and natural worlds.” Data practices can be studied at spatial, 

disciplinary, and temporal scales (Bowker et al., 2009; Edwards, 2003; Edwards et al., 2013; 

Ribes & Baker, 2007; Star & Ruhleder, 1994). 

Interdependencies of institutions also arise, as do relationships between software, code, 

data, and tools. Infrastructures that may appear durable often are fragile upon closer inspection 

(Borgman, Darch, et al., 2016). The very idea of “data” is problematized throughout our research 

(Borgman, 2015a, 2019b; Leonelli, 2016, 2019). Whereas science policies tend to imply that data 

are simply “facts,” or otherwise static and bounded objects, they are more commonly malleable, 

mobile, and mutable (Edwards et al., 2011; Latour, 1987; Leonelli, 2016). The ability to 

generate, use, and reuse data in these collaborative and interdisciplinary environments often 

requires “interactional expertise” in addition to domain knowledge and technical skills (Collins 

& Evans, 2007; Pasquetto et al., 2019). 

Research Agenda 

Our research agenda lies in Pasteur’s Quadrant, that of “use-inspired basic research” (Stokes, 

1997). As members of a professional school, we are acutely aware of the benefits of engaging 

with the communities we serve (ISchools, 2019). We partner with the research groups we study, 

reporting back periodically on our findings, and offering guidance on their data practices upon 

request. We also publish and give talks in these scientific communities (Borgman, 2017, 2018, 

2019a, 2019c; Borgman & Pasquetto, 2018; Darch, 2017, 2018b; Pasquetto, 2019; Wallis et al., 

2013a; Wofford et al., 2019). Our studies of scientific data practices began as a subcontract to 

ADEPT, a five-year (1999-2004) digital libraries research project on the use of a digital 

collection of physical geography content for teaching undergraduate courses. Collaborators on 

ADEPT, which was funded by the U.S. National Science Foundation (NSF), spanned geography, 
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earth sciences, computer science, education, and psychology. Our role was to address questions 

of what data were useful to physical geographers in their teaching and research and the degree to 

which the digital library would address those needs. Generally, we found that these geography 

faculty much preferred to draw data for teaching examples from their own research, rather than 

seeking external data resources. They were more interested in the digital library to manage their 

own research data than for its intended instructional purposes (Borgman, 2004a, 2006, 2004b; 

Borgman et al., 2000, 2005, 2001; Borgman, Smart, et al., 2004; Champeny et al., 2004; 

D’Avolio et al., 2005; Gazan et al., 2003; Leazer, Gilliland-Swetland, & Borgman, 2000; Leazer, 

Gilliland-Swetland, Borgman, et al., 2000; Mayer et al., 2002). 

 Our research design from the ADEPT project laid the foundation for studying data 

practices in Center for Embedded Networked Sensing (CENS), an NSF Science and Technology 

Center from 2002 to 2012. CENS, with five participating universities and 300 collaborators at its 

peak, spanned computer science, engineering, biology, environmental science, seismology, 

medicine and health, and other areas. Findings from ten years with CENS span four doctoral 

dissertations (Mayernik, 2011; Pepe, 2010; Shilton, 2011; Wallis, 2012), two masters theses, and 

approximately 100 publications. Overall, we identified a complex array of practices for data 

management, sharing, and reuse; mixes of incentives, disincentives, costs, and benefits of 

investing in data that varied by domain and team; vastly different concepts of “data” within and 

between collaborating research teams; and mapped social and authorial networks of CENS 

members and their external collaborators. 

 Starting in 2008, overlapping with CENS, we began to study data practices in astronomy 

as part of another large NSF center with collaborators from multiple physical and biological 

sciences, computer science, social sciences, and education. We partnered with the Sloan Digital 
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Sky Survey (SDSS) as they sought ways to curate, manage, and maintain access to a massive 

data resource as they neared the end of their funding for data collection. Astronomy differs 

greatly in scientific practices, infrastructure, scale, and other features from those of our partners 

in ADEPT and CENS. We leveraged our SDSS research to partner with other sites in astronomy 

and astrophysics. Overall, we find that astronomy has the most integrated knowledge 

infrastructure of any domain we have studied, spanning observational data, bibliographic 

records, archives, thesauri, software, and other resources (Borgman, Darch, et al., 2016). Yet, 

they too struggle with many aspects of data collection, processing, management, and reuse of 

data (Borgman et al., 2015; Boscoe, 2019; Darch, Sands, & Borgman, In Review; Darch, Sands, 

Borgman, et al., In Review; Darch & Sands, 2017; Sands, 2017; Wofford et al., 2019). 

 Concurrent with the astronomy research, we began studying two other large distributed 

collaborations, each at the invitation of their investigators. The first was in undersea science, 

where ocean drilling ships acquired core samples for physical and biological research. This body 

of work builds upon our ecological studies of CENS, given the scientific commonalities, and on 

the astronomy research, given the large-scale infrastructure required (Darch, 2016, 2018a; Darch 

& Borgman, 2016). The second collaboration is biomedicine, where a distributed and 

multidisciplinary array of labs, in a hub and spokes model, shares data about craniofacial 

abnormalities. While the biomedical collaboration is the farthest afield scientifically from our 

other sites, it has yielded striking comparisons in areas of data generation, reuse, and information 

policy (Pasquetto, 2018; Pasquetto et al., 2017, 2019, 2015, 2016). 

 In sum, we are studying multiple knowledge infrastructures, each of which has many 

components, and relationships among those infrastructures. In domains such as astronomy, the 

community has funding and critical mass to maintain sophisticated infrastructures that span 
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decades and countries (Borgman, 2015a; Borgman, Darch, et al., 2016). In domains such as 

undersea science, where data are sparse and disciplines are emergent, the community relies upon 

multiple infrastructures that are maintained by other stakeholders (Darch & Borgman, 2016). 

Domains such as environmental sciences and biomedicine fall somewhere in between, each able 

to build some portions of their own infrastructures and to rely on multiple infrastructures that are 

controlled by other stakeholders. 

Investing in Data Assets 

Acquiring and managing data in ways that they can be kept ‘alive’ for future reuse is a far 

different process than collecting data for a single grant project or a single dissertation in which 

data can be abandoned shortly after the publication of results. Commitments to data preservation 

pervade the process, from team building, research design, data collection, data management, and 

publication, to stewardship.  

Conducting each of these projects individually, and starting anew with data collection 

each time, would have been far simpler than combining them into a long-term research program 

that required continuous data management. However, by investing in our data management, we 

gained opportunities to reflect on the data handling challenges of our research participants, and 

to construct more nuanced interpretations by comparing new and old findings continuously. The 

overhead is considerable, but necessary to study multiple knowledge infrastructures across many 

domains over long periods of time. 

Following the work of Edwards (2010), we distinguish between the process of making 

global data and making data global. In his framing example, making global data is the process of 

developing technical, social, governmental, and policy agreements by which weather services 

around the world could collect data in consistent forms that could be shared. Standards were 
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lubricants in this century-long process, but friction remains a constant (Edwards, 2010; Edwards 

et al., 2011). Making data global is the process of integrating those data into computer models 

that could be used to model, predict, and theorize weather and meteorology. We have made 

similar investments in making global data, albeit on a significantly smaller scale. Subsequent 

generations of CKI researchers are now able to make these data global through comparisons over 

time and across projects. 

Acquiring Global Data 

In our case, the process of acquiring global data on scientific data practices can be grouped into 

several stages. To design research programs that produce reusable data, a first step is to take a 

team science approach and a second step is to build effective teams. Thereafter it becomes 

possible to pursue data reuse and integration across projects. 

Team Science 

The research groups we study reflect typical models of team science, with most researchers 

organized into groups of two to ten individuals. Team science, a much-studied research topic, 

offers benefits by assembling complementary expertise to address complex problems, balanced 

with the costs of communication and coordination (Bos et al., 2007; Cooke et al., 2015; Finholt, 

2002; Gorman, 2010; Hackman, 2011; Jirotka et al., 2013; Majchrzak et al., 2012; Meyer, 2007; 

O’Leary & Mortensen, 2010; G. M. Olson et al., 2008; J. S. Olson et al., 1993; Pepe, 2010; 

Shrum et al., 2007; Wagner, 2018) Among the features of team science that create challenges for 

research, as identified in a recent National Academies of Science (NAS) study, are high diversity 

of membership in terms of age, gender, culture, religion, or ethnicity; deep knowledge 

integration; and high task interdependence. Teams in all of our studies exhibited various 

combinations of these characteristics. The largest and most distributed teams we studied also 
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exhibited the features the NAS study identified for larger teams, such as goal misalignment, 

permeable boundaries, and geographic dispersion (Cooke et al., 2015). 

Team Building 

The UCLA Center for Knowledge Infrastructures (CKI), as our team is now known, grew out of 

a CENS science team of three: a professor, a post-doctoral fellow, and a graduate student. 

Following the model of CENS teams, this group became known as ‘the Borgman lab,’ and later 

the ‘data practices team,’ in partnership with the CENS statistics group (Borgman, Mayernik, et 

al., 2009). Over the 20 years of research work discussed in this article, more than 20 people were 

part of the CKI team, such as PhD students, postdocs, professors, graduate student researchers, 

volunteers, and staff. We sometimes had joint grants with faculty at other universities, creating a 

much larger science team.  

Thus, members of the CKI are a social science team that functions as a science team, with 

shared goals and infrastructure, collaborative writing practices, standing meetings every week, 

and joint responsibility for the data and other knowledge products we produce. Every grant 

proposal, paper, and talk is developed as a team and workshopped iteratively. Our practices 

reflect the benefits of integrating diverse knowledge and the overhead of coordination and 

building infrastructure.  

Data Reuse Practices 

Our team science practice is central to acquiring global data. Among the challenges of 

collaborative ethnographic research is that ethnographic methods tend to be highly personal, with 

one person developing relationships with research participants over long periods of time. 

Individual ethnographers are often highly proprietary about their methods, notes, recordings, 

transcripts, and other field data collection. Sharing those data with others who have not 
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participated in the research requires considerable explanation of context (Mannheimer et al., 

2018; Mauthner et al., 1998; Medjedović, 2011; Pasquetto et al., 2019).  

 We address these challenges by setting data reuse as a common goal for the team. As 

each new student or other collaborator joins the team, we establish expectations about data 

sharing within the team, while maintaining the confidentiality of our research participants. These 

are largely informal agreements, encoded in meeting notes but not subject to formal contracts. 

When students reach the stage of developing dissertation proposals and conducting their data 

collection and writing, we give them a proprietary period for sole use of their data until the 

dissertation is filed. Thereafter, those data, which were acquired under grants to the university, 

become part of the CKI pooled resources for comparative research. In most cases, those who 

collected the data participate in writing joint publications which result, receiving authorship 

credit accordingly. Most of our publications are joint-authored, whether comparing data from 

multiple sites or addressing themes such as data reuse.  

 In one large collaboration involving faculty collaborators from multiple universities, each 

of whom were employing students and post-doctoral fellows on the project, we agreed that 

individuals who conducted interviews would always receive acknowledgements, but not 

necessarily receive co-authorship credit. The collaboration was too large and the number of 

papers too many to bring everyone ever involved into the writing process. That model has 

worked well. Our publications always acknowledge funding sources and include mention of 

anyone whose interviews were used, which might sometimes be a single quotation, but who did 

not participate in writing that paper.  

 Our research participants faced similar challenges in acquiring data that would remain 

useful for their teams, and in distributing authorship credit (Borgman et al., 2012; Wallis, 2012; 
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Wallis & Borgman, 2011). Team science was the norm in the scientific groups we studied, which 

we guided our collaborative approaches. 

Research Designs for Collecting Global Data  

Collecting global data requires agreements on research designs that balance the need for 

continuity across grant projects and individual work such as dissertations. By anchoring our 

research designs in common protocols and human participants consent forms, we found that we 

could vary other aspects of investigations while creating a pool of data resources that could be 

reused by the CKI team in the future 

Common Protocols 

Our protocols for ethnographic observation, interviews, and document analyses began 

organically, designed for our early grant projects. These were largely constructed, tested, and 

implemented by two students whose dissertations addressed data practices in CENS (Mayernik, 

2011; Wallis, 2012). Core questions about data collection, analysis, sharing, reuse, and 

management provided continuity in other CENS studies. With that anchor, we could pursue new 

avenues and nuanced aspects of prior findings (Borgman, Bowker, et al., 2009; Borgman et al., 

2012, 2014, 2006; Borgman, Wallis, & Enyedy, 2007; Borgman, Wallis, Mayernik, et al., 2007; 

Mayernik et al., 2013; Wallis et al., 2013a, 2007).  

 Core protocols that were developed for CENS proved reasonably robust for application to 

astronomy, undersea science, and biomedicine. We developed complementary questions to 

explore the specifics of these domains. Each grant proposal and dissertation pursued new 

research questions, with our overarching questions remaining at the core of our inquiries. 

Similarly, our scientific research participants often pursued common goals throughout their 

careers, carving out pieces of the larger problem for individual grants and dissertations. 
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Informed Consent  

To maintain access to our interviews, observations, documents, and other data from each project, 

we needed consent from the participants of our research. Working with our university’s 

Institutional Review Board (IRB), we developed consent forms that asked participants for 

permission to reuse interview recordings, transcripts, and notes in subsequent research by the 

team. Research participants could opt out of allowing reuse, opt out of recording, and withdraw 

from the project at any time, but almost all of our participants granted permission for us to reuse 

their data in later studies. We promised confidentiality, following the usual IRB rules, and did 

not request permission to contribute the data to a public repository. In later studies, we asked 

both for consent to participate in the research and a “deed of gift” for the interview recording and 

transcript to ensure that these documents could be reused. The alternative, which we encountered 

in our later studies in biomedicine, is to “reconsent” participants to reuse their data in other 

projects. Locating, contacting, and getting permission from participants interviewed or observed 

years earlier is untenable. Rather, a broader initial consent process enhances the ability to acquire 

global data.  

 Neither audio recordings nor transcripts can be anonymized. We are studying well known 

scientific projects; others in the field could readily identify individuals if these materials were to 

be released. Thus, we struck a middle ground that maintained confidentiality while allowing us 

to reuse data for subsequent projects on related topics. 

 The human subjects research permissions granted by our IRB must be renewed annually, 

with associated reports on data collection and analysis, both retrospective and planned. If we 

were to allow those permissions to lapse, we would not be able to analyze data from prior 

projects. 
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Making Data Global 

Our efforts to maintain our data for reuse also began organically. Open science was in its 

ascendancy in the early days of our research program, and data management was a new topic in 

the field of Information Studies, known as ‘iSchools’ (ISchools, 2019). The CKI team has 

consisted largely of information studies students, a field that addresses the collection, selection, 

organization, curation, preservation, and accessibility of information. This educational 

background gives iSchools an advantage in acquiring global data and especially in making those 

data global. As individuals without a background in information studies later joined the team, we 

trained them in data management skills and in the ethics of data sharing. Even with expertise in 

data management and STS, making our data global required dedicated effort.  

Curation 

Curation activities are necessary to make data global, by which we mean processes of 

standardizing data in ways that they can be integrated with other data into larger models 

(Edwards, 2010, Chapter 10). In scientific contexts, these are local processes to add metadata, 

map variant terms to common forms, organize files, store and migrate files, preserve and steward 

records, and other ways to add value for future use of the data. In the scientific teams we study, 

most of these curation activities are ad hoc, falling to individual graduate students or post-

doctoral fellows who may have minimal (or no) training in data curation. The smaller the team, 

the more ad hoc the processes tend to be, as the few people involved are able to share their 

knowledge locally (Mayernik, 2011, 2016b, 2017; Mayernik & Acker, 2017).  

Of the domains we have studied, astronomy has the most formalized processes of 

metadata creation, data reduction pipelines, and standard sets of analytical tools. In large 

astronomy endeavors, such as the Sloan Digital Sky Survey and the Large Synoptic Survey 
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Telescope, as much as half of the overall budget may be devoted to data management. We also 

found that data curation in small astronomy teams tends to fall to graduate students and post-

doctoral fellows (Borgman, Darch, et al., 2016; Boscoe, 2019; Goodman et al., 2014; Pepe et al., 

2014; Scroggins & Boscoe, In Review; Wofford et al., 2019). 

Ad Hoc Data Curation 

When the ‘Borgman Lab,’ precursor to the CKI, consisted of two to four individuals, we too took 

an informal approach to data curation. We stored files on multiple local computers for 

redundancy, stored paper records in file cabinets, and documented records as necessary for each 

publication. Each interviewer had full responsibility for transcription and annotation of interview 

records. After several years of observation, and our first large round of interviews, we had 

sufficient material that we needed codebooks and metadata to annotate our files. We chose 

NVIVO for qualitative data analysis, importing Word files, and marking up our growing 

collection of interviews, notes, and other records as NVIVO files. At the time, this software had 

the best functionality available, despite its limitations in exporting files, as discussed further 

below.  

Scaling Up: Professional Data Management 

As grants grew larger, we included data management responsibilities in the job duties of an 

individual. At first, we hired masters students in information studies at about 25% time to 

maintain our data resources. They had skills in metadata and records management, could process 

interview transcripts, keep track of records, and correspond with research participants to set up 

interviews and send corrected transcripts. Delegating data curation to part-time masters students 

sufficed for a few years, but lacked continuity as the team and the data corpus grew in size. 
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When an opportunity arose in late 2013 to reorganize our staffing, we hired a full-time data 

manager with an MLIS degree and background in the sciences.    

An essential, but often under-appreciated role a data manager can play in long-term 

research projects is to maintain bibliographies. Over the course of 20 years, we have 

accumulated more than 10,000 references in Zotero  (Zotero, 2019) that represent the 

bibliographies of all of our publications, including dissertations and books; references to articles, 

documents, and books relevant to our research; and documents related to the teams and 

individuals we study. We mine this rich resource continuously as we write new papers, and as we 

assemble our annual reports to our funding agencies.  

Data management is a growth area for individuals with graduate degrees in library, 

information, archives, and related areas of study. Data curators are “care givers” who preserve 

data for future work while maintaining policies, procedures, and promises associated with the 

context of the research (Baker & Karasti, 2018; Darch & Borgman, 2016; Jørn Nielsen & 

Hjørland, 2014; Pryor & Donnelly, 2009; Puig de la Bellacasa, 2011; Swan & Brown, 2008; 

Yakel, 2007).  

Our investment in a professional data manager accelerated our ability to acquire global 

data and to make those data global. By delegating core data curation tasks, plus initial 

corrections to transcripts and coding, our intent is to give other team members more time for 

field research, data analysis, and writing. However, removing the responsibility for creating 

transcripts and routing access to the data corpus through a data manager can add distance 

between researchers and their participants.  

We address this gap between qualitative researchers and their data in several ways. 

Individual researchers return to their data by listening to recordings, reading transcripts, adding 
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more metadata, and writing interpretive memos to suit their inquiries. We involve the data 

curator in the research process by participating in selected interviews and observations and in 

writing. Our data curator, having listened to audio recordings of interviews, cleaned transcripts to 

correct scientific terminology and idioms, and conducted initial data coding passes, has intimate 

knowledge of our data resources that transcends that of any individual on the team.  

Data Integration Practices 

Integrating and reusing data globally requires long-term active management. Even with extensive 

experience in data management, our researchers find qualitative datasets difficult to integrate, 

frequently requiring additional cleaning and management prior to comparative analysis. 

Reflecting back on how we addressed these challenges, our approaches fall into two categories: 

crosswalks and software tools. 

Metadata Crosswalks 

Our efforts to make global data began organically, tested through iterative efforts to reuse data as 

our research on scientific data practices evolved. We began with a method widely used in library 

and archival practice, which is to build ‘crosswalks’ between the metadata in each of our 

protocols (Getty Research Institute, 2020; Library of Congress, 2020). By comparing questions 

in different interview protocols, we could integrate our data descriptions into a common 

codebook, as shown in Figure 1. This continual reintegration reflected observations in our own 

research sites where teams actively manage historical data to work with newer data collected 

using modern methods (Boscoe, 2019).  
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Figure 1: Crosswalk of two early CENS protocols. 

 Following our initial exploration into data reintegration through crosswalks, we 

continued to modify and supplement our codebooks and protocols with each additional 

infrastructure. The gradual process, transpiring over almost twenty years, is mapped in Figure 2. 

Rather than abandoning previous research questions, codebooks, or protocols, we adjusted each 

iteration to incorporate new research topics thus simplifying comparative analysis. When 

feasible, we reanalyzed earlier data with new research questions in mind.  
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Figure 2: Mapping between research topics, protocols, codebooks, and papers.   

Software Tools for Data Analysis 

Building these crosswalks between protocols and mapping them to research questions, 

codebooks, and publications were essential steps in data integration, or making our data global. 

These steps were not sufficient, however, as our legacy files from NVIVO did not integrate 

easily. We encountered difficulties combining large files that were created in NVIVO versions 

spanning nearly 20 years, some on Apple and some on Windows computers. To be fair, NVIVO 

and most other qualitative software tools are designed for the canonical situation of one 

researcher on one project. Our files were large and heterogeneous, and our analytical goals were 

complex.  

 Our long-term solution to the legacy data problem was to start over, for the most part, 

with qualitative software that is better suited to collaborative research. As NVIVO did not have 

the capability to export our files with full analytical markup, we ingested our text files from 
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Word into Atlas.ti, creating a shared analysis file. Atlas.ti has two compelling features that 

facilitated making CKI data global. The first is a standardized XML format that makes sharing a 

single analytic file among CKI researchers feasible, and that allows us to export files to other 

analytical tools in the future. The second compelling feature of Atlas.ti is a tool derived from 

discourse analysis that supports more granular markup. The semantic linking features of Atlas.ti 

are proving helpful to explore commonalities and differences between activities like 

“maintenance,” thus leveraging the entirety of the CKI data corpus (Scroggins & Pasquetto, 

2020).  

Keeping Data Alive 

By keeping data “alive,” or reusable over long periods of time, we are able to explore research 

questions at a much larger scale than would otherwise be possible. The ability to reuse data at 

scale is an inherent and underappreciated challenge of open science (Boscoe, 2019; Pasquetto et 

al., 2017, 2019). Here we summarize our lessons learned in collaborative ethnography at scale by 

identifying the analyses made possible by our approach and the challenges raised.  

Curation and Continuity 

Individual professors, as principal investigators, often have long-term research agendas that they 

pursue with cohorts of students and post-doctoral fellows. Maintaining continuity in the research 

agenda is difficult due to the high turnover of staff and the short term of research grants, 

typically one to three years in duration. Grant funding can be a precarious existence. Unless 

funding periods for staff overlap, one cohort leaves before the next arrives, leaving substantial 

gaps in team knowledge (Jackson et al., 2011).  
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The CKI team’s investment in keeping our data alive has facilitated our continuity across 

cohorts and over long periods of time. In recent years, the data curator has trained each new 

graduate student and post-doctoral fellow in how to use our rich collection of data resources. As 

a consequence, new team members can build upon the work of prior staff. Alumni of the team 

also continue to collaborate, writing joint papers and helping to mine data they collected earlier.  

Merging our dataset into a comprehensive database in Atlas.ti also has improved our data 

curation, because our data manager can focus on long-term preservation. Fewer intermediate 

steps are required than when each researcher managed a private analytic file in NVIVO to be 

merged later. Interview transcripts, memos, and other documents are more readily compared in 

our current analytical model. Working from a common analytical file also has created more 

robust conversations and more integrative analyses (Pasquetto et al., 2019).   

Our challenges in continuity echo those of the teams we study. No matter how well 

documented, and how much knowledge is passed from one cohort to the next, the individual 

researchers who collected the data initially retain the deepest knowledge of context. As with our 

scientific teams, we contact our colleagues for further interpretation as needed, collaborating if 

substantial data integration will accomplish goals of mutual interest (Pasquetto et al., 2019). 

New Grants, New Research Questions 

Each new grant proposal must promise something new and innovative. Rarely can incremental 

funding be acquired successfully. Here the challenge is to propose new work that builds on the 

prior, without losing the continuity of the larger research agenda. We have focused on questions 

of data practices; research teams’ abilities to share and reuse data; interactions between science 

policy and local practice; the concept of “data” as understood within and between scientific 

domains; and how knowledge infrastructures facilitate and constrain scientific work. This is a 
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sufficiently broad agenda to allow us to ask new questions about how open science practices and 

policy play out in different domains, how old standards and new tools fit into knowledge 

infrastructures, and how infrastructures evolve and interact over time. We have sought funding 

from a wide range of sources, aligning our questions with their interests in individual sciences, in 

education, in infrastructure, in policy, and in scholarly communication.  

 As our curated data resources accumulate, we pitch them as a competitive advantage in 

seeking new funding. These resources also provide competitive advantage in hiring new graduate 

students and post-doctoral fellows. By joining our team, they have access to these data for use in 

constructing their own research agendas. We put graduate students into the field in their first year 

of study, which gives them at least two years of research experience by the time they begin their 

dissertations.   

Diversity of Data Analysis  

Maintaining a core set of research questions about data, data practices, and infrastructure across 

our projects and grants provides the continuity necessary to study knowledge infrastructures at 

scale. At the same time, we are careful not to be overly prescriptive in the details of study design 

or data analysis. Research questions in an individual grant are general enough to allow students 

considerable flexibility in pursuing their interests and following their instincts in data analysis. 

Some of our graduate students have relied more heavily on ethnographic observation and writing 

memos, some on interviews, and some on document analyses. The balance varies intentionally. 

Some do extensive coding in NVIVO or Atlas.ti, which provides the best records for further 

analyses. Others do basic coding with these tools, then print out sections for hand-coding with 

colored markers. The latter approach provides flexibility, but does not scale well beyond the 

space of a table or office floor.  
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As qualitative researchers steeped in grounded theory (Clarke, 2005; Glaser & Strauss, 

1967), we encourage hypothesis building and testing, and iterative analyses. These can be done 

in many ways, some of which provide better record trails than others. For continuity purposes, 

we much prefer granular documentation. One of the factors distinguishing analytic practices is 

the amount of training in the information fields. Researchers with library and information science 

degrees (MLIS or equivalent) have spent more time on developing documentation, tables, 

protocols, and codebooks than have team members who came from technical or social science 

backgrounds. Librarians on the team more often ensured that their data were organized, well-

described, stored in the secured CKI archive, and available for sharing with other team members. 

Before we hired a professional data curator, MLIS-trained researchers developed the Zotero 

library and maintained detailed bibliographies of CKI publications. CKI researchers without a 

background in the information field have required more encouragement to manage their data as a 

collective resource. We make sure to ingest their coded data and bibliographies before they leave 

our employ, usually when completing their degrees. 

Our approach to managing our data falls between two extremes in the social sciences. 

One, more common to STS, is for individual students and post-doctoral fellows to maintain 

exclusive control over their data, not leaving copies behind for the supervisor or team. University 

practices vary widely in their expectations of students to have exclusive or non-exclusive rights 

over their knowledge products. The distinction may be a function of whether the research was 

conducted under grant funding or self-funded, and which open science policies may apply, 

whether by institution or government (Boulton et al., 2011, 2015). 

At the other extreme are open science policies that promote transparency throughout the 

entire research process, from registering hypotheses to depositing datasets and code (Kidwell et 
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al., 2016; Mancini et al., 2020; National Academies of Sciences, Engineering, and Medicine, 

2018; Nosek et al., 2015; Nosek & Lakens, 2014; Schapira et al., 2019). These approaches are 

intended to increase reproducibility, accountability, and the ability to reuse data. Complete 

transparency of research is particularly problematic with qualitative human subjects research. 

Audio recordings and transcripts cannot be fully anonymized, especially for interviews 

conducted with well known science teams. Fully transparent approaches to open science also are 

controversial because of the resources required for investigators to comply with regulations, 

competitive advantages of researchers subject to different rules, and economic benefits that may 

accrue to external parties (Laine, 2017; Mirowski, 2018).  

Conclusions 

Twenty years of collaborative ethnography have enabled us to address big questions about how 

knowledge infrastructures develop, how they are used, when they are visible and when invisible, 

when they are robust, when they are fragile, and how they break down. We have learned that all 

infrastructures are fragile in the long run, no matter how robust they may appear in the present 

(Borgman, Darch, et al., 2016).  

 Similarly, “data” is the most complex concept in data science (Borgman, 2015a, 2019b). 

Throughout our research, we find that one person’s signal is another’s noise. Two researchers, 

working side by side, may not realize they have fundamentally different notions of essential 

variables such as “temperature,” as we found in CENS (Borgman et al., 2012). An astronomy 

team that removed gas clouds from their images as part of their data reduction pipeline later 

hired a specialist in gas clouds. Instead of treating these gases as noise, they began to treat them 

as signals, offering new insights into their research program. Examples abound of nuanced 
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interpretations of data and datasets; policies about openness, sharing, and reuse; and 

responsibilities for stewarding scientific knowledge products. 

 Data sharing and reuse, in turn, depend on the availability of knowledge infrastructures, 

on characteristics of the research domain, and on how competing stakeholders implement (or 

not) such policies. Throughout our research, we have attempted to identify factors that 

distinguish data practices, whether by domain, discipline, institution, career stage, scale, 

temporality, or public policies. We are often asked to compare practices by these or other factors, 

whether by funding agencies, policy makers, reviewers, or audiences at public talks. The larger 

the corpus of data practices and infrastructures we build, the more nuanced our conclusions 

become. Our efforts to distinguish data handling practices within a distributed interdisciplinary 

collaboration, for example, revealed that each individual researcher claimed multiple areas of 

disciplinary expertise, thus defying categorization. Of particular interest was how practices 

evolved as these people worked together, learning from each other. The disciplinary and methods 

training each person brought to the lab became part of an emerging set of practices. Any attempt 

to characterize how a discipline handles data may be a snapshot in time; generalizations are 

fraught. Focusing on the larger knowledge infrastructures in which these practices occur gives us 

a broader understanding of scientists’ experiences, technologies, and access to the resources 

necessary to manage their data.  
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