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Abstract 

A Computational and Experimental Approach to Understanding HIV-1 Evolution and Latency 
for the Design of Improved Antiviral Therapies 

by 

Siddharth Subhas Dey 

Doctor of Philosophy in Chemical Engineering 

University of California, Berkeley 

Professor David V. Schaffer, Chair 

With 33.3 million people presently infected with Human Immunodeficiency Virus-1 (HIV-1), 
combined with the 2.6 million new infections and 1.8 million AIDS related death in 2009 alone, 
HIV-1 continues to be one of the biggest global pandemics and medical challenges of the new 
millennium. Although the development of antiretroviral drugs was a major advance in the 
treatment of patients infected with HIV-1, complete eradication of HIV-1 has not been possible 
due to two major obstacles. First, the high mutation rate of the virus coupled with its rapid 
replication rate has given rise to drug resistant strains of HIV-1. Furthermore, latent viral 
reservoirs that are not directly targeted by anti-viral therapies or by the immune system can 
reactivate at a later time preventing complete viral clearance from a patient. Compounding these 
difficulties is the global diversification of viral strains or subtypes that have widely differing 
sequences, resulting in unique gene regulation and pathogenesis. Following integration into the 
host genome, activation of viral gene expression results in the production of new progeny 
whereas the inability to activate gene expression could initiate the establishment of viral latency. 
Thus, a better understanding of the mechanisms and factors that regulate viral transcription is 
critical towards eliminating latent viral populations. Therefore, the focus of this work has been to 
investigate the role of both cellular and viral factors in regulating HIV-1 gene expression and 
latency using a combination of computational and experimental techniques. This work may help 
develop novel therapy targets and better treatment regimens for different HIV-1 subtypes while 
concurrently providing new insights on mammalian gene regulation. 

In studying viral factors that regulate gene expression in HIV-1, we focused attention on the 
HIV-1 promoter, a viral protein called Tat and a RNA hairpin called TAR. The error prone 
nature of HIV-1 replication has resulted in highly diverse viral sequences, and it is not clear how 
Tat, which plays a critical role in viral gene expression and replication, retains its complex 
functions. Although several important amino acid positions in Tat are conserved, we 
hypothesized that it may also harbor functionally important residues that may not be individually 
conserved yet appear as correlated pairs, and knowledge of such evolutionary information could 
help elucidate underlying mechanisms of Tat function. Using Information theory based 
approaches such as Mutual Information and protein engineering approaches, we found a pair of 
sites in Tat that are strongly coevolving and that provided insight into Tat-mediated viral 
transcription. In contrast to most coevolving protein residues that contribute to the same 
function, these studies showed that these two residues contribute to two mechanistically distinct 
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steps in gene expression: binding the cellular protein, positive transcription-elongation factor b 
(P-TEFb) and promoting P-TEFb phosphorylation of the C-terminal domain in RNA Polymerase 
II (RNAPII). Moreover, Tat variants that mimic HIV-1 subtype B or C at these sites have 
evolved orthogonal strengths of P-TEFb binding vs. RNAPII phosphorylation, suggesting that 
subtypes have evolved alternate transcriptional strategies that could differentially impact latency 
while achieving similar gene expression levels. 

Interaction between Tat and the viral hairpin TAR is critical for efficient gene expression from 
the viral promoter and we therefore hypothesized that sequence diversity within these elements 
may dramatically alter the gene expression and latency properties of different subtype viruses. 
We found large differences in gene expression between subtypes using a variety of experimental 
models and showed that subtype TARs and Tats act independently to set the level of gene 
expression from the viral promoter. Further, using Mutual information and site-directed 
mutagenesis we showed that nucleotides in TAR are not coevolving with residues in Tat 
implying that HIV-1 has evolved a highly robust mechanism of activating gene expression in the 
face of rapid viral evolution. 

Similarly, the promoters of different HIV-1 subtypes have evolved different architectures of 
transcription factor binding sites (TFBS) that result in widely varying levels of gene expression 
and viral replication. Within this large diversity of TFBS in the HIV-1 promoter, we used in vitro 
models of HIV-1 latency to identify the minimal set of TFBS that contribute to most of the 
observed differences in gene expression and latency at steady state. In contract, we found that the 
dynamics of gene expression is dependent on both the minimal set of TFBS and other sites in the 
viral promoter. Identifying other targets within the viral promoter will provide better mechanistic 
understanding of the establishment and reactivation of HIV-1 latency as well as potentially 
identify new molecular targets to counter latency. 

While diversity in viral factors can contribute to differential regulation of viral gene expression, 
host factors can also play a significant role in this regulation. Since HIV-1 integrates semi-
randomly within the human genome, another aspect of my thesis included studying the role of the 
cellular genomic location in regulating viral gene expression. We exploited the semi-random 
integration of HIV-1 to quantitatively study both how latent proviruses can be reactivated from 
different chromatin environments and to address a fundamental question in eukaryotic gene 
expression related to how the placement of a gene in the genome impacts its responsiveness to an 
input transcription factor signal. Using a tunable overexpression system for the transcription 
factor NF-!B RelA, we quantified HIV-1 expression as a function of RelA levels and chromatin 
features at a panel of viral integration sites. We demonstrated that chromatin environments at 
different genomic loci decouple transcription factor mediated gene expression induction 
thresholds from subsequent gene activation. We developed a functional relationship between 
gene expression, RelA levels, and chromatin accessibility that accurately predicted synergistic 
HIV-1 activation in response to combinatorial pharmacological perturbations. Thus, this 
quantitative study should help inform strategies for combinatorial therapies to combat latent 
HIV-1 and help unravel biological principles underlying selective gene expression in response to 
transcription factor inputs. 

Finally, after HIV-1 integrates into the host genome, it can either activate gene expression that 
leads to viral replication or become transcriptionally silent that can result in viral latency. Since 
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stochastic fluctuations in HIV-1 gene expression are one of several factors that have been 
implicated in influencing this decision and thus in the establishment of viral latency, we 
investigated the role of the local chromatin environment in regulating gene expression noise. We 
showed that for clones with similar mean gene expression levels, those integrated into more 
heterochromatic regions are associated with wider mRNA and protein distributions. Using a two-
state stochastic model of gene expression, we showed that the repressed chromatin gives rise to 
noisier gene expression by lowering the burst frequency. In addition to more clearly defining the 
role of the chromatin environment in regulating the establishment of viral latency, this study has 
implications for the role of chromatin in modulating transcriptional noise in eukaryotes and its 
evolutionary consequences in the placement of genes within the genome. 

Thus these studies of the role of sequence variation within the viral genome and its chromosomal 
integration site in regulating gene expression has resulted in better understanding of the 
mechanisms of gene expression and establishment of latency in HIV-1, while also helping to 
discern the role of chromatin in regulating mammalian gene expression. 
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Chapter 1: Background and Motivation 

1.1 Life cycle of Human Immunodeficiency Virus-1 

Human Immunodeficiency Virus (HIV) is a member of the lentivirus subfamily of 
retroviruses. HIV carries its genetic information in the form of two single stranded (ss) RNA’s 
that are slightly smaller than 10 kilobases in length. The viral genome contain 9 genes that 
encode for structural proteins (encoded by the Gag and Env genes), enzymes for important 
processes in its life cycle (like reverse transcriptase, integrase and protease encoded by the Pol 
gene), regulatory proteins (Tat and Rev), and auxiliary proteins (Nef, Vif, Vpr and Vpu). Both 
ends of the viral genome are flanked by Long Terminal Repeats (LTR) (Fig. 1.1A) (1, 2). 

 

Figure 1.1. Organization of the HIV-1 genome and viral life cycle. (A) HIV-1 genome showing the 9 viral genes 
flanked by the LTR (shown in blue) on both sides. (B) Life cycle of HIV-1 showing the major events such as viral 
entry, reverse transcription, integration into the host genome, transcription and translation followed by viral 
assembly and budding of progeny virus. Adapted from (1). 
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The first step in the life cycle of HIV-1 is the attachment of viral envelope glycoproteins 
to the CD4 receptor of T-cells, the primary cell target for this virus (Fig. 1.1B) (1). Viral entry 
into the cell also requires a chemokine co-receptor CXCR4 or CCR5 (3, 4). The viral envelope 
fuses with the cell membrane and releases the protein capsid into the cell. After uncoating, the 
viral enzyme, reverse transcriptase copies the viral genomic RNA into cDNA that is transported 
along with the viral protein integrase as part of the pre-integration complex to the nucleus where 
the integrase inserts the cDNA semi-randomly within the host genome (5-7) (Fig. 1.1B). Once 
integrated, the transcription factor binding sites on the 5’LTR recruit host cellular factors that 
mediate only a low, basal level of mRNA synthesis, or gene expression (8, 9). Initially, 
transcriptional elongation is inefficient and leads to the formation of!a large number of abortive 
transcripts. However, this basal level of gene expression gives rise to a few rare full length 
genomic transcripts that are spliced by the host splicing machinery to produce the viral proteins, 
Tat (Transactivator of Transcription), Rev and Nef (10). Tat binds to a hairpin loop RNA 
structure called TAR (Transactivation Response Element) present at the 5’ end of all HIV 
transcripts and greatly increases the processivity of RNA polymerase II (RNAP II), resulting in 
enhanced transcriptional elongation and the production of additional Tat and Rev protein (11-
14). This strong positive feedback loop dramatically increases gene expression that drives the 
production of full length HIV transcripts. These full-length and partially spliced viral mRNA’s 
all contain a structured RNA element called RRE (Rev Response Element) that binds to the viral 
protein Rev, which contains a nuclear export signal necessary to transport these intron-
containing mRNAs to the cytoplasm (15-18). Once, in the cytoplasm, the partially spliced 
transcripts encode for the viral proteins Env, Vif, Vpr and Vpu, whereas the full length 
transcripts serve as templates for Gag and Gag-Pol as well as the viral genome for the progeny 
virus. Finally, the full length HIV transcripts are incorporated into new viral particles that bud 
off from the cell to infect the next generation of target cells (Fig. 1.1B).  

1.2 HIV evolution and diversity 

The reverse transcription process has low fidelity and unlike many cellular DNA 
polymerases, lacks the 3’!5’ exonuclease proofreading activity, resulting in a high mutation 
rate of 0.2–0.3 mutations within its genome per replication cycle (5, 7). Since the virus carries 
two copies of ssRNA, the RT occasionally jumps from one strand to the other, giving rise to a 
high recombination rate of approximately 2.4 recombination events per replication cycle, along 
with insertions or deletions of the cDNA (7, 19, 20). When multiple virions infect a single cell, 
non-identical strands of HIV can get packaged into the progeny virus, and recombination 
between these non-identical strands during the next round of infection can give rise to additional 
diversity and new recombinant forms of the virus. The high error and recombination rates during 
reverse transcription, coupled with the large amounts of virus that are produced per day in a 
patient (~1010-1012), allow the virus to effectively sample large parts of the sequence space, 
resulting in a huge sequence diversity of HIV-1 and allowing it to evolve rapidly (21, 22). 

HIV was clinically first isolated in 1983 and the reconstruction of the evolutionary 
history of HIV-1 showed that its most common ancestor is a simian immunodeficiency virus 
(SIV) called SIVcpz, from which it diversified in the 1930s.The high error and recombination 
rate during reverse transcription, coupled with a very high replication rate has resulted in a huge 
global diversity of HIV. HIV-1 is phylogenetically categorized into three groups, ‘M’, ‘N’ and 
‘O’ with group M being the most widespread form that is further classified into 9 subtypes and 
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15 recombinant forms (Fig. 1.2) (1). Depending on the genes being compared, the genetic 
distance between the different subtypes is between 10-30%, resulting in the different subtypes 
having widely differing gene regulation, pathogenesis, and transmission rates (23). Subtypes 
show differences in the elements involved in transactivation, such as differences in promoter 
architecture, diverse Tat protein sequences, and subtle differences in the TAR RNA that could 
result in different replication dynamics (24-27). Similarly, variation in Rev and RRE could 
impact the export of viral RNA to the cytoplasm and thus alter viral replication rates (28, 29). 
Within a single patient itself, there is a huge diversity of viral sequences that often exceeds the 
total global diversity of the influenza virus (30). This swarm of viral sequences is called a 
quasispecies (31, 32), which ensures that large parts of the sequence space is sampled by the 
virus, enabling the virus to rapidly evade the immune system and anti-retroviral therapies. 

 

Figure 1.2. Distribution of HIV-1 subtypes in different parts of the world. Different subtypes and recombinant 
forms dominate various parts of the world. While subtype B remains the most studied subtype, it is not the most 
widespread form of the virus. Adapted from UNAIDS Report 2008. 

Several small molecule drugs have been developed that interfere with different stages of 
the viral life cycle. There are four different classes of these drugs: those that inhibit viral fusion 
with the cell membrane, interfere with the process of reverse transcription, inhibit the enzyme 
integrase and prevent integration of the cDNA into the host genome, and those that inhibit the 
viral protease from cleaving viral precursor polypeptides into the proteins necessary to assemble 
a new virion (33). The current treatment for HIV-1 involves using a combination of these drugs, 
called as HAART (Highly Active Anti-Retroviral Therapy), to minimize the chances of viral 
escape. However, a number of drug-resistant strains have developed, so there is an urgent need 
for developing novel drugs. Identifying the underlying pattern of mutations within the viral 
genome could potentially be helpful in the rational design of novel therapies that minimize the 
chances of viral escape.!

Although the viral proteins Tat and Rev show large sequence diversity, these different 
variants still function effectively to ensure efficient viral replication. The HIV-1 genome is 
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constantly subject to mutations that allow it to rapidly adapt to selective pressures (34). Although 
certain mutations within a viral protein may help the virus escape the selective pressure, they 
may also reduce viral fitness. Purifying selection would purge such mutations that reduce the 
overall fitness of the virus; however compensatory mutations at other sites of the viral protein 
could compensate for such loss of fitness allowing correlated pairs of mutations to be fixed in the 
population (35). Identifying such correlated sites within different viral proteins will provide 
deeper understanding of the basic biology involving the structure and function of these proteins 
and their interaction with numerous cellular partners. 
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Figure 1.3. Different proposed mechanisms of Tat-TAR mediated transactivation. (A) In this mechanism, Tat 
recruits P-TEFb to the viral promoter by binding to TAR. The Tat-P-TEFb complex is then transferred to the PIC, 
enabling P-TEFb to phosphorylate RNAPII and resulting in elongation. Newly synthesized viral RNA is shown in 
blue. (B) In this mechanism, P-TEFb is recruited as an inactive complex with 7SK. After recruitment of Tat to the 
promoter and transcription initiation, the TAR RNA displaces 7SK resulting in the activation of P-TEFb and 
efficient RNAPII phosphorylation leading to elongation. Adapted from (36, 37). 

1.3 Gene regulation in HIV-1: Mechanism of Tat-TAR mediated 
transactivation 

The exact molecular details of Tat-mediated viral transactivation are still being 
investigated. Briefly, the RNA hairpin TAR present at the 5’ end of all viral transcripts, contains 
a two or three nucleotide bulge that is recognized by an arginine-rich motif (ARM, residues 49-
57) in Tat (11, 12). This Tat-TAR binding is used to recruit other cellular proteins to the viral 
LTR that is necessary for transactivation (36). The few Tat molecules that are formed from basal 
transcription are acetylated at K28 by binding to a histone acetyl transferase (HAT) p300/CREB-
binding protein associated factor (PCAF) (38). Ac28Tat has an increased affinity for the positive 
transcription-elongation factor b (P-TEFb), which consists of the cellular proteins Cyclin T1 
(CycT1) and cyclin-dependent kinase 9 (Cdk9) (39-41). Binding to P-TEFb releases PCAF from 
Ac28Tat and the Tat-CycT1-Cdk9 complex then binds to TAR (Fig. 1.3A). Tat is then acetylated 
by another HAT p300/CREB binding protein (p300/CBP) at K50 which disrupts the Tat-pTEFb-
TAR complex, and after dissociating with TAR, the Tat-pTEFb complex binds to PCAF (38, 42-
44). This complex is then transferred to the pre-initiation complex (PIC) where Cdk9 
phosphorylates the C-terminal domain (CTD) of RNAP II driving efficient transcription, 
resulting in transactivation (Fig. 1.3A) (45-47). More recently, in an alternate mechanism of Tat-
mediated transactivation, it was shown that the P-TEFb complex is recruited to the promoter in 
an inactive form, bound to a small ribonucleoprotein (snRNP) called 7SK (Fig. 1.3B). Unlike the 
previous models, Tat assembles into the inhibitory 7SK snRNP along with P-TEFb and the 
formation of TAR after transcription initiation is used to displace to the 7SK snRNP which 
allows TAR to bind to the Tat-P-TEFb complex. Relieving P-TEFb from the inhibitory 7SK 
snRNP activates its kinase activity, resulting in the phosphorylation of the CTD of RNAPII and 
productive elongation (37) (Fig. 1.3B). Thus, gaining a better understanding of the structural 
constraints in Tat-TAR interactions in spite of their large sequence diversity and their 
interactions with various cellular factors is important for gaining better insights into Tat-
mediated transactivation.  

Tat is also post-translationally modified at specific sites by several cellular factors that 
impact transactivation. In addition to acetylation by PCAF and p300 as discussed above, there is 
evidence for methylation of Tat at Arg52 and Arg53 by the arginine methyltransferase PRMT6 
that reduces Tat-mediated transcription (48, 49). In contrast, methylation of Tat at Lys51 by the 
lysine methyltransferase, Set 7/9 (KMT7) acts as an activator of gene expression (50). Similarly, 
other lysine methyltransferases like SETDB1 and SETDB2 have been shown to interact with Tat 
(51). Besides acetylation and methylation, Tat is also phosphorylated by Cdk2 at Ser16, Ser46 
and by PKR at Ser62, Thr64, Ser68, enhancing viral gene expression (52, 53). Further evidence 
of the versatility of Tat can be seen in its interaction with other cellular proteins like 
SKIP/SNW1 and chromatin remodeling complexes like SWI/SNF that stimulate gene expression 
(54, 55). Besides these interactions with cellular factors that affect Tat-mediated transactivation, 
Tat has been implicated to interact with various factors involved in other functions. For instance, 



!

! 6 

Tat has been shown to bind tubulin, enhance tubulin polymerization and induce mitochondrial 
apoptosis of cells that take up Tat (56, 57). Similarly, Tat has been shown to increase focal 
adhesion sites on brain microvascular endothelial cells (58).!

!
Figure 1.4. Representative sequence alignment of TAR and Tat from different subtypes. Black columns 
represent completely conserved sites that are easily detected unlike coevolving sites. (A) Sequence alignment of 
representative TAR subtypes. (B) Sequence alignment of representative Tat subtypes.  

Sequence alignment of a protein usually allows the easy identification of amino acids that 
are conserved and hence potentially allows detection of functionally important residues (Fig. 
1.4). However, this approach misses cases where pairs of residues may coevolve, such that 
neither one is individually conserved, but specific pairs appear together and are important for 
maintaining the structural conformation of the protein or for its interaction with another protein. 
Given the large number of proteins with which the Tat-TAR complex and Tat interacts, and the 
various conserved sites that have been identified at which Tat is modified, we were interested in 
extending this analysis to identify functionally important coevolving positions between Tat-TAR 
and within Tat. 

1.4 Thesis Goals and Organization 

 HIV-1 is a global pandemic and understanding how viral and cellular factors regulate 
gene expression and latency is central to identifying better treatment regimens or novel therapies 
to cure this disease. Although the development of antiretroviral drugs was a major advance in the 
treatment of patients infected with Human Immunodeficiency Virus-1 (HIV-1), complete 
eradication of HIV-1 has not been possible due to two major obstacles. First, the high mutation 
rate of the virus coupled with its rapid replication rate has given rise to drug resistant strains of 
HIV-1. Furthermore, latent viral reservoirs that are not directly targeted by anti-viral therapies or 
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by the immune system can reactivate at a later time preventing complete viral clearance from a 
patient. Compounding these difficulties is the global diversification of viral strains or subtypes 
that have widely differing sequences, resulting in unique gene regulation and pathogenesis. 
Following integration into the host genome, activation of viral gene expression results in the 
production of new progeny whereas the inability to activate gene expression could initiate the 
establishment of viral latency. Thus, a better understanding of the mechanisms and factors that 
regulate viral transcription is critical towards eliminating latent viral populations. Therefore, the 
focus of my research projects has been to investigate the role of both cellular and viral factors in 
regulating HIV-1 gene expression and latency using a combination of computational and 
experimental techniques. This work may help develop novel therapy targets and better treatment 
regimens for different HIV-1 subtypes while concurrently providing new insights on mammalian 
gene regulation. 

 The first half of the thesis, chapters 2 through 5, focuses on various viral factors and 
mechanism by which these elements regulate gene expression and latency. In particular, we have 
focused on the role of sequence diversity within these different elements in differentially 
regulating gene expression and pathogenicity. In chapter 2, we have applied computational 
methods to mine large HIV-1 sequence databases to identify sites within the viral genome that 
may be coevolving and thereby gain better understanding of viral evolution and utilize this 
knowledge to piece together unknown mechanisms of gene regulation in HIV-1. In this chapter, 
we applied statistical methods to identify coevolving residues within Tat, between TAR and Tat, 
and within Rev. In chapter 3, we experimentally verified the sites in Tat that were predicted to be 
coevolving and showed that these sites may play a role in setting the rate of reactivation from 
latent viral populations. Further, we used the evolutionary information to gain deeper 
understanding of the mechanisms of Tat-mediated gene activation from the viral promoter. In 
contrast to previous studies, this study also provided new insights into protein evolution and 
showed that the coevolving sites we identified were unique in constraining two distinct 
transcriptional mechanisms critical in activating gene expression. In chapter 4, we studied how 
TAR and Tat sequences from different subtypes regulate gene expression and latency. While the 
interaction between TAR and Tat is critical in initiating strong gene expression, we found that 
the two viral elements act independently to set the level of gene expression. We also discovered 
that base pairs in TAR are not coevolving with resides in Tat. Since HIV-1 shows displays a high 
recombination rate, this study shows that the TAR-Tat axis in HIV-1 has evolved to be extremely 
robust such that a wide variety of TARs and Tats can interact with each other to efficiently 
activate viral gene expression. In chapter 5, we study another critical element, the viral genome 
in regulating viral gene expression, replication and latency. We discovered that promoters from 
different subtypes, in addition to having sequence diversity within transcription factors binding 
sites also have different architectures of binding sites that produces large differences in gene 
expression and propensities for latency between subtypes. We identified that the minimal set of 
transcription factor binding sites that contribute to most of the observed differences in gene 
expression at steady state. In contrast, we found that a combination of other transcription factor 
binding sites contribute to the dynamics of gene regulation, including the rates of reactivation 
from the latent state. Finally, we are currently using more clinically relevant primary cell culture 
models of HIV-1 latency, to probe differences in the propensity for latency between subtypes. 

 The latter half of the thesis, chapters 6 and 7, focuses on the role of cellular factors in 
regulating gene expression and latency in HIV-1. Since HIV-1 integrates semi-randomly within 
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the human genome, we have studied the role of the cellular genomic location in regulating viral 
gene expression. In chapter 6, we exploited the semi-random integration of HIV-1 to 
quantitatively study both how latent proviruses can be reactivated from different chromatin 
environments and to address a fundamental question in eukaryotic gene expression related to how 
the placement of a gene in the genome impacts its responsiveness to an input transcription factor 
signal. We demonstrated that chromatin environments at different genomic loci decouple 
transcription factor mediated gene expression induction thresholds from subsequent gene 
activation. Using the functional relationship between gene expression, transcription factor levels, 
and chromatin accessibility, we accurately predicted synergistic HIV-1 activation in response to 
combinatorial pharmacological perturbations. Currently, we are using this system to identify 
drug regimens that maximize synergistic reactivation of latent HIV-1 populations such that these 
latent populations can be purged out most efficiently, enabling patients to completely eradicate 
the virus. Thus, this quantitative study should help inform strategies for combinatorial therapies 
to combat latent HIV-1 and help unravel biological principles underlying selective gene 
expression in response to transcription factor inputs. In chapter 7, we studied the role of the local 
chromatin environment around the HIV-1 promoter in regulating gene expression noise. Since it 
has previously been shown that gene expression noise could be one of many factors that 
contribute to the establishment and reactivation from latency, this chapter explores the origins 
and sources of this noise. We showed that increased levels of gene expression noise are 
associated with integrations into more heterochromatic regions. This increased gene expression 
noise, that could potentially be associated with greater propensity for latency, is associated with 
more infrequent transitions from the inactive to active promoter state. Thus, identifying 
mechanisms by which the frequency of transitions from the inactive to active promoter state 
could be increased could potentially reduce chances of establishment of viral latency or increase 
chances of reactivation thereby improving our chances of eliminating latent viral populations, the 
single greatest barrier to eradication of HIV-1 from an infected patient. 
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Chapter 2: Identifying Coevolving Sites within HIV-1 using Mutual 
Information 

2.1 Introduction - Computational methods for identifying coevolving sites 

Due to the increasing ease and reducing costs involved with sequencing, the database of 
HIV-1 sequences from infected patients is constantly growing. Such multiple sequence 
alignments can be used to predict and identify correlated sites within a protein that may be 
important for maintaining the function and/or structure of the protein. Several methods, including 
Mutual Information (MI), Observed Minus Expected Squared (OMES), Statistical Coupling 
Analysis (SCA) and McLachlan Based Substitution Correlation (McBASC) have been used to 
identify correlated position pairs from multiple sequence alignments of proteins (1-9). MI 
between two sites uses the well-known Shannon’s entropy to estimate the reduction of 
uncertainty in the identity of amino acids at a particular site, given the identity of amino acids at 
another site, and is discussed in greater detail in the next section. OMES calculates correlation 
between two sites by using a measure that estimates the deviation between the observed and 
expected frequency of different pairs of amino acids at those sites (1). SCA identifies correlated 
sites by creating “perturbations” in the form of sub-alignments that consist of a particular amino 
acid at a site which is then compared to the original alignment to detect if there are any 
differences in the amino acid composition for different sites (3). McBASC computes a matrix of 
scores for each site in the alignment using a substitution rule, where scores of each element in the 
matrix corresponds to amino acids from two sequences at that site. Comparison of elements from 
two matrices, corresponding to two sites in the protein sequence alignment is then used to 
compute correlation scores in this method (2, 9). A difference between the McBASC and the 
other methods is that McBASC tends to give high correlation scores for a pair of sites even when 
both sites are highly conserved. Previously, such methods have been used to identify coevolving 
residues in HIV-1 for the proteins encoded by the gag gene and V3 loop of the env gene (6, 10). 
Further, these methods can easily be extended to DNA or RNA sequence alignments, as will be 
shown in this work later, and can be used to predict correlated sites between RNA bases and 
proteins amino acids that functionally interact with each other. 

MI was first developed in the area of Information Theory, and has since then been used in 
computational biology to identify coevolving residues within the same protein or two interacting 
proteins (4, 11, 12). MI belongs to a family of methods that does not require structural or 
phylogenetic data for predicting coevolving sites. As compared to other methods briefly 
described above, MI initially detects a large number of pairs that are predicted to be coevolving 
(13). However, further application of methods to reduce background noise in the MI analysis 
allows for accurate estimation of the strongly correlated positions. In this work, we used the 
statistical measure MI to identify position pairs that were strongly correlated.  

2.2 Predicting coevolving sites using Mutual Information 

To predict the extent of correlation between two sites in a multiple sequence alignment 
using MI (4, 11), the degree to which each individual site is conserved needs to be initially 
evaluated using Shannon’s entropy. Entropy gives the extent of uncertainty within a site and as is 
evaluated as follows: 
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where H(X) stands for the entropy of site X, and X ! (x1, x2……xk) with K being 21 and 5 for a 
protein and RNA sequence alignment including gaps, respectively. p(xi) is the probability of 
observing residue xi at site X. Thus, the entropy of a site that is completely conserved is zero. In 
contrast, a site for which the probability of observing any residue is the same, that is the amino 
acids are picked from a uniform random distribution, has maximum entropy of logbK. Choice of 
b  is arbitrary and for all our calculations, b = 2. Similarly, the joint entropy, H(X,Y) between 
sites X and Y in a sequence alignment is given by: 
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where p(xi,yi) is the joint probability of observing residues xi and yi at sites X and Y, respectively, 
for a given sequence. Based on these definitions, Mutual Information between sites X and Y, 
MI(X,Y), a measure of the reduction in the entropy of site X given the identity of the residues at 
site Y, is given by: 
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Further, MI is commutative and thus, ( , ) ( , )MI X Y MI Y X= . 

 MI gives the likelihood of observing a residue at a particular site in the multiple 
sequence alignment, given the identity of a residue at another site in the alignment. Thus, two 
sites that are constrained to certain pairs of amino acids due to structural or functional 
requirements of the protein will also result in higher MI scores between those sites. Thus, MI can 
be used to distinguish between functionally important non-conserved sites that are coevolving 
from other non-conserved sites. However, detection of sites that are actually coevolving is made 
harder due to background noise that arises from two sources; the finite size of the sequence 
databases and a phylogenetic contribution to noise (11). The finite size of the sequence database 
results in the probabilities used in the estimation of the entropies and joint entropies to be 
approximated by frequencies of amino acids at a particular site. Thus, alignments with larger 
number of sequences results in lower background noise due to the finite size of the sequence 
database. The phylogenetic contribution of noise arises due to the evolutionary history shared 
between different but closely-related sequences in the alignment. This shared ancestral history 
between sequences gives rise to apparent correlation between sites rather than a functional or 
structural context that constrains residues at those sites. Thus, to minimize the background noise 
that arises from these two sources, several methods have been proposed that help to filter out the 
background noise from the raw MI scores, some of which are explained below and applied later 
to the HIV-1 datasets: 

1. Relatively conserved sites may have low MI scores even if it is coevolving with another 
site, due to the following constraint (4, 11): 
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Thus, a conserved site may have low MI scores even if it is coevolving with another site 
because the mutual information is constrained to lie below the smaller entropy of the 
lesser variable site. Since the MI between two sites is constrained by the smaller of the 
two entropies, sites that have high entropy also give rise to higher background MI. 
Normalizing the raw MI score with the smaller of the two entropies for these sites, could 
potentially help reduce background noise. 
 

2. The joint entropy between two sites share the following relation with the entropy of the 
two sites: 

{ }max ( ), ( ) ( , ) ( ) ( )H X H Y H X Y H X H Y! ! +  

Thus, this relation also allows the raw MI scores to be normalized by the joint entropy 
between the two sites to improve the predictive ability of this method: 

{ } { }( , ) min ( ), ( ) max ( ), ( ) ( , )MI X Y H X H Y H X H Y H X Y! ! !
 

 
3. In this method, a random sequence alignment with the same number of sequences as the 

actual dataset is created in which the amino acid frequency at each site is based on a 
uniform distribution. Background MI scores computed for this simulated alignment is 
then subtracted from the raw MI scores of the actual dataset to correct for the background 
MI that arises due to random associations between sites and those due to the finite size of 
the sequence database. 
 

4. Since the MI score is a function of the entropies of the individual sites, an improvement 
over the previous method is to create simulated alignments in which the amino acid 
frequency at each site is the same as that in the actual sequence database. This way, the 
entropy of each site is similar to that in the actual dataset and gives a better estimate of 
the background MI. Again, as in the previous method, subtracting the raw MI scores from 
the background MI is used to compute the corrected MI score. 
 

5. To further minimize background noise arising from phylogenetic relations between 
sequences besides the contribution from the finite size of the sequence database, Dunn et. 
al. proposed a correction term, called average product correction (APC), which correlated 
well with background MI and subtracting the APC from the raw MI gave good estimate 
of strongly correlated sites by minimizing the influence arising due to shared ancestry 
and finite dataset sizes (14). APC is given by: 

_ _
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alignment and n is the number of sites in the alignment. 
____

MI is the mean MI between all sites in 
the alignment. 

 



! 16 

Figure 2.1. Raw MI plots for all positions within the first 86 amino acids of Tat (A) Mesh plot showing  raw MI 
scores for position in Tat. (B) Heat Map of raw scores for position in Tat. Position pair 35-39 have the highest 
coevolution signal. 

2.3 Using MI to identify coevolving residues within Tat 

To identify correlated sites within Tat, we applied MI analysis to 917 pre-aligned Tat 
sequences obtained from the Los Alamos Sequence Database (http://www.hiv.lanl.gov/). The 
raw MI scores for all position pairs are shown as a 3-dimentional mesh and heat map (Fig. 2.1A 
and 2.3B). The raw MI scores show that position pairs 35 and 39, within the cysteine-rich region 
of Tat, have the highest MI score. The amino acids between residues 41-52, partly within the 
core and ARM domain of Tat, show very low MI scores with all other positions in Tat, possibly 
since this region is highly conserved across Tat sequences from different subtypes. Beyond 
amino acid 52, the MI landscape is rugged suggesting that there could be significant correlation 
between sites in the C-terminal end of Tat or that these could arise due to increased background 
noise since these sites also show higher amino acid variability or entropy.  

 

Figure 2.2. (A) Plot of MI(X,Y) vs.min{H(X),H(Y)} shows that the site pair 35-39 is closer to the theoretical limit 
corresponding to the diagonal line than other points. (B) Plot of MI(X,Y) /min{H(X),H(Y)}  vs. min{H(X),H(Y)}. (C) 
Heat map of correlation between different sites in Tat after normalization with min{H(X),H(Y)}. (D) Plot of MI(X,Y) 
vs. H(X,Y) also shows that the site pair 35-39 lies above all other pairs, closer to the diagonal line. (E) Plot of 
MI(X,Y)/H(X,Y) vs. H(X,Y). (F) Heat map of correlation between different sites in Tat after normalization with 
H(X,Y). 
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Figure 2.3. MI scores shown as (A) mesh plot and (B) heat map after substracting background MI generated from a 
simulated sequence alignment with equiprobable amino acid distribution. 

To distinguish signal from noise, we initially normalized the raw MI scores with 
min{H(X),H(Y)}, as discussed previously. Since this quantity represents the maximum MI score 
that can be attained between a pair of sites, this normalization should help identify sites that are 
conserved but still coevolving. Thus, plotting MI(X,Y) vs. min{H(X),H(Y)} should help identify 
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position pairs that are coevolving since such pairs should be close to the diagonal line on this 
plot (Fig. 2.2A).  

 

Figure 2.4. MI scores depicted as (A) mesh plot and (B) heat map after subtracting background MI generated from a 
simulated alignment with the same amino acid frequency at each site as the actual database. 

 



! 19 

 

Figure 2.5. MI scores depicted as (A) mesh plot and (B) heat map after APC correction. 

Again, we see that the position pair (35,39) is distinctly above all other site pairs, suggesting that 
this two positions may be coevolving and hence possibly critical for maintaining protein 
structure or function. However, plotting the normalized quantity, MI(X,Y)/min{H(X),H(Y)} vs. 
min{H(X),H(Y)} shows that this method may also be introducing false positives in the analysis 
since several sites that that have very low entropies, upon normalization with min{H(X),H(Y)} 
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give rise to high normalized values although such sites are possibly not coevolving (Fig. 2.2B). 
Thus, it appears that although this normalization can help identify correlated positions within 
sites that are relatively conserved, this method does not work well for sites that are very highly 
conserved (and hence have very low entropy).  The heat map further demonstrates this by 
showing that this normalization even results in some coevolution signal for sites within 41-52 
with other sites in the protein suggesting that this normalization may not be suited for sites that 
are highly conserved (Fig 2.2C). Similarly, plotting MI(X,Y) vs. H(X,Y) shows that the position 
pair (35,39) is above all other pairs (Fig. 2.2D). Plotting the normalized quantity, 
MI(X,Y)/H(X,Y) again shows that this normalization may introduce false positives for positions 
pairs that are highly conserved with very small joint entropies (Fig. 2.2E). The heat map of 
MI(X,Y)/H(X,Y) shows that the mutual information landscape is qualitatively similar to the raw 
MI landscape (Fig. 2.2F). 

Next, correcting the raw MI scores using a simulated alignment based on a random 
sequence alignment results in no correlation between most sites with the site pair (35,39) still 
having the highest corrected score (Fig. 2.3). A plausible reason for the reduction of correlation 
alignment have entropies that are close to the maximum entropy of 4.39 (= log221), that gives 
rise to a higher estimate of the background MI since most actual sites have much lower entropies 
and hence have smaller contributions to background MI. Thus, it appears that using a random 
sequence alignment for computing the background MI score results in its overestimation, thus 
eclipsing some functional/structural correlation that may exist between certain sites. To correct 
for the overestimation of the background MI, simulated sequence alignments were created that 
have the same amino acid distribution at each site (and therefore the same entropy) as that in the 
actual sequence database. The corrected MI appears to show a more realistic estimate of the 
correlation between all possible position pairs in Tat by accounting for the background noise that 
arises from the finite size of the sequence alignment (Fig. 2.4). Again sites 35 and 39 show the 
highest correlation with sites within 41-52 showing almost no correlation with any other site in 
Tat and sites beyond 52 showing significant correlation with other sites in the entire protein. 

Finally, using the APC correction to minimize background noise arising from 
phylogenetic and finite sample size effects shows that the correlation between several sites is 
reduced dramatically while retaining high MI scores for certain other pairs. Within the activation 
domain of Tat, position pairs (35,39), (35,31), (31,39) and (7,12) show significant correlation; 
whereas correlation of several sites beyond amino acid 52 with other sites in the protein is 
reduced dramatically, suggesting that the high MI scores that were seen for such sites in the raw 
MI estimation possibly arose from background noise that was not taken into consideration (Fig. 
2.5). Again, site pair (35,39) is the global maxima suggesting that this pair is coevolving and 
possibly critical for protein function (Fig. 2.5). Analyses of frequencies of amino acids at these 
sites show that a Leu at position 35 constrains position 39 primarily to a Gln and a Gln at 
position 35 results in a majority of Tat sequences having an Ile, Leu or Thr but not a Gln at 
position 39. 

To identify a threshold corrected MI score to identify position pairs that are strongly 
correlated and hence possibly coevolving from pairs that do not interact with each other; we used 
a method described by Weigt et. al., wherein a histogram of the corrected MI scores was 
constructed and fitted to an exponential function (15). Deviation from the exponential function 
was used to identify the threshold MI score. This method was applied to corrected MI scores 
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obtained after normalization with background MI with the same amino acid frequency as the 
actual dataset, for which the threshold was 0.34 (Fig. 2.6A), or after APC correction, for which 
the threshold was 0.21 (Fig. 2.6B).  
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Figure 2.6. Identification of a threshold MI to distinguish correlated position pairs from other pairs. MI scores 
corrected by (A) actual database distribution and (B) APC for all position pairs in Tat are plotted against their 
frequency of occurrences. The threshold MI score is indicated by the dashed line. Points to the left of the dashed line 
indicate the exponential background. Deviation from the exponential function is used to identify the threshold MI. 

 

Figure 2.7. Network of position pairs above threshold MI. (A) Position pairs above threshold MI after background 
correction assuming the same amino acid distribution as the actual database distribution. (B) Position pairs above 
threshold MI after background correction by APC. 
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These threshold scores were then used to construct a network of interaction for all position pairs 
that scored above the threshold MI. For the corrected scores normalized by background MI with 
the same amino acid frequency as the actual dataset, 20 sites had scores above threshold with 
sites 39, 57, 67, 74 and 35 connected to several other sites, suggesting that these sites may be 
functionally or structurally important and critical for Tat function (Fig. 2.7A). For MI scores 
above threshold after APC correction, we see that there are fewer sites pairs that are above 
threshold with smaller independent cliques of sites that are connected to each other (Fig. 2.7B). 
13 sites are above the threshold MI score. This normalization method suggests that the different 
independent cliques may be important for the distinct functions of Tat. For e.g., sites 31-35-39 
that are correlated to each other, within the activation domain of Tat, which has been shown to 
be important for binding P-TEFb, may be critical for performing this function in Tat. Similarly, 
the correlation between sites 53-54-76 and 57-60, most of which are within the ARM motif of 
Tat, may play an important role in Tat nuclear localization or TAR binding. The correlation 
between sites 61-64-67-68-69 may be functionally important for interaction of Tat with PKR 
which induces phosphorylation of Tat at sites 62, 64 and 68. The presence of these correlated 
sites within the Gln-rich region of Tat may also imply that these sites could be important for Tat-
mediated mitochondrial apoptosis of T-cells. 

Thus, correction of raw MI scores with these two methods show one important distinction 
– the APC correction displays that the correlation between sites is localized and modular in 
nature, suggesting that they may be important for distinct functions of Tat whereas correction 
with background MI with the same amino acid frequency as the actual dataset shows greater 
correlations between different domains of Tat. It will be interesting to verify experimentally if 
such long range interactions exist in Tat or if they are modular in nature; this will be discussed in 
greater detail in the future directions chapter. 

2.4 Using MI to identify coevolving sites between Tat-TAR 

Besides the interaction of Tat with several cellular proteins, binding of Tat to TAR is 
critical for the recruitment of cellular factors to the viral promoter necessary for transactivation. 
Thus, we decided to study the interaction of Tat-TAR to identify residues in Tat that may be 
specifically coevolving with bases in the TAR RNA, using 182 sequences for the Los Alamos 
sequence database (http://www.hiv.lanl.gov/).  

The landscape of raw MI scores between TAR and Tat show that the highly conserved 
sites in TAR display low scores with all sites in Tat and sites within the core and ARM domain 
of Tat (amino acids 41-52) show low scores with all bases in TAR, as would be expected due to 
the low entropy of these sites (Fig. 2.8). Further, the heat map shows that certain bases in TAR, 
such as 11, 13, 48 and 50 show high coevolution signal with almost the entire primary sequence 
of Tat. Since the MI score is related to the entropy of the two sites involved, the high coevolution 
signal seen for such sites in TAR possibly occurs due to their high entropy and thus appropriate 
corrections need to be introduced to filter out the noise amongst these sites, to identify site pairs 
that are actually coevolving (Fig. 2.8).  

Plots of MI(X,Y) vs. min{H(X),H(Y)} and MI(X,Y) vs. H(X,Y) show that no site pair is 
very close to the diagonal, suggesting that none of the site pairs shows significant correlation 
(Figs. 2.09A and 2.09D). Once again, the normalized quantities, MI(X,Y)/min{H(X),H(Y)} and 
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MI(X,Y)/H(X,Y) give high values for some site pairs that are very highly conserved, which might 
not be a true indicator of coevolution between these sites and that, as in the case of Tat 
coevolution, these normalizations may not be appropriate for site pairs that are almost 
completely conserved (Figs. 2.09B,C,E and F).  

 

Figure 2.8. Raw MI scores between all 59 positions in TAR and 86 amino acids in Tat plotted as a (A) Mesh plot  
and (B) Heat map. 
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As in the case of intra-Tat coevolution, subtracting background MI scores, generated 
from a simulated sequence alignment where every base or amino acid is equiprobable, from the 
raw MI scores reduces the corrected MI scores to zero for most site pairs (Fig 2.10). This is due 
to the overestimation of background MI since sites in the simulated alignment have much higher 
entropies and thus to not accurately mimic the actual sequence alignment. Nevertheless, this 
correction shows that base 11 in TAR may be correlated with amino acid 32 within the activation 
domain, amino acid 57 within the ARM motif and amino acid 64 in Tat, and base 50 in TAR 
may be correlated with amino acid 40 in the activation domain and amino acid 54 within the 
ARM motif of Tat (Fig. 2.10). In the absence of a crystal structure of the entire TAR molecule in 
complex with the Tat protein, these correlations may be an indicator of the physical proximity 
between different sites in TAR and Tat that are important for maintaining the conformation of 
the RNA-protein complex. 

 

Figure 2.9. (A) Plot of MI(X,Y) vs. min{H(X),H(Y)} shows that no site pair is close to the dashed diagonal line. (B) 
Plot of MI(X,Y)/min{H(X),H(Y)} vs. min{H(X),H(Y)}. (C) Heat map of normalized MI after correction with 
min{H(X),H(Y)}. (D) Plot of MI(X,Y) vs. H(X,Y) shows that no site pair is close to the dashed diagonal line. (E) Plot 
of MI(X,Y)/H(X,Y) vs. H(X,Y). (F) Heat map of normalized MI after correction with H(X,Y). 

To estimate the background MI more accurately, a simulated sequence alignment was 
constructed in which the base and amino acid frequency at each site was the same as the actual 
TAR and Tat database. The symmetry of MI scores seen in the heat map possibly occurs since 
site 11 in TAR base pairs with site 50 and site 13 in TAR base pairs with site 48, these base-
pairings occurring in the lower stem of TAR (Fig. 2.11). The threshold MI score was determined 
as 0.38 which identified 3 Tat-TAR pairs as coevolving – (11,32), (11,57) and (50,40) (Figs. 



! 26 

2.12A and 2.12B). Interestingly, although site 11 base-pairs with site 50 in TAR, they display 
maximum coevolution signal with different residues in Tat, 32 and 40, respectively. This 
suggests that site 11 in TAR may be specifically interacting with residue 32 in Tat and site 50 in 
TAR may be specifically interacting with residue 40 in Tat, and that these coevolution signals do 
not arise as a consequence of the base-pairing constraint imposed by the stem structure of TAR. 

 



! 27 

Figure 2.10. MI scores between positions in TAR and Tat plotted as a (A) mesh plot  and (B) heat map after 
subtraction of background MI generated from a simulated sequence alignment with equiprobable base and amino 
acid distribution. 

 

Figure 2.11: MI scores between positions in TAR and Tat plotted as a (A) mesh plot  and (B) heat map after 
subtraction of background MI generated from a simulated sequence alignment with the same base and amino acid 
frequency as the actual database. 
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Correction with APC shows that the heat map of MI scores do not show the same 
symmetry in coevolution signals as seen in the other methods, suggesting that this correction, 
which minimizes the background signal arising from the phylogenetic relation shared between 
the sequences in the alignment, besides the structural constraints imposed by the secondary 
structure of TAR, was responsible for the symmetry of MI scores (Fig. 2.13). The threshold MI 
score was identified as 0.16, and construction of a network of sites in TAR and Tat above the 
threshold score reveals interesting trends (Fig. 2.14A and 2.14B). The presence of a one-to-one 
correlation in most cases shows that specific bases in TAR interact with specific residues in Tat, 
possibly due to their close physical proximity that is necessary for the formation of a stable Tat-
TAR complex (Fig. 2.14B). The high coevolution signal between site 25 within the bulge of 
TAR and site 53 within the ARM motif of Tat confirm previously known data that the bulge in 
TAR interacts with the ARM motif of Tat (16, 17). Interestingly, the MI analysis also produces 
some new correlations between the lower stem of TAR (sites 11, 13 and 48) with the Cys-rich 
motif in Tat (sites 31, 32 and 35). The cellular protein PKR has been shown to bind to the lower 
stem of TAR as well as phosphorylate Tat. The correlation between sites in the lower stem of 
TAR and the Cys-rich region of Tat could arise from their interaction with PKR (18, 19). The MI 
analysis also reveals that a residue in the ARM motif (site 54) of Tat may also be interacting with 
a base (site 22) just below the bulge of TAR. 
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Figure 2.12. (A) Deviation from an exponential function  is used to identify the threshold MI as 0.38. (B) Network 
of sites above threshold MI in TAR correlated with those in Tat. 

 

Figure 2.13. MI scores corrected by APC shown as a (A) mesh plot and (B) heat map. 
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The MI analysis between TAR and Tat, after correction of background MI using several 
methods, reveals linear correlation between sites in TAR and Tat. It would be interesting to test 
experimentally if these sites in TAR and Tat show this specificity in interaction as revealed by 
the MI analysis. 

 

Figure 2.14. (A) Deviation from an exponential function  is used to identify the threshold MI as 0.16. (B) Network 
of correlated sites in TAR and Tat that are above threshold MI. 

2.5 Rev-mediated transport of incompletely spliced viral RNA to the 
cytoplasm 

Rev (Regulator of Expression of Virion proteins) is a 116 amino acid regulatory protein 
that plays a critical role in transporting full-length or incompletely spliced, intron-containing 
viral RNA to the cytoplasm. During the early stages of viral replication, in the absence or under 
low levels of Rev, the full-length viral transcript in the nucleus of infected cells are spliced by 
the host splicing machinery to yield short (~2kb) transcripts that are constitutively exported to 
the cytoplasm (Fig. 2.15A). One of these short transcripts encodes for Rev which has a arginine-
rich sequence (amino acids 34-50) that acts as nuclear localization signal allowing Rev to build 
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up within the nucleus (20) (Fig. 2.15A). Rev then binds to a structured stem-loop RNA element 
called Rev Response Element (RRE) present within all full-length and partially spliced viral 
transcripts (21-23) (Fig. 2.15B). RRE contains a high-affinity site consisting of stems IIB and 
IID that binds to the same arginine-rich motif as the nuclear localization signal in Rev (23-27). 
After the initial RNA-protein interaction, additional Rev molecules bind to this complex through 
RNA-protein and protein-protein interactions (28-30). Sites such as 23, 25 and 26, and those on 
the other side of the nuclear localization signal have been shown to be important for Rev 
multimerization (31, 32) . Eight or more Rev monomers bound to the viral RNAs are then 
transported across the nuclear membrane with the help of a leucine-rich nuclear export signal 
present within Rev (amino acids 75-83) to rescue intron-containing viral RNAs from the nuclear 
splicing machinery (33) (Fig. 2.15B). 
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Figure 2.15. (A) During the early phase of  viral replication, in the absence or under low levels of Rev, the full-
length (~9kb) and partially spliced (~4kb) transcripts are retained in the nucleus and are either degraded or spliced to 
short (~2kb transcripts) that are exported to the cytoplasm. Translation of these short transcripts give rise to Rev, Tat 
and Nef. (B) Rev localizes to the nucleus and once enough Rev builds up, it binds to a structured RNA element 
called RRE (shown as a ball and stick in the figure) and exports the full and partially spliced transcripts to the 
cytoplasm. Adapted from (34). 

Similar to the regulatory protein Tat discussed previously, Rev plays multiple functions 
in ensuring normal viral replication, despite having sequence variation within different sites (Fig 
2.16). Besides binding to RRE and other Rev molecules, it also interacts with various cellular 
factors involved in nuclear export, such as Crm1 and RIP/Rab (35-37). Although, the presence of 
the N-terminal arginine-rich nuclear localization signal/RNA-binding domain and the C-terminal 
nuclear export signal makes Rev a relatively modular protein, with heterologous nuclear 
localization or nuclear export signal sequences ensuring normal Rev function, replacing both 
peptides with heterologous sequences result in a non-functional Rev (38-40). Thus, sites in the 
N- and C- terminus of the protein could be correlated that are necessary for normal protein 
function. We plan to identify such sites that may be important for the structural stability of a 
monomer, important for formation of Rev multimers or important for interactions with other 
cellular proteins to ensure normal Rev function. 

 

Figure 2.16. Representative alignment of Rev sequences from different subtypes showing sequence diversity at 
different sites. Black columns represent completely conserved sites. 

2.6 Using MI to identify coevolving residues within Rev 

As briefly described in the previous section, the viral regulatory protein Rev interacts 
with a large number of cellular proteins similar to Tat, the other regulatory protein of HIV-1. We 
therefore decided to compute MI scores between different residues in Rev to identify non-
conserved but functionally or structurally important sites in Rev using 1033 sequences from the 
Los Alamos Sequence Database (http://www.hiv.lanl.gov/). MI scores within Rev were 
calculated for the first 95 amino acids, instead of the entire 116 amino acids since the quality of 
sequence alignment beyond residue 95 was poor.  

The raw MI landscape reveals that certain sites within amino acids 40-50 in the RRE-
binding/nuclear localization signal, and sites within 75-80 in the nuclear export signal show low 
correlation with all other sites in Rev (Fig. 2.17A). This is expected since these residues are 
within functionally important motifs and hence highly conserved residues. Heat maps show that 
site pairs (88,89) close to the C-terminus end of the protein, and (11,14) close to the N-terminus 
end of the protein show high coevolution signal (Fig. 2.17B). Interestingly, site pairs (11,88) and 
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(11,89) also show high coevolution signal, suggesting that sites at the two ends of the protein 
may be functionally coupled and essential for protein function (Fig. 2.17B). 

 

Figure 2.17. Raw MI scores between the first 95 sites in Rev shown as a (A) mesh plot and (B) heat map. 

Plotting MI(X,Y) vs. min{H(X),H(Y)} again shows that a few site pairs, such as (11,14), 
(88,89), (11,88) and (11,89) appear to be closer to the dotted diagonal line, an indicator of 
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significant correlation, than most other site pairs, suggesting these positions may be important 
for Rev function (Fig. 2.18A). However, a plot of MI(X,Y) vs. H(X,Y) shows that except for the 
site pair (88,89), most other pairs are within the background region (Fig. 2.18D). The normalized 
quantity MI(X,Y)/min{H(X),H(Y)} again gives high scores for positions that have very low 
entropies close to zero, and so this method may not be appropriate for positions that are almost 
completely conserved. However, this normalization reveals that sites 69-71 may be correlated 
and interacting with several other sites in the protein (Figs. 2.18B and 2.18C). Similarly, the 
MI(X,Y)/H(X,Y) normalization also suggests that sites 69-71 may be correlated with other sites in 
Rev (Figs. 2.18E and 2.18F). 

 

Figure 2.18. (A) Plot of MI(X,Y) vs. min{H(X),H(Y)} shows that a few site pairs such as (11,14), (88,89), (11,88) 
and (11,89) are closer to the diagonal line than most other site pairs. (B) Plot of MI(X,Y)/min{H(X),H(Y)} vs. 
min{H(X),H(Y)}. (C) Heat map of normalized MI after correction with min{H(X),H(Y)}. (D) Plot of MI(X,Y) vs. 
H(X,Y) shows that the site pair (88,89) is closer to the diagonal line than all other pairs. (E) Plot of MI(X,Y)/H(X,Y)  
vs. H(X,Y). (F) Heat map of normalized MI after correction with H(X,Y). 

 Correction of raw MI scores using a simulated sequence alignment where all 
residues are equiprobable at each site again results in the overestimation of background MI and 
reduces the score for most site pairs to zero. However, this correction also reveals position pairs 
that were previously identified to be potentially coevolving - (11,14), (88,89), (11,88) and 
(11,89) (Fig. 2.19). This correction reveals some interesting trends for the multimerization 
domains in Rev, which are present on either side of the RRE binding/nuclear localization signal 
(32). Site pair (53,54) appears to be correlated to each other (Fig. 2.19). Site 54 was initially 
believed to be important for Rev multimerization but was later shown to be important for RRE 
binding (41). If site 54 coevolves with site 53, it would be interesting to study how different 
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amino acid combinations at these two positions impact RRE binding vs. Rev multimerization. 
Similarly, other sites – (28,30) and(18,28) - within or close to the Rev multimerization domains 
appear to be correlated to each other (Fig. 2.19).  
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Figure 2.19. Corrected MI scores between positions in Rev shown as a (A) mesh plot and (B) heat map after 
subtraction of background MI generated from a simulated sequence alignment with equiprobable amino acid 
distribution. 

 



! 37 

Figure 2.20. Corrected MI scores between positions in Rev shown as a (A) mesh plot and (B) heat map after 
subtraction of background MI generated from a simulated sequence alignment with the same amino acid distribution 
at each site as the actual database. 
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Figure 2.21. (A) Deviation from an exponential function is used to identify the threshold MI as 0.41. (B) Network 
of correlated sites in Rev that are above threshold MI. 

 

Figure 2.22. MI scores corrected by APC shown as a  (A) mesh plot and (B) heat map. 
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Figure 2.23. (A) Deviation from an exponential function is used to identify the threshold MI as 0.26. (B) Network 
of correlated sites in Rev that are above threshold MI. 
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Correcting raw MI scores using a simulated sequence alignment where the frequency of 
amino acids at each site is the same as the actual sequence database, identifies similar positions 
pairs to those identified by the previous methods (Fig. 2.20). The threshold MI score of 0.41 was 
used to identify the network of sites that are potentially coevolving (Fig. 2.21A). Sites 11, 83, 88 
and 89 form a completely connected network with all sites correlated to the other (Fig. 2.21B). 
Site 11 also shows significant coevolution signal with site 14. Further, sites 18, 28, and 30 within 
the multimerization domain of Rev are correlated to each other and to sites 63 and 82 with site 
28 appearing to be a particularly important site since it is linked to all the other four sites (Fig. 
2.21B). As previously identified from the other methods, sites 53 and 54 appear to be correlated 
and may be functionally important for RRE binding or Rev multimerization.  

Finally, correction with APC to minimize the phylogenetic and entropic contributions of 
noise to MI reveals site pairs – (53,54), (11,14), (88,89) and (84,85) - as the most strongly 
correlated pairs (Fig. 2.22). The threshold MI of 0.26 was used to construct a network of 
correlated sites above that cut-off score (Fig. 2.23A). The network of sites shows some 
interesting distinctions from the network generated by the previous method (Figs. 2.23B and 
2.21B). Sites 11,14, 83, 88 and 89, are still correlated to each other though some of the edges 
have disappeared, suggesting that some of those correlations arose from phylogenetic 
contributions to noise. In agreement with the previous method, site pairs (53,54) and (84,85) are 
above the threshold MI score. Position pairs (7,8) and (21,58) that were previously not identified 
by any other method also show coevolution signals above threshold (Fig. 2.23B). Site pair 
(21,58) appears to be particularly interesting since it lies within the multimerization domain of 
Rev, on either side of the RRE binding/nuclear localization signal domain.  

Thus, MI has allowed us to identify important correlated sites within Rev that are 
possibly linked to each other functionally or structurally. Sites close to the N-terminus, 11 and 14 
appear to be correlated with sites 83, 88 and 89. Similarly, other sites 18, 28 and 30, within the 
Rev multimerization domain are linked to sites 63 and 82. Furthermore, site pairs (21,58) and 
(53,54), within either side of the Rev multimerization domain may be important for the 
interaction between Rev molecules. Interestingly, interactions between residues close to the N-
and C-terminal end of the protein could possibly explain why replacing both the nuclear 
localization and export signal with homologous peptide signal sequences fail to function as wild-
type Rev. A detailed study of the sites that were identified in the above analysis should help in 
gaining a better understanding of Rev function and the contribution of these non-conserved sites 
to protein function. 

2.7 Materials and Methods 

2.7.1 Mutual Information Analysis 

Codes for Mutual Information to estimate raw and background scores were based on the 
mathematical equations presented in Section 2.2. They were written in Matlab® and will be 
made available upon request. 
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Chapter 3: Mutual Information Analysis Reveals Coevolving 
Residues in Tat that Compensate for Two Distinct Functions in 
HIV-1 Gene Expression 

3.1 Introduction 

Genomes are continuously subjected to mutations that can in many cases undermine the 
structure and function of their encoded proteins. These processes may be especially important in 
rapidly evolving genomes, such as those of RNA viruses, which feature high rates of mutation 
and recombination during replication (1,2). For example, the retrovirus Human 
Immunodeficiency Virus-1 (HIV-1), exhibits enormous sequence diversity – both within 
individual patients and among numerous subtypes and recombinants circulating throughout the 
world – that in many cases reduces viral fitness but can also promote its ability to adapt to 
different selective pressures applied by the host immune system and anti-retroviral drugs (2-6). 
In many cases, purifying selection purges mutations that reduce overall fitness; however, 
deleterious mutations at one residue may also be compensated for by mutations at other sites to 
maintain protein structure and function (7). Such compensating positions within a protein may 
conceal significant evolutionary and functional information, yet are not readily apparent from an 
analysis of protein sequence. We use an approach whereby discovering coevolving sites within 
the HIV-1 protein Tat (Transactivator of Transcription) allows us to elucidate the underlying 
functional mechanism that constrains these sites to certain residue pairs for optimal function of 
this important viral protein. 

Tat, which displays complex interactions with several cellular and viral factors that are 
critical to activating gene expression from the viral promoter, is an interesting substrate for 
analysis of the effects of protein evolution on complex, multifaceted protein functions. Briefly, 
once HIV-1 infects a host cell and integrates into its genome, transcription factor binding sites 
within the viral promoter recruit host cellular factors and mediate a low, basal level of gene 
expression in which transcriptional elongation is inefficient and yields primarily abortive 
transcripts (8). However, a small number of full length viral transcripts are produced and spliced 
to yield a mRNA species that encodes Tat. The few Tat molecules that are formed from this 
basal transcription bind to the positive transcription-elongation factor b (P-TEFb), which consists 
of the cellular proteins cyclin T1 (CycT1) and cyclin-dependent kinase 9 (Cdk9) (9). The 
resulting Tat-P-TEFb complex then binds to a RNA hairpin TAR (Transactivation Response 
Element) present at the 5’ end of all viral transcripts and is subsequently transferred to the pre-
initiation complex (PIC), wherein Cdk9 phosphorylates the C-terminal domain (CTD) of RNA 
polymerase II (RNAPII) and thereby greatly increases RNAPII processivity (10,11). In a recently 
proposed, alternate mechanism, P-TEFb and Tat may be recruited to the viral promoter in an 
inactive form, and the newly synthesized TAR may then bind to Tat and P-TEFb and displace 
the inhibitory 7SK snRNP to activate P-TEFb, which phosphorylates RNAPII (12). In either 
case, the increased RNAPII processivity greatly elevates viral gene expression and initiates a 
cascade of HIV-1 replication. 

In addition to its interactions with RNAPII through P-TEFb, the multifunctional Tat 
interacts with numerous other host factors, and a balance among these various interactions and 
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post-translational modifications is likely necessary for effective overall function (13-23). 

 

Figure 3.1. Representative sequence alignment for HIV-1 Tat proteins of different subtypes. Sites in Tat that 
are conserved across these sequences are shaded in black. The domains of Tat that interact with a few well-known 
cellular proteins are shown in the upper half of the sequence alignment. The different domains of Tat are indicated 
in the lower half of the sequence alignment. The Tat B sequence is referred to as the wild-type (WT) sequence in the 
main text, into which mutations are introduced to identify coevolving residues. 

However, it is unclear how Tat, despite its considerable sequence diversity among HIV-1 isolates 
globally, is able to mediate these critical processes of co-opting a series of host cellular 
mechanisms to orchestrate viral replication. Sequence alignment of a protein can enable the 
identification of single amino acids that are conserved and hence potentially important for 
specific functions, and a number of such sites have been identified within Tat (e.g. Fig. 3.1) 
(13,16). However, we hypothesized that correlated and coordinated amino acid changes may 
have played a role in diversifying Tat’s sequence while preserving its interactions with many 
host proteins and thus its overall function (13-23). Furthermore, sequence alignments can readily 
miss situations where neither of two given residues is individually conserved, but instead where 
correlated pairs that make important contributions to protein structure and/or function appear 
together. Thus, bioinformatic and statistical approaches may help identify such sites and thereby 
gain greater molecular insights into a protein critical for HIV pathogenicity. 

To address these hypotheses, we applied a statistical measure termed Mutual Information 
(MI) (24), one of several methods that can be used to identify correlated position pairs from 
multiple sequence alignments of proteins (25-27). Previously, such statistical measures have 
been applied to HIV-1 proteins, including the V3 loop of the env gene and the gag gene (28-30); 
however, these elegant computational analyses were not accompanied by experimental 
investigation. Similarly, such analysis has also been applied to other biological systems (31). 
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Figure 3.2. MI analysis applied to the Los Alamos Sequence Database reveals correlated position pairs in Tat. 
(A) MI scores between all possible position pairs within the first 46 residues in Tat. Sites (35,39), (31,35) and 
(31,39) have the highest scores. (B) Plot of Entropy of a site (a measure of amino acid conservation at a site) vs. 
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Maximum MI score for that site with any other site in Tat. The dotted line denotes the threshold MI score used to 
separate signal from background. Black solid circles represent experimentally tested positions in Fig. 3.4. 

Because the background noise in multiple sequence alignments makes it difficult for most 
statistical measures to predict correlated residues accurately, accompanying experimental 
validation of these sites is critical to identify structurally or functionally constrained residue 
pairs. 

Here, we present a combined computational and experimental approach to identify and 
investigate coevolving residues in Tat. Sites 35 and 39 emerged in this analysis, and the 
functional importance of these coevolving residues was verified experimentally by introducing 
single point mutations in Tat. While the single mutants proved non-functional, adding the second 
mutation restored viral gene expression. Surprisingly, despite their structural proximity, positions 
35 and 39 appeared to be important for two distinct, underlying mechanisms – Tat binding to P-
TEFb and Tat-mediated activation of P-TEFb to enable it to phosphorylate the CTD of RNAPII 
– and a combination of these two functions constrains the identities of these residues to certain 
pairs of amino acids. 

 Extending this analysis indicates that the Tat proteins of HIV-1 subtypes B and C appear 
to have evolved compensatory strengths for different steps of Tat-mediated transactivation to 
achieve similar overall viral gene expression levels. 

3.2 Mutual Information Analysis Identifies Sites 35 and 39 in Tat as 
Coevolving 

To identify correlated sites within Tat that are potentially important for maintaining Tat 
structure or function, we calculated MI between position pairs for 917 pre-aligned Tat sequences, 
from 9 viral subtypes and 14 recombinant forms, from the Los Alamos Sequence Database 
(http://www.hiv.lanl.gov/). To encode a large amount of information within a relatively small 
genome, HIV-1 uses overlapping reading frames and alternative splicing. Since Tat shares 
overlapping reading frame with another viral protein, Rev, beyond amino acid 47, analysis was 
restricted to the first 46 amino acids of Tat within its activation domain (amino acids 1-48) to 
ensure that the sequence conservation and structural constraints in Rev did not introduce false 
positives in the analysis. 

Within a multiple sequence alignment, MI predicts the likelihood of observing an amino 
acid at a particular site X in an alignment, given the identity of the amino acid at another site Y, 
and is computed by: 

21
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where , (1,2.....21)X Y ! corresponds to one of the 20 amino acids or an alignment gap. ( )p x  and 
( )p y correspond to the probability of observing amino acid (or gap) x  or y  at sites X and Y , 

respectively, and ( , )p x y  is the corresponding joint probability of observing amino acids (or 
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gaps) x  and y  at sites X and Y . Higher MI values indicate stronger correlation between two 
sites. 

The finite size of the sequence database and the phylogenetic relationship shared among 
these sequences result in non-zero background MI values.  

 

Figure 3.3. Identification of a threshold MI to distinguish correlated position pairs from other pairs. Corrected 
MI scores for all position pairs in Tat are plotted against their frequency of occurrences. The threshold MI score is 
indicated by the dashed line. Points to the left of the dashed line indicate the exponential background. Deviation 
from the exponential function is used to identify the threshold MI as 0.21. 

To minimize background noise, we subtracted background scores from raw MI scores using a 
method described by Dunn et. al. (32). After this normalization, unconstrained position pairs had 
values close to zero (Fig. 3.2A). To identify a threshold MI that distinguishes position pairs that 
are strongly statistically correlated and hence possibly coevolving from ones that do not interact 
with each other, a histogram of the corrected MI scores was constructed and fitted to an 
exponential function, as described by Weigt et. al.(Fig. 3.3) (33). Deviation from the exponential 
function was used to identify the threshold MI score as 0.21. Three position pairs – (35,39), 
(31,35), and (31,39) – had MI scores higher than the threshold (Fig. 3.2) (32,33).  

The z-scores, defined as the number of standard deviations from the mean MI score for 
all position pairs within the activation domain of Tat, a measure of the strength of correlation 
between two sites, were 17.96, 9.94 and 8.62 for the position pairs (35,39), (31,35) and (31,39) 
respectively, against the mean z-score of 0.34 for all position pairs within the activation domain 
of Tat. 

To ensure that these outcomes did not depend on the method used for background 
correction, an alternative method, in which the background was computed by creating a random 
sequence alignment in which the amino acid frequency at each site was the same as that in the 
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Tat sequence database, was used and yielded very similar corrected MI scores, with the highest 
pair (35,39) unchanged (24). 

For positions 35 and 39, frequencies of the different amino acids, based on the Tat 
sequence database, show that a Leu at position 35 constrains position 39 primarily to a Gln. 

 

Figure 3.4. Experimental identification of coevolving sites in Tat using gene expression studies. (A) Truncated 
2x4 matrix showing amino acid residues usually observed at sites 35 and 39 from 917 sequences in the Los Alamos 
Sequence Database, rather than a sparse 21x21 matrix representing all the amino acids (and gaps) at sites 35 and 39 
in Tat. In the complete matrix, each row sums to 100%. Shaded cells represent residues pairs commonly observed at 
sites 35 and 39. Gray cells represent amino acid pairs not observed in the database. (B) Schematic of the lentiviral 
vector (LGIT) used to study gene expression for different Tat variants. Jurkat cells were infected with the LGIT 
vector at low MOIs (0.05 – 0.1) to ensure single integration event per cell. (C) Gene expression levels based on GFP 
fluorescence for different Tat mutants normalized by WT Tat. (D) Percentage Infected but Off, a measure of the 
fraction of cells that are silenced and not expressing GFP. The shading of bars in (C) and (D) correlate with the 
matrix in (A) for easy visualization. Error bars represent S.D. for 3 independent infections. ‘**’ denotes statistically 
significant differences (p<0.01) from WT Tat. 

Similarly, a Gln at 35 results in a majority of Tat sequences having an Ile, Leu, or Thr but not a 
Gln at 39 (Fig. 3.4A). Based on the MI analysis, positions 31, 35, and 39 were chosen for 
experimental testing. In addition, a relatively conserved site that is coevolving with another site 
may in general have a low MI score due to the following mathematical constraints (24): 

{ }0 ( , ) min ( ), ( )I X Y H X H Y! !  

where ( )H X stands for the entropy of site X and ( , )I X Y  stands for the MI score between sites 
X  and Y . Entropy of a site is a measure of the degree of conservation of a site, with lower 
Entropies representing more conserved sites and a value of zero implying a completely 
conserved site. Thus, a conserved site may have low MI scores even if it is coevolving with 
another site because the mutual information is constrained to lie below the smaller entropy of the 
lesser variable site. Therefore, we experimentally tested a few sites, within the background 
region that had low Entropies (Fig. 3.2B). By including such low entropy sites within the 
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background region, we ensure that we do not fail to identify a coevolving pair that is constrained 
by one of the sites having low Entropy. Furthermore, we tested several non-conserved high 
entropy sites within background MI as controls to validate the low predicted functional 
relationship between such sites (Fig. 3.2B). Experimentally tested positions are shown by solid 
black dots (Fig. 3.2B). 

3.3 Gene Expression Analysis of Coevolving Sites 35 and 39 

If two sites functionally coevolve, then mutating either individually may impair 
biological activity, whereas mutating both together may rescue function. To test this hypothesis, 
amino acids in Tat from subtype B virus, broadly used in HIV-1 studies and referred to here as 
wild-type (WT) Tat (Fig. 3.1), were replaced with residues of other naturally occurring viral 
variants or subtypes (Fig. 3.4A). To test how sites with high MI scores predict Tat function, we 
studied the gene expression properties of different Tat mutants using a lentiviral vector model of 
HIV-1, in which the HIV-1 LTR drives expression of green fluorescent protein (GFP) and Tat, 
separated by an Internal Ribosome Entry Sequence (IRES) (LTR-GFP-IRES-Tat or LGIT) (Fig. 
3.4B) (34). GFP expression from single integrations of LGIT in Jurkat cells was used to quantify 
LTR gene expression, and as previously observed the Tat positive feedback loop results in a 
bifurcated cell population with either very low or high levels of GFP expression, referred to as 
the Off and On populations, respectively (Fig. 3.5A) (34). Two metrics were used to quantify 
gene expression (35). First, the Mean On Peak indicates the average GFP level of cells above the 
background threshold of fluorescence (the On gate), a measure of the level of “closed-loop” 
transactivation attained by a particular Tat mutant. Second, the Percentage Infected but Off is the 
fraction of infected cells that are in the Off population, but that can be stimulated to express Tat 
and GFP via the addition of TNF-! (a strong activator of the NF-"B pathway, which directly 
activates the LTR) and TSA (an inhibitor of histone deacetylases that also activates HIV gene 
expression) (35). This metric is a measure of the inability of a particular Tat mutant to activate 
gene expression from the viral LTR. 

 When introduced into WT Tat, single point mutations Q35L or I39Q, chosen from the 
matrix in Fig. 3.4A, yielded non-expressing virus (Figs. 3.4C and 3.5A). The Percentage of 
Infected but Off cells for these single mutants was approximately 70%, nearly three times higher 
than WT Tat, again indicating that these Tat mutants fail to activate gene expression from the 
viral LTR (Fig. 3.4D). Strikingly, however, the introduction of both mutations into the same Tat 
sequence (henceforth referred to as the double-mutant, DM) rescued Mean On Peak levels close 
to that of WT Tat, with a similar fraction of silenced cells (Figs. 3.4C,D and 3.5A). Similarly, 
transfection of the WT, Q35L, I39Q, and DM Tat into a HeLa cell line containing a HIV-1 LTR 
Luciferase reporter showed analogous trends (Fig. 3.5B). From the 917 Tat sequences used in the 
MI analysis, 124 sequences shared the same Gln35-Ile39 residue pair as WT Tat, and 262 
sequences shared the same Leu35-Gln39 residue pair as DM Tat, suggesting that both residue 
pairs are found in naturally occurring Tat sequences. Furthermore, to show that coevolution 
between sites 35 and 39 extend to another Tat subtype, we made single point mutants L35Q and 
Q39I of subtype C Tat. As previously observed for single mutations of Tat B, these mutants 
resulted in dramatic loss of gene expression and a three-fold increase in Percentage Infected but 
Off cells (Fig. 3.6C,D). However, gene expression was restored in the Tat C double-mutant, 
suggesting that sites 35 and 39 alone compensate for one other (Fig. 3.6C,D). Thus, 
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evolutionarily only certain pairs of amino acids at sites 35 and 39 but not their intermediates are 
tolerated. 
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Figure 3.5. Additional experimental verification of coevolving sites 35 and 39. (A) The histogram to the left 
shows background fluorescence of uninfected Jurkat cells. Infection of Jurkat cells at low MOIs (0.05-0.1) with the 
LGIT vector containing WT, Q35L, I39Q or the DM Tat, to ensure a single integration event per cell, gave rise to a 
bimodal population of low and high GFP fluorescence, corresponding to cells in the Off and On gate, shown in the 
middle. Insets show the distribution of GFP fluorescence for the different Tat variants within the On gate. 
Histograms of the infected Jurkat cells after stimulation with TNF-! and TSA are shown to the right. The difference 
in the number of cells in the On gate before and after stimulation is used to calculate Percentage Infected but Off, 
the fraction of cells that are infected with the LGIT vector originally but not expressing GFP. (B) Experimental 
identification of coevolving residues in Tat using transfection of the UbChIT vector containing different Tat variants 
into a HeLa cell line containing a HIV-1 LTR Luciferase reporter (HL3T1 cell line). Gene expression is 
dramatically reduced from the single Tat mutants, Q35L and I39Q. The DM partially rescues gene expression from 
the single mutants. An empty vector is used as a control. ‘**’ denotes statistically significant differences (p<0.05) 
from WT Tat. ‘*’ denotes statistically significant differences (p<0.05) from the DM Tat. 

In analysis of site 31 in Tat B, the mutation C31S also yielded a slight reduction in gene 
expression and a statistical increase in the Percentage of Infected but Off cells as compared to 
WT Tat (p<0.01); however, coevolution between site 31 and site 35 or 39 proved difficult to 
investigate, as mutation at either of the latter two exerted a dominant loss of gene expression. 
However, the interaction between sites 31, 35, and 39 can be observed statistically. A Gln at site 
39 constrains sites 31 and 35 primarily to a Ser and Leu, respectively. Similarly, a Leu, Ile or Thr 
at site 39 primarily restricts sites 31 and 35 to a Cys and Gln, respectively (Fig. 3.7). These 
interactions between sites 31-35-39 are discussed from a structural perspective in additional 
detail in the discussion section. 

We next replaced Gln35 and Ile39 in WT Tat with other amino acids based on residues 
that either appear or do not appear at sites 35 or 39 in the Los Alamos Sequence Database. As 
anticipated, replacing Gln35 with similar polar residues that are not found (Q35N, Q35E and 
Q35K) or rarely found (Q35T) in the database, and are thus not predicted to coevolve with 
residues at site 39, resulted in non-functional Tat proteins (Fig. 3.6A,B). Similarly, replacing 
Ile39 in WT Tat with non-polar residues (I39F), or polar residues that occupy similar side-chain 
volume (I39K) but are not found in the database, gave rise to non-expressing viruses (Fig. 
3.6A,B). In contrast, naturally occurring Tat sequences with a Gln at site 35 have residues such as 
Leu and Val in addition to Ile at site 39 (Fig. 3.4A, Val is not shown in this matrix). I39L and 
I39V Tat mutants yielded similar Mean On Peak and Percentage Infected but Off levels as WT 
Tat (Fig. 3.6A,B), validating the predictions from MI analysis. Experimental data from these site-
directed mutations and predictions from the MI analysis also corrected well with structural 
analysis at these positions.  

Structural analysis for the Q35N mutation shows that Asn35 of Tat fails to H-bond with 
Asn180 of CycT1. Compared to Gln at site 35 in Tat, the shorter side-chain length of Asn 
increases its distance from Asn180 of CycT1 that results in a loss of H-bonding. Other mutations 
at site 35 (Q35E, Q35T and Q35K) also result in a loss of H-bonding which may potentially be 
responsible for the loss of gene expression that is observed with these mutants (Fig. 3.6A). 

Introducing mutations at site 39, such as I39F and I39K, results in a loss of gene 
expression (Fig. 3.6A). Replacing Ile39 in WT Tat with a non-polar residue Phe (I39F) shows 
that the structure of the Tat-P-TEFb complex (PDB: 3MI9) is destabilized by 3.7 kcal/mol*. 
Similarly, replacing Ile39 in WT Tat with the polar residue Lys (I39K) that occupies similar 
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side-chain volume destabilizes the Tat-P-TEFb structure (PDB: 3MI9) by 5.92 kcal/mol*. 

 

Figure 3.6. Additional mutations at sites 35 and 39 further validate the MI analysis to establish these two sites 
as coevolving. (A) and (B) Normalized Mean On Peak and Percentage Infected but Off for Tat variants with 
mutations at sites 35 and 39. As expected, mutants that are not found (Q35N, Q35E, Q35K, I39F and I39K) or rarely 
found (Q35T) in the Los Alamos Sequence Database fail to activate gene expression from the viral promoter with 
higher levels of Percentage Infected but Off cells than WT Tat. In contrast, the I39L and I39V mutants are also 
found in naturally occurring Tat sequences that have a Gln at site 35. Introducing these mutations in WT Tat does 
not alter the levels of the Mean On Peak or the Percentage of Infected but Off cells suggesting that only certain pairs 
of amino acids at sites 35 and 39 produce functional Tat protein. ‘**’ denotes statistically significant differences 
(p<0.05) from WT Tat. (C) and (D) Normalized Mean On Peak and Percentage Infected but Off  for Tat C mutants 
at sites 35 and 39. Single mutants, L35Q and Q39I give rise to non-functional Tat, whereas the presence of both 
mutations with the same Tat C sequence  restores gene expression close to WT (Tat C) levels. Thus, sites 35 and 39 
have coevolved with each other and this correlation between the two sites is not dependent on the subtype of Tat. 
‘**’ denotes statistically significant differences (p<0.05) from WT (Tat C) Tat. 

The destabilization of the Tat-P-TEFb structure potentially explains the loss of gene expression 
associated with these mutations. In contrast, residues such as Leu and Val that are also found in 
naturally occurring Tat sequences at site 39, in addition to Ile, are associated with similar levels 
of gene expression as WT Tat (Fig. 3.6A). Analysis of the mutations I39L and I39V showed that 
the stability of Tat-P-TEFb structure (PDB: 3MI9) was almost unchanged (compared to WT Tat, 
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the I39L and I39V mutations marginally stabilized the Tat-PTEFb structure by 0.02 kcal/mol* 
and 0.32 kcal/mol*, respectively), supporting the experimental evidence that these mutations 
result in similar levels of gene expression as WT Tat. 

 

Figure 3.7. Sites 31, 35 and 39 form a mini-network of coevolving residues. The heat map shows the distribution 
of some commonly occurring amino acids at sites 31, 35 and 39 from Tat sequences obtained from the Los Alamos 
Sequence Database. Each block represents a 20x20 matrix of amino acids at sites 35 and 31 for a given amino acid 
at site 39, indicated at the top of that block. The x- and y-axis represent the 20 amino acids arranged alphabetically 
at sites 35 and 31, respectively. Thus, the upper block shows that a Gln at site 39 is primarily correlated with Leu at 
site 35 and Ser at site 31. Similarly, the three lower blocks show that a Leu, Ile or Thr at site 39 is primarily 
correlated with a Gln and Cys at sites 35 and 31, respectively. 

Compared to sites above the threshold MI value, mutation of positions 7, 12, 17, 19, 24, 
29, 32, 40, or 42, which were predicted to be within the background region from the MI analysis, 
did not show any statistical difference in the level of gene expression or the Percentage of 
Infected but Off cells compared to WT Tat (p> 0.01, Fig. 3.4C,D). These gene expression studies 
thus strongly support the in silico prediction that sites 35 and 39 strongly coevolve and are 
critical to ensure the primary function of Tat as a transactivator of the HIV-1 promoter (Fig. 
3.4C,D). 

Finally, WT and DM Tat have different pairs of amino acids at sites 35 and 39 yet induce 
similar levels of gene expression when present at high levels (Fig. 3.4C); however, we also 
wanted to explore their gene activation behavior at lower concentrations. Under these conditions, 
previous studies have shown that the Tat positive feedback loop is subject to stochastic 
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fluctuations in Tat, one of several factors that may play a role in viral reactivation from latency 
(34,35). Since DM Tat has amino acids Leu and Gln at sites 35 and 39, respectively, residues 
shared by a majority of subtype C Tats at these positions, we included subtype C Tat in these 
studies to determine the contribution of sites 35 and 39 to this behavior. As described previously, 
cells were infected with LGIT variants at low MOI, and GFP+ cells were sorted by Fluorescence 
Activated Cell Sorting (FACS) 7 days post-infection after stimulation with TNF-! (35). The 
sorted cells were allowed to relax for 9 days, and GFP- cells infected with the LGIT vector, but 
not expressing GFP, were sorted (Fig. 3.8A). These silent proviruses were then monitored for 
GFP expression over the course of 12 days (Fig. 3.8B). 

 

Figure 3.8. Gene activation under conditions of low Tat concentration. (A) Sorting scheme for isolating silent 
proviruses. Jurkat cells were infected with LGITs containing different Tat variants at a low MOI (to ensure single 
integration events per cell) and stimulated with TNF-! seven days post-infection, and GFP+ cells were isolated by 
FACS. The sorted cells were allowed to relax for 9 days and GFP- cells are then sorted from this population. GFP 
expression of this population was then tracked over time using flow cytometry. (B) Gene activation rates over time 
for different Tat variants. Q35L and I39Q Tat fail to initiate reactivation whereas Tat DM and C, with the same Leu-
Gln residue pair at sites 35-39, have similar gene activation rates that partially restores gene activation to subtype B 
Tat levels. Error bars represent S.D. obtained by bootstrapping using a bootstrap sample size of 2000. 

As anticipated, the functionally inactive Q35L and I39Q Tat variants showed very low 
levels of gene activation. However, the DM Tat partially restored gene expression to WT Tat 
levels, and very closely tracked the activation rate of Tat C (Fig. 3.8B), a result that suggests that 
residue pairs at sites 35 and 39 may be important determinants in setting the gene activation 
levels for different Tat variants. 
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3.4 Coevolving Sites 35 and 39 Impact both P-TEFb Binding and 
Phosphorylation at the CTD of RNAPII 

To identify potential molecular mechanisms that restore gene expression for the DM Tat, 
we reasoned that the compromised transactivation of either Tat single mutant may be due to 
disruption in its binding to one of numerous cellular factors necessary for efficient 
transactivation. For example, the activation domain of Tat (amino acids 1-48) has previously 
been shown to interact with P-TEFb, which mediates the critical phosphorylation of the CTD of 
RNAPII and thus the production of full-length viral transcripts (9,36). HeLa cells were 
transfected with plasmids to express FLAG-tagged Tat under the control of the human ubiquitin 
promoter (Ubiquitin-mCherry-IRES-Tat or UbChIT), and immunoprecipitates of Tat were 
probed for Cdk9 and CycT1 (Fig. 3.9A,B) (18). WT Tat bound P-TEFb; however, the Q35L Tat 
mutant failed to efficiently bind either Cdk9 or CycT1, suggesting that site 35 is critical for 
binding P-TEFb (Fig. 3.9A,B), and the loss of this binding possibly underlies the defective gene 
expression for this mutant (Fig. 3.4C,D). Similarly, other factors that have recently been shown 
to interact with the Tat-P-TEFb complex and aid in transcriptional activation – such as ENL, 
AF9, AFF4 and ELL2 – failed to bind to the Q35L Tat mutant (Fig. 3.10) (37).  Interestingly, the 
DM Tat partially restores binding with Cdk9 and CycT1, likely the mechanism by which the 
I39Q mutation rescues the Q35L mutant’s loss of function (Fig. 3.9A,B). 

 

Figure 3.9. Co-immunoprecipitation and homology modeling shows that the Q35L Tat mutant fails to bind P-
TEFb. (A) Immunoprecipitation (IP) of nuclear extracts (NE) with !-FLAG, obtained from HeLa cells transfected 
with the UbChIT vector, were followed by Western blots (WB) with !-Cdk9 and !-CycT1 antibodies. (B) 
Quantification of binding of different Tat mutants with CycT1. CycT1 is normalized to Tat, and its interaction with 
WT Tat is arbitrarily assigned the value 1. Error bars represent S.D. for two independent !-FLAG IPs and WBs. ‘**’ 
denotes statistically significant differences (p<0.05) from WT Tat in CycT1 binding. (C) Interaction of P-TEFb with 
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WT and DM Tat are shown. Dark green and purple colors represent the ATP+ and ATP- structures for WT Tat, 
respectively, whereas light green and purple colors represent the ATP+ and ATP- structures for DM Tat. The 
structure shows hydrogen bonding between N180 in CycT1 with Q35 in WT Tat, as well as hydrogen bonding 
between N180 in CycT1 with Q39 in DM Tat. Hydrogen bonding is thus critical for Tat-P-TEFb binding. 

To gain further insights into the loss of P-TEFb binding, we performed in silico modeling 
based on a recently solved structure of Tat-P-TEFb (36). These results indicated that Asn180 of 

CycT1 is positioned between and can form hydrogen bonds with a Gln at either Tat site 35 or 39.  

 

Figure 3.10. The Q35L Tat mutant fails to bind cellular factors that interact with the Tat-P-TEFb complex. 
The inability of the Q35L Tat mutant to bind P-TEFb also results in loss of binding with transcription factors AFF4, 
ENL, AF9 and elongation factor ELL2, that have been shown to interact with the Tat-P-TEFb complex. 
Immunoprecipitation of nuclear extracts with !-FLAG antibody, obtained from HeLa cells transfected with the 
UbChIT vector, were followed by western blots with !-AFF4, !-ENL, !-AF9 and !-ELL2 antibodies. 

The Q35L mutation results in the loss of this hydrogen bonding, whereas the compensating 
mutation I39Q in the DM Tat enables Gln39 to replace this hydrogen bond with Asn180 in 
CycT1 (Fig. 3.9C). Although a previous study predicted that other naturally occurring mutations 
(except Tyr) could readily be accommodated at site 35 and maintain the structure of the protein 
complex (36), our analysis and accompanying experimental data suggest that the loss of 
hydrogen bonding may well be responsible for the drastic loss of function observed in the Q35L 
Tat mutant. 
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In contrast to the Q35L Tat mutant, however, the I39Q Tat mutant is able to bind CycT1 
at levels close to the DM Tat (Fig. 3.9B), but lower than WT Tat, suggesting that its inability to 
activate gene expression (Fig. 3.4C) arises from reasons other than P-TEFb binding. To probe 
other transcriptional steps at which I39Q Tat may fail, we quantified viral transcripts. Cells 
infected with LGIT vectors containing one of the four Tat variants were stimulated with TNF-! 
seven days post-infection, and infected, GFP+ cells were isolated by FACS. The sorted cells 
were allowed to relax for 9 days (Fig. 3.11A), total cellular RNA was extracted, and the levels of 
viral transcripts were quantified using RT-qPCR (35). The I39Q and DM Tat both had similar 
percentages of elongated transcripts (Fig. 3.11B); however, the I39Q Tat has much lower levels 
of total transcripts compared to the DM Tat (Fig. 3.11C), suggesting that it fails to induce 
transcription at the same efficiency as the DM Tat. 

 

Figure 3.11. Viral transcript quantification reveals potential transcriptional step at which I39Q Tat may fail. 
(A) GFP histograms for Jurkat cells infected with wild-type (Red), Q35L (Green), I39Q (Blue), and DM (Brown) 
Tat 9 days post-sorting of TNF-! stimulated GFP+ cells. (B) and (C) Quantification of the percentage of elongated 
and total viral transcripts obtained from total cellular RNA of infected Jurkat cells. "-actin is used for normalization. 
The assay is able to detect and quantify transcripts containing the full TAR RNA but not very short aborted 
transcripts. All qPCR measurements are in triplicate and error bars represent S.D. ‘*’ denotes statistically significant 
differences (p<0.05) between the indicated pairs of Tat variants. 

We explored the possibility that loss of gene expression for I39Q Tat arises due to its 
inability to interact with an upstream transcription factor such as Sp1 or a chromatin remodeling 
complex such as SWI/SNF (21,38). However, co-immunoprecipitation showed no differences in 
Sp1 binding between the I39Q and DM Tat (Fig. 3.12A). A change in interaction with SWI/SNF 
could alter disruption of the nucleosome (Nuc-1) situated at the transcription start-site; however, 
nuclease sensitivity assays showed that both the I39Q and DM Tat had similar effects on Nuc-1 
(Fig. 3.12B). 

At the heart of viral gene expression is Tat’s apparent ability to affect RNAPII 
phosphorylation. Sequential phosphorylation of serines at position 5 (Ser5) and 2 (Ser2) within 
an evolutionarily conserved but unstructured domain in mammalian RNAPII, consisting of 52 
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repeats of the heptapeptide Y1S2P3T4S5P6S7 at its CTD, is critical for mRNA synthesis and 
processing (39). Normally, RNAPII recruited to the promoter of a gene is phosphorylated at Ser5 
by Cdk7 within the transcription factor complex TFIIH (40). Shortly after transcription initiation, 
the polymerase briefly stalls ~30-40 bp downstream of the transcription start site to allow for 
pre-mRNA processing steps such as capping (41,42). Phosphorylation at Ser2 by the P-TEFb 
complex then promotes transcriptional elongation. In HIV-1 gene expression, however, Tat 
directly recruits and enables P-TEFb to phosphorylate both Ser5 and Ser2, and thereby greatly 
enhances transcriptional elongation (11,12,43). 

 

Figure 3.12. Mutations do not alter Tat binding with Sp1 or show differences in Nuc-1 disruption. (A) 
Immunoprecipitation of nuclear extracts with !-FLAG antibody, obtained from HeLa cells transfected with the 
UbChIT vector, were followed by western blots with !-Sp1 antibody. Both I39Q and DM Tat appear to bind Sp1 
with similar affinity. (B) Jurkat cells infected with different Tat variants were incubated with or without a nuclease 
DNAse I and genomic DNA was extracted using the EpiQ Chromatin Analysis Kit. The human hemoglobin gene 
(hHBB) was used as an internal control. All qPCR measurements were made in triplicate and error bars represent 
S.D. None of the Tat variants showed any statistical difference in Nuc-1 disruption from each other (p>0.05). 

Consistent with these results, the recently solved crystal structure of the P-TEFb-Tat 
complex shows that Tat binding induces P-TEFb conformational changes (36). To analyze the 
potential structural effects of mutations at sites 35 and 39, we performed additional in silico 
modeling based on this structure of Tat-P-TEFb, either in complex with or without an ATP 
analogue molecule (ATP+ or ATP-). Interestingly, both the ATP+ and ATP- structures of I39Q 
Tat are slightly energetically stabilized compared to WT Tat. In contrast, for the DM Tat the 
ATP+ structure was destabilized by 3.42 kcal/mol*, and the ATP- structure was stabilized by 
2.38 kcal/mol* compared to WT Tat (Table 3.1). Based on the energetics of the ATP+ structures, 
these modeling results suggest that compared to I39Q Tat, P-TEFb associated with the DM Tat 
may have a higher propensity to transfer the phosphate group from ATP to a substrate and transit 
to the more stable ATP- state. Moreover, based on the collective evidence from literature, viral 
transcript data, and in silico modeling results, we hypothesized that the I39Q Tat mutant, unlike 
the DM, may fail to efficiently induce P-TEFb mediated phosphorylation of the CTD of RNAPII 
(Fig. 3.11C and Table 3.1) (36,43). 



!

60 
!

To explore this potential phosphorylation defect for I39Q Tat during transcriptional 
initiation and early elongation involved in efficient escape of RNAPII from the promoter, we 
performed chromatin immunoprecipitation (ChIP) with qPCR analysis to quantify the levels of 
total and Ser5 and Ser2 phosphorylated RNAPII associated with the HIV promoter in the 
presence of different Tat variants. Interestingly, even though similar levels of total RNAPII are 
recruited to the viral promoter (Fig. 3.13C), the level of Ser5P-CTD of RNAPII close to the 
transcription start site for the I39Q Tat mutant was dramatically lower than for the DM Tat, and 
slightly lower than for WT Tat (Fig. 3.13A). Similarly, the level of Ser2P-CTD of RNAPII for 
I39Q Tat during early elongation was significantly (p<0.05) lower than both WT and DM Tat 
(Fig. 3.13B). 

Table 1. In silico modeling results of the stability (!!G) of the Tat-P-TEFb or Tat-P-TEFb-ATP complex 
after introducing mutations in Tat. 

!!G  (kcal/mol*) Tat-P-TEFb Complex (ATP -) 
(PDB: 3MI9) 

Tat-P-TEFb-ATP Complex (ATP+) 
(PDB: 3MIA) 

Q35L -3.00 4.95 

I39Q -1.01 -1.99 

DM -2.38 3.42 

Negative values indicate greater stability of a complex as compared to the complex containing WT Tat. The asterisk 
over kcal/mol indicates that these values are computational determined. In contrast to the I39Q Tat, the Tat-P-TEFb-
ATP complex for the DM Tat is destabilized and hence may have greater propensity to transfer the phosphate group 
to the CTD of RNAPII and transition into the more stable Tat-P-TEFb complex. 

Thus, it appears that WT Tat’s combination of weak Ser5P-CTD of RNAPII, strong P-
TEFb binding affinity, and high Ser2P-CTD of RNAPII – or DM Tat’s combination of high 
Ser5P-CTD of RNAPII, moderate P-TEFb binding affinity, and high Ser2P-CTD of RNAPII – 
mediates efficient escape of RNAPII from the HIV-1 promoter and activates gene expression for 
these two variants (Figs. 3.9B and 3.13A,B). Thus, it is possible that WT and DM Tat achieve 
similar levels of gene expression through orthogonal combinations of P-TEFb binding and 
Ser5P-CTD of RNAPII (Fig. 3.13D). 

In contrast, although the I39Q Tat displays moderate P-TEFb binding affinity, the 
extremely low levels of Ser5P-CTD and Ser2P-CTD of RNAPII likely impairs its ability to 
activate gene expression (Figs. 3.9B and 3.13A,B). Therefore, it appears that a Gln at site 35 (as 
seen for the WT and I39Q Tat) reduces Tat’s ability to induce P-TEFb-mediated phosphorylation 
at Ser5-CTD of RNAPII, but the presence of a Leu at site 35 (as in the Q35L and DM Tat) 
dramatically increases this function (Fig. 3.13A). However, Q35L Tat fails to bind P-TEFb and 
promote efficient escape of RNAPII from the promoter, as seen from the significantly lower 
levels (p<0.05) of Ser2P-CTD of RNAPII for this mutant compared to WT and DM Tat. Thus, 
although the I39Q and DM Tat both have similar, but lower, P-TEFb binding affinity than WT 
Tat, the high Ser5P-CTD and Ser2P-CTD of RNAPII observed with the DM but not I39Q Tat 
apparently rescues gene expression. 
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Figure 3.13. I39Q Tat fails to efficiently induce phosphorylation of the CTD of RNAPII, and subtype Tat’s 
have potentially evolved alternate modes of inducing viral gene expression. (A), (B), and (C) ChIP for Ser5P-
CTD of RNAPII, Ser2P-CTD of RNAPII and total RNAPII close to the transcription start site. Although similar 
levels of RNAPII are recruited to the viral promoter for all Tat variants, the I39Q Tat apparently fails to induce P-
TEFb to efficiently phosphorylate  the CTD of RNAPII, unlike the DM and WT Tat. Controls were performed 
without antibody. All qPCR measurements are in triplicate, and error bars represent S.D. ‘*’ denotes statistically 
significant differences (p<0.05) between the indicated pairs of Tat variants. (D) Plot of Ser5P-CTD of RNAPII vs. 
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CycT1 binding, and Ser2P-CTD of RNAPII vs. CycT1 binding, for different Tat variants. The black and red 
symbols correspond to the levels of Ser5P-CTD of RNAPII and Ser2P-CTD of RNAPII for different Tat variants, 
respectively. The blue oval encompasses the Q35L and I39Q Tat variants that fail to activate gene expression, either 
due to its inability to bind P-TEFb or due to its failure to induce P-TEFb to efficiently phosphorylate the CTD of 
RNAPII. The green oval shows that the WT and DM Tat activate gene expression, though potentially through 
different mechanisms. Markers within the green oval show that subtype B Tat (WT Tat) displays high P-TEFb 
binding affinity and low Ser5P-CTD of RNAPII whereas the DM Tat, mimicking most subtype C Tats at sites 35 
and 39, shows moderate P-TEFb binding and high Ser5P-CTD of RNAPII, with both Tat variants displaying 
comparable levels of Ser2P-CTD of RNAPII. 

3.5 Discussion 

For such a small protein, Tat shows a surprising diversity of function mediated by 
interaction with numerous cellular partners. It is post-translationally modified at specific sites by 
several cellular factors that impact transactivation. In addition to acetylation by PCAF and p300, 
there is evidence for methylation of Tat at Arg52 and Arg53 by the arginine methyltransferase 
PRMT6 (15) and methylation at Lys51 by the lysine methyltransferase Set 7/9 (KMT7). 
Similarly, other lysine methyltransferases have been shown to interact with Tat (16,17). Tat is 
also phosphorylated by Cdk2 (Ser16, Ser46) and PKR (Ser62, Thr64, Ser68) (18,19). Further 
evidence of the versatility of Tat can be seen in its interaction with other cellular proteins such as 
SKIP/SNW1 and SWI/SNF (20,21,23). Conserved and functionally important individual sites 
involved in these interactions can often be identified from multiple sequence alignments. 
However, the identification of mutually-dependent coevolving sites, which can readily be missed 
by simple site conservation, is enabled through the use of statistical measures such as MI. 

To date, the experimental discovery of correlated sites within the HIV-1 proteome – such 
as in Tat, Reverse transcriptase,  Nucleocapsid, and Rev – has involved creation of libraries of 
viral proteins or long-term culture of HIV-1 strains with single, site-directed mutations to reveal 
potential “suppressor mutations” (44-47). These approaches can sometimes yield either reversion 
of the introduced mutation or suppressor sites that do not naturally or specifically coevolve but 
act in a global, independent manner to increase fitness. By comparison, statistical analysis of 
viral sequence databases can identify positions whose evolution is correlated in a natural or 
clinical setting, as well as reveal correlations between new, unanticipated amino acid pairs. Here, 
we have harnessed MI to demonstrate functionally important correlations between pairs of sites 
in Tat. 

In computationally guided experiments using a model lentiviral system mimicking the 
positive-feedback loop in HIV-1, we found that single point mutations Q35L and I39Q yielded 
Tat variants that failed to activate gene expression from the viral LTR, with a majority of the 
proviruses existing in a silenced state that was activated only upon stimulation with 
pharmacological agents. However, introduction of both mutations Q35L and I39Q into the same 
Tat protein restored gene expression (Fig. 3.4C,D). Thus, the Gln35-Ile39 and Leu35-Gln39 
residue pairs both result in efficient gene expression from the viral promoter, for two Tat 
subtypes (Figs. 3.4C and 3.6C), confirming that sites 35 and 39 are coevolving. Furthermore, co-
immunoprecipitation and ChIP studies revealed distinct, complementary mechanisms that 
constrain amino acid residues at these two sites: effective P-TEFb binding and alteration of P-
TEFb substrate specificity to include the phosphorylation of Ser5 and Ser2 residues on the 
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RNAPII CTD. Specifically, we show that the Q35L single mutant fails to bind P-TEFb, whereas 
the DM partially rescues P-TEFb binding (Fig. 3.9). In contrast, the I39Q Tat binds P-TEFb at 
levels close to the DM Tat, yet still suffers from very low gene expression (Figs. 3.4C and 3.9B) 
potentially due to its inability to induce P-TEFb to phosphorylate the CTD of RNAPII (Fig. 
3.13A,B). It is plausible that the inability of the I39Q Tat to induce efficient phosphorylation of 
the CTD of RNAPII involves loss of interaction with additional host factors that remain to be 
discovered. At any rate, unlike most coevolving or suppressor mutations that help restore a single 
biological function (48), the coevolving sites 35 and 39 each contribute to distinct Tat-mediated 
mechanisms that are integrated to yield an active protein. That is, mutationally-induced deficits 
in one mechanism can be compensated for by mutations in the coevolving site that affect the 
other. 

Besides the strong coevolution signal observed between sites 35 and 39, site 31 was also 
correlated with sites 35 and 39, as seen in the MI analysis (Figs. 3.2 and 3.7), with decreased 
gene expression of a mutant at site 31 (Fig. 3.4C), and an accompanying statistical increase in 
the number of silenced cells observed experimentally (Fig. 3.4D).  Extending our analysis 
beyond pairwise interactions, site 31, which is part of the 310 helix, and sites 35 and 39, which 
are within the next !-helix, appear to be constrained to certain triplets of amino acids (Fig. 3.7). 
A triplet consisting of Gln at site 39, Ser at site 31 and Leu at site 35 can be observed in the Tat 
sequence database. Similarly, a Leu, Ile or Thr at site 39 is primarily correlated with a Cys at site 
31 and a Gln at site 35. Interestingly, the residue with the smaller of the side-chain volumes at 
site 31 (Ser), is correlated with the larger of the side-chain volumes at site 35 (Leu), whereas the 
larger side-chain at site 31 (Cys) is correlated with the smaller side-chain (Gln) at site 35. These 
steric and volume effects possibly constrain site 31 to specific amino acid residues depending on 
the residues at sites 35 and 39 and help position residues at 35 and 39 within the hydrophobic 
groove in CycT1. Thus sites 31, 35, and 39 appear to form a mini-network of coevolving 
residues. 

Most subtype B Tats pair Gln35 with Ile39/Leu39/Thr39, whereas a majority of subtype 
C Tats contain the Leu35-Gln39 residue pair, similar to the DM Tat, with a few having a Gln35-
Leu39 residue pair. Based on the P-TEFb binding assay and levels of Ser5P-CTD of RNAPII, it 
appears that different subtypes could potentially have evolved alternate modes or “solutions” to 
inducing gene expression from the viral LTR. Subtype B Tats induce a low level of Ser5P-CTD 
in RNAPII (Fig. 3.13A), but the strong binding to P-TEFb could at least in part compensate for 
this deficit (Fig. 3.9B) and eventually produce efficient elongation, as can been seen from the 
high levels of Ser2P-CTD of RNAPII, a marker for P-TEFb-induced elongation (Fig. 3.14). In 
contrast, the DM Tat, which mimics the majority of subtype C Tats at sites 35 and 39, induces 
very high levels of Ser5P (Fig. 3.13A) coupled with relatively weaker P-TEFb binding (Fig. 
3.9B) that in combination could ultimately drive comparable levels of Tat-mediated gene 
expression as measured by GFP expression (Fig. 3.4C), viral transcript analysis, and Ser2P-CTD 
of RNAPII (Fig. 3.14). Thus, the diversification of HIV-1 into different subtypes has apparently 
resulted in the evolution of compensatory mechanisms to trade off substrate binding and catalytic 
activity in inducing Tat-mediated gene expression from the viral LTR, such that the overall 
activity may be determined by the combination or “sum” of contributions from individual 
positions or functions (Fig. 3.13D). This novel finding has some parallels with other biological 
systems. For instance, it has been shown previously that autophosphorylation mutants of the 
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epidermal growth factor (EGF) receptor stimulate similar levels of MAP kinase activation, gene 
expression, and mitogenesis as the WT EGF receptor though different compensatory 
mechanisms (49). 

 

Figure 3.14 RNAPII elongation for different Tat variants using chromatin immunoprecipitation for Ser2P-
CTD of RNAPII and viral transcript quantification. (A) ChIP for Ser2P-CTD of RNAPII +2215 bp downstream 
of the transcription start site for different Tat mutants. As expected, the WT and DM Tat have higher Ser2P-CTD 
signal than the two single-mutants, although the Q35L Tat mutant shows a higher signal than anticipated based on 
GFP expression (Fig. 2C). Controls were performed without antibody. All qPCR measurements are in triplicate and 
error bars represent S.D. ‘**’ denotes statistically significant differences (p<0.05) from WT Tat. ‘*’ denotes 
statistically significant differences (p<0.05) between the indicated pairs of Tat variants. (B) Elongated viral 
transcripts were quantified by RT-qPCR using !-actin for normalization. In agreement with the gene expression 
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results of Fig. 2C, the single mutants, Q35L and I39Q have much lower levels of elongated transcripts compared to 
the WT Tat. The DM Tat partially rescues genes expression to WT Tat levels and thus has higher levels of elongated 
transcripts as compared to the single mutant Tats. ‘**’ denotes statistically significant differences (p<0.05) from WT 
Tat. 

We have previously found that gene expression from the LTR is a stochastic process, 
with bursts of mRNA production separated by long intervals, a feature that could play an 
important role in the establishment of viral latency (34,35,50). Changes to Tat that distinctly 
affect transcriptional initiation or elongation could differentially impact the frequency and size of 
mRNA bursts. Gene expression data at low Tat levels indicates that Tat variants from different 
subtypes, with potentially alternate mechanisms for inducing gene expression, could impact 
probabilistic gene expression events (Fig. 3.8). Future work may explore whether these 
differences in Tat result in different propensities for viral latency. 

In addition to its application to HIV-1, such an integrated computational and 
experimental approach could readily be extended to other pathogens to gain deeper insights into 
their function and evolution, as well as potentially aid in the rational development of novel 
therapeutic strategies. 

3.6 Materials and Methods 

3.6.1 Plasmids 

The LGIT vector has been previously described (34). To construct the UbChIT vector, 
the internal CMV promoter from pCS-CG was replaced by the human ubiquitin promoter (from 
pFUGW) using Sac II/Eco RI sites (51,52). GFP was swapped for mCherry using Xba I/Eco RI 
sites. IRES-Tat was then inserted into this vector from LGIT using Eco RI/Xho I sites. Mutations 
in Tat in the LGIT and UbChIT vector were introduced using QuikChange PCR (Stratagene). 
Primers for the site-directed mutations will be made available upon request. 

3.6.2 Cell Culture 

Jurkat cells, used for infections, mRNA extraction and ChIP assays, were cultured in 
RPMI 1640 (Mediatech). HEK 293T cells, used for viral packaging, were cultured in Isocove’s 
DMEM (Mediatech). HeLa cells, used for co-immunoprecipitation experiments, and the HL3T1 
cell-line, used for the Luciferase assay, were cultured in DMEM. All cell media were 
supplemented with 10% fetal bovine serum (FBS) and 100U/mL Penicillin-Streptomycin (P-S). 
All cells were grown at 37oC and 5% CO2. 

3.6.3 Viral Harvesting, Titering and Infections 

To package the lentiviral vectors, 100 mm plates with HEK 293T cells were 
cotransfected with 10 µg of the plasmid of interest and the following helper plasmids: 5 µg 
pMDLg/pRRE, 3.5 µg pVSV-G and 1.5 µg pRSV-Rev (53). 36 hours post-transfection, virus 
was harvested by ultracentrifugation, and the viral pellets were resuspended in PBS and stored at 
-80oC for future use. Viral titers were obtained by infecting 3x105 cells with different viral 
volumes and measuring GFP expression of cells 8 days post-infection. On day 8 post-infection, 
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cells were stimulated with TNF-! (20 ng/mL) and TSA (400 nM) for 18 hours prior to analysis 
of GFP expression by flow cytometry. Based on the resulting titering curves, Jurkat cells were 
infected at a MOI of 0.05-0.1 for experiments to ensure single integration events per cell. 

3.6.4 Flow Cytometry and Cell Sorting 

GFP fluorescence was monitored using the FC500 Flow Cytometer (Beckman Coulter) 
using the 488 nm laser and the 530 nm filter. Jurkat cells were stimulated with drugs 18 hours 
before sorting, and GFP+ cells were sorted using a Cytopeia INFLUX Sorter or DAKO-
Cytomation MoFlo High Speed Sorter to isolate Jurkat cells infected with the LGIT vector. 

3.6.5 Transfections 

For the co-immunoprecipitation experiments, 2 µg of the UbChIT vector was transfected 
into HeLa cells cultured in 150 mm plates using a PEI-based transfection method. For the 
Luciferase assay, the HeLa based cell-line HL3T1 was cultured in 6-well plates and transfected 
with 10 ng of UbChIT vector using the Lipofectamine Transfection Reagent and PLUS Reagent 
(Invitrogen). 

3.6.6 mRNA Extraction and RT-qPCR 

Total cellular RNA from 2x106 sorted Jurkat cells infected with the LGIT lentivirus was 
extracted using Trizol (Invitrogen). Viral transcripts were quantified using the single step 
Quantitect SYBR Green RT-PCR kit (Qiagen) and a Bio-Rad iCycler (iQ5). Total viral 
transcripts were quantified using the primers LTR5 (5’-GTTAGACCAGATCTGAGCCT-3’) 
and LTR3 (5’- GTGGGTTCCCTAGT TAGCCA-3’). Elongated viral transcripts were quantified 
using the primers GFP5 (5’- AGCAAAGACCCCAACGAGAA-3’) and GFP3 (5’-
CGTCCATGCCGAGAGTGAT-3’). "-Actin was used to normalize the samples using the 
primers "-Actin5 (5’- ACCTGACTGACTACCTCATGAAGATCCTCACCGA-3’) and "-Actin3 
(5’- GGAGCTGGAAGCAGCCGTGGCCATCTCTTGCTCGAA-3’). All RT-qPCR was 
performed in triplicate. 

3.6.7 Co-Immunoprecipitation and Western Blots 

HeLa cells transfected with UbChIT were lysed, and nuclear extracts (NE) prepared 48 
hours post-transfection. Anti-FLAG M2 agarose beads (Sigma) were washed using the wash 
buffer (20 mM HEPES-KOH [pH 7.9], 15% glycerol, 0.2 mM EDTA, 0.2% NP-40, 1 mM 
dithiothreitol, and 1 mM phenylmethylsulfonyl fluoride) containing 0.3 M KCl. The beads were 
then incubated with the NE for 2 hours with rotation at 4oC. To minimize non-specific binding, 
the beads were then washed thrice with the wash buffer containing 0.3 M KCl and twice with the 
wash buffer containing 0.1 M KCl. The protein complexes bound to the beads were then eluted 
using 0.5 µg/mL of FLAG peptide in the wash buffer containing 0.1 M KCl. The protein 
complexes were then separated on a SDS-PAGE gel and blotted with the following antibodies: 
anti-Cdk9, anti-ENL (Abcam, research sample), anti-CycT1 (Santa Cruz Biotechnology, Calalog 
# sc-10750), anti-Sp1 (Millipore, Catalog # 07-645), anti-ELL2 (Bethyl Laboratories, Catalog # 
A302-505A), anti-AFF4 (Santa Cruz Biotechnology, Catalog # sc-101062) and anti-AF9 (Bethyl 
Laboritories, Catalog # A300-595A). 
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3.6.8 Chromatin Immunoprecipitation 

Upstate EZ ChIP Kit reagents (Upstate) and protocol were used for the assay with 
variations. 1x107 sorted Jurkat cells were fixed at room temperature in 1% formaldehyde for 10 
min followed by quenching of unreacted formaldehyde with 125 mM glycine for 5 minutes. 
After extensive washing with PBS, the cells were lysed with a SDS lysis buffer containing 
protease inhibitor complex. For the Ser5P and Ser2P ChIPs, a phosphatase inhibitor complex 
was also added during cell lysis. The cells were then sonicated using the Branson Sonifier 450 
for 25 cycles at a power output of 2.5 and 25% duty cycle, with each cycle consisting of 15 
pulses followed by incubation on ice for 1 min. Sheared DNA fragments from 0.2-1 kb were 
verified using DNA gel electrophoresis. For the Ser5P and Ser2P ChIPs, the following variations 
were introduced to the EZ ChIP Kit. Instead of using Protein G beads, Anti-mouse IgM agarose 
beads (Sigma) were used. These beads were washed with RIPA buffer and then blocked with 
salmon sperm DNA and yeast tRNA. In addition, these beads were incubated with the antibody-
DNA/protein complex for 5 hours at 4oC with rotation. 

 Precipitated DNA was quantified using qPCR (Bio-Rad iCycler, iQ5) using the 
EpiQ Chromatin SYBR Supermix (Bio-Rad). All samples were run in triplicate, and melt curves 
were used to analyze the specificity of the PCR product. The following primers were used for the 
RNAPII, Ser5P-CTD RNAPII and Ser2P-CTD RNAPII ChIP close to the transcription start site: 
LTR5 (5’-GTTAGACCAGATCTGAGCCT-3’) and LTR3 (5’- GTGGGTTCCCTAGT 
TAGCCA-3’). The RNAPII ChIP was normalized using GAPDH for which the following 
primers were used: GAPDH5 (5’-ACCTCCCATCGGGCCAATCTCAGTC-3’) and GAPDH3 
(5’-GGCTGACTGTCGAACAGGAGGAGCA-3’). The following primers were used for the 
Ser2P-CTD RNAPII ChIP +2215 bp downstream of the transcription start site: GFP5 (5’- 
AGCAAAGACCCCAACGAGAA-3’) and GFP3 (5’-CGTCCATGCCGAGAGTGAT-3’). The 
following antibodies were used for ChIP: anti-RNAPII (Millipore, Catalog # 05-623), anti-Ser5P 
CTD RNAPII (Covance, Catalog # MMS-134R) and anti-Ser2P CTD RNAPII (Covance, 
Catalog # MMS-129R). 

3.6.9 Nuclease Sensitivity Assay 

The EpiQ Chromatin Analysis Kit (Bio-Rad) protocol and reagents were used for this 
assay. 2.5x105 sorted Jurkat cells were incubated with the chromatin buffer with or without 2 µL 
of nuclease DNAse I for 1 hour at 37oC. Cells were then incubated with 25 µL stop buffer to 
quench the reaction. After several wash steps, the digested and undigested genomic DNA were 
quantified using qPCR (Bio-Rad iCycler, iQ5) using the EpiQ Chromatin SYBR Supermix (Bio-
Rad). The following primers were used to amplify the Nuc-1 region: Nuc5 (5’-
GGACTTTCCGCTGGGGACTTTCCAGGG-3’) and Nuc3 (5’-
CTCGACGCAGGACTCGGCTTGCTGAAGCGCGC-3’). The hemoglobin gene was used as an 
internal control for the samples with the following primers: hHBB5 (5’-
AAGCCAGTGCCAGAAGAGCCAAGGA-3’) and hHBB3 (5’-
CCCACAGGGCAGTAACGGCAGACTT-3’). All qPCR samples were run in triplicate and melt 
curves were used to ensure product specificity. 
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3.6.10 Luciferase Assay  

The HL3T1 cell-line transfected with UbChIT were harvested 48 hours post-transfection 
using the Luciferase Assay System (Promega). 

3.6.11 Mutual Information Analysis 

Matlab codes for calculation of raw and background MI scores to estimate the corrected 
MI scores will be made available upon request. 

3.6.12 Structure Modeling 

Single and double mutations were modeled starting from the ATP-bound (PDB: 3MIA) 
and unbound (PDB: 3MI9) structures using RosettaDesign (54). Briefly, RosettaDesign uses a 
full-atom scoring function including Lennard-Jones, hydrogen-bonding, solvation, and torsional 
terms and models side-chain dihedral degrees of freedom by sampling from a backbone-
dependent rotamer library (55). Here, the backbone was kept fixed, and side chains within 6Å of 
residues 35 and 39 were allowed to repack with extra subrotamers for the chi1 and chi2 dihedral 
angles. In addition, the slope of the Lennard-Jones repulsive term was reduced to be more 
forgiving of minor backbone differences between the two starting structures (56). Ligands and 
waters were not modeled and but do not occur within 6Å of residues 35 and 39 in the WT ATP-
bound and unbound structures. Relative energies based on the RosettaDesign scoring function 
were computed as follows: !!G(mutation) = !G(mutant) - !G(WT). The structure graphic was 
generated with PyMol (The PyMOL Molecular Graphics System, Version 1.3, DeLano Scientific 
LLC.). 

2.6.13 Statistical Analyses 

All statistical significances were computed using one-way ANOVA followed by the 
Tukey-Kramer multiple comparison method to compare different pairs. 
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Chapter 4: TAR and Tat Independently Regulate the Strength of 
Gene Expression from the HIV-1 Promoter 

4.1 Introduction 

The high error and recombination rate of HIV-1 during reverse transcription has resulted 
in the rapid diversification of the most widespread group M into 9 subtypes and several 
recombinant forms (1-3). In addition to worldwide variations in host cultural norms and genetics, 
viral genetic diversity in HIV-1 has been shown to be an important factor in regulating gene 
expression, pathogenesis, and transmission rates (4-6). For instance, ex vivo models and patient 
data show that various viral subtypes can produce different transmission rates (5,7). At the 
molecular level, differences in the viral replication rate have been shown to arise from different 
reverse transcriptase and Tat sequences, as well as different architectures of transcription factor 
binding sites within the promoter. (6,8-11).  

 

Figure 4.1. Representative sequence alignment for TAR and Tats from different HIV-1 subtypes. (A) 
Secondary structure of subtype B TAR RNA. TAR forms a hairpin structure with a 2-3 nucleotide bulge (shown in 
gray) that has been shown to interact with Tat. (B) Sequence alignment of TARs from different subtypes. Alignment 
shows that the TAR sequence is relatively highly conserved, possibly due to the secondary structure requirements of 
the TAR hairpin. The bulge region however shows considerable sequence diversity between subtypes. (C) Sequence 
alignment of Tat from different subtypes. Tat shows considerable sequence diversity between subtypes. The 
Arginine rich motif (ARM) interacts with the bulge of TAR and shows sequence diversity between Tat subtypes. 

Furthermore, baseline polymorphisms and silent mutations within subtypes have been shown to 
alter susceptibility to anti-retroviral therapies and give rise to different resistance mutations 
(4,12,13). These studies indicate that different subtypes may produce significantly varying 
virulence and pathogenicity in patients. Furthermore, while the role of viral diversity in 
regulating HIV latency – the single greatest barrier to its elimination from a patient – and the rate 
of reactivation from latently infected cells is not entirely clear, recent evidence shows that 
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genetic diversity in the promoters of different subtypes produce varied response to drugs that can 
be used to purge latent viral reservoirs (14). 

To study how sequence diversity in the RNA hairpin TAR and the viral protein Tat 
regulate gene expression from the HIV-1 promoter, full length HIV-1 sequences from different 
subtypes were obtained from the NIH AIDS reagent program (15-18) and the TAR and Tat 
sequences were subsequently cloned into appropriate vectors. An alignment of TARs showed 
that stretches of its sequence was conserved across subtypes (Fig 4.1B). This is possibly due to 
the hairpin structure of TAR that constrains its bases (Fig 4.1A) (19). However, some sequence 
variation was observed at sites 11, 13, 48 and 50 within the lower stem of TAR. Interestingly, the 
sequence alignment also revealed diversity within the bulge of TAR, which consists of 2-3 
unpaired bases that has been shown to interact with Tat and is critical for activating gene 
expression (19-21). In contrast, as discussed in Chapter 3, Tat shows considerable sequence 
diversity across subtypes, which was used to identify coevolving residues within the activation 
domain of Tat (1-48 amino acids). However, in this study, since we were particularly interested 
in the interaction of TAR and Tat, we focused our attention on the Arginine-rich motif (ARM) of 
Tat (Fig. 4.1C) (19,22-26). We found that Tat sequences show considerable diversity within this 
region, implying that subtype Tats may have differences in their interaction with TAR and their 
ability to activate gene expression from the viral promoter. 

 

Figure 4.2. Open-loop construct used to study the impact of sequence diversity in TAR and Tat on viral gene 
expression. Schematic of the lentiviral LG vector used to create a stable polyclonal Jurkat cell line. Lower half 
shows the schematic for the UbChIT vector that is used to infect the LG Jurkat cell line. Different subtype Tats 
cloned into the UbChIT vector were used to study how they activate gene expression from the HIV-1 LTR. 

4.2 Exploring the impact of sequence diversity in TAR and Tat on viral gene 
expression using a open-loop system 

As a first step towards understanding how diversity within the sequences of TAR and 
Tat, in particular how the bulge of TAR and the ARM of Tat might alter the strength of gene 
expression (15-18), we created an open-loop circuit. The open-loop circuit allowed us to 
decouple the intrinsic properties of different subtype TAR and Tats from the role that the Tat-
positive feedback loop plays in setting the level of gene expression. The open-loop circuit was 
created by placing green fluorescent protein (GFP) under the control of the HIV-1 LTR from 
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subtype B (called as the LTR-GFP vector or LG) (Fig. 4.2) (27). Another vector was created in 
which Tat and mCherry were placed under the control of an Ubiquitin-C promoter, where the 
fluorescent protein mCherry serves as a quantitative indicator of the Tat expression level. Tat 
and mCherry were separated by the internal ribosome entry site (IRES), which allows for the 
translation of both mCherry and Tat from the same mRNA transcript. This vector was called 
Ubiquitin-mCherry-IRES-Tat or Ub-ChIT (Fig. 4.2). 

 

Figure 4.3. Experimental scheme for studying gene activation from TAR and Tats of different subtypes. 
Scheme shows Naïve Jurkats infected with the LG vector at low MOI (0.05 – 0.1) for single integration events per 
cell. The cells were stimulated with TNF-! 7 days post-infection and GFP+ cells were sorted. The cells were then 
allowed to relax and infected with 5µL and 15µL of UbChIT containing different subtype Tats. These two 
populations were further infected with increasing amounts (20µL in two further infections) of UbChIT and all the 
infections for UbChIT containing one subtype Tat were pooled and analyzed by flow cytometry. The LG Jurkat cell 
lines were infected with a wide range of UbChIT to allow quantification of gene expression for different Tat 
concentrations. 

Cells of infected patients often carry multiple proviruses (an average of ~3-4 proviruses) per 
cells (28), and the high recombination rate of HIV-1 together imply that the large viral 
quasispecies within a patient could produce combinatorial Tat-TAR combinations in vivo (29). 
We wanted to explore how different combinations of Tat and TAR could produce variations in 
the level of gene expression resulting in these combinations having alternate propensities for 
latency. Since it has been reported that the ARM motif binds to the bulge of TAR (19,20), we 
wanted to study the interaction between different subtype TAR and Tats, that contain sequence 
differences within these important domains. To test the compatibility of different Tat-TAR pairs, 
we picked six different subtype pairs.  

We infected Jurkat cells (a human T cell line) with the LG vector containing TAR sequences 
from different subtypes inserted into the LTR. LGs containing different subtype TARs were 
infected at low MOIs (0.05-0.1) to ensure single integrations of the vector in each cell. After 
sorting the infected cells using fluorescence activated cell sorting (FACS), they were infected 
with increasing levels of Ub-ChITs containing different subtypes Tat’s to obtain cells expressing 
a wide range of Tat (Fig. 4.3). This open-loop construct was used to measure gene expression 
from the viral promoter as a function of Tat expression using flow cytometry. All 36 Tat-TAR 
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pairs were explored and found to display a wide array of phenotypes that may possibly be 
mimicked within the >30 million HIV patient pool (Fig. 4.4). 

 

Figure 4.4. Matrix showing density plots for different Tat-TAR pairs in the LG-Ub-ChIT open-loop system. 
Within each density plot, each dot represents the density of cells. The density of cells increase in the order: red, 
yellow to blue. The x-axis represents the level of mCherry (or Tat) within the cell and y-axis represents the level of 
GFP (or gene expression from the viral promoter). The first column shows cells infected with only LGs containing 
different TARs. The first row represents cells infected with only Ub-ChIT. NJ stands for Naïve Jurkat. These density 
plots show that the gene expression levels show similar trends for the Tat subtype, independent of the TAR it 
interacts with. 

We observed unique phenotypes for different pairs. From the density plots (Fig. 4.4), we 
estimated the mean level of gene expression from the HIV promoter at a particular Tat 
concentration (Fig. 4.5). We found that the initial activation of gene expression and the 
maximum level of expression attained varied substantially across subtypes (Fig. 4.5). This was 
used to estimate Km, the mCherry relative fluorescence units (RFU) at half-maximum GFP RFU. 
A Chi-square test performed on Km rejected the null hypothesis that the 36 Km’s were chosen 
from a random distribution implying that the different pairs had unique gene expression 
characteristics. 

The density plots of Tat C, and in particular Tat B/F, paired with any of the TARs showed 
delayed activation of gene expression, such that a large concentration of these Tats is required to 
upregulate gene expression. This suggested that Tat B/F and C appear weak in their ability to 
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activate gene expression, implying that stochastic effects could become important in directing 
these subtype viruses into either a transcriptionally repressed (OFF) state or a transactivated 
(ON) state. The delayed activation of gene expression associated with these subtype Tats suggest 
that there exists a larger window of Tat concentrations over which the Tat-mediated positive 
feedback loop may not be activated, allowing the provirus to become latent as the activated T-
cell enters into a quiescent state. This result therefore has potential implications for the viral 
latency propensities of different subtypes and will be explored in greater detail in the next 
section.  
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Figure 4.5. Gene expression levels for different TAR-Tat subtype combinations in the open-loop system. (A) 
Each figure shows a particular Tat subtype paired with 6 other TARs. The figures show the mean level of GFP 
expression from cells expressing a particular mCherry (or Tat) level. As seen from all the 6 figures, independent of 
the Tat subtype, TARs B, B/F and D result in higher levels of gene expression compared to TARs A, A2 or C. (B) 
Each figure shows a particular Tat subtype paired with 6 other TARs. As seen in all the 6 figures, independent of the 
TAR subtype, Tats D, A and A2 produce higher levels of gene expression compared to Tats C, B/F or B. Further 
comparing (A) and (B) shows that different subtype Tats produce larger differences in gene expression than subtype 
TARs, implying that the hairpin TARs appear to act as an scaffold but differences in the interaction of the subtype 
Tats with TAR and other cellular primarily result in the large differences in gene expression. 

Similarly, density plots of TAR C and A2 paired with different Tats also displayed slightly 
delayed gene activation, implying that certain nucleotide differences in these TARs, compared to 
those of other subtypes prevent them from interacting effectively with the Tats and suggesting 
that stochastic effects could play an important role in deciding the fate of such subtype viruses as 
well. 
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In contrast, Tat A, A2 and D coupled with the other TARs showed rapid activation of gene 
expression (Figs. 4.4 and 4.5). Further, the maximum level of gene expression attained with 
these Tat were dramatically higher than the weaker Tats (Figs. 4.4 and 4.5), suggesting that 
certain sequence features within these Tat sequences enabled them to be strong transactivators of 
gene expression that could possibly reduce their propensity to transition into a latent state. 

 

Figure 4.6. LGIT closed-loop system used to mimic the Tat positive-feedback loop in HIV-1. (A) Schematic of 
the LGIT lentiviral vector. The HIV-1 LTR drives expression of GFP and Tat, separated by IRES. The closed-loop 
system mimics the minimal Tat positive feedback loop in HIV-1. (B) Typical GFP histogram of Jurkat cells infected 
with the LGIT vector. The Tat positive-feedback loop results in bimodal gene expression, shown here as the Off and 
Bright gates. GFP+ cells are indicated as the ON population and cells with intermediate levels of gene expression 
indicated as Mid cells. 

We also found that naturally occurring Tat-TAR pairs did not have the strongest 
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transactivation. For example, the level of gene expression from TAR B/F paired to Tat B/F 
(denoted as (B/F,B/F)) was much lower than TAR B/F paired to Tat D (denoted as (B/F,D)). 
This suggests that different subtypes have not necessarily evolved to maximize gene expression. 
Interestingly, we found that the differences in gene expression for the Tat subtypes were fairly 
independent of the TAR subtype. For example, the relative differences in the levels of gene 
expression for the 6 Tat subtypes were similar when paired with either TAR A or B (Fig. 4.5). 
Similarly, we found that the differences in gene expression for the TAR variants were relatively 
independent of the Tat subtype used for the comparison. These results suggest that subtype TAR 
and Tats behave independently to program gene expression from the viral promoter. This may 
have significant evolutionary implications since it suggests that the Tat-TAR interaction that 
forms the central axis around which HIV-1 gene expression depends in robust to sequence 
variations and that different variants can effectively interact to activate gene expression from the 
viral promoter. The absence of particular sequence variants producing non-linear activation of 
gene expression suggests that TARs and Tats have evolved independently to maximize chances 
of activating gene expression and inducing viral replication. This lack of co-evolution between 
TAR and Tat will be explored systematically in section 4.4. 

4.3 Exploring the impact of sequence diversity in TAR and Tat on viral gene 
expression using a closed-loop system 

To test how different TAR-Tat pairs affect gene expression in the context of a closed-loop 
circuit that mimics the positive feedback loop in HIV-1, we designed a lentiviral vector in which 
Tat and GFP were placed under the control of HIV-1 LTR. Tat and GFP were separated by an 
IRES sequence and the vector was called LTR-GFP-IRES-Tat or LGIT (Fig. 4.6A) (27). 

The open-loop LG-Ub-ChIT experiments described above provided basic information about 
the strength (or “gain”) of different Tat-TAR pairs, allowing us to independently assess the 
characteristics of a particular subtype TAR or Tat. These experiments led us to test these 
different pairs in the context of the more biologically relevant closed-loop LGIT system. Along 
with the six naturally occurring Tat-TAR pairs, 13 other pairs were cloned into the LGIT vector 
based of their ability to activate gene expression in the open-loop system. A few weak pairs 
which would potentially have a large fraction of latently infected cells, and a sizeable number of 
cells with intermediate levels of gene expression exhibiting switching between OFF and ON 
states and a few strong pairs which would be anticipated to have a majority of the cells in an 
activated ON state were amongst those that were chosen for further experimental analysis. Based 
on the bimodal GFP expression observed for LGIT infections, we categorized cells into OFF or 
ON populations, with the ON population being further subdivided into Mid and Bright 
populations (Fig. 4.6B). We used three metrics to quantify gene expression (30): 

1. Mean Bright Peak – The mean GFP level of cells in the Bright gate. We used it as a 
measure to quantify the level of closed-loop transactivation for a particular Tat-TAR pair. 

2. Percentage Infected but Off – The percentage of cells in the OFF state out of the total 
number of infected cells. We used it to quantify the contribution of a particular Tat-TAR 
pair to the cell culture equivalent of a “latent infection” and the inability of the pair to 
activate gene expression. To obtain this parameter, the infected Jurkat cells were 
stimulated by the addition of the drugs TNF! (stimulates gene expression by activating 
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the NF-!B pathway) and TSA (an inhibitor of histone deacetylases) and the increase in 
the number of ON cells after stimulation was used to estimate this parameter. 
 

3. Mid:On Ratio – The ratio of the number of cells in the Mid region to the total number of 
ON cells. It is a measure of the fraction of cells that display intermediate levels of gene 
expression which has previously been associated with stochastic gene expression 
allowing the provirus to flip between OFF and Bright states. 

 

Figure 4.7. Subtype Tat-TAR combinations show dramatic differences in the level of gene expression and 
propensity for latency. (A) The Mean Bright Peak levels, a measure of the strength of gene expression from the 
viral promoter, shows that subtypes show large differences in gene expression. See text for details. (B) The 
Percentage Infected but Off, a measure of the propensity for latency shows that different Tat-TAR combinations can 
produce large differneces in latency. For example, changing the Tat subtype from A2 to B/F in (A2,A2) to (A2.B/F) 
doubles the number of latent cells. Similarly, changing the TAR subtype from B to C in (B,B) to (C,B) doubles the 
propensity for latency. Error bars represent S.D. ‘*’ and ‘***’ indicate statistically significant (p<0.05 and p<0.01, 
respectively) differences from (B,B). Statistically significant differences between a few other Tat-TAR pairs are 
shown within the figure. 
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Among the naturally occurring pairs, (D,D) had the highest Mean Bright Peak followed by (A,A) 
and (B,B) (Fig. 4.7A). In agreement with this data, the stronger Tat-TAR pairs, (D,D) and (A,A) 
had the lowest Mid:On Ratio, suggesting that these subtypes strongly activate gene expression 
from the viral promoter. Interestingly, despite having a large Mean Bright Peak value, (D,D) also 
had a substantial number of latent cells (Fig. 4.7). Similarly, (B,B) had largest fraction of latently 
infected cells amongst naturally occurring pairs although its Mean Bright Peak was not the 
lowest. This suggests that within naturally occurring pairs, the level of transactivation was not 
necessarily inversely related to the fraction of latent cells, suggesting that Tat-TAR pairs may be 
regulating multiple mechanisms to produce the observed levels of gene expression and latent 
cells. Finally, these parameters suggest that different naturally occurring subtypes have 
dramatically different gene expression levels at steady state, in agreement with the open-loop 
system that showed differences in the levels of gene expression at the highest Tat concentrations. 

In analysis of the chimeric Tat-TAR pairs, as expected, some of the pairs that exhibited 
strong gene expression in the open-loop system, such as (A,D) and (B,D), also had the highest 
Mean Bright Peak values (Fig. 4.7A). However, (B,D) did not have the lowest number of latently 
infected cells. A comparison of (B,D) and (B/F,C) shows that although the Mean Bright Peak of 
(B,D) was significantly greater than (B/F,C); they had almost identical number of latently 
infected cells implying that strong viral gene expression and propensity for latency may be 
independent variables that are not correlated (Fig. 4.7). Amongst many of the weaker Tat-TAR 
pairs, the steady-state Mean Bright Peak was observed to be substantially lower than many of the 
naturally occurring pairs, in agreement with the open-loop LG-Ub-ChIT experiments. Further, 
the weaker Tat-TAR pairs had a larger population of latently infected cells in most cases. (C,B) 
had the most striking phenotype with ~65.3% latently infected cells, almost twice the number of 
latently infected cells in (B,B), the naturally occurring pair with the largest population of latent 
cells. This phenotype was particularly interesting since TAR B and TAR C differ at very few 
nucleotide positions suggesting that few sequence changes can dramatically alter latency 
characteristics. Similarly, in changing the Tat subtype from A2 to B/F in (A2,A2) and (A2,B/F), 
the fraction of latently infected cells increases two-fold. Comparing (C,C) and (C,B/F) also 
shows that the amino acid variations between subtype Tat C and B/F can greatly alter the 
propensity for latency (Fig. 4.7B). These results suggest that a few nucleotide or amino acid 
substitutions in TAR or Tat can dramatically alter gene expression characteristics implying that 
the huge viral quasispecies within a single patient may have very divergent properties that may 
help maximize viral fitness.  

Finally, based on the open loop and closed loop experiments discussed above, we were able 
to assign strength of transactivation to different TARs and Tat’s: 

TAR: B>B/F>D>A>A2>C 

Tat: D>A>A2>B>C>B/F 

Since it appeared possible that a few nucleotide changes in TAR or amino acid changes 
in Tat could underlie the dramatic diversity in gene expression properties observed, we decided 
to rationally introduce point mutations into TAR and Tat to relate its sequence to the observed 
phenotype. Mutations were made in Tat B to mimic either weaker Tats such as B/F (R56H), and 
those in TAR B to mimic weaker TARs such as TAR C (A22G) with the hypothesis that this 
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would result in weaker gene expression (Fig. 4.8). Since Tat B/F was the weakest Tat that had a 
mutation R56H with the ARM region, we decided to introduce this mutation in Tat B and test its 
effect on gene expression. We found that the R56H mutation in Tat B lowered its ability to 
activate gene expression and that it closely mimicked that of subtype B/F. Finally, to 
conclusively show that this site plays an important role in setting the level of gene expression in 
Tat B/F, we decided to make the reverse mutation H56R in Tat B/F with the hope of restoring 
gene expression close to the stronger Tat B. We found that the H56R mutation in Tat B/F 
rescued gene expression close to Tat B suggesting that this site within the ARM region 
independently plays an important role in setting the level of gene expression (Fig. 4.8A). Next, 
since TAR C was the weakest TAR, we decided to make the mutation A22G in TAR B, which is 
just below the bulge in TAR with the hypothesis that this mutation may alter the structure of the 
bulge resulting in a change in gene expression. As expected, the A22G mutation in TAR B 
reduced gene expression close to that of TAR C. As in the case of the Tat mutations, we decided 
to test the reverse mutation in TAR C to see if it restores gene expression. This was successfully 
validated, suggesting that site 22 in TAR primarily helps in differentiating the levels of gene 
expression and the propensity for latency between TAR B and C (Fig. 4.8B). 

 

Figure 4.8. Single point mutations can alter gene expression phenotypes to mimic other subtypes. (A) Single 
point mutation R56H in subtype B Tat results in lowering of gene expression such that it mimics subtype B/F. 
Similarly, introducing the reverse mutation H56R in subtype B/F restores gene expression close to subtype B. (B) 
Single point mutation A22G in subtype B TAR results in loss of gene expression to mimic subtype C whereas the 
compensating mutation G22A in subtype C TAR increases gene expression to levels similar to subtype B. 

Thus these point mutations help validate our observations from the open- and closed-loop 
systems that a few changes in the sequence of TAR and Tat can change gene expression 
dramatically. These point mutations also suggest that the amino acid or nucleotide at these 
positions independently alter gene expression suggesting the lack of cooperativity or coevolution 
between TAR and Tat. This hypothesis is also supported by the open-loop experiments that show 
that each Tat subtype appears to show specific gene expression characteristics independent of the 
TAR subtypes. Similarly, while the TAR subtypes show more subtle differences, their 
characteristics also appear to be independent of the Tat subtype. Thus, TARs and Tats from 
different subtypes seem to act additively in setting the level of gene expression pointing towards 
the lack of coevolution between this interacting viral protein and hairpin RNA structure. This 
lack of coevolution between TAR and Tat is analyzed quantitatively in the following section. 
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4.4 Subtype Tat and TARs appear to have evolved independently to produce a 
robust mechanism of activating gene expression from the viral promoter 

As described in Chapter 2 (Fig. 2.16), we used Mutual Information (MI) to estimate 
coevolution between nucleotides in TAR and amino acids in Tat. As seen in Figure 2.16 and in 
Figure 4.9, most pairs of sites have MI below the threshold score. Off the 5 pairs of sites that 
have MI higher than the threshold score, the pair with the highest score is between site 48 in 
TAR and residue 35 in Tat. Since we have previously identified site 35 to be coevolving 
primarily with site 39 in Tat (Chapter 3, Figs. 3.2 and 3.4), the correlation between sites 48 in 
TAR and 35 in Tat is possibly due to these sites having relatively high entropy (Fig. 4.9) that 
gives rise to background MI that is not accurately corrected for. Further, the site pair 48-35 have 
a MI score that is only marginally higher than the threshold score as compared to sites 35-39 in 
Tat (Fig. 3.2B). Thus, we hypothesized that these 5 site pairs may not be functionally coevolving 
and that the observed statistical correlation is a consequence of phylogenetic history of these 
sequences. Thus from these 5 site pairs we decided to first experimentally study sites 22 in TAR 
and 54 in Tat since in addition to being marginally above the threshold score, site 22 in TAR is 
close to the bulge region whereas site 54 in Tat is within the ARM motif suggesting that these 
sites are within functionally important motifs and possibly within close physical proximity that 
would increase their chances of coevolving. 

 

Figure 4.9. Mutual Information analysis shows weak coevolution signals between nucleotides in TAR and 
amino acids in Tat. Plot shows the entropy of a site in TAR and the maximum corrected MI of that TAR site with 
any other site in Tat. The site in TAR is indicated besides each dot and the site in Tat with which this position in 
TAR shares the highest MI signal is shown within parenthesis. 5 pairs of sites have MI scores marginally over the 
threshold score. 
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Based on the frequencies of nucleotides and amino acids at these two positions, we 
introduced the mutation Q54H in Tat B and A22G in TAR B (Fig. 4.10A). As in Chapter 3, we 
hypothesized that single point mutations at correlated sites should result in a loss of function that 
is rescued in the double mutant. We found no loss of gene expression upon introduction of these 
single mutations. Q54H in Tat resulted in stronger gene expression than WT Tat (Fig. 4.10B). 
While the single point mutations A22G in TAR resulted in weaker gene expression, the double 
mutant Q54H and A22G showed additive behavior, that is, the partial loss of gene expression in 
A22G is partly restored by the mutation Q54H that appears to increase gene expression (Fig. 
4.10B,C). This suggests that these sites are not coevolving but instead display additive behavior 
implying that they act independently to regulate gene expression from the viral promoter. 

 

Figure 4.10. Experimental evidence to show that sites in Tat are not coevolving with those in TAR. (A) 
Frequency of sequences that have a particular combination of nucleotide and amino acid at positions 22 in TAR and 
54 in Tat, respectively. A truncated matrix is shown here. Each row in the complete matrix sums to 100%. The red 
background indicates nucleotide-amino acid combinations that are most highly prevalent within naturally occurring 
sequences. Based on this matrix, we might expect to observe site pairs (A,H) and (G,Q) to have reduced gene 
expression levels.  (B) and (C) In contract to the hypothesis outlined in (A), the mutation Q54H in Tat globally and 
independently activates gene expression (and thereby lowers the Percentage of Infected but Off cells). Similarly, the 
mutation A22G in TAR results in a loss of gene expression independent of the amino acid present at site 54 in Tat. 
These data indicate that sites in TAR and Tat do not interact with other and that each acts independently to activate 
or repress gene expression. Error bars indicate S.D. 
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4.5 Discussion 

 In this work, we have systematically studied the role of sequence diversity in the RNA 
hairpin TAR and viral protein Tat in regulating gene expression from the HIV promoter. We 
initially designed an open-loop system to independently assess the role of subtype TARs and 
Tats in activating gene expression. We found large differences in their ability to activate gene 
expression suggesting that certain subtype TARs and Tats may have increased propensity for 
latency. Importantly, we also discovered that in addition to these significant differences in gene 
expression, subtype TAR and Tats act independently to activate gene expression from the viral 
promoter. To study the differences in gene expression more systematically, we introduced these 
subtype TARs and Tats into a minimal lentiviral vector that retains the positive feedback loop of 
HIV-1. These studies in the closed-loop system confirmed the previous results by showing that 
subtypes display dramatically different levels of gene expression and latency and that a few 
specific mutations in TAR or Tat can dramatically alter the regulation of gene expression. To 
validate the latter observation from the open-loop system that TAR and Tat sequences act 
independently, we employed MI and site-directed mutagenesis to show that sites in TAR do not 
appear to be correlated with residues in Tat. 

While other site pairs need to be tested to conclusively confirm the lack of coevolution 
between elements of TAR and Tat, these preliminary experiments in addition to the open loop 
system suggests that sites in TAR and Tat act in a mutually exclusive manner in setting the level 
of gene expression from the viral promoter. While the interaction of TAR and Tat is critical to 
recruit host cellular factors to the HIV promoter, the RNA hairpin and the viral protein are not 
constrained to particular sites to ensure the formation of the RNA-protein complex. 
Evolutionarily, this suggests that TAR-Tat mediated positive feedback loop in HIV is robust to 
sequence perturbations and not constrained to certain features in either TAR or Tat. As long as 
the TAR and Tat are individually functionally active, a wide variety of sequence diversity in 
TAR and Tat can be tolerated to activate the positive feedback loop. Thus the virus is able to 
effectively insulate the activation of gene expression from the high rates of mutation and 
recombination that potentially provide the virus with fitness advantages.   

4.6 Materials and Methods 

4.6.1 Plasmids 

pcDNA 3.1 plasmid with the 5’ LTR and the pBS KSPS plasmid with the 3’LTR inserted 
in it, created by previous graduate students in the Schaffer group, were used to insert different 
subtype TARs using the restriction sites Afl II and Bsa I from the plasmids provided by NIH. The 
3’LTR (with different subtype TARs) were then inserted into the pCLG plasmid (used to 
generate the LG infected cells) and pCLGIT plasmid (used to generate the LGIT infected cells) 
using restriction enzymes Pme I and Xho I. The 5’ LTR was then inserted in the next step into 
the pCLG and pCLGIT plasmids using Mlu I and Not I. Since Tat is encoded by two exons in 
wild-type HIV, we performed splice overlap PCR on the plasmids provided by NIH to combine 
the two exons to insert a single exon Tat into the pCLGIT and Ub-ChIT plasmids using the 
restriction enzymes BstX I and Xho I. Tat and TAR Mutants were created using QuikChange 
PCR (Stratagene). The TAR mutants were made in pcDNA 3.1 and pBS KSPS and then cloned 
into pCLGIT as described above. 
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4.6.2 Cell Culture 

Jurkat cells were cultured in RPMI 1640 (MediaTech) with 10% fetal bovine serum 
(FBS) (Invitrogen). HEK 293T cells were cultured in Isocove’s Modified Dulbecco’s Medium 
(IMDM) (MediaTech) with 10% FBS. 

4.6.3 Transfection and Virus Purification 

Human embryonic kidney cells (HEK 293T) were cotransfected with the plasmid of 
interest (pCLG, pCLGIT or Ub-ChIT) along with three helper plasmids: (1) a pseudotyped 
plasmid encoding for the envelope from the vesicular stomatis virus (VSVG), (2) a plasmid 
encoding rev protein and (3) a plasmid that encodes for gag and pol proteins (31). 

To harvest and purify virus, 10 mL viral supernatant from the HEK293T cells were 
centrifuged 36 hours post transfection at 2000 rpm for 2 minutes to remove cell debris. The 
supernatant was further filtered through a 0.45 µm filter and 1 mL of 20% sucrose was added to 
the bottom of the supernatant. The supernatant was ultracentrifuged at 25,000 rpm for 1.5 hours 
at 40C. The viral pellet obtained was then resuspended in 20 µL phosphate buffer saline (PBS) 
and stored at -800C for future infections. 

4.6.4 Virus Titering, Infection and Stimulation by Drugs 

Viral titers were obtained by infecting 3x105 Jurkat cells with different volumes (0.1 µL 
to 5 µL) of virus and counting cells expressing GFP 8 days post-infection after stimulating the 
cells with TNF! and TSA and assuming a Poisson distribution for infection. Once the viral titers 
were obtained, 3x105 Jurkat cells were infected with the appropriate volume of virus to obtain a 
multiplicity of infection (MOI) of 0.05 - 0.1 to ensure single viral integration per cell.  

To calculate the number of latently infected cells, the cells were stimulated with TNF-! 
(20 ng/mL) and TSA (400 nM) once steady state GFP expression was attained (~8 days post 
infection) and analyzed by flow cytometry 18 hours post-stimulation. 

4.6.5 Flow Cytometry and Cell Sorting 

The GFP fluorescence in the closed-loop LGIT experiments was measured using a FC500 
flow cytometer (Beckman-Coulter) with a 488 nm laser. GFP fluorescence was monitored 
through a 530 nm filter (FL1 channel). The GFP and mCherry fluorescence were measured in the 
open-loop LG-Ub-ChIT experiments using the Cytopeia Influx sorter with a 488nm and 561nm 
laser, respectively. GFP fluorescence was monitored through a 530nm filter (FL1 channel), and 
mCherry fluorescence was monitored through a 593nm filter (FL3 channel). Jurkat cells infected 
with the LG vector were sorted for GFP+ cells on a DAKO-Cytomation MoFlo High Speed 
Sorter. 

4.6.6 Mutual Information Analysis 

Code for Mutual Information to analyze sequence alignment data from the Los Alamos 
Sequence Data was written in Matlab®. These codes will be made available upon request. 



! 86 

4.7 References 

1. Negroni, M., and Buc, H. (2001) Annu Rev Genet 35, 275-302 
2. Rambaut, A., Posada, D., Crandall, K. A., and Holmes, E. C. (2004) Nature reviews. 

Genetics 5, 52-61 
3. Osmanov, S., Pattou, C., Walker, N., Schwardlander, B., and Esparza, J. (2002) Journal 

of acquired immune deficiency syndromes (1999) 29, 184-190 
4. Spira, S., Wainberg, M. A., Loemba, H., Turner, D., and Brenner, B. G. (2003) J 

Antimicrob Chemother 51, 229-240 
5. Abraha, A., Nankya, I. L., Gibson, R., Demers, K., Tebit, D. M., Johnston, E., 

Katzenstein, D., Siddiqui, A., Herrera, C., Fischetti, L., Shattock, R. J., and Arts, E. J. 
(2009) J Virol 83, 5592-5605 

6. Desfosses, Y., Solis, M., Sun, Q., Grandvaux, N., Van Lint, C., Burny, A., Gatignol, A., 
Wainberg, M. A., Lin, R., and Hiscott, J. (2005) J Virol 79, 9180-9191 

7. Koulinska, I. N., Villamor, E., Msamanga, G., Fawzi, W., Blackard, J., Renjifo, B., and 
Essex, M. (2006) Virus Res 120, 191-198 

8. Iordanskiy, S., Waltke, M., Feng, Y., and Wood, C. (2010) Retrovirology 7, 85 
9. Jeeninga, R. E., Hoogenkamp, M., Armand-Ugon, M., de Baar, M., Verhoef, K., and 

Berkhout, B. (2000) J Virol 74, 3740-3751 
10. van Opijnen, T., Jeeninga, R. E., Boerlijst, M. C., Pollakis, G. P., Zetterberg, V., 

Salminen, M., and Berkhout, B. (2004) J Virol 78, 3675-3683 
11. Roof, P., Ricci, M., Genin, P., Montano, M. A., Essex, M., Wainberg, M. A., Gatignol, 

A., and Hiscott, J. (2002) Virology 296, 77-83 
12. Martinez-Cajas, J. L., Pant-Pai, N., Klein, M. B., and Wainberg, M. A. (2008) AIDS Rev 

10, 212-223 
13. Johnson, V. A., Brun-Vezinet, F., Clotet, B., Gunthard, H. F., Kuritzkes, D. R., Pillay, D., 

Schapiro, J. M., and Richman, D. D. (2010) Topics in HIV medicine : a publication of the 
International AIDS Society, USA 18, 156-163 

14. Burnett, J. C., Lim, K. I., Calafi, A., Rossi, J. J., Schaffer, D. V., and Arkin, A. P. (2010) 
J Virol 84, 5958-5974 

15. Gao, F., Robertson, D. L., Carruthers, C. D., Morrison, S. G., Jian, B., Chen, Y., Barre-
Sinoussi, F., Girard, M., Srinivasan, A., Abimiku, A. G., Shaw, G. M., and Sharp, P. M. 
H., B.H. . (1998) J Virol 72, 5690-5698 

16. Lole, K. S., Bollinger, R. C., Paranjape, R. S., Gadkari, D., Kulkarni, S. S., Novak, N. G., 
Ingersoll, R., Sheppard, H. W., and Ray, S. C. (1999) J Virol 73, 152-160 

17. Gao, F., Vidal, N., Li, Y., Trask, S. A., Chen, Y., Kostrikis, L. G., Ho, D. D., Kim, J., Oh, 
M. D., Choe, K., Salminen, M., Robertson, D. L., Shaw, G. M., Hahn, B. H., and Peeters, 
M. (2001) AIDS Res Hum Retroviruses 17, 675-688 

18. Rodenburg, C. M., Li, Y., Trask, S. A., Chen, Y., Decker, J., Robertson, D. L., Kalish, M. 
L., Shaw, G. M., Allen, S., Hahn, B. H., and Gao, F. (2001) AIDS Res Hum Retroviruses 
17, 161-168 

19. Roy, S., Delling, U., Chen, C., Rosen, C. A., and Sonenberg, N. (1990) Genes & Dev 
1990, 1365-1373 

20. Dingwall, C., Emberg, I., Gait, M. J., Green, S. M., Heaphy, S., Karn, J., Lowe, A. D., 
Singh, M., and Skinner, M. A. (1990) EMBO J 9, 4145-4153 

21. Aboul-ela, F., Karn, J., and Varani, G. (1995) Journal of molecular biology 253, 313-332 



! 87 

22. Mujtaba, S., He, Y., Zeng, L., Farooq, A., Carlson, J. E., Ott, M., Verdin, E., and Zhou, 
M. M. (2002) Molecular cell 9, 575-586 

23. Richter, S., Ping, Y. H., and Rana, T. M. (2002) Proceedings of the National Academy of 
Sciences of the United States of America 99, 7928-7933 

24. Dorr, A., Kiermer, V., Pedal, A., Rackwitz, H. R., Henklein, P., Schubert, U., Zhou, M. 
M., Verdin, E., and Ott, M. (2002) EMBO J 21, 2715-2723 

25. Kiernan, R. E., Vanhulle, C., Schiltz, L., Adam, E., Xiao, H., Maudoux, F., Calomme, C., 
Burny, A., Nakatani, Y., Jeang, K. T., Benkirane, M., and Van Lint, C. (1999) EMBO J 
18, 6106-6118 

26. Pagans, S., Kauder, S. E., Kaehlcke, K., Sakane, N., Schroeder, S., Dormeyer, W., 
Trievel, R. C., Verdin, E., Schnolzer, M., and Ott, M. (2010) Cell host & microbe 7, 234-
244 

27. Weinberger, L. S., Burnett, J. C. T., J. E.  , Arkin, A. P., and Schaffer, D. V. (2005) Cell 
122, 169-182 

28. Suryavanshi, G. W., and Dixit, N. M. (2007) PLoS Computation Biology 3, 2003-2018 
29. Jetzt, A. E., Yu, H., Klarmann, G. J., Ron, Y., Preston, B. D., and Dougherty, J. P. (2000) 

J Virol 74, 1234-1240 
30. Burnett, J. C., Miller-Jensen, K., Shah, P. S., Arkin, A. P., and Schaffer, D. V. (2009) 

PLoS pathogens 5, e1000260 
31. Dull, T., Zufferey, R., Kelly, M., Mandel, R. J., Nguyen, M., Trono, D., and Naldini, L. 

(1999) J Virol 72, 8463-8471 
 
 



! 88 

Chapter 5: Sequence and Architecture Variations within 
Transcription-Factor Binding Sites in the HIV-1 Promoter 
Differentially Regulate Viral Gene Expression, Replication and 
Latency 

5.1 Introduction 

 Although highly active anti-retroviral therapy (HAART) has been extremely effective in 
reducing viral loads to undetectable levels and prolonging the lives of people infected with HIV-
1, it was not been possible to completely eradicate the virus from a patient due to the presence of 
latent viral populations (1,2). These latent populations remain undetected by the surveillance 
mechanisms of the immune system and can therefore reactivate during late stages of the disease 
to initiate rapid viral replication and progress to acquired immunodeficiency syndrome (AIDS) 
(3,4).  

 

Figure 5.1. Schematic representation of transcription factor binding sites found in different HIV-1 subtype 
promoters. Pictorial representation shows that subtype promoters can have very different architectures of TFBS in 
addition to sequence variation within a single TFBS. Adapted from (5). 

Understanding the origins of viral latency is therefore critical to identifying mechanisms 
by which dormant populations can be purged out of patients (6-9). Several underlying causes 
have been reported, including the role of the viral protein Tat in initiating gene activation 
(10,11), the TAR-Tat interaction (12), the site of viral integration (13-18) and cellular miRNAs 
(19) that suppress synthesis of new viral progeny. Once HIV-1 integrates semi-randomly within 
the host genome, recruitment of host factors to the viral promoter either initiates active 
transcription and production of new viral particles or transcriptional silence to enter a latent state. 
This decision between a lytic or latent state depends on the recruitment of host transcription 
factors to the viral promoter that initiates production of Tat, an early viral product. The viral 
protein Tat binds to TAR to initiate a positive-feedback loop that leads to robust viral gene 
expression (20,21). Since the viral promoter initiates transcription after viral integration or just 
before reactivation from latency, understanding how sequence diversity within the viral promoter 
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may regulate gene expression is important for determining its role in the establishment and 
reactivation from latency (22,23).  

 

Figure 5.2. Subtype promoters produce large differences in viral replication rates. (A) Time course data of 
viral replication for full-length virus with promoters from different subtypes. The rest of the viral genome 
corresponds to subtype B. SupT1 cells were infected by the full-length virus and infectious titers were estimated 
using an indicator cell-line expressing GFP. Figure shows that subtypes such as C* and B/C show rapid initial 
replication, followed by subtypes such as A and A2. In comparison, subtypes such as B and D show very delayed 
replication. (B) The infectious titer during early stages of replication (day 4) are shown in the bar chart. Figure 
shows that subtypes such as B/C and C* that have an extra NF-!B/Sp1 site show rapid replication. In comparison, 
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other subtypes such as D that have mutations in Sp1 sites have reduced viral replication rates. Schematic 
representation of the architecture of the NF-!B/Sp1 sites for the different subtypes are shown at the bottom. Altered 
Sp1 sites that possibly result in weakening of viral replication rates are shown in purple. Experiments were 
performed in biological triplicate and error bars indicate standard deviations from the mean. 

The HIV-1 promoter contains several transcription factor binding sites (TFBS) such as 
NF-!B, Sp1, YY1, NF-AT, LBP, COUP-TF, AP1, RBE III, Ets-1 including several others (24-
26). These factors can recruit activating and repressive factors to the promoter to initiate gene 
activation or silencing. Binding of these factors to the promoter has been shown to recruit 
activating complexes such as histone acetyl transferases (HAT) and repressive factors such as 
histone deacetyl transfereases (HDAC) that may influence the fate of the virus by either driving 
it towards active replication or latency, respectively (13,18,27-33).  

While the impact of point mutations within NF-!B and Sp1 sites have been extensively 
explored to show that these can dramatically alter gene expression and the stability of the 
active/inactive states of the virus (23,34-36), further work needs to be done to understand how 
other TFBS influence the decision between viral activation and silencing. In addition to sequence 
diversity within different TFBS, subtypes have also developed novel architectures of these TFBS 
(Fig. 5.1) (5,37). HIV-1 is phylogenetically classified into three major groups, M, N and O. The 
most prevalent group M is further classified into several subtypes and chimeric or recombinant 
forms of these subtypes (38). Most studies on HIV-1 gene expression, replication and latency 
have previously concentrated on subtype B, the clade most prevalent in the United States and 
Western Europe. Understanding how sequence diversity and unique TFBS architectures in the 
U3 region for different subtypes may alter recruitment of transcription factors is important to 
determining differences in viral pathogenesis and latency (39). Such knowledge will provide 
strategies to optimally combat HIV-1 latency for different subtypes (40-50).  

 In this work we show that subtypes with differences in TFBS sequence and architecture 
result in differences in steady-state gene expression levels and replication rates. These 
differences in gene expression were attributed to specific domains of the promoter. Further, we 
also studied the dynamics of gene expression and found that a combination of different TFBS 
may play a role in regulating these properties of the virus and thereby potentially alter the rates 
of reactivation from latent viruses. Thus based on the data presented in this chapter and 
experiments currently being pursued in primary cell culture models, we show that subtype 
promoters can lead to dramatically different levels of gene expression, viral replication and 
latency, thereby giving rise to subtypes with varying virulence and pathogenicity.  

5.2 HIV-1 promoters from different subtypes produce virus with widely 
varying replication rates 

 To initially assess if subtype promoters, with differences in the sequence and 
arrangement of TFBS, result in phenotypic differences, we created full-length virus containing 
U3 regions from a limited number of different subtypes with the remaining viral genome 
corresponding to subtype B. This allowed us to test how subtype promoters may impact different 
properties of the virus. The U3 region from six subtypes, B, A, A2, C*, B/C and D were cloned 
into the sLTR vector (51) and virus packaged from these different viral genomes were used to 
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infect a T-cell line, SupT1 at an MOI of 0.0005. Infectious viral titers were subsequently 
estimated using an indicator cell-line expressing GFP, as described previously. Viral titers were 
estimated every two days over a course of 10 days. 

 

Figure 5.3. Burst sizes in virus production differ between subtype promoters. (A) The experimentally 
determined infectious titers of Figure 2A are shown with black dots. Burst sizes for each subtype promoter was 
estimated by calculating the area under each curve obtained by the piecewise cubic Hermite interpolation method. 
(B) Burst sizes vary over 4-fold between subtypes. Data shows that promoters that result in rapid viral replication 
produce smaller burst sizes, possibly as a result of increased T-cell death initially that leaves fewer cells for the virus 
to replicate in. 

We found that different promoter stains produced widely variable replication rates. 
Certain subtypes, such as C* and B/C, show rapid viral production, peaking around day 4 
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followed by reduced viral titers over time, possibly due to cell death (Fig. 5.2A). Other subtypes, 
such as A and A2, displayed slightly slower replication with peak viral titers achieved around 
day 6 (Fig. 5.2A). At the other extreme, subtypes such as B and D showed much slower 
replication kinetics with peak viral titers achieved around day 8 or 10 (Fig. 5.2A).  

 

Figure 5.4. Gene expression levels at steady state vary dramatically between subtype promoters. (A) Figure 
shows the levels of the Mean Bright Peak for Jurkat cells infected with LGIT vectors containing different subtype 
promoters. The lower half of the figure shows the NF-!B/Sp1 sites for the different subtypes. As in Figure 2B, 
purple ovals indicate mutations within Sp1 sites with potential weakening. Subtypes such as B/C, C and C*, with an 
extra NF-!B/Sp1 site show increased gene expression levels compared to subtype B. In contrast, certain subtypes 
with mutations within Sp1 sites show lower gene expression levels compared to subtype B. (B) In agreement with 
data in Figure 4A, subtypes that show strong gene expression have fewer Percentage Infected but Off cells whereas 
those that show weaker expression result in more silenced cells. Experiments were performed in biological triplicate 
and error bars indicate standard deviations from the mean. ‘*’ indicates statistically significant differences from 
subtype B (p<0.05). 

Analyzing viral titers at day 4 post-infection provides a measure of the variation in the initial 
replication kinetics of the viruses before any substantial cell death. As observed with the time-
course data, we found that subtypes C* and B/C show rapid replication, followed by subtypes A 
and A2 with subtypes B and D showing much slower viral replication rates (Fig. 5.2B). We 
found a 30-fold difference in the initial viral replication rate between subtypes, suggesting that 
variations in the sequence and architecture of TFBS could dramatically alter viral replication. To 
understand how variations in the replication rate when working with a fixed number of SupT1 
cells in culture may affect the total number of viral particles produced over the course of the 
experiment (which we called the Burst Size), we fit the viral titering data using a piecewise cubic 
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Hermite interpolation method and calculated the area under each curve (Fig. 5.3A). We found 
that subtypes promoters that produce virus rapidly give rise to smaller Burst Sizes, possibly due 
to rapid T-cell death initially leaving fewer cells to replicate in over time (Fig. 5.3B). These 
initial experiments suggested that subtype promoters could produce widely varying viral 
replication rates that may result in variations in disease progression in patients infected with 
different subtypes. Further, we hypothesized that these differences in replication rate may arise 
from differences in the sequence of the promoter since subtypes showing rapid replication (C* 
and B/C) contain an extra NF-!B/Sp1 site within the core promoter that may result in stronger 
gene expression. In contract, some of the other subtypes, such as A, A2 or D contain a mutation 
within Sp1 site II or Site III that may be responsible for weaker replication rates. Thus, we 
decided to explore and characterize this potential link between the viral promoter genotype and 
phenotype more carefully.  

5.3 HIV-1 subtype promoters show differences in gene expression 

 Since the 6 subtype promoters tested in the previous section showed differences in viral 
replication rates, we hypothesized that these differences may arise from variations in the level of 
gene expression that is a function of the intrinsic strength of the promoter resulting in differential 
recruitment of transcription factors and transcriptional initiation. To test this hypothesis, we 
decided to study a large set of 11 subtype promoters. To study if variations in the architecture 
and sequence of TFBS can result in differences in gene expression, we used the minimal 
positive-feedback LGIT (LTR-GFP-IRES-Tat) system previously described in Chapter 4. We 
used the metrics, Mean Bright Peak and Percentage Infected but Off, previously described in 
Section 4.3 to quantify gene expression from the viral promoter. U3 regions from different 
subtypes were cloned into LGIT (with the remainder of the lentiviral sequence corresponding to 
subtype B) and used to infect Jurkat T-cells at low MOI to ensure single integration events per 
cell. 

 

Figure 5.5. Viral replication rates for subtype promoters are strongly correlated to gene expression levels. The 
initial infectious titer obtained for different subtype promoters correlate well with the Mean Bright Peak levels 
indicating that differences in viral replication rates may be driven by corresponding variations in the levels of gene 
expression. These differences in gene expression may arise from differential recruitment of transcription factors to 
subtype promoters that result in characteristic strengths for these promoters. 
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Once steady state is attained, we found large differences in the level of gene expression 
(Fig. 5.4). When compared to subtype B, certain subtypes such as C, C* and B/C, each with an 
extra NF-!B/Sp1 site, showed statistically significant increases in the level of Mean Bright Peak. 
In comparison, other subtypes such as A/G, D, B/F and F, some with mutations within Sp1 sites 
that were predicted to weaken gene expression, showed lower Mean Bright Peak levels than 
subtype B (Fig. 5.4A). In support of this data, subtypes that showed strong gene expression, such 
as C, C* and B/C, had 2-3 fold fewer inactive cells than subtype B. Similarly, subtypes that 
showed weaker gene activation had higher fractions of Percentage Infected but Off cells, with 
subtypes such as B/F and F having half of the infected cells in the inactive state (Fig. 5.4B). 
Finally the five-fold difference in the Percentage Infected but Off between subtypes having the 
lowest and highest fraction of inactive cells showed that subtypes have large differences in gene 
expression that may give rise to different propensities for latency (Fig. 5.4B). Such differences in 
the establishment and reactivation from latency may imply that patients from different parts of 
the world would require therapy regimens that are tailored towards the infecting subtype. 

 

Figure 5.6. NF-!B/Sp1 sites determine the intrinsic strength of the promoter at steady state. (A) Schematic of 
the chimeric promoters created to study the impact of NF-!B/Sp1 sites on gene expression. The NF-!B/Sp1 sites in 
the subtype B promoter were swapped with the corresponding sites from another subtype promoter to generate a 
chimeric promoter that consisted of NF-!B/Sp1 sites from that subtype while the rest of the promoter consisted of 
subtype B. (B) To test the intrinsic strength (without the positive-feedback loop induced by Tat) of naturally 
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occurring and mimicking promoters, Jurkat cells were infected with LGs containing different promoters and total 
cellular RNA was extracted to quantify initiated viral transcripts. Data shows that the mimicking promoters track the 
naturally occurring promoters closely, suggesting that the NF-!B/Sp1 sites play an important role in setting the level 
of gene expression at steady state. qPCR was performed in triplicate on the BioRad iQ5 machine. Error bars indicate 
standard deviation from the mean. 

Finally, we found a strong correlation between the infectious titers in the full-length virus 
containing variable U3 regions with the Mean Bright Peak levels of LGITs (Fig. 5.5). This strong 
correlation suggests that the differences in the replication rate of different subtype promoters 
may arise from variations in the level of gene expression due to the differential recruitment of 
transcription factors to the viral promoter (Fig. 5.5). Finally, this correlation also shows that the 
minimal LGIT system that mimics the positive-feedback loop in HIV-1 is a good model to study 
viral gene expression. 

5.4 Identifying the minimal set of TFBS in the HIV-1 promoter that 
contribute to most of the observed differences in viral gene expression 

 Previous studies on the HIV-1 promoter have shown that the NF-!B/Sp1 sites play an 
important role in regulating gene expression (23,34-36). Further, our empirical observation that 
subtypes with an extra NF-!B/Sp1 site within the promoter showed stronger gene expression and 
faster viral replication while those with weakening mutations within the Sp1 sites showed 
weaker gene expression and slower replication kinetics, suggesting that the NF-!B/Sp1 sites may 
play a critical role in setting the steady state level of gene expression. To explore this hypothesis 
further, we replaced the NF-!B/Sp1 domain in subtype B with that of other subtypes (Fig. 5.6A). 
Thus, when we replaced the NF-!B/Sp1 domain in subtype B with subtype C*, we called the 
new promoter architecture as subtype C* Mimic (Fig. 5.6A). Thus, if our hypothesis that the NF-
!B/Sp1 sites make the most important contribution to steady state gene expression were true, 
then the levels of gene expression for each mimicking subtype promoter should resemble that of 
the actual subtype promoter. 

 In another experiment, to test if the NF-!B/Sp1 domain is critical in setting the level of 
gene expression, we studied the extent to which the basal expression level at steady state, in the 
absence of Tat, depends on the architecture of the NF-!B/Sp1 sites. We cloned in subtype A, C* 
and their corresponding mimics into the LG lentiviral vector (Section 4.2). Jurkat cells were then 
infected with these LG constructs at low MOIs (~0.05-0.1) and stimulated with TNF" 7 days 
post-infection to sort GFP+ cells. These cells were allowed to relax which was followed by total 
RNA extraction. The levels of initiated viral transcripts were then quantified using RT-qPCR to 
access the contribution of the NF-!B/Sp1 domain to basal gene expression. Interestingly, while 
both subtype A and C* had different levels of initiated viral transcripts, their corresponding 
mimicking variants showed similar levels of initiated viral transcripts as the original subtype 
promoter that were significantly different from subtype B (Fig. 5.6B). This suggested that the 
NF-!B/Sp1 domain plays the most important role in setting the basal level of transcription from 
the HIV-1 promoter (Fig. 5.6B).  

 To access more generally if the architecture and sequence of the NF-!B/Sp1 sites make 
the most important contribution to viral gene expression, we made mimicking variants for 6 
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subtypes in the LGIT lentiviral system and infected Jurkat cells with the original and mimicking 
promoter variants. Interestingly, we found that the Mean Bright Peak levels for the mimicking 
variants tracked the original subtype very closely, suggesting that the NF-!B/Sp1 domain plays 
an critical role in setting the level of gene expression at steady state (Fig. 5.7A). Similarly, the 
Percentage Infected but Offs were also similar for the original and mimicking subtypes (Fig. 
5.7B). These experiments showed that the NF-!B/Sp1 sites play the most important role in 
regulating steady state levels of gene expression and allowed us to identify the minimal set of 
TFBS that contribute to most of the observed differences in viral gene expression between 
subtypes.  

 
Figure 5.7. NF-!B/Sp1 sites determine the level of gene expression from the HIV-1 promoter at steady state. 
(A) Mean Bright Peak levels and (B) Percentage Infected but Off were determined for Jurkat cells infected with 
LGITs containing promoters from naturally occurring subtypes or their corresponding NF-!B/Sp1 mimicking 
variants. Lower half of the figure shows schematically the naturally occurring and chimeric promoters. Blue boxes 
and circles indicate sequence and TFBS corresponding to subtype B whereas yellow boxes and circles stand for 
sequence and TFBS corresponding to other subtypes. Purple circles stand for Sp1 sites with potentially weakening 
effects. Bar charts show that the gene expression levels of the mimicking promoters track the wild-type promoters 
very closely. Similarly, the fraction of silenced cells are similar for wild-type and their corresponding mimicking 
promoters. Experiments were performed in triplicate and error bars indicate standard deviations from the mean. 
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5.5 NF-!B/Sp1 sites and other TFBS in the HIV-1 promoter regulate viral 
gene expression dynamics 

 From the previous section, we established that the sequence and architecture of the NF-
!B/Sp1 sites determine the steady state gene expression levels from the viral promoter. We next 
wanted to investigate how sequence diversity within the viral promoter may regulate gene 
expression dynamics from inactive (Off) and active (Bright) LGIT infected Jurkat populations.  

 

Figure 5.8. Sorting scheme to isolate inactive and active cell populations to study viral gene expression 
dynamics. Jurkat cells were infected with LGITs containing different subtype promoters at low MOIs (0.05-0.1) to 
ensure single integration events per cell. 7 days post infection the cells are stimulated with TNF" and sorted to 
isolate infected GFP+ cells. These sorted cells are allowed to relax for 1-2 weeks. Inactive (GFP-) and Active 
(stongly GFP+) cells are sorted from this population and the dynamics of gene activation/inactivation for these two 
population of cells are tracked over time. Adapted from (23). 
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The dynamics of gene activation from an Off population or gene inactivation from the Bright 
population allow us to estimate and predict the rate of establishment and reactivation of latent 
populations in patients. To study if promoter diversity alters gene activation or inactivation rates, 
we infected Jurkat cells with LGITs containing subtype B promoter or one of the six other 
subtype promoters and their corresponding mimics (used in the previous section). The sorting 
scheme to isolate inactive (Off) and active (Bright) cell populations in each case are shown in 
Figure 5.8. Infected Jurkat cells were stimulated with TNF! 7 days post infection and GFP+ 
cells were sorted by Fluorescent Activated Cell Sorting (FACS). These sorted populations were 
allowed to relax and GFP- (Off) and strongly activated cells (Bright) were sorted for each U3 
subtype (Fig. 5.8). The dynamics of gene activation from the inactive (Off) population and gene 
inactivation from the active (Bright) population were then monitored over time by measuring 
GFP expression using flow cytometry. 
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Figure 5.9. Subtype promoters show differential rates of gene activation and inactivation. (A) Time-course 
data of the percentage of cells that activate from the Off state over time. The rate of gene activation is estimated by 
quantifying GFP+ cells using flow cytometry. Subtypes show approximately 2-fold variations in the rate of gene 
activation. These differences in gene activation suggests that subtype promoters may lead to differences in the rate 
of reactivation from latent viral populations in patients. (B) Time-course data of the percentage of cells that relax 
from the Bright state over time. The rate of gene inactivation is estimated by quantifying GFP+ cells using flow 
cytometry. Similar to gene activation, the rate of gene inactivation from the Bright state also shows 2-3 fold 
differences between subtype promoters. 

 Gene activation and inactivation were measured for all 13 subtype variants over 42 days 
(Fig. 5.9). We found large differences in both the rate of activation and inactivation. Subtypes 
showed a 2 fold-variation in the rate of activation from the inactive state and a 2-3 fold variation 
in the levels of gene inactivation from the active state (Fig. 5.9). We analyzed the gene activation 
levels around day 13 post-sorting when the gene activation levels reached a maxima (Figs. 5.9A 
and 5.10A). Similarly, data for gene inactivation from the active state is plotted in Figure 5.10B 
around the mid time point of our analysis, day 17 post-sorting. As expected based on the time-
course data, U3 subtypes showed large variations in the level of gene activation and inactivation.  

In studying the levels of gene inactivation, we found that subtype C* had the lowest 
levels of gene inactivation compared to the other subtypes (Fig. 5.10B), suggesting that the extra 
NF-!B/Sp1 sites increase the stability of the active state. In comparison, we found that the 
mimicking variants for all subtypes, expect subtype A, showed higher rates of gene inactivation 
suggesting that the chimeric promoters tend to inactive the active state and that regions outside 
NF-!B/Sp1 may play a role in regulating the dynamics of gene expression (Fig. 5.10B). 

 Within naturally occurring subtypes, C* showed the lowest whereas D showed the 
highest levels of gene activation from the inactive state, with all the other subtypes showing gene 
activation levels between this 2-fold variation between the two extreme subtypes (Fig. 5.10A). 
This 2-fold variation in gene activation levels between subtypes may be clinically important 
since it may imply that subtype promoters may have different propensities for reactivation from 
latency. Under these conditions of latency, where levels of the viral protein Tat are extremely 
low or absent, sequence diversity and TFBS variations between subtype promoters may lead to 
differential recruitment of transcription factors to the promoter resulting in variations in the rate 
and level of reactivation from latency. Surprisingly, we also found that all the mimicking 
architectures displayed gene activation levels lower than their corresponding natural variants 
(Fig. 5.10A). Since a natural and its corresponding mimicking promoter variant shares the same 
NF-!B/Sp1 sites, this suggested that the region of the promoter outside the NF-!B/Sp1 sites 
(henceforth referred to as the Upstream promoter elements) for subtype B resulted in lower gene 
activation levels than upstream promoter elements for all other subtypes (such as A, A2, A/G, 
C*, D and F). Importantly, this also suggested that promoter elements outside the NF-!B/Sp1 
sites may play an important in regulating gene expression dynamics from the viral promoter. 

 To better understand how upstream promoter elements may be influencing the dynamics 
of gene activation/inactivation, we plotted the activation rate of mimicking promoter variants vs. 
the activation rate of the naturally occurring variant (and similarly for the gene inactivation rates) 
(Fig. 5.11). In both cases, we found positive correlations between the mimicking and naturally 
occurring subtypes. Since a particular pair of mimicking and naturally occurring subtypes share 



! 100 

the same NF-!B/Sp1 sites, this suggested that a particular NF-!B/Sp1 configuration made a 
contribution towards the dynamics of gene expression (Fig. 5.11). However, when these 
correlations were compared to the hypothetical diagonal line constructed in these figures, since 
the level of gene activation for the mimics were lower than the corresponding naturally occurring 
variants, this suggested that these differences might arise from differences in the upstream 
promoter elements (Fig. 5.11A). Similarly, deviations from the diagonal for the gene inactivation 
levels suggested that upstream promoter elements play a role in regulating this phenotype (Fig. 
5.11B). 
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Figure 5.10. Levels of gene activation and inactivation vary with the subtype promoter. (A) Bar charts quantify 
the level of gene activation at day 13 post-sorting. Data shows that gene activation varies 2-fold over the naturally 
occurring subtypes. The large differences in the levels of gene activation between the naturally occurring and 
mimicking promoters suggest that regions outside the NF-!B/Sp1 sites may play an important role in regulating 
gene expression dynamics from the HIV-1 promoter. (B) Bar charts quantify the levels of gene inactivation from the 
active state at day 17 post-sorting. Gene inactivation rates vary 2-fold over wild-type promoters and as observed in 
Figure 10A, differences in gene inactivation between the wild-type and mimicking architecture point to the role of 
other elements besides NF-!B/Sp1 sites in regulating gene expression dynamics. 

 To further understand how subtype promoters influence gene expression dynamics, we 
analyzed the frequency of clones that show phenotypic bifurcation (PheB). It has previously been 
shown that the integration of LGIT into certain genomic locations give rise to clonal populations 
that have heterogeneous expression of GFP, with a fraction of cells having active expression 
whereas others showing no gene expression (10). Within the bulk sort, these PheB clones tend to 
be enriched within the Mid GFP expression range. It has been proposed that such PheB clones 
could stochastically alter between active and inactive states and thereby give rise to latent viral 
populations within patients that could reactivate at later time points to repopulate the actively 
replicating pool of virus. Therefore, analyzing if subtypes result in different frequencies of PheB 
clones could imply differences in the establishment and reactivation from latency. 

To analyze potential differences in PheB, we infected Jurkats with LGIT from different 
subtypes at low MOIs and sorted single cells into 96-well plates from the Mid GFP region 7 days 
post-infection. These single cells were expanded into clonal populations and the GFP distribution 
of 80-100 clones were analyzed by flow cytometry for each subtype variant 20-30 days post-
sorting. The fraction of clones for each subtype that displayed bimodal or PheB expression were 
then estimated using a statistical test called as the Hartigan’s Dip Statistic (52). Hartigan’s dip 
test allows us to estimate the statistical significance of the extent of unimodality of a histogram. 
Briefly, the dip statistic is the maximum difference over all data points between the distribution 
being tested and the unimodal distribution function that minimizes that maximum difference. 
The null distribution from which the dip statistic is determined is the normal distribution. 
Therefore, clones that showed statistically significant deviation from the unimodal distribution 
were scored as PheB clones. 

 We found a 4-fold variation in the frequency of PheB clones between subtypes (Fig. 
5.12A and Table 5.1). Subtype promoters that previously showed strong gene expression, such as 
subtype C*, had low frequencies of PheB clones, possibly since the strong promoter biases such 
clones towards activation. In contrast, subtypes such as D and F, with weaker gene expression 
have higher frequencies of PheB clones, possibly due to their inability to activate the Tat 
mediated positive-feedback loop effectively, resulting in greater stochasticity (Fig. 5.12A). 
Finally, when we plotted the frequency of PheB clones for the mimicking variants vs. the 
naturally occurring subtypes, we found a positive correlation between these quantities suggesting 
that the NF-!B/Sp1 sites play a role in regulating gene expression dynamics (Fig. 5.12B). 
Further, as previously noted for the gene activation/inactivation levels, the data points deviate 
from the diagonal, suggesting that elements outside the NF-!B/Sp1 domain play an important 
role in regulating gene expression dynamics (Fig. 5.12). 
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 As a variety of metrics to quantify gene expression dynamics suggested that upstream 
promoter elements together with NF-!B/Sp1 sites regulate this property of the virus, we 
computed the contribution of each of these elements to expression dynamics for the 6 subtype 
variants studied.  

 

Figure 5.11. Upstream promoter elements together with NF-!B/Sp1 sites regulate gene expression dynamics 
from the HIV-1 promoter. Plots of (A) Gene activation and (B) gene inactivation for mimicking promoters vs. 
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wild-type promoters show moderate positive correlation. This suggests that changing the NF-!B/Sp1 sites produces 
similar changes in the gene activation/inactivation rate and therefore these sites contribute to gene expression 
dynamics. The red line shows a hypothetical diagonal line. If the NF-!B/Sp1 sites alone contributed to gene 
expression dynamics, then the data points should all lie close to the hypothetical diagonal. Since the data points 
either lie below (for gene activation) or above (for gene inactivation) the diagonal, this suggests that upstream 
promoter elements also contribute to gene expression dynamics from the HIV-1 promoter. 

In estimating the contribution of the upstream promoter elements and NF-!B/Sp1 sites to gene 
activation levels, we made the simplifying assumption that these two modules within the 
promoter do not interact and thereby regulate gene activation independently. For all subtypes, 
except C*, we found that the upstream promoter elements contribute close to or greater than 50% 
of the gene activation levels (Fig. 5.13). The extra NF-!B/Sp1 site in subtype C* possibly skews 
the contribution towards the core promoter. 
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Figure 5.12. Upstream promoter elements and NF-!B/Sp1 sites both contribute to the fraction of clones that 
show stochastic switching between inactive and active states. (A) The fraction of clones that show stochastic 
switching between inactive and active states or phenotypic bifurcation (PheB) are shown for naturally occurring and 
mimicking promoter variants. Normalized PheB denotes the ratio of the fraction of clones that shows PheB with a 
particular promoter variant to that with subtype B. As with other dynamic properties of gene expression, promoter 
variants lead to differences in PheB. Differences in PheB between the wild-type and corresponding mimicking 
variants suggest that elements outside NF-!B/Sp1 sites contribute to PheB. (B) The modest positive correlation in 
the levels of normalized PheB between mimicking vs. wild-type promoters suggest that NF-!B/Sp1 sites also partly 
regulate this property. Thus, both upstream promoter elements and NF-!B/Sp1 sites contribute to PheB. 

Table 5.1. The Hartigan’s Dip Statistic is used to estimate the fraction of clones exhibiting PheB. For all the 
promoter variants tested, the fraction of clones exhibiting bimodal distribution within the Mid region are shown. 
This is used to estimate the fraction of clones exhibiting PheB in the entire population. 

Subtype Bimodal Clones % of Bimodal 
Clones 

% Mid 
Population % PheB 

B 9/121 7.438 1.36 0.101 

D 3/40 7.5 1.00 0.075 

mut D 7/79 8.861 1.54 0.136 

C* 6/88 6.818 0.65 0.0443 

mutC* 5/81 6.173 0.8 0.0494 

A2 4/96 4.167 1.42 0.0592 

mutA2 5/78 6.410 1.48 0.0949 

A 4/85 4.706 1.33 0.0636 

mutA 3/84 3.571 0.86 0.0307 

A/G 7/88 7.955 1.4 0.111 

mutA/G 2/42 4.762 1.63 0.0776 

F 9/89 10.112 1.27 0.128 

mutF 10/84 11.905 1.64 0.195 

RBE 12/93 12.903 1.67 0.215 

 

Thus, in contrast to the steady-state levels of gene expression that was primarily 
determined by the sequence and architecture of the NF-!B/Sp1 sites, gene expression dynamics 
was a function of both the NF-!B/Sp1 sites and upstream promoter elements. 
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Figure 5.13. Contribution of upstream promoter elements and NF-!B/Sp1 sites to gene activation for 
different subtypes. Black bars correspond to the contribution of upstream promoter elements and gray bars 
correspond to the contribution of NF-!B/Sp1 sites to gene activation. Bar chart shows that for all subtypes, except 
C*, the upstream promoter elements contribute to more than 50% of the observed level of gene activation for a 
subtype. The increased contribution of NF-!B/Sp1 sites to gene activation in the case of subtype C* may arise due 
to the presence of an extra NF-!B/Sp1 site. The bar charts are estimated using the assumption that the upstream 
promoter elements and NF-!B/Sp1 sites act independently to regulate gene activation from the inactive state. 

5.6 Identifying TFBS within upstream promoter elements that regulate gene 
expression dynamics 

 HIV-1 contains several TFBS within the upstream promoter region and therefore rational 
site-directed mutagenesis within a single or combination of these TFBS to identify sites that 
contribute to gene expression dynamics is not feasible. We therefore mined data collected by 
other members of the Schaffer group (unpublished data) to predict sites that may be important in 
regulating viral gene expression dynamics. In these experiments, a directed evolution approach 
was used to identify mutations within the viral promoter that increase the rate of gene activation 
from the inactive state (Fig. 5.14). Error-prone PCR of the subtype B promoter was initially used 
to create a large library of promoter variants. These were cloned into the sLTR lentiviral vector 
and packaged to create a library of viral particles. Jurkat cells were infected with this viral library 
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and promoter variants that activated rapidly from the inactive state were isolated, sequenced and 
the process was repeated. After 3 enrichment cycles, clones that were found to increase the rate 
of gene activation from the inactive state were sequenced. As a negative control, clones that were 
not selected for were also sequenced.  

 

Figure 5.14. Directed evolution scheme to identify sites within the HIV-1 promoter that increase the rate of 
gene activation from the inactive state. Random point mutations are introduced into the LTR of subtype B. This 
promoter library is cloned into the sLTR vector and virus packaged from this library is used to infect Jurkat cells. 
After cell sorting, the infected cells in the inactive state that active rapidly are isolated and the viral genome 
sequenced and subjected to further rounds of selection. This selection scheme should help enrich for sites within the 
promoter that increase the rate of gene activation. 

The Fisher Exact test was used to estimate sites within the LTR that appeared to be have 
been selected to increase the rate of gene activation from the viral promoter. 18 such sites 
appeared to be selected for (p<0.05), off which 11 sites were within upstream promoter elements 
(Fig. 5.15). It has previously been shown that mutations within Sp1 site III makes the viral 
promoter more stochastic and decreases the stability of the inactive state thereby increasing the 
rate of gene activation. The selected library identified 4 such sites within Sp1 site III validating 
previously obtained results as well as providing guidance to identify potentially interesting TFBS 
within the upstream promoter region that may increase the rate of gene activation.  
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Figure 5.15. Directed evolution identified sites within the promoter that increase the rate of gene activation. 
Schematic shows sites in red that appear to statistically increase the rate of gene activation. The position of these 
sites in the promoter is shown above the red bars. Transcription factor binding sites in the vicinity of these sites are 
shown below the bar bars. 11 sites within upstream promoter elements were identified that may increase the rate of 
gene activation. The directed evolution approach also identified sites within Sp1 that had previously been shown to 
increase gene activation rates. 

Off the 11 sites within the upstream promoter region that appeared to increase the rate of 
promoter activation, one of the sites (position -132) was within the TFBS RBE III. We decided 
to test if mutation at this site makes the promoter more stochastic and therefore potentially alter 
the latency properties of the virus. We made a single point mutation at position -132 in the 
subtype B promoter. We found that this increased the initial rate of gene activation from the 
inactive state as well as doubled the fraction of PheB clones (Fig. 5.16). Thus, we validated the 
library data for one of the positions that was predicted to change the viral phenotype as well as 
identify new TFBS within the HIV promoter that may be functionally important in regulating 
viral gene expression dynamics. Further investigation of the other mutations identified by the 
error-prone library will help identify important TFBS, and biochemical characterization using 
chromatin immunoprecipitation will reveal novel functions for these sites.  
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5.7 Studying HIV-1 latency for different subtype promoters using primary 
cell-culture models 

 The data presented above used full-length replication competent or lentiviral vectors to 
show that subtype promoters produce differential gene expression, replication and latency. To 
study how sequence differences may influence HIV-1 latency, we decided to use a clinically 
relevant primary cell culture model.  

 To use primary CD4+ T-cells, peripheral blood mononuclear cells (PBMCs) were 
isolated from 4 healthy human donors. Naïve CD4+ cells are then isolated from PBMCs using 
antibody-mediated magnetic associated cell sorting (MACS) and stimulated using !-CD3/CD28 
beads (5). 

 
Figure 5.16. Mutation within the RBE III site increases the rate of gene activation from the inactive state. To 
validate the sites identified from the directed evolution experiment, we introduced mutation at site -132, within the 
RBE III TFBS. (A) As described in Figure 8, the rate of gene activation was monitored for subtype B and the RBE 
III mutant. We found that the RBE III mutation increased the initial rate of gene activation. (B) Analysis also 
showed that the RBE III mutant increases the fraction of PheB clones 2-fold, suggesting that this site and possibly 
the RBE III TFBS may be playing a critical role in regulating gene expression dynamics from the HIV-1 promoter.  

 Latently infected cells are rare compared to actively infected T-cells, and as we were 
specifically interested in latent viral populations and differences that are induced by subtype 
promoters, we cloned subtype B and subtypes A, A2, D, F, C* and their corresponding mimics 
into the sLTR vector described in Section 5.2. GFP in this sLTR vector was replaced by the 
Herpes Simplex Virus – Thymidine Kinase (HSV-TK) gene. Thus T-cells actively replicating 
would produce HSV-TK that can be killed by addition of the drug ganciclovir (GCV) that 
specifically targets HSV-TK, thus negatively selecting for latently infected cells. Differences in 
the fraction of latently infected cells for each subtype promoter will then be quantified using 
small-molecules (such as prostatin and SAHA) that active latent populations or by quantifying 
integrated proviruses using qPCR. Thus, the use of this clinically relevant primary cell culture 
model of latency will allow us to systematically probe differences in the propensity of latency for 
different HIV-1 subtype promoters. 
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5.8 Discussion 

 In this work we studied how sequence diversity and variations in the architecture of 
TFBS regulate viral gene expression and latency. Immediately post viral integration and during 
reactivation from latency, the viral protein Tat is present at low levels or absent, and recruitment 
of cellular factors to the viral promoter plays a critical role in initiating and upregulating viral 
transcription. Relating the viral promoter genotype to HIV-1 pathogenicity is important for 
understanding differences between subtypes. To accomplish this, we employed a combination of 
lentiviral vectors and full-length HIV to explore how variations in TFBS between subtypes 
differentially regulate gene expression, viral replication and latency. We found that subtypes 
have widely varying replication kinetics, with subtypes such as C* and B/C, containing an extra 
NF-!B/Sp1 site replicating rapidly. In contrast, subtypes such as D with mutations within Sp1 
sites have lower replication rates.  

 In studying how the replication rate may be influenced by differential rates of gene 
expression, we found that subtypes with extra NF-!B/Sp1 sites (such as C*, C and B/C) have 
strong gene expression whereas those with mutations within Sp1 sites (such as F) have reduced 
gene expression at steady state with a large fraction of cells in the inactive or latent state. By 
replacing the NF-!B/Sp1 sites in the subtype B promoter with that of other subtypes, we were 
able to show that this domain determines the strength of gene expression at steady state. Further, 
to study the rate of reactivation from latency and integration into certain genomic locations that 
drive bimodal gene expression and increase chances of latency, we explored the dynamics of 
gene expression and found that both the NF-!B/Sp1 sites and upstream promoter elements play 
an important role in determining the rate and levels of gene activation/inactivation from an 
inactive/active state and the frequency of obtaining PheB clones. Finally, we are currently 
employing full-length virus in primary cell-culture models with different subtype U3 regions to 
understand differences in the propensity for latency between subtypes. 

 Thus we found that subtype promoters, with large sequence diversity produce differences 
in gene expression, replication rates and latency. Specifically, we were able to identify regions of 
the promoters that regulate different properties of viral gene regulation. We showed that the NF-
!B/Sp1 sites constitute the minimal set of TFBS that regulate steady state gene expression 
whereas specific TFBS within upstream regions of the promoter and NF-!B/Sp1 sites regulate 
gene expression dynamics.  

 A number of studies have explored how subtypes can alter virulence, transmission and 
gene expression. However, several of these studies use transfection-based assays under basal and 
Tat-transactivated conditions. However, these studies do not take into account how polyclonal 
integration of the HIV provirus could impact gene expression dynamics and thereby affect viral 
latency. In contract to the data described above, a recent study found no differences in the levels 
of latency between most subtypes promoter and that of subtype B (53). However, discrepancy 
between this and our work possibly arises since they do not consider the entire subtype U3 
region in their studies but instead only clone in the subtype-specific region corresponding to -177 
to +68. Further, the use of p24 as a reporter of gene expression, which is a late product is 
possibly not ideally suited to quantify viral gene expression. In contrast, this study systematically 
explores how different elements within the viral promoter regulate gene expression and latency. 
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 While the U3 region plays a critical role in regulating gene expression by recruiting 
several transcription factors to the promoters, other regions of the viral genome have been shown 
to be important in setting the strength of gene expression. The viral protein Tat, the TAR-Tat 
interaction, other structural and regulatory proteins of HIV-1 and the site of integration of the 
provirus have all been shown to influence viral gene expression and HIV-1 pathogenicity. Thus 
while the overall gene expression properties of any subtype will depend on a combination of all 
these factors, the promoter plays a critical role in the initial recruitment of factors to the promoter 
immediately after viral integration or during reactivation from latency. Thus, this study provides 
a better understanding of how sequence diversity in the HIV-1 promoter could differentially 
impact viral replication and the establishment and reactivation from latency. 

5.9 Materials and Methods 

5.9.1 Plasmids 

 U3 regions from different subtypes were cloned into pLG and pCLGIT as described 
previously (John Burnett, PhD Thesis). The NF-!B/Sp1 mimicking variants were created by 
introducing point mutations using QuikChange PCR (Stratagene) within NF-!B/Sp1 sites in the 
subtype B promoter. Primers will be made available upon request. 

 sLTR vectors containing different subtype promoters were made by PCR amplifying the 
promoters from the pLGIT vectors and cloning them into sLTR using the restriction enzymes 
Kas I and Pme I.  

 For selecting latent viral infections in the primary cell culture experiments, GFP in the 
sLTR vector was replaced by HSV-TK. HSV-TK was PCR amplified from the plasmid pHIV-
TK obtained from the NIH AIDS Research and Reference Reagent Program (54) and cloned into 
sLTR using the restriction enzymes Pme I and Not I. 

5.9.2 Cell culture 

 The Jurkat, SupT1 and CEM GFP cell lines were cultured in RPMI 1640 (Mediatech) 
with 10% fetal bovine serum (FBS) and 100U/mL Penicillin-Streptomycin (P-S). HEK 293T cell 
line was cultured in Isocove’s DMEM (Mediatech) with 10% FBS and 100U/mL P-S. The cells 
were propagated at 370C and 5% CO2. 

5.9.3 Viral packaging and infections 

 To package the LG and LGIT vectors, HEK 293T cells were cotransfected with 10 µg of 
the pLG or pLGIT plasmids containing various subtype promoters and the following helper 
plasmids: pMDLg/pRRE, pVSV-G and pRSV-Rev (55). Virus was harvested by 
ultracentrifugation 36 hours post-transfection, and viral pellets were resuspended in PBS and 
stored at -800C. Viral titers were obtained by infecting 3x105 cells with different viral volumes 
and measuring GFP expression of cells on day 8 post-infection after stimulating them with TNF! 
(20 ng/mL) and TSA (400 nM) for 18 hours prior to GFP measurements using flow cytometry. 
The tittering curves were used to infect Jurkat cells at a MOI of 0.05-0.1 to ensure single 
integration events per cell. 
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 To package full-length virus, HEK 293T cells were cotransfected with the sLTR vectors 
containing different subtype promoters and the following helper plasmids to increase packaging 
efficiency: pMDLg/pRRE, pVSV-G, pRSV-Rev and pCLPIT-Tat mCherry (51). Prior to 
transfection, the sLTR vectors were digested using Eco RI and Pvu I for 1 hour and after heat 
inactivation of the restriction enzymes and extraction of DNA, the plasmid was ligated using 
DNA ligase. The virus was packaged as described above and amplified using SupT1 cells. Viral 
titering was performed by infecting the CEM GFP cell line with various viral volumes. The CEM 
GFP cells were then fixed in paraformaldehyde and GFP expression was monitored using flow 
cytometry. 

5.9.4 Replication competent HIV propagation 

 4x105 SupT1 cells were infected at a MOI of 0.0005 in 12-well plates. Over a 10-day 
time-course experiment, 700 µL of media was extracted from the culture media every 2 days and 
replaced with fresh media. This culture media removed was used to estimate infectious viral 
units using the CEM GFP cell line. 

5.9.5 Flow cytometry and cell sorting 

 GFP expression was monitored using the FC500 Flow Cytometer (Beckman Coulter). For 
the bulk studies, Jurkat cells infected with various LGITs were stimulated with TNF! 18 hours 
before sorting, and GFP+ cells were sorted using a Cytopeia INFLUX Sorter or DAKO-
Cytomation MoFlo High Speed Sorter. These sorted cells were allowed to relax and GFP- and 
strongly GFP+ cells were sorted from this population. Relaxation of these two bulk populations 
was then monitored over time using the FC500 Flow Cytometer. 

 For identifying PheB clones from different subtype promoters, LGIT infected single 
Jurkats cells were sorted into 96-well plates. These single cells were expanded for 14-21 days 
and GFP expression of these clonal populations were measured using the FC500 Flow 
Cytometer. 

5.9.6. Isolating primary CD4+ T-cells and primary cell culture experiments 

 Isolation of primary CD4+ T-cells was performed as described in Section 5.7 and in 
reference (5). Latently infected cells were selected by treating the primary CD4+ T-cells with 
ganciclovir (GCV) as described in Section 5.7. 
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Chapter 6: Chromatin accessibility at the HIV LTR promoter sets a 
threshold for NF-!B mediated viral gene expression 

6.1 Introduction 

A central question in eukaryotic gene expression is how the activation of gene expression 
depends simultaneously on transcription factor availability and quantitative features of the 
chromatin environment at different genomic locations (1) (Fig. 6.1A). Eukaryotic transcription 
factors commonly regulate multiple genes, yet extracellular stimuli that activate transcription 
factors result in selective expression of only a subset of these genes. The sequence and 
arrangement of transcription factor binding sites in different promoters cannot fully explain 
differential responses to the same transcription factor (2). Another important input, chromatin 
features of the genomic locus, can also provide regulatory selectivity in response to transcription 
factor activation, including in complex processes such as inflammation (3,4) and development 
(5). It would therefore be informative to quantify how the placement of a particular gene in the 
genome impacts its responsiveness to an input transcription factor signal and features of the local 
chromatin environment. Such a quantitative understanding of how chromatin environment 
impacts gene regulation may also improve rational design of therapies to reverse gene expression 
dysregulation induced by chromatin changes (6). 
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Figure 6.1. In vitro models of HIV gene expression provide an experimental system to study RelA-mediated 
gene expression in a range of chromatin environments. (A) There is general interest in how gene expression 
probability varies as a function of transcription factor availability and quantitative features of the local chromatin 
environment. (B) Schematic describing RelA-mediated gene expression in the HIV vectors before and after the Tat-
mediated positive feedback loop is activated. (C) Representative flow cytometry histograms of GFP expression for 
the panel of clones each infected with a single integration of an inactive HIV provirus under basal conditions (left) 
and after stimulation with TNF! (20 ng/ml) for 48 hours (right). Percentage of TNF!-activated cells is indicated in 
parentheses. Clones are ordered according to increasing basal gene expression. (D) Infected clonal populations were 
stimulated with 400 nM TSA for 24 hours (light gray bars) or 5 µM 5-aza-dC for 48 hours (dark gray bars). 
Experiments were performed in biological triplicate. Data are presented as the mean ± standard deviation. 

Studies in S. cerevisiae recently demonstrated that chromatin provides a mechanism for 
tuning gene expression in response to transcription factors by setting a gene induction threshold 
that is decoupled from gene expression range (7,8).  However, it is unclear if a similar 
relationship holds for genes in multicellular organisms, in which gene expression attenuation and 
silencing are mediated by more complex repressive chromatin modifications (9). To address this 
question, we studied activation of the human retrovirus human immunodeficiency virus-1 (HIV). 
Because HIV integrates into the genome of its host cell in a semi-random fashion and responds 
to host transcription factors, it provides a unique opportunity to study activation of the same gene 
by the same transcription factor in different chromatin environments without altering promoter 
architecture (10,11).  

 

Figure 6.2. Schematic of the HIV vector model and a brief description of the selection procedure for clones 
infected with a single copy of the virus. (A) LTR-GFP-IRES-Tat (LGIT) clones (12) and (B) J-Lat clones as 
established by Jordan et al. (13).  Please refer to the published references for full details of the selection procedures. 
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Following infection and integration into the host chromosome, initial expression from the 
HIV long terminal repeat (LTR) promoter is inefficient and subject to the availability of the host 
cell transcriptional machinery and to local factors operating at the integration site  (Fig. 6.1B) 
(14-16). In some cases, chromatin-mediated repression of HIV gene expression – including 
histone deacetylation, histone methylation, and DNA methylation – results in inactive viral gene 
expression that may be related to viral latency, in which the virus adopts a quiescent phenotype 
but can be reactivated when stimulated with the appropriate transcriptional cues (13,17-20). 
Within inactive HIV-1 promoters, a nucleosome is precisely positioned immediately downstream 
of the transcription start site (TSS), and transcriptional activation of silent proviruses is strongly 
correlated with its removal via chromatin remodeling complexes (21,22). Upon such LTR 
activation, a virally-encoded transcriptional activator (Tat) feeds back on the LTR to amplify 
gene expression nearly 100-fold (Fig. 6.1B) (23,24), and stochastic effects in this process may 
also contribute to viral latency (12,25,26). Thus, inactive HIV integrated at different genomic 
locations offers a biomedically relevant system to study the probability of gene activation from 
the same mammalian promoter in a spectrum of repressive chromatin environments. 

 

Figure 6.3. Clones display differential sensitivity to TNF! dose. Clones were treated with the indicated dose of 
TNF! for 24 hours and HIV gene expression was evaluated by flow cytometry. Data are presented as mean ± 
standard deviation as estimated by bootstrapping. 

Like most cellular promoters, the HIV LTR is also strongly regulated by global host 
factors, prominently including the transcription factor nuclear factor-"B (NF-"B) p65/RelA. 
Transcription factors of the NF-"B/Rel family control complex transcriptional patterns in both 
the innate and adaptive immune responses, and these diverse patterns in part result from 
differences in the chromatin structure of target genes (3,27). Upon stimulation with a NF-"B 
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pathway activator, such as the inflammatory cytokine tumor necrosis factor-! (TNF!), RelA 
translocates to the nucleus and binds to the HIV LTR to stimulate gene expression (21,28). 
Specifically, NF-"B RelA promotes elongation by RNA polymerase II (RNAPII) in the absence 
of Tat (29) and is thought to be important in mediating the activation of silent proviruses (30). 
Thus, as a model system, the HIV LTR provides a common promoter architecture to 
quantitatively explore how NF-"B RelA mediates gene expression in different chromatin 
environments. 

Table 6.1: Genomic Locations of the integrated provirus for the clones used in this study 

 

Here we quantified viral gene expression as a function of NF-"B RelA level and 
quantitative features of the chromatin environment at the viral integration site. In cell populations 
containing different clonal integrations of the LTR promoter, we found that the threshold level of 
RelA necessary to initiate gene expression in the cell population varied monotonically with the 
degree of chromatin accessibility at the LTR promoter. Furthermore, upon onset, gene 
expression increased as a function of additional RelA increases in a non-linear manner similar 
for all clones. Moreover, increasing chromatin accessibility via small molecule inhibition of 
either histone deacetylation or DNA methylation reduced the RelA threshold without otherwise 
changing this gene activation function. Finally, an empirical gene activation function describing 
the dependence of HIV gene expression on RelA level and chromatin accessibility accurately 
predicted synergistic activation in response to combinatorial treatment with chromatin- or DNA-
modifying enzyme inhibitors and TNF!. Thus, our results demonstrate that chromatin 
accessibility at LTR promoters, mediated by complex epigenetic modifications acting at the 
integration site, sets a threshold level of RelA required for promoter activation, after which the 
activation profile is conserved across genomic locations. These findings point to a general 
mechanism by which genomic location may establish differential gene expression in response to 
the same transcription factor. These results may also aid efforts to develop combinatorial 
therapies to reverse chromatin repression and purge latent HIV reservoirs (31,32). 
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6.2 Inactive HIV infections in Jurkat T cells show varying degrees of 
repression and differential response to NF-!B pathway activation 

Inactive HIV infections of Jurkat leukemic T cells provide an opportunity to study gene 
expression in response to the same transcription factor from a single promoter located in 
different genomic environments. Here, we studied two in vitro models previously used to study 
HIV latency, in which clonal populations of Jurkat cells harbor a single viral integration at 
different genomic locations (12,13). LGIT-infected clones contain a minimal, replication-
incompetent HIV-based lentiviral vector with Tat and GFP under the control of the LTR 
promoter (Fig. 6.2A) (12), whereas J-Lat clones contain a full-length, replication-incompetent 
HIV virus with GFP in place of the Nef gene (Fig. 6.2B) (13). In the early stages of viral gene 
expression, Tat and GFP are the primary proteins expressed from the full-length virus, and the 
mechanism of transcriptional activation is thus similar for both models (19,25). Also, both J-Lat 
and LGIT exhibit bimodal gene expression, where the virus can exist in a non-expressing state, 
or where Tat basal expression is amplified by a positive feedback loop to yield transactivated 
expression (Fig. 6.1B). 

 

Figure 6.4. Clones show differential activation to small molecules that derepress different epigenetic 
mechanisms. Activation of gene expression was monitored by flow cytometry in clones after stimulating them with 
SAHA (4µM) for 24 hours and CHT (15nM) and BIX (3µM) for 48 hours. Experiments were preformed in 
biological triplicate and error bars indicate standard deviations from the mean. 

To explore a range of behaviors, we selected complementary sets of LGIT clones – in 
which a small fraction of the cells exhibit active transcription and the rest remain inactive – or J-
Lat clones – which are generally more silent since they were originally selected to have no basal 
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gene expression unless stimulated with TNF! (Fig. 6.2B) (13). We compared five LGIT clones 
(B5, B6, D1, D3, and E3) and five J-Lat clones (6.3, 8.4, 9.2, 10.6, and 15.4) that showed low or 
no GFP expression from the LTR promoter in the absence of stimulation, as measured by flow 
cytometry (Fig. 6.1C). All clones were activated to some extent by NF-"B RelA via TNF! 
stimulation, indicating that all integrated promoters could support viral transcription (Fig. 6.1C); 
however, activation occurred to varying degrees. In general, TNF! stimulation activated a 
smaller fraction of J-Lat clonal populations compared to LGIT clonal populations, except for J-
Lat 10.6, which was activated to a greater extent than LGIT B5. Moreover, the TNF! dose 
required to activate gene expression across clonal populations varied more than 10-fold (Fig. 
6.3). Thus, the J-Lat and LGIT in vitro latency models display a range of gene expression 
activation in response to the transcription factor RelA in different genomic environments. 

 

Figure 6.5. Inducing HIV gene expression by overexpression of RelA reveals an induction threshold of gene 
activation. (A) Schematic of the inducible RelA (iRelA) vector. (B) Immunoblot of total RelA-Cherry fusion 
protein and endogenous protein levels in clone 6.3 infected with iRelA 4 days after DOX induction. (C) Microscopy 
picture of clone 6.3 infected with iRelA 4 days after induction with 30 ng/ml DOX. (Left) DAPI and mCherry 
overlay. (Right) GFP and mCherry overlay. (D) Combined flow cytometry data for HIV-infected clones expressing 
iRelA in response to a range of DOX concentrations. More than 50,000 single cell events were divided into 256 bins 
of mCherry fluorescence, and the fraction of GFP+ cells was calculated and plotted for each bin. (Inset) Least 
squares fit line for clone 15.4 and E3. (E) Induction threshold (defined as the mCherry-RelA level at which 5% of 
the population expressed GFP) and (F) activation coefficient (defined as the Hill coefficient calculated from fitting 
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Hill functions to the curves in (D)) for each clone. Error bars in (D-F) represent standard deviations and were 
calculated by bootstrapping. 

We hypothesized that differences in TNF!-mediated activation may be due to epigenetic 
modifications at the LTR promoter that result in higher order chromatin structure, as suggested 
in previous studies (18,19). Local genomic features of the integration site did not reveal any 
systematic differences among the clones (Table 6.1). To chemically probe the nature of 
repression at the site of integration in each clone, we added trichostatin A (TSA), an inhibitor of 
class I and II mammalian HDACs, or 5-aza-2'-deoxycytidine (5-aza-dC), which inhibits DNA 
methyltransferase (DMT) activity. Similar to TNF! treatment, TSA or 5-aza-dC stimulation 
activated gene expression to varying extents across the clonal populations (Fig. 6.1D). To probe 
other epigenetic mechanisms of gene expression repression, we also treated the cell lines with 
another HDAC inhibitor, suberoylanilide hydroxamic acid (SAHA), chaetocin (CHT), an 
inhibitor of SUV39H1 that methylates histone H3 at lysine 9 (H3K9) or the small molecule BIX-
01294 (BIX) that has been shown to inhibit G9a, a methyltransferase that methylates H3K9 and 
H3K27. All clones showed strong reactivation after treatment with SAHA and weaker activation 
in general in response to treatment with CHT and BIX (Fig. 6.4). Therefore, these chemical 
perturbations showed that the panel of inactive integrated proviruses is subject to varying 
degrees of chromatin repression by multiple epigenetic mechanisms across integration sites and 
exhibit differential responses to TNF!-mediated RelA activation. 

6.3 LTR activation by tunable overexpression of the transcription factor NF-
!B RelA revealed an activation threshold that varied significantly across 
clones 

To more quantitatively and directly analyze how RelA activates HIV gene expression in 
different chromatin environments, we modified a tetracycline inducible expression system (33) 
for variable expression of a mCherry-RelA fusion protein (iRelA, Fig. 6.5A). Treatment with 
increasing doses of doxycycline (DOX) induced a steady increase in total RelA expression 
relative to endogenous levels, ranging from approximately a 0.2-fold increase in RelA fusion 
protein relative to endogenous RelA in the absence of DOX (due to basal expression from the 
Tet promoter) to a 5-fold increase at high DOX concentrations (Figs. 6.5B and 6.6A). Total 
mCherry fluorescence varied with DOX dosage in a similar manner as protein level (Fig. 6.6B), 
confirming that the two measurements are monotonically related. Deletion of the "B sites from 
the HIV LTR promoter abolished activation by the inducible (iRelA) vector and TNF!, but 
retained activation by TSA (Fig. 6.6C), indicating that RelA overexpression activated the LTR 
via specifically binding to the LTR "B sites. 

We introduced iRelA into the panel of clones and stimulated them across the full range of 
RelA expression until GFP expression and RelA levels reached steady-state 4 days post DOX 
addition (Fig. 6.6D). Within individual cells, mCherry-RelA predominantly localized to the 
nucleus for all but the lowest RelA levels (Figs. 6.5C and 6.6E), suggesting that RelA expression 
had largely overcome cytoplasmic sequestration by I-"B. Stimulation of an i-RelA-infected 
population of cells at a particular DOX concentration produced a wide distribution of mCherry-
RelA expression (Fig. 6.6F). Therefore, to quantify gene activation in the population directly as a 
function of mCherry-RelA across this full range, we pooled flow cytometry measurements across 
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all DOX levels and subdivided the single cell data into 256 mCherry-RelA bins (Fig. 6.6G).   
Gene expression for each clone varied from minimal activation with low mCherry-RelA to fully 
activated (i.e. 100% of the population expressing GFP) at maximal RelA levels (Fig. 6.5D). The 
resulting gene activation curves were fit to the Hill equation after log transforming it into a linear 
equation: 
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Figure 6.6. Characterization of the iRelA vector. (A) Quantification of RelA overexpression in clone 6.3 in 
response to increasing DOX dosage as measured by immunoblot.  Western blot was performed in triplicate and 
mCherry-RelA was normalized to the endogenous RelA level. Data are presented as the mean ± standard deviation. 
(B) For the same conditions in (A), mean mCherry fluorescence was quantified by flow cytometry and plotted 
against DOX dosage. Data points represent mCherry RFU mean of ~10,000 cells. (C) Histograms of mCherry 
fluorescence (top panels) and GFP fluorescence (middle panels) in Jurkat cells infected with WT LGIT (left) or 
LGIT with !B-deletions in the LTR promoter (right) and co-infected with the RelA vector in the absence (black) and 
presence (red) of DOX. !B-deleted LGIT vector shows negligible increase in GFP when stimulated with DOX 
(middle left).  (Bottom panels) !B-deletion mutants also show loss of response to TNF" (green) but retain activation 
by TSA (blue) as compare to WT. (D) Time course of % GFP positive cells at the indicated DOX treatment 
concentration for LGIT B6. (E) Nuclear mCherry fluorescence as a fraction of total mCherry quantified for 650 J-
Lat 6.3 cells and 1250 LGIT B6 cells from single cell microscopy data. (F) Flow cytometry histograms of mCherry 
fluorescence for clone B6 infected with iRelA in response to increasing DOX dosages: red (uninfected), blue (0 
#g/ml), green (10 #g/ml), yellow (30 #g/ml), turquoise (100 #g/ml), and pink (300 #g/ml). (G) Density plots of GFP 
versus mCherry for all dosages of DOX combined for clone B6. Measurements were divided into 256 mCherry bins 
and % GFP positive fraction was calculated for each bin.  

The experimental gene activation curves were well described using the fit parameters, K and n 
(Fig. 6.5D, inset and Fig. 6.7) and the quality of the fits was independent of the total number of 
subdivisions (bins). Strikingly, we observed that gene expression in each clonal population is 
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induced at a different level of RelA (mCherry), but after induction the increase in the GFP+ 
fraction as a function of RelA is similar (Fig. 6.5D). The mCherry-RelA level at which 5% of the 
population expressed GFP was defined as the induction threshold (Fig. 6.5D, red line), calculated 
using the Hill “gene activation” functions. Note that the relative difference in threshold of 
activation among clones was independent of the GFP level chosen for computing this metric 
(Fig. 6.8A). 

 

Figure 6.7. Least-squares fits of gene activation functions for the panel of clones studied. Flow cytometry data 
obtained from stimulating iRelA clones at different DOX levels were pooled together and binned into 256 GFP and 
mCherry channels. Each blue circle quantifies the metrics shown on the x- and y-axis, obtained from the mean 
%GFP+ and mCherry expression within each channel. The black line shows the best fit obtained from least-squares 
fitting after log transforming the Hill equation in to a linear equation. The clone IDs and the goodness of fits for 
each clone are indicated. Parameter estimates from the best-fit line were used to compute the induction threshold 
and activation coefficient shown in Fig. 6.5E-F. 
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The induction threshold exhibited a considerable 6-fold range of variation in mCherry 
fluorescence units (Fig. 6.5E), which was also reflected by variation in the fit parameter K, i.e. 
the mCherry-RelA level at half maximal GFP induction (Fig. 6.8B-C). In contrast, the apparent 
Hill coefficient n, which describes the steepness in the rise of the gene activation function, did 
not vary more than 1.5-fold among clones (Fig. 6.5F). The Hill coefficients, which we will refer 
to as the activation coefficients, were greater than 2, suggesting possible cooperativity in RelA- 
and Tat-mediated LTR activation (Fig. 6.1B).  

 

Figure 6.8. Analysis of the variation in induction threshold and K values. (A) Values of RelA induction 
threshold were calculated for different fractions of GFP+ population and compared to the chosen induction fraction 
of 5%. GFP+ fractions: 1% (black), 3% (blue), and 8% (red). (B) Values for the fit parameter K (half-max 
induction). Error bars represent standard deviations and were calculated by bootstrapping. (C) Comparison of K and 
5% induction threshold. 

Notably, clones that responded more strongly to drug treatments (Fig. 6.1C-D) also exhibited 
lower induction thresholds. Tat transcripts were undetectable below the induction threshold for 
both LGIT- and J-Lat-infected clones and Tat did not increase significantly until after the 
induction threshold was reached, indicating that any difference in transcription and Tat 
production between the two vectors did not affect the threshold (Fig. 6.9). Taken together, these 
data suggest that the genomic environment at the integration site affected the induction threshold 
of the LTR in response to RelA, but did not significantly affect progressive RelA-mediated 
increases in gene expression within the population once the gene had been induced. 

6.4 Chromatin accessibility at the LTR across clones is strongly correlated 
with the RelA induction threshold 

We reasoned that the local chromatin environment may affect the induction threshold by 
modulating chromatin accessibility at the promoter (7,34).  To quantitatively compare general 
chromatin accessibility, we measured the extent to which chromatin limited the sensitivity to 
DNAse I digestion near the transcription start site (TSS) of the LTR in each clonal population 
(35,36). Nuclease sensitivity assay measurements of the LTR were normalized to the same 
measurement made on the highly repressed hemoglobin-! (HBB) reference gene (37) for each 
clone, and we refer to this normalized metric as the heterochromatin fraction (see Materials and 
Methods). 
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 The panel of inactive clones harbored proviruses in a wide range of chromatin 
environments, with heterochromatin fractions varying 100-fold (from clone 6.3 down to clone 
B6) (Fig. 6.10A). The differences in heterochromatin fraction could be resolved into three groups 
(p < 0.05 by one-way ANOVA): strong repression (> 0.5), intermediate repression (0.05-0.5), 
and weak repression (< 0.05). Importantly, the induction threshold (Fig. 6.5E) showed a strong 
positive correlation with heterochromatin fraction (Fig. 6.10B; Pearson R = 0.82, p < 0.01), 
suggesting that chromatin accessibility at the promoter may be a determinant of RelA levels 
required to initiate gene expression. In contrast, the activation coefficient n did not show a 
significant correlation with nuclease sensitivity (Fig. 6.10C), consistent with the observation that 
this coefficient does not vary across clones (Fig. 6.5F). These results suggest that activation 
following initial gene expression may be an intrinsic property of the promoter, whereas initiation 
of gene expression is strongly correlated to the local chromatin environment at the site of 
integration. 

 

Figure 6.9. Tat transcript levels are undetectable until threshold is reached. RNA was isolated from clones 
15.4, 8.4 and E3 in the basal state or in iRelA-infected cell lines after treatment with DOX for 24 hours at the 
indicated concentrations and Tat transcripts were measured by RT-PCR.  !-actin transcription was used as a 
normalization control.  Data are presented as mean ± standard deviation. N.D. indicates non detectable.  
Corresponding fraction of GFP+ cells for each condition is indicated above each bar. Basal Tat transcription was 
also measured in LGIT B5, LGIT D3, and J-Lat 10.6 and found to be N.D. 
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We next measured if the nuclease sensitivity assay was consistent with known molecular 
determinants of heterochromatin, and how these determinants correlated with the induction 
threshold and activation coefficient induced by RelA overexpression. Using chromatin 
immunoprecipitation, we measured the total amount of histone 3 (H3), presumably higher with 
increased nucleosome occupancy near the promoter; the level of H3 tri-methylation at lysine 9 
(H3K9me3), associated with repressed promoters; and the level of H3 acetylation (AcH3), 
associated with active promoters.  

 

Figure 6.10. Chromatin accessibility is correlated with RelA induction threshold. (A) Heterochromatin fraction 
was quantified with a DNAse I sensitivity assay.  Quantitative PCR was performed in triplicate and normalized to a 
hemoglobin-! (HBB) reference gene. (B-C) Correlation of heterochromatin fraction with (B) induction threshold 
and (C) activation coefficient extracted from the fits in Fig. 6.5D-F. (D-F) Chromatin immunoprecipitation for (D) 
total H3, (E) H3K9me3 and (F) acetylated H3 bound to the HIV promoter in unstimulated clones was correlated to 
the induction threshold. Quantitative PCR was performed in triplicate and normalized to an input control.  Data are 
presented as the mean ± standard deviation. Differences are labeled as significant (*) if p < 0.05. Pearson correlation 
coefficient R is indicated on plot. 

As anticipated, total H3 increased with increasing heterochromatin fraction and was positively 
correlated with the induction threshold (Fig. 6.10D; R = 0.61, p = 0.06). H3K9me3 levels were 
also generally higher for clones with higher heterochromatin fractions and also showed a positive 
correlation with the induction threshold (Fig. 6.10E; R = 0.58, p = 0.08). In contrast, total AcH3 
was generally lower for increased heterochromatin fraction and negatively correlated with the 
induction threshold (Fig. 6.10F; Pearson R = -0.72, p = 0.02). The activation coefficient was not 
significantly correlated with total histone levels or histone modifications (Fig. 6.11). Therefore, 



! 127!

the threshold level of RelA necessary to activate gene expression is significantly correlated with 
chromatin accessibility and molecular determinants of heterochromatin across loci. 

 

 
Figure 6.11. The induction threshold does not correlate with known repressive and activating epigenetic 
marks. Total H3, H3K9me3 and acetylated H3 bound to the HIV promoter in unstimulated clones was measured by 
chromatin immunoprecipitation and correlated to the activation coefficient that describes the gene activation 
function. Quantitative PCR was performed in triplicate and normalized to an input control.  Data are presented as 
mean ± standard deviation. 

6.5 Activation of gene expression is more strongly associated with a decrease 
in heterochromatin rather than an increase in RNAPII binding or 
phosphorylation 

For strongly repressed clones (6.3, 9.2, 15.4, and 8.4), significant increases in RelA levels 
are necessary to reach an induction threshold (Fig. 6.5D). Therefore, we used these clones to test 
what quantitative features at the promoter change between the basal state and the point at which 
gene expression has just been initiated. Based on the measured correlations between the 
induction threshold and chromatin structure (Fig. 6.10), we hypothesized that at the point of gene 
expression onset, the heterochromatin fraction at the promoter may be reduced to that of clones 
that have induction thresholds close to the basal RelA level. We thus measured the 
heterochromatin fraction for each clone at a low DOX concentration (20 ng/ml) that 
approximately increased RelA to the induction threshold, at which point a small fraction of cells 
expressed GFP (5-8%; Fig. 6.12A, inset). The heterochromatin fraction at the induction threshold 
was compared to heterochromatin at the basal level for each clone, at which point <1% of cells 
express GFP. The level of heterochromatin at the induction threshold was reduced for all four 
clones, and three exhibited statistically significant decreases relative to the basal state (Fig. 
6.12B, p < 0.05). Moreover, at the induction threshold, the measured heterochromatin fraction 
was not significantly different from that of clones displaying intermediate levels of repression 
(clones B5, 10.6, and D3; p = 0.09 by ANOVA), consistent with the hypothesis that chromatin 
accessibility becomes equalized at the induction threshold. 
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An alternative to alleviating promoter repression at the induction threshold would be 
increased recruitment of positive regulators of transcription, including RNAPII and the 
associated factors required for transcription initiation. We used chromatin immunoprecipitation 
to measure the level of total RNAPII and RNAPII phosphorylated at serine 5 (pSer5-RNAPII 
associated with transcription initiation) at the promoter. No significant differences in LTR-bound 
RNAPII or pSer5-RNAPII were measured in the basal state across the entire panel of clones 
(Fig. 6.13A-B) and both were low relative to an actively expressing GFP+ HIV-infected 
population (Fig. 6.13C-D).  

 

Figure 6.12. Induction of gene expression is associated with a decrease in heterochromatin fraction. (A) 
Selected clones were treated with 20 ng/ml DOX to hold the clonal populations at the point at which gene 
expression in the population is just induced (arrow). (Inset) Flow histograms showing a low fraction of cells 
expressing GFP for each clone at the point of induction. (B) Heterochromatin fraction as quantified by nuclease 
sensitivity for clones at basal (white) and induction (gray) level of RelA. Quantitative PCR was performed in 
triplicate and normalized to a HBB reference gene. (C-D) Chromatin immunoprecipitation comparing (C) RNA 
polymerase II and (D) phospho-Ser5 RNAPII bound to the LTR promoter at basal (white) and induction (gray) level 
of RelA. Quantitative PCR was performed in triplicate and normalized to a GAPDH control gene.  Data are 
presented as the mean ± standard deviation. Changes are labeled as significant (*) if p < 0.05. 

Moreover, no significant changes were measured between basal conditions and threshold 
conditions at induction for either RNAPII (Fig. 6.12C) or pSer5-RNAPII bound to the promoter 
(Fig. 6.12D), consistent with our measurements of Tat transcription (Fig. 6.9). Overall, we 
conclude that the heterochromatin fractions in different clones begin to converge as they reach a 
gene expression threshold, prior to significant increases in Tat, RNAPII binding and 
phosphorylation at the promoter. 
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Figure 6.13. Total RNAPII and RNAPII phosphorylated at Ser5 (RNAPII-pSer5) are present at low levels at 
the HIV LTR promoter of inactive clones. Chromatin immunoprecipitation (ChIP) for (A) total RNAPII and (C) 
RNAPII-pSer5 bound to the HIV promoter in unstimulated clones. ChIP for (B) RNAPII and (D) RNAPII-phospho-
Ser5 was compared between clone E3 and a polyclonal population of Jurkat cells singly-infected with an LGIT 
vector and sorted for GFP-expressing cells. Quantitative PCR was performed in triplicate and normalized to a 
GAPDH control.  Data are presented as the mean ± standard deviation.  

6.6 Increasing chromatin accessibility via small molecule inhibitors lowers the 
RelA induction threshold 

If chromatin accessibility at the integration site is a determinant of the RelA induction 
threshold, then increasing chromatin accessibility at the LTR promoter of strongly repressed 
clones, which have relatively high induction thresholds, may shift the gene activation response 
curves to resemble more weakly repressed clones. While TSA or 5-aza-dC did not highly 
activate gene expression in clone 15.4 (approximately 1-2% for both drugs), these compounds 
may still modulate chromatin accessibility. We thus treated 15.4 with TSA (40 or 400 nM) or 5-
aza-dC (5 µM) and analyzed nuclease sensitivity following incubation times previously 
demonstrated to be sufficient for producing measurable changes in H3 acetylation (4 hours for 
TSA) (17) or DNA methylation (48 hours for 5-aza-dC) (38). Nuclease sensitivity depended on 
TSA dosage (Fig. 6.14A). In addition, the higher 400 nM TSA dosage induced an approximately 
3-fold decrease in the heterochromatin fraction, and 5 µM 5-aza-dC decreased the 
heterochromatin fraction by 2-fold, bringing these fractions into intermediate levels of basal 
heterochromatin (clones B5 and D3; Fig. 6.15A). 
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Figure 6.14. Increasing chromatin accessibility lowers the RelA induction threshold for clone 15.4. (A) 
Heterochromatin fraction for clone 15.4 was quantified with a DNAse I sensitivity assay following stimulation with 
TSA (40 or 400 nM) for 4 hours or with 5-aza-dC (5 µM) for 48 hours. Quantitative PCR was performed in 
triplicate and normalized to the HBB reference gene. Relative heterochromatin fraction was calculated by 
normalizing clone 15.4+drugs to the unstimulated 15.4 control. (B) Threshold and (C) activation coefficient 
extracted from fitting 15.4+iRelA gene activation functions in the presence of TSA and 5-aza-dC for the conditions 
in (A). Data are presented as the mean ± standard deviation. Standard deviation error bars for the threshold and 
activation coefficients were calculated by bootstrapping. Changes are labeled as significant (*) if p < 0.05. 

 

Figure 6.15. Increasing chromatin accessibility via drug treatment lowers the RelA induction threshold. (A) 
Heterochromatin fraction for clone 15.4 was quantified with a DNAse I sensitivity assay following stimulation with 
400 nM TSA for 4 hours or with 5 µM 5-aza-dC for 48 hours. Quantitative PCR was performed in triplicate and 
normalized to the hemoglobin reference gene. Relative heterochromatin fraction was calculated by normalizing 
clone 15.4 with drugs, B5 and D3 to the unstimulated 15.4 control. (B) Combined flow cytometry data for 15.4 
expressing iRelA in response to a range of DOX concentrations and simultaneous stimulation with 400 nM TSA for 
24 hours (dark blue), 5 µM 5-aza-dC for 48 hours (red), and no drug treatment controls at 24 and 48 hours (black 
and light gray, respectively). iRelA dose response curves for clone B5 (green) and D3 (dark gray) without TSA or 5-
aza-dC are included for comparison. (C) Relative change in induction threshold versus relative change in 
heterochromatin fraction for clones 15.4 (circles), 8.4 (diamonds) and E3 (triangles). Data for 15.4 are calculated 
from results presented in (A) and (B) and data for 8.4 and E3 are calculated from experiments presented in Fig. 6.16.  
All points are calculated by normalizing the value of heterochromatin fraction or threshold for the clone in the 
presence of drugs to the corresponding value for the unstimulated control clone. Data are presented as the mean ± 
standard deviation. Changes are labeled as significant (*) if p < 0.05. Pearson correlation coefficient R is indicated 
on plot. 
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To determine whether these shifts in chromatin accessibility lower the induction 
threshold for clone 15.4, we repeated the DOX induction of RelA-mediated gene activation in 
the presence of inhibitors at time points before these compounds affected cell viability (24 hours 
for TSA and 48 hours for 5-aza-dC). We then fit the resulting curves to the Hill equation (as in 
Fig. 6.5D) and extracted new values for the threshold and activation coefficient that define a new 
gene activation function. As anticipated, the induction threshold in the presence of either TSA or 
5-aza-dC was significantly decreased compared to the control (7-fold and 2.5-fold, respectively; 
Fig. 6.14B) and importantly resulted in gene activation curves that resembled those of clones that 
had intermediate heterochromatin fractions (Figs. 6.15B and 6.10A). By comparison, the 
activation coefficient was modestly lower following drug treatment (approximately 25% and 
40%, respectively; Fig. 6.14C).  

 

Figure 6.16. Increasing chromatin accessibility is associated with lowering of the RelA induction threshold for 
clones 8.4 and E3. (A) Combined flow cytometry data for clone 8.4 expressing iRelA in response to a range of 
DOX concentrations and simultaneous stimulation with 40 nM (light blue), 400 nM TSA (dark blue) for 24 hours, or 
5 µM AZA (red) for 48 hours. Corresponding iRelA dose curves without drug treatment are in black. (B) 
Heterochromatin fraction was quantified with a DNAse I sensitivity assay following stimulation with TSA (40 or 
400 nM) for 4 hours or with 5-aza-dC (5 µM) for 48 hours. Quantitative PCR was performed in triplicate and 
normalized to the HBB reference gene. Relative heterochromatin fraction was calculated as described in Fig. 6.14. 
(C) Threshold and (D) activation coefficient extracted from fitting 8.4+iRelA gene activation functions in the 
presence of TSA and 5-aza-dC for the conditions in (A). (E-H) Same conditions as described in (A-D) but repeated 
in clone E3.  Note that 400 nM TSA induced a significant activation of clone E3 at basal RelA levels and so it was 
not possible to accurately fit a gene activation function. Data are presented as the mean ± standard deviation. Error 
bars for threshold and activation coefficient are calculated by bootstrapping. Changes are labeled as significant (*) if 
p < 0.05. 

Furthermore, TSA and 5-aza-dC had similar effects on another repressed clone, 8.4, again 
inducing increased nuclease sensitivity and a lower induction threshold (Fig. 6.16A-D). Finally, 
we investigated whether increasing the chromatin accessibility could further reduce the RelA 
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induction threshold of even a weakly repressed clone. Consistent with results for the two highly 
repressed clones, reducing the heterochromatin fraction for the weakly repressed clone E3 with 
TSA or 5-aza-dC caused a decrease in induction threshold (Fig. 6.16E-H). 

 

Figure 6.17. Gene activation function accurately predicts synergistic activation of HIV gene expression by 
simultaneous treatment with TNF! and HDAC or DMT inhibitors. (A) The empirically-derived gene activation 
function for clone 15.4+TSA was used to predict its response to combinatorial perturbation with TSA and TNF!. 
Approximate mCherry-RelA increases associated with TNF! treatment alone were estimated by locating the point 
on the gene activation curve for basal clone 15.4 that corresponded to the percentage of GFP+ cells that responded 
to TNF! treatment (~12%) (black line). This estimated TNF!-induced value of mCherry-RelA was used to predict 
the fraction of GFP+ cells expected for a combination of TNF! and TSA by solving the gene activation function for 
15.4 treated with TSA (blue line). (B-C) Predicted (bars) and observed (dots) percentage of GFP+ cells following 
stimulation with TSA+TNF! or 5-aza-dC+TNF! based on (B) gene activation functions or (C) a Bliss independence 
model of drug response. Experiments were performed in biological triplicate and are presented as the mean ± 
standard deviation.  Error bars for prediction were calculated as described in Materials and Methods. 

When TSA and 5-aza-dC results were combined for all clones tested (15.4, 8.4, and E3), 
we observed that the change in heterochromatin fraction induced by inhibitor treatment showed a 
strong positive correlation with the resulting change in RelA induction threshold (Fig. 6.15C; R 
= 0.78, p = 0.03).  This observation further supports the correlative relationship between 
chromatin accessibility and the RelA level required for induction observed for clones across 
different integration positions (Fig. 6.10B). Taken together, these data demonstrate that 
chromatin accessibility at the HIV promoter sets a threshold for transcription factor-induced 
activation and that altering chromatin accessibility via multiple epigenetic pathways shifts this 
induction threshold. 
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6.7 Gene activation functions account for synergistic increases in HIV gene 
activation following treatment with epigenetic modifiers and TNF! 

Our small molecule perturbation data demonstrated that when the heterochromatin 
fraction for a repressed clone (e.g. clone 15.4) is decreased via small molecule inhibitors, 
chromatin accessibility is increased and the gene activation curve (or function) shifts such that it 
responds at lower RelA levels, similar to more weakly repressed clones. Since more weakly 
repressed clones also respond more robustly to TNF! stimulation (Fig. 6.1C), we considered 
whether the empirically measured gene activation function, i.e. gene expression as a function of 
RelA, could accurately predict gene expression in response to combined HDAC inhibition and 
NF-"B activation. Such predictions may be relevant to HIV latency therapy, as combinatorial 
treatment with a HDAC inhibitor and an activator of the TNF pathway has recently been 
observed to result in synergistic activation for in vitro HIV latency models (including J-Lat and 
LGIT) (19,31,32). 

 

Figure 6.18. Threshold function predicts drug synergy for clone 8.4. (A-B) Predicted (bars) and observed (dots) 
GFP+ cells following stimulation with TSA+TNF! or 5-aza-dC+TNF! for a (A) gene activation function or (B) 
Bliss independence model of drug activation. Experiments were performed in biological triplicate. Data are 
presented as the mean ± standard deviation. Methods for prediction and error analysis are described in Materials and 
Methods. 

To predict potential synergistic effects, we first inferred the approximate mCherry-RelA 
level associated with TNF! stimulation of clone 15.4 from earlier data (Fig. 6.1C). We then used 
this mCherry level and the 15.4+TSA activation function (Fig. 6.15B) to predict the population 
fraction activated in response to both TSA and TNF! (Fig. 6.17A). The 15.4+TSA gene 
activation function predicted a combined response of 71%, very close to the measured response 
of 68% (Fig. 6.17B). In contrast, when these data were used to predict combined responses under 
the assumption of Bliss independence (39), the expected activation in response to TNF!+TSA 
was 13% (i.e., 12% in response to TNF! only and 1% in response to TSA only) (Fig. 6.17C). 

Also, the gene activation curve for 15.4+5-aza-dC accurately predicted synergistic gene 
activation in response to combined TNF! and 5-aza-dC stimulation (75% predicted activation 
versus 84% measured activation), while the Bliss independence model predicted only 41% 
activation (Fig. 6.17B-C).  Gene activation functions derived for clone 8.4 treated with TSA or 5-
aza-dC also predicted gene expression in response to a combination of TSA+TNF! or 5-aza-
dC+TNF! more accurately than a Bliss independence model of drug response (Fig. 6.18). Our 
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analysis collectively suggests that the predicted synergy occurred because treatment with TSA or 
5-aza-dC lowered the RelA induction threshold significantly via increasing chromatin 
accessibility (Fig. 6.15C), such that TNF!-induced RelA activation resulted in a non-linear 
increase in population gene expression. Our prediction and observation that TSA and 5-aza-dC 
combine non-linearly with TNF! to stimulate gene expression is similar to the experimental 
synergy observed in vitro between activators of RelA and HDAC or DMT inhibitors in 
combinatorial anti-latency therapy strategies (19,31,32,38). 

 

Figure 6.19. Latent HIV clones show synergistic reactivation when treated with TNF! and other small 
molecules. Within each panel, the level of reactivation for each clone after stimulation with either TNF! or a small 
molecule is indicated by bar charts. Synergistic reactivation of clones when treated with a combination of TNF! and 
a small molecule are shown by blue triangles. The fraction of the population that was GFP positive was monitored 
by flow cytometry. Flow cytometry measurements were made 24 hours after stimulation with TSA and SAHA and 
48 hours after stimulation with 5-aza-dC, CHT and BIX. The TNF! and combined drug treatment measurements 
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were matched accordingly. Experiments were performed in biological triplicate. Data are presented as the mean ± 
standard deviation. 

6.8 Gene activation functions show that synergistic reactivation of latent HIV 
clones is maximized at particular RelA concentrations  

 As shown in the previous section, the gene activation functions accurately predict 
synergistic reactivation of the latent clones, in contrast to the Bliss independence model. To 
estimate the existence and extent of synergy for all the clones, we treated them with a 
combination of TNF! and small molecules activators of gene expression. On average, we found 
stronger synergy when the clones were treated with a combination of TNF! and TSA (400nM), 
TNF! and SAHA (4µM) or TNF! and 5-aza-dC (5µM) as compared to the weaker synergy 
observed for stimulations with either TNF! and CHT (15nM) or TNF! and BIX (3µM) (Fig. 
6.19 and Table 2). 

Table 6.2: Synergy for clones used in this study between TNF! and the drugs listed in the table 

Synergy TSA 5-aza-dC SAHA CHT BIX 
6.3 2.17 2.39 2.25 1.16 1.13 
15.4 3.61 2.14 3.04 0.88 1.16 
8.4 3.76 3.23 3.53 1.45 1.30 
9.2 1.85 1.90 1.85 1.32 1.22 
D3 1.01 0.99 1.01 1.19 1.01 
E3 0.99 1.00 0.99 0.90 1.00 
B5 1.06 1.22 1.14 1.29 1.20 

10.6 1.00 1.03 1.00 0.90 1.02 
B6 1.01 0.99 1.00 1.01 1.01 
D1 0.99 0.99 0.99 1.01 1.00 

 
The synergies listed above are for the following drug concentrations: TSA (400nM), 5-aza-dC (5µM), SAHA 
(4µM), CHT (15nM) and BIX(3µM). Table shows that on average TSA, 5-aza-dC and SAHA show higher synergies 
than CHT and BIX for the clones used in this study. 

 Such synergistic reactivation of latent clones is potentially of great therapeutic value as it 
would permit purging out large fractions of latent viral pools from infected patients. Since the 
gene activation functions show non-linear increases in gene expression in response to increasing 
levels of RelA, we hypothesized that certain concentrations of RelA could potentially maximize 
the synergistic reactivation of these latent clones. To test this hypothesis we chose the drug 
combinations RelA and TSA (400nM) or RelA and 5-aza-dC (5µM) that showed higher 
synergies on average in Fig. 6.19. We determined the gene activation functions for clones 15.4, 
8.4 and E3 for increasing levels of RelA in the presence or absence of the small molecules and 
estimated the corresponding extent of synergy at these different levels of RelA. For both small 
molecules TSA and 5-aza-dC, and for each of the three clones tested, we found that the synergy 
is maximized at a particular intermediate value of RelA (Fig 6.20). This implies that stimulating 
these clones at the maximal synergy inducing concentration of RelA could maximize the extent 
of latent viral reactivation at lower RelA concentrations.  
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Figure 6.20. Synergistic reactivation of latent clones reveals a local optima at intermediate RelA 
concentrations. The iRelA clones 15.4, 8.4 and E3 were stimulated with TSA (at 40nM or 400nM) or 5-aza-dC (at 
5µM) and increasing levels of RelA (by addition of DOX). The three panels show that for a given concentration of a 
small molecule, synergy is maximized at an intermediate concentration of RelA. 
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This could be of therapeutic interest as lower drug concentrations, resulting in better patient 
compliance could simultaneously be exploited to maximize the synergistic reactivation of latent 
clones. Further work will explore whether continuous reactivation of latent clones at this optimal 
RelA concentration is able to reactivate the same fraction of latent clones as stimulating the 
clones at the maximum dose of RelA. 

6.9 Discussion 

We have investigated how RelA level and features of the local chromatin environment 
quantitatively regulate the activation of HIV gene expression in a cell population. We 
demonstrated that gene expression is only induced when the cellular RelA level is brought above 
an induction threshold set by chromatin accessibility at the integration site, or conversely if 
chromatin accessibility is increased such that the induction threshold dips below the basal RelA 
levels (Figs. 6.5D and 6.15). A 3-D surface was constructed to incorporate and summarize data 
from Figs. 6.5 and 6.15 and to thereby show gene activation as a function of RelA for different 
genomic locations (Fig. 6.21).  This functional surface – which offers the information discussed 
in Fig. 6.1A – indicates that the semi-random integration of HIV into the human genome causes 
it to sample a wide spectrum of chromatin environments that would lead integrated virus to 
respond differentially to global cellular activation, or to small molecule interventions designed to 
therapeutically activate gene expression. 

 

Figure 6.21. 3-D surface plot demonstrates gene activation as a function of RelA for different genomic 
locations.  The plot was empirically derived by combining the gene activation functions for a subset of clones 
ranging from high to low repression.  Surface plot provides a quantitative depiction of the function hypothesized in 
Fig. 6.1A. Yellow and red points and arrows describe behavior in different regimes of promoter repression.  See text 
for discussion. 

To qualitatively understand how the genomic environment of latent HIV infections may 
alter the response to small molecule activation, three regimes of gene expression “potential” may 
be considered (Fig. 6.21). In regime 1, proviruses are close to the induction threshold such that 
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increasing either chromatin accessibility or RelA level will result in almost full activation of the 
population (Fig. 6.21, red). In regime 2, the level of RelA required to reach the induction 
threshold is sufficiently far from basal RelA such that increasing chromatin accessibility or 
raising RelA level alone will not be enough to activate the population, but moving along both 
axes will lead to activation (Fig. 6.21, yellow). Finally, it may be possible to have a promoter 
with sufficiently low chromatin accessibility (i.e. near the lower left corner of the functional 
surface) such that no combination of epigenetic modifiers and RelA activators will overcome the 
induction threshold and activate gene expression, though this scenario is outside the range of our 
experimental data. If other transcription factors that activate HIV display gene activation 
functions that are similar to RelA, then these infections may be difficult to activate 
therapeutically, but also may never result in a productive infection in activated T cells in vivo. 

 

Figure 6.22.  Correlation between heterochromatin fraction and RelA induction threshold is independent of 
HIV vector type. Data relating the induction threshold and measurements of heterochromatin fraction at basal level 
and in the presence of small molecule inhibitors were combined from Figs. 6.5F, 6.10A, 6.15A-B, and 6.16.  Data for 
LGIT and J-Lat clones were considered separately and normalized to one clone (15.4 for J-Lat and E3 for LGIT). 
The correlation between heterochromatin fraction and threshold is significant for both vectors (J-Lat: Pearson R = 
0.75; p < 0.03; LGIT: Pearson R = 0.8; p < 0.05). 

The vectors compared in our study contain differences in sequence, Tat expression and 
splicing, and viral accessory proteins that could affect the threshold behavior. However, we 
demonstrated that Tat transcription is extremely low prior to reaching the induction threshold 
(Fig. 6.9). Furthermore, when measurements of chromatin accessibility and induction threshold 
under different conditions are separated by vector type, the strong correlation between 
heterochromatin fraction and induction threshold is maintained (Fig. 6.22). Although we think it 
is likely that each vector and selection strategy may optimally select for a particular range of 
chromatin environments, our data strongly support chromatin accessibility as the primary 
determinant of the induction threshold.   

Induction thresholds set by chromatin have previously been shown in S. cerevisiae to be a 
mechanism for fine-tuning gene expression in response to transcription factors. Specifically, the 
affinity of the transcription factor Pho4 for its binding site in the PHO5 promoter sets a threshold 
for PHO5 activation by determining the level of Pho4 necessary to remodel a nucleosome 
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positioned over the TSS (7,8). Interestingly, other transcription factor binding sites in the PHO5 
promoter serve to scale expression after chromatin remodeling, suggesting that the two steps are 
independent. This is similar to our finding that the induction threshold for gene expression in the 
population is set by the local chromatin environment, but the increase in RelA-mediated gene 
activation and maximum fraction of activation achievable in the population is not. In the PHO5 
study, the affinity of the Pho4 binding site was directly modified by introducing promoter 
mutations (7,8). In our study, the affinity of RelA for the !B sites on the LTR promoters is the 
same, and it is instead the chromatin accessibility at the site of integration that tunes the level of 
cellular RelA required for sufficient chromatin remodeling to activate gene expression. Further 
measurements are needed to determine if RelA binding to the promoter is directly or indirectly 
affected by changes in the affinity of nucleosomes for the LTR promoter. 

The more general idea that chromosomal location modulates gene expression has been 
increasingly investigated since the study of position effect variegation (40). Our results explore 
how chromatin context quantitatively impacts activation by a single transcription factor (TF) 
input, and suggest that chromatin environment within the mammalian genome can threshold the 
activation of different genes to the same TF, without significantly affecting the TF-mediated 
expression after gene expression is induced in the population. Such a mechanism potentially 
contributes to observed differential activation of genes in response to proinflammatory stimuli 
(27), where stimulation by proinflammatory cytokines resulted in two waves of NF-!B 
recruitment to target genes – early and late – that are primarily differentiated by the chromatin 
configuration at the promoter and not the affinity of the binding site (3). Our analysis was 
performed at steady-state but could be extended to examine the role of a chromatin threshold in 
the dynamics of NF-!B recruitment and gene activation.  

A recent genome-wide study of glucocorticoid receptor (GR) binding demonstrated that 
for a large majority of GR binding motifs, cell-specific differences in pre-existing patterns of 
chromatin accessibility at GR binding sites were a primary determinant of cell-selective GR 
occupancy, leading to cell-specific gene expression patterns (34). Our results also show that 
chromatin accessibility prior to stimulation plays a major role in determining NF-!B-mediated 
gene expression from the LTR, and thus appear to support an emerging general mechanism of 
how chromatin modulates TF–gene interaction specificity in diverse biological systems. Because 
TF binding in response to exogenous stimuli underlies all biological processes, a quantitative 
understanding of how these interactions are regulated by the local chromatin environment are 
important to decipher input-output responses of a cell. 

6.10 Materials and Methods 

6.10.1 Plasmids.  

 LGIT has been previously described (12). The inducible RelA (iRelA) vector was based on 
a single lentiviral vector platform for tetracycline-regulated expression of the product (33). The 
mCherry fluorescent protein was fused to the N-terminus of RelA by splice overlap PCR (41) 
and then cloned into the pEN-Tmcs (ATCC). The pEN-Cherry-RelA fusion plasmid was cloned 
into the pSLIK-Venus plasmid (ATCC) by LR recombination reaction (Invitrogen) as previously 
described (33), and the IRES-Venus sequence was removed. Cloning details and the final 
plasmid map is available upon request.  
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6.10.2 Cell culture.  

 Jurkat cells and HEK 293T cells (used for lentiviral packaging) were cultured as previously 
described (26). LGIT clones were sorted and cultured as previously described (26). J-Lat full 
length clones (13) were obtained from the laboratory of Dr. Eric Verdin via the NIH AIDS 
Research and Reference Reagent Program, Division of AIDS, NIAID, NIH.  

6.10.3 Viral harvesting and infection of iRelA cell lines.  

 Lentiviral vectors were packaged as previously described (42). For infection with the 
iRelA vector, 3x105 LGIT and J-Lat clones were grown in 12-well plates and infected at a 
multiplicity of infection of 0.6. Four days later, infected cells were stimulated with 1 µg/ml 
doxycyclin for 48 hours and the top quartile of the mCherry-expressing population was sorted on 
a Cytopeia InFlux cell sorter (BD Biosciences). The sorted iRelA cell lines populations were 
expanded and frozen stocks were stored in liquid nitrogen.  

6.10.4 Drug Stimulation.  

The LGIT and J-Lat cell lines and the corresponding iRelA cell lines were treated with 
the following pharmacological agents for the indicated times and analyzed by flow cytometry: 
TNF-! at 20 ng/mL (24 or 48 hours post-stimulation), TSA at 40 nM or 400 nM (24 hours), and 
5-aza-dC at 5 µM (48 hours). For the iRelA cell line stimulations, cells were treated with DOX at 
0, 10, 30, 100 or 300 ng/mL or as indicated in the text. 

6.10.5 Fitting the gene activation functions.  

For each iRelA cell line, flow cytometry data collected from DOX stimulation at 0, 10, 
30, 100 and 300 ng/mL were combined. The data were binned into 256 GFP and mCherry 
channels. For each mCherry channel, the percentage of GFP+ cells was computed and plotted, as 
in Fig. 6.5D. The Hill equation was log transformed into a linear equation and the curves in Fig. 
6.5D were fit by least squares as shown in Fig. 6.7. The quality of the fits did not improve by 
changing the number of bins. The slope and intercept obtained from the least squares regression 
was used to compute the threshold and activation (Hill) coefficient (Fig. 6.5E-F). iRelA cell lines 
stimulated with chromatin modifying enzymes and DOX were analyzed similarly. Standard 
deviations for the threshold and activation coefficient were bootstrapped using 1000 
bootstrapped data samples. 

6.10.6 Western blotting.  

J-Lat 6.3 cells were treated with DOX at the indicated concentrations for 4 days. Cells 
were pelleted and resuspended in lysis buffer containing IGEPAL (1%; Sigma), sodium dodecyl 
sulfate (SDS) (0.1%), phenylmethanesulfonylfluoride (0.1 mg/mL; Sigma), aprotinin (0.03 
mg/mL; Sigma), and sodium orthovanadate (1mM; Sigma) in PBS. Lysate protein concentrations 
were quantified by BCA Protein Assay Kit (Pierce) according to manufacturer’s instructions. 10 
µg of protein from each lysate were electrophoretically separated by SDS-PAGE and transferred 
to nitrocellulose membranes (Bio-Rad Laboratories). Membranes were probed with anti-NF-"B 
p65 (C-20) primary antibody (Santa Cruz Biotechnology, sc-372) and horseradish peroxidase-
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conjugated goat anti-rabbit secondary antibody (Pierce, 31460), developed with ECL Plus 
(Pierce), and analyzed on the Versadoc 4000 imager (Bio-Rad). 

6.10.7 Nuclease sensitivity assay.  

The nuclease sensitivity assay was performed using the EpiQ™ Chromatin Analysis Kit 
(Bio-Rad) with minor modifications of the manufacturer’s protocol. Briefly, 250,000 cells were 
incubated with DNAse I for 1 hour. Enzyme concentrations were adjusted to account for the 
range of nuclease sensitivities being compared (1X for measuring drug response in LGIT E3 and 
3X for measuring basal chromatin across clones and drug response in J-Lat clones). Following 
extraction and purification of the genomic DNA, the level of HBB and LTR were quantified by 
qPCR. Primers were designed to prime within the DNase hypersensitive site located inside the 
core promoter and cover the binding site of nucleosome-1, a nucleosome whose remodeling is 
associated with activation of the latent promoter(21,22). See Supplementary Methods for 
sequences. 

6.10.8 Chromatin immunoprecipitation.  

Upstate EZ ChIP Kit Reagents (Upstate) and protocols were used with minor 
modifications. 10 million cells were fixed in 1% formaldehyde for 10 minutes, and the unreacted 
formaldehyde was quenched using 125 mM glycine for 10 minutes on ice. After extensive PBS 
washing, the cells were lysed with 1 mL of 1% SDS lysis buffer in the presence of a protease 
inhibitor cocktail. For the Ser5P-CTD of RNAPII ChIP, a phosphatase inhibitor cocktail was 
also added during the immunoprecipitation step. The cells were sonicated either using the 
Branson Sonifier 450 (Settings: 25 cycles at a power output of 2.5 and duty cycle of 25%. Each 
cycle consisted of 15 pulses followed by incubation on ice for at least 1 minute) or the Misonix 
Sonifier 3000 (Settings: 7 cycles at a power output of 4. Sonication was done for 30 sec in each 
cycle with 1 sec ON/OFF pulses, followed by incubation on ice for at least 1 min). DNA gel 
electrophoresis was used to verify that the sheared DNA fragments were within 0.1-1 kb. For the 
Ser5P-CTD of RNAPII ChIP, anti-mouse IgM agarose beads (Sigma) were used instead of 
Protein A or G beads that were used for the other ChIPs. The anti-mouse IgM agarose beads 
were washed extensively with RIPA buffer, then blocked with salmon sperm DNA and yeast 
tRNA. For the Ser5P-CTD of RNAPII ChIP, the beads were incubated with the antibody-
chromatin complex for 5 hours at 4oC. For all other ChIPs, the beads were incubated with the 
antibody-chromatin complex for 2 hours at 4oC. The precipitated DNA was quantified using 
quantitative PCR (BioRad iCycler, iQ5) using the EpiQ Chromatin SYBR Supermix. qPCR was 
performed in triplicate and melt curves were run to ensure product specificity. The following 
antibodies were used in the immunoprecipitation step: anti-RNAPII (Millipore, Catalog # 05-
623), anti-Ser5P CTD RNAPII (Covance, Catalog # MMS-134R), anti-histone H3 (Abcam, 
Catalog # ab1791), anti-acetyl histone H3 (Millipore, Catallog # 06-599), anti-histone H3K9me3 
(Abcam, Catalog # ab8898). The following primers were used for the ChIP for AcH3, 
H3K9me3, and total H3 and the nuclease sensitivity assay: 5’- 
GGACTTTCCGCTGGGGACTTTCCAGGG-3' (forward) and 5’- 
GCGCGCTTCAGCAAGCCGAGTCCTGCGTCGAG-3' (reverse). Alternate primers were used 
for the ChIP for ChIP for RNAPII and phospho-Ser5-RNAPII: 5’- 
GACTTTCCGCTGGGGACTTTC-3' (forward) and 5!-GTGGGTTCCCTAGTTAGCCA-3! 
(reverse). 
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6.10.9 Imaging protocol and analysis.   

Clone 6.3 and B6 infected with iRelA were treated with 0, 30, and 300 ng/ml DOX for 4 
days. One million cells per condition were washed twice with PBS, fixed with 4% Formaldehyde 
(F79-1, Fisher Scientific), and applied to the well of a glass bottom 6-well plate (P06G-1.0-20, 
MatTek Corp., Ashland,MA) treated with 0.01 mg/ml Poly-L-Lysine Solution (SDP8920A, 
Fisher Scientific) to promote cell adhesion. After 30 minutes, wells were washed twice with PBS 
and stored in 70% Ethanol at 4° C overnight before imaging. Wells were rehydrated twice for 15 
minutes with PBS. Nuclei were stained with 0.0025 mg/ml DAPI (D1306, Invitrogen Corp. 
Carlsbad,CA) for 10 minutes and washed with PBS, and treated with an anti-bleach solution 
consisting of 10 mM Tris pH 8.0, 2xSSC, 0.4% glucose with 0.037 mg/ml glucose oxidase 
(G2133, Sigma-Aldrich Corp.) and 0.05 mg/ml catalase (C3515,Sigma-Aldrich Corp.) prior to 
applying the cover slip. Wells were imaged using an automated imaging system (ImageExpress 
Micro, Molecular Devices Inc.) with a 40X objective. Briefly, a 20x20 grid of independent fields 
was established in software per well and fields were imaged with hardware autofocus and a 
standard FITC, TexasRed, DAPI filter set. Exposure times were determined empirically to 
maximize signal to noise and prevent camera saturation. CellProfiler (Carpenter Genome 
Biology 2006) with a custom pipeline was used to segment cells and nuclei and to determine 
total and localized GFP and mCherry. The MeasureImageQuality module was used to reject 
significantly blurry fields using an empirically determined Focus Score of 0.004. 

6.10.10 RNA Extraction and Quantification of Viral transcripts.  

The indicated cell lines indicated were stimulated for 24 hours at different concentrations 
of DOX and treated with Trizol (Invitrogen) to extract total cellular RNA. Viral and cellular 
mRNA were quantified using the Quantitect SYBR Green RT-PCR kit (Qiagen) and a Bio-Rad 
iCycler (iQ5). The following primers were used to quantify Tat transcripts: Tat-F (5'-
GCATCCAGGAAGTCAGCCT-3') and Tat-R (5'-CTCCGCTTCTTCCTGCCATAG-3'). B-
Actin was used as a control and quantified using the primers, !-Actin-F (5'-
ACCTGACTGACTACCTCATGAAGATCCTCACCGA-3') and B-Actin-R (5'-
GGAGCTGGAAGCAGCCGTGGCCATCTCTTGCTCGAA-3'). qPCR was performed in 
triplicate and the error bars represent standard deviations from the mean. 

6.10.11 Combinatorial drug predictions.  

 The GFP+ fraction activated by TNF"+TSA or TNF"+5-aza-dC according to the model of 
Bliss independence (µTNF+inh,BLISS) was calculated as follows: µTNF+inh,BLISS = 1 – (1-µTNF)*(1-µinh) 
where µTNF and #TNF and µinh and #inh are the mean and standard deviation of the GFP+ fraction 
activated by TNF" and by TSA or 5-aza-dC, respectively. For predictions using the gene 
activation functions, for each clone of interest we located the point on the basal gene activation 
curve that corresponded to µTNF ± #TNF and used this to estimate the approximate mCherry-RelA 
increase, nTNF-RelA ± eTNF-RelA associated with TNF" treatment alone (where eTNF-RelA is the 
uncertainty in mCherry-RelA associated with #TNF). Finally, µTNF+inh,GA ± #TNF,GA was calculated 
by solving the empirical gene activation function for the clone of interest in the presence of drug 
treatment (clone+TSA or clone+5-aza-dC) at the point nTNF-RelA ± eTNF-RelA. 
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6.10.12 Statistical analysis.  

 We used Student’s t-test to compare two means, and two-factor ANOVA to compare 
heterochromatin fraction across different clonal groups.  Significance of Pearson correlation 
coefficients was calculated according to the following formula for the t statistic: t = r*[(1-r2)/(n-
2)]-1/2 where r is the Pearson correlation coefficient and n is the sample size.   
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Chapter 7: Chromatin Features at the HIV-1 Promoter Regulate 
Transcriptional Noise 

7.1 Introduction 

Every cell population exhibits differences among individual cells, even when the cells 
are genetically identical and the environment is carefully controlled. While non-genetic 
heterogeneity might arise from varied sources, some fraction of it continuously arises from 
‘biochemical noise’: random fluctuations in molecular concentrations and biochemical reactions 
that affect cellular mechanisms. Biochemical noise is especially apparent in gene expression 
within individual cells, because genes are usually present in very low numbers (typically 1-2 
copies per cell). Gene expression is thus a fundamentally noisy process that can result in non-
genetic heterogeneity in both prokaryotic and eukaryotic cell populations (1,2). 

 Stochastic fluctuations amplified by biological mechanisms such as regulatory circuits, 
can give rise to phenotypic heterogeneity (3). Such phenotypic heterogeneity arising from cell 
fate decisions driven by stochastic gene expression is emerging as a persistence mechanism in 
diverse mammalian diseases. For example, recent evidence suggests that biological noise may 
underlie probabilistic entry into and exit from mammalian viral latency (4), in which a subset of 
viruses establish “silent” infections that may permit viruses to evade the host immune system and 
reactivate later to produce more progeny (5).  In a very different example, cell-to-cell variability 
in the proteome of cancer cells appears to permit a small population of “persister” cells to 
survive chemotherapy (6). Eukaryotic genes are subject to complex mechanisms of chromatin 
regulation mediated by transcription factors and chromatin modifying enzymes that modulate 
stochastic fluctuations in gene expression (7). Thus, chromatin may provide a mechanism for 
varying the probability of stochastic transitions between phenotypes, and possibly increase the 
stability of one phenotype versus another. 

 It is well documented that intrinsically noisy gene expression results, in large part, from 
bursts of transcript and protein production in a number of cellular systems (2). In prokaryotes, 
such noise is primarily attributed to translational bursts that occur when ribosomes generate 
many proteins from a single transcript (1,7,8). In contrast, noise in eukaryotic cells primarily 
arises from transcriptional bursts, which are compatible with a model in which the promoter 
infrequently transitions between an inactive and an active gene state (9-11). Transcriptional 
bursting has been studied most extensively in yeast, but there is also evidence of such bursting in 
mammalian cells (10,12). Furthermore, cell-to-cell variability in transcript and protein levels in 
human cells is consistent with a stochastic gene state transition model (12-14). 

The gene state transition model is widely accepted; however, the source of 
transcriptional bursts is incompletely understood. One hypothesis that has gained considerable 
traction is that stochastic events in nucleosome remodeling cause the infrequent transitions 
between an inactive and active gene state, and thus underlie transcriptional bursting (7). 
Nucleosomes are the fundamental unit of chromatin, consisting of ~147 base pairs of DNA 
wrapped around an octamer of the four core histone proteins. Transcription factors must 
compete with nucleosomes for binding to the DNA, and therefore nucleosomes are considered 
to be general repressors of transcription (15,16). ATP-dependent chromatin remodeling 
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enzymes periodically move or disassemble nucleosomes along the DNA, which “opens” the 
chromatin to favor transcription factor binding and gene activation (17). 

 

Figure 7.1. Experimental setup to study noise in gene expression from the HIV-1 promoter. (A) Lentiviral 
vector LGM2 used to quantify noise in protein and mRNA levels from the HIV-1 promoter. Green fluorescent 
protein (GFP) is used to quantify cell-to-cell variability in protein levels. 32 repeats of the M2 array at the 3’ end of 
the transcript allows for hybridization of fluorescent probes allowing for the detection of single mRNA transcripts as 
diffraction limited spots. (B) Schematic representation for the isolation of Jurkat cell clones infected with a single 
copy of the LGM2 vector. Jurkat cells were infected with the LGM2 lentiviral construct at low MOIs of 0.05-0.1 to 
ensure single viral integrations per cell. The cells were stimulated with TNF! 7 days post-infection and GFP+ cells 
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were sorted. After allowing for the sorted cells to relax, single cells were sorted into 96-well plates. These single-
cells were expanded to produce clonal populations, each clone containing a unique integration site for the virus. 

Some of the first experimental studies to directly measure transcriptional bursts showed 
that the probability of gene activation varied with chromosomal position, which strongly 
suggested a link between chromatin remodeling and promoter state transitions (10,18).  Recent 
genome-wide studies in yeast further demonstrated that increased variability in gene expression 
is positively correlated with nucleosome density close to the transcriptional start site (19-21).  
Yeast genes with higher expression noise were also more sensitive to perturbation of chromatin 
regulators, suggesting that noisy genes are subject to chromatin remodeling (19,20). 

  In the context of HIV-1, the choice between replication and latency, a decision with 
substantial consequences for human health, is an example of a heterogeneous fate decision that 
may result from stochastic gene expression (4).  Following infection and integration in CD4+ T 
lymphocytes, HIV-1 usually actively replicates in the cell, but on rare occasions it fails to 
establish a productive infection and enters a latent state (22).  Latent HIV-1 proviruses are 
highly stable and persist even in patients on highly active anti-retroviral therapy (23).  Upon 
activation of the host T cell, latent virus can reactivate and re-seed viremia, and for this reason, 
patients must continuously take anti-viral therapy.  Consequently, HIV-1 latency is the most 
significant barrier to curing viral infection (24). 

  The virally encoded transcriptional activator Tat is essential for establishing a 
productive infection and for reactivating latent virus.  Tat is transcribed early during HIV-1 
infection and significantly amplifies expression from the HIV-1 LTR promoter in a strong 
positive feedback loop.  However, when Tat protein levels are low, such as just after infection 
or before reactivation, stochastic fluctuations in Tat gene expression can lead to delays before 
activation of the Tat-mediated positive feedback loop, resulting in subpopulations of low and 
high gene expression in a genetically-identical population of cells (25).  In this case, stochastic 
gene expression noise coupled with a strong positive feedback loop operates as a genetic 
“switch” that regulates entry and exit from latency (26).  If viral replication is sufficiently 
delayed, other cellular factors mediate chromatin changes that further suppress viral 
transcription and maintain (and further stabilize) the latent state (27,28). 

 While it has been shown that the HIV-1 promoter is noisy, it is unclear what the source of 
this noise is and ways in which it may influence the replication-versus-latency decision. 
Consistent with studies of stochastic fluctuations in eukaryotic gene expression discussed 
previously, our group and others recently demonstrated that a two-state model of transcriptional 
bursting could account for HIV-1 gene expression variance in the absence of Tat feedback (Fig. 
2c) (12,29). A two-state bursting model of HIV-1 gene expression is consistent with the long-
standing knowledge that nucleosomes are positioned at the HIV-1 transcriptional start site, and 
the observation that, in the absence of Tat, the HIV-1 promoter binds repressive factors that 
maintain an inactive chromatin configuration (30).  Because the HIV-1 LTR promoter also 
contains binding sites for activating factors, binding competition with repressive factors could 
lead to an infrequent all-or-none binding of activating factors that directly remodel promoter-
bound nucleosomes to establish a short-lived transcriptionally active chromatin configuration 
(31). Since features of the HIV-1 promoter that account for its heterogeneous expression pattern 
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are likely present in other mammalian promoters, however, the development of new 
experimental methods to investigate its gene expression properties may yield general insights 
into mammalian transcriptional regulation. 

 

Figure 7.2. Heat map showing GFP distribution for 223 clones. The GFP distribution of each clones is 
represented in each row of the heat map. The clones are arranged in the order of increasing mean GFP expression. 
The color-coding indicates the number of cells in each GFP channel. The spikes in the heat map show that clones 
with different integration sites can have large variability in the variance of the GFP distribution. 

In this work, we directly measure and quantify transcriptional bursting from the HIV-1 
promoter, using Fluorescence In Situ Hybridization (FISH). RNA distributions for each clonal 
population allowed for the accurate estimation of the parameters of the two-state model. Further, 
we investigated the origins of transcriptional noise by studying clones that had similar mean 
levels of gene expression but different noise characteristics. We found systematic differences in 
the chromatin environment between high and low noise clones, thereby providing a mechanistic 
understanding of heterogeneity in a clonal population.  

7.2 Quantifying cell-to-cell variability in the level of protein production from 
the HIV-1 promoter 

 To quantify variability in gene expression from the HIV-1 promoter, we created a vector 
in which GFP was used to quantify the level of protein expression from the full-length viral 
promoter. 32 tandem repeat oligonucleotides, denoted by M2, were added to the 3’ end of the 
transcribed mRNA for binding fluorescent probes to provide single mRNA detection resolution 
(10). This vector was denoted as LTR-GFP-M2 or LGM2 (Fig 7.1A). To obtain single 
integrations of the lentiviral construct, Jurkat cells were infected with LGM2 at low MOIs 
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around 0.05-0.1. Cells were stimulated with TNF! 7 days post infection and GFP+ cells were 
sorted. The sorted cells were allowed to relax for a few days and single cells were thereafter 
sorted into 96-well plates. These single cells, each with a single unique integration site for 
LGM2 with the host genome, were expanded to produce 223 clonal populations (Fig 7.1B). 

 

Figure 7.3. Clones show large variability in the level of noise in gene expression. (A) Coefficient of Variation 
(CV), a measure of noise in gene expression is plotted against the mean GFP expression for each clone. These 
moments of the GFP distribution are computed using 10,000 live cells. Data shows that the CV of the distribution is 
uncorrelated to the mean GFP expression level. (B) To minimize other sources of noise arising from cell size and 
shape, around 60% of the cells around the mean Forward and Side scatter were used to re-estimate the GFP 
distributions and the moments of the distribution. Figure shows that the CV is still uncorrelated to the mean. 

Each clonal population had a distinct GFP distribution (Fig 7.2). In the heat map (Fig. 
7.2), each row corresponds to the GFP distribution of a clone. The clones are arranged in the 
order of increasing mean GFP expression. These GFP distributions showed that clones had 
variable levels of gene expression with some clones exhibiting much wider distributions than 
others. Clones with wide distributions were skewed both to the left or right of the mean. These 
experiments suggested that the integration position may also impact the noise characteristics of 
the viral promoter. 

We next quantified that how the mean level of GFP expression correlated with gene 
expression noise, quantified using the coefficient of variation (CV) of the distribution. In contrast 
to previous studies in eukaryotic systems (12,29,32,33), we found that the noise characteristics of 
the promoter were uncorrelated to the mean of the GFP distribution (Fig. 7.3A). To ensure that 
other sources of noise, such as cell size and granularity do not influence the relationship between 
the CV and mean of the distributions, we created a smaller gate around the mean of the Forward 
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and Side Scatter to include ~50-60% of the cells analyzed by flow cytometry, as described in 
(12). We still found the CV and mean of the GFP distributions to be uncorrelated (Fig. 7.3B). 
Over the 10-fold variation in mean GFP expression across clones, the level of noise varied 
approximately two-fold. Therefore, we decided to study 18 clones across this entire range of 
mean GFP expression that have similar means but approximately two-fold variation in the level 
of gene expression noise. As an illustration, two such pairs of clones are shown in Figure 7.4. 
The clone pair C04 and A10 have low levels of mean GFP expression but display a 2.05-fold 
difference in CV. Similarly, the clone pair IC4 and IB4 have a 1.39-fold variation in CV though 
they have similar levels of mean GFP expression that is nearly 8 times higher than the other 
clone pair (Fig. 7.4). 

 
Figure 7.4. Representative example illustrating protein and mRNA distributions for high- and low-noise 
clones with different mean expression levels. To understand the biological mechanisms regulating gene expression 
noise, we selected pairs of clones with similar means but approximately two-fold variation in the level of CV. The 
clone pair A10/C04 have similar low mean expression levels but large differences in their protein and RNA 
distributions. Similarly, the clone pair IC4/IB4 show similar variations in their CV though they have higher mean 
expression levels. The cell-to-cell variability in protein expression is experimentally determined by measuring GFP 
expression using flow cytometry. The mRNA distributions are estimated using Fluorescence in situ hybridization 
and imaging 500 to 1000 cells using wild field fluorescence microscopy. 
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7.3 Quantifying cell-to-cell variability in the level of mRNA production from 
the HIV promoter 

 To accurately estimate the level of noise in transcription, we quantified mRNA 
distributions for 18 clones using FISH. The clones were fixed and hybridized with fluorescent 
probes complementary to the M2 array to allow detection of single transcripts as diffraction-
limited spots in a wide field fluorescence microscope. To accurately distinguish real spots from 
background, the resulting z-stacks from each field were deconvolved. Further, algorithms were 
developed to automate cell identification, spot detection and counting. As expected, high-noise 
clones with wider GFP distributions showed greater cell-to-cell variation in the number of 
transcripts as compared to low-noise clones (Fig. 7.4). The mRNA distributions for the high-
noise clones were much more skewed to the right with some cells having a very large number of 
transcripts (Fig. 7.5).  

7.4 Fitting mRNA distributions to the two-state stochastic model of gene 
expression shows that noise in gene expression is correlated to the frequency 
of promoter transitions 

 To relate the mRNA distributions from the 18 clones to biologically interpretable 
phenomenon, we fit these distributions to the analytical solution for the mRNA distribution in 
the two-state model of gene expression. The previously solved analytical distribution for the 
mRNA distribution in the two-state model is given by (10,34): 
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where ! !  is the steady-state mRNA distribution. In the two-state model, the promoter is 
assumed to transition between an inactive and active state, with transcripts produced only from 
the active state. ! is the rate of promoter activation, ! is the rate of promoter inactivation, ! is the 
rate of transcription from the active state and ! is the rate of mRNA degradation. 

 This simple stochastic model has been used to reproduce a range of single-gene expression 
profiles (10-12,35,36).  Importantly, the relative values of the model rate constants, relative to 
the transcript degradation rate (!), determine the regime of gene expression.  If the rates of 
transition are very fast relative to transcript degradation (!, ! >> !), then gene expression will 
follow a Poisson process.  In contrast, if gene state transitions are extremely slow relative to 
transcript degradation (!, ! << !), then each promoter state will be relatively stable, with 
transcripts produced in pulses that result in bimodal protein expression (35,36). Finally, if gene 
inactivation is much faster than activation (! >> !) and transcript degradation (! >> !), then 
transcriptional ‘bursting’ results.  In this regime, transcripts are produced in bursts during short-
lived transitions to the active promoter state.  The dynamics of bursting are often described using 
two parameters: 

1.  Burst Size: It is defined as ! /!!, with at least 1 transcript produced in the active state. It 
quantifies the number of transcripts produced every time the promoter transitions to the 
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active state. 
2.  Burst Frequency: It is defined as !. It quantifies the frequency with which the promoter 

transitions into the active state. 

Parameters in this model were estimated using Maximum Likelihood Estimation (MLE). In 
agreement with previous data, based on fitting of protein distributions (12), we found that the 
burst size for each clone correlates strongly with the mean of the RNA distribution but is not 
correlated to the noise in gene expression (Fig. 7.6A,B). Thus, clones that have higher mean 
expression levels produce larger transcriptional bursts. Interestingly, gene expression noise 
correlates strongly with the burst frequency, with noisier clones having more infrequent 
transitions into the active state. However, these promoter transitions do not influence the mean 
level of gene expression from the HIV promoter (Fig. 7.6C,D). Based on fitting the mRNA 
distributions to the two-state model, it appeared that the noise in gene expression is primarily 
influenced by the rate at which the promoter transitions into the active state. Since the site of 
integration of the viral promoter is the most distinguishing feature between the clones, we 
hypothesized that the chromatin environment may play a critical role in this transition between 
the promoter states resulting in clones with different noise characteristics. 
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Figure 7.5. mRNA distributions for 18 clones obtained using FISH and corresponding fits to the two-state 
stochastic model of gene expression. FISH was used to image 500-1000 cells of each clone using wild field 
fluorescence microscopy. This is shown using the blue colored histograms. MLE fits to these distributions are 
shown using red curves. 

7.5 DNase I sensitivity assay reveals systematic differences between high- and 
low-noise clones 

 The HIV-1 promoter has been well characterized (37-39), and it has been shown that the 
viral genome has precisely positioned nucleosomes along its entire length. Importantly, a 
nucleosome called Nuc-1 is positioned immediately beyond the transcription start site (TSS), 
which in the absence of activating factors remains bound to the viral promoter, preventing 
transcriptional initiation (Fig. 7.7A). The viral promoter has another upstream nucleosome called 
Nuc-0, with the nucleosome free region (NFR) between Nuc-0 and Nuc-1 containing several 
important transcription factor binding sites that have been shown to be important in recruiting 
both activating and repressive factors to the HIV-1 promoter (Fig. 7.7A). Further, it has recently 
been shown that nucleosomes are dynamically positioned within the LTR with chromatin 
remodeling complexes such as SWI/SNF playing an active role in nucleosome positioning.  

To systematically access if differences in the chromatin environment around the site of 
integration regulates the noise characteristics of the viral promoter, we performed DNase I 
sensitivity assays. Clones were treated with DNase I and the digested chromatin was purified. 
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DNase I preferentially digests non-nucleosomal DNA and the ease with which a stretch of DNA 
is digested, a measure of the level of compacted DNA, was quantified using qPCR. The 
hemoglobin gene, inactive in Jurkat cells, served as an internal control to compare differences in 
the chromatin environment of the viral promoter between different clones.  

 

Figure 7.6. The burst frequency is strongly correlated to the level of noise in gene expression. Figures show 
correlations between the fit parameters from the two-state model and the moments of the mRNA distribution. (A) 
and (B) The burst size is strongly correlated to the mean levels of gene expression but not correlated to noise in gene 
expression. (C) and (D) In contract, the burst frequency is strongly correlated to the level of noise in gene expression 
but uncorrelated to the mean expression level. 

To identify differences between high- and low-noise clones, we initially accessed 
chromatin accessibility within a large part the HIV promoter, covering the NFR and Nuc-1 
region. In support of our hypothesis that high-noise clones, with fewer promoter transitions into 
the active state, might be associated with more compacted chromatin, we found that chromatin 
inaccessibility for a clone increases with the CV of its distribution (Fig. 7.7B). Further, since we 
were specifically interested in comparing clones with similar levels of mean expression but 
different noise characteristics, we analyzed the ratio of chromatin inaccessibility between high- 
and low-noise clone pairs and found the ratio to be greater than one in all cases. This suggested 
that for a given mean level of gene expression, high-noise clones have more closed chromatin 
than low-noise clones for all pairs (Fig. 7.7C). Thus, it appeared that high-noise clones, with 



! 155 

higher levels of heterochromatin, transition more infrequently into the active state resulting in 
greater cell-to-cell variability in gene expression. 

 

Figure 7.7. High-noise clones are integrated into more inaccessible chromatin. (A) Schematic of the HIV-1 
LTR. The HIV-1 promoter has two well-positioned nucleosomes, Nuc-0 and another positioned just downstream of 
the transcription start-site (TSS). The DNase I hypersensitive site-1 (DHS-1) located between Nuc-0 and Nuc-1 
contain several important transcription factor binding sites, such as NF!B and Sp1. The black bar shows the region 
of the promoter that was analyzed during the DNase I sensitivity assay. (B) Clones integrated into more inaccessible 
chromatin are associated with higher levels of gene expression noise. Chromatin inaccessibility was determined by 
designing primers that flank the black colored bar. The amplicon includes regions within DHS-1 and Nuc-1. (C) 
Comparison of chromatin inaccessibility between clone pairs that have similar mean expression level but show 
variation in the level of gene expression noise. Ratios greater than 1 for all clone pairs indicate that high-noise 
clones are integrated into more compacted chromatin than low-noise clones. Error bars indicate S.D. All qPCR was 
performed in triplicate and melt curves were run to ensure product specificity. 

To study chromatin accessibility at the HIV-1 LTR more carefully, we looked at smaller 
regions of the promoter. We compared the Nuc-1 region, the NFR region and a region just 
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downstream of the Nuc-0 region between high- and low-noise clones (Fig. 7.8A). In agreement 
with the previous data, we found that high-noise clones have more compacted chromatin across 
all 3 regions compared to low-noise clones, with ratios of chromatin inaccessibility being greater 
than 1 for all clone pairs (Fig. 7.8A,B). Surprisingly, we observed that for all clone pairs, the 
ratio of chromatin inaccessibility is highest within the NFR region. This might arise either due to 
high-noise clones being more compacted within the NFR or due to low-noise clones being more 
accessible within this region (Fig. 7.8B).  

 

Figure 7.8. Detailed analysis of the HIV-1 LTR reveals systematic differences between high- and low- noise 
clones. (A) DNase I sensitivity assay was performed within three regions of the viral promoter, (1) Nuc-1 (blue bar), 
(2) region within DHS-1 that contains transcription factor binding sites for NF!B and Sp1 (red bar) and (3) 
downstream of Nuc-0 (green bar). (B) Comparison between high- and low-noise clones in these regions show ratios 
greater than 1 implying that high-noise clones have more dense chromatin across the entire promoter. For all clone 
pairs, the region with DHS-1 shows highest differences between high- and low- noise clones. Colors within the bar 
chart correspond to the amplicons shown in (A). Error bars indicate S.D. All qPCR was performed in triplicate and 
melt curves were run to ensure product specificity. 
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To identify the reason for higher ratios for clone pairs within the NFR, we analyzed the absolute 
values of chromatin inaccessibility. We found that while high-noise clones have similar levels of 
heterochromatin within the promoter, the low-noise clones have significantly lower levels of 
heterochromatin within the NFR when compared to other regions of its promoter (Fig. 7.9). This 
explains higher ratios for clone pairs within the NFR region (Fig. 7.8B). Since the NFR contains 
binding sites for several transcription factors that recruit both activating and repressive factors, 
these differences in chromatin accessibility within the NFR may have important consequences in 
the noise characteristics of the promoter (Fig. 7.9). Thus, it appears that there exists two 
systematic differences in the chromatin environment between high- and low- noise clones. First, 
high-clones clones in general have more compacted chromatin than low-noise clones. Second, 
while chromatin accessibility is relatively unchanged for high-noise clones across the entire 
promoter, low-noise clones appear to have especially open chromatin within the NFR. Thus, 
these systematic differences in the promoter chromatin environment possibly regulates the level 
of noise in gene expression. 

 

Figure 7.9. The chromatin around DHS-1 for low-noise clones is highly accessible. Figure shows raw data from 
the DNase I sensitivity assay. Data for all clones, high- and low-noise, are plotted as a function of their position 
relative to the TSS. High-noise clones have similar chromatin inaccessibility across the entire promoter that is 
statistically higher than low-noise clones. For low-noise clones, the increase in chromatin accessibility at the DHS-1 
site is statistically higher than at other sites in the promoter. 
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7.6 Discussion 

 This is the first study that measures noise in gene expression from the HIV-1 promoter at 
the single transcript level. Using the lentiviral vector LGM2, we were able to quantify noise in 
protein and mRNA expression from a large number of clones containing the vector integrated in 
different genomic locations. We fit the mRNA distributions of high- and low-noise clones to the 
two-state model of gene expression over the entire range of mean gene expression levels. As 
observed previously, we found that the burst size correlated well with the mean level of gene 
expression. Interesting, we also found that increasing levels of noise in gene expression was 
associated with more infrequent transitions into the active state.  

 To study how the chromatin environment might be regulating the frequency of transitions 
between promoter states and thereby regulating noise in gene expression, we performed DNase I 
sensitivity assays. We found two major differences in between high- and low-noise clones. High-
noise clones appeared to be more compacted across the entire promoter supporting data from the 
two-state model that such clones have more infrequent transitions to the active state. Further, the 
NFR within the promoter is particularly accessible to transcription factors within the low-noise 
clones. The region of the NFR studied in our experiments contain two of the most important 
transcription factor binding sites, NF!B and Sp1. The NF!B sites can recruit both repressive 
factors HDAC1 and HDAC3 to the viral promoter and activating Histone Acetyltransferase 
(HATs) such as p300. Similarly, Sp1 can recruit histone modifying proteins HDACs and HATs 
to the viral promoter. Thus differences in accessibility and recruitment of these activating and 
repressive factors may play a critical role in regulating the noise characteristics from the 
promoter. Further chromatin immunoprecipitation (ChIP) experiments for transcription and 
chromatin modifying factors may help provide a molecular basis to understand the differences in 
the level of noise in gene expression as a function of the integration site.  

Together these data suggest that by sampling different chromatin environments, HIV-1 
establishes a range of noisy gene expression distributions, which may act to specify distinct 
infected cell fates when coupled to Tat positive feedback.  In particular, we might speculate that, 
because productive viral replication depends on robust expression of the HIV-1 protein Tat, 
integrations with high basal gene expression (large burst size) and low noise (high burst 
frequency) will robustly generate sufficient viral Tat protein to replicate, whereas integrations 
with very low burst size result in unproductive infections.  In contrast, those integrations with 
small or intermediate basal burst sizes with large noise in gene expression (resulting from 
infrequent transitions into the active state) may stochastically generate sufficient Tat for positive 
feedback activation, favoring latency.  Therefore, nucleosome remodeling and features of the 
chromatin environment may lead to HIV-1 phenotypic diversity that may facilitate viral 
persistence through the establishment of latency. 

7.7 Materials and Methods 

7.7.1 Plasmids 

 The M2 repeat array was inserted into pLG by another graduate student in lab, Jonathan 
Foley, to obtain the plasmid pLGM2. 
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7.7.2 Cell Culture 

Jurkat and HEK 293T cells used in these studies were cultured in RPMI 1640 
(Mediatech) and Isocove’s DMEM (Mediatech), respectively, at 370C and 5% CO2. Both cell 
media were supplemented with 10% fetal bovine serum and 100U/mL Penicillin-Streptomycin. 

7.7.3 Viral harvesting and infections 

To package LGM2, 100 mm plates with HEK 293T cells were cotransfected with 10 µg 
of the plasmid pLGM2 and the following helper plasmids: 5 µg pMDLg/pRRE, 3.5 µg pVSV-G 
and 1.5 µg pRSV-Rev (40). Cell media was replaced 12 hours post-transfection and 24 hours 
after that virus was harvested by ultracentrifugation, and the viral pellets were resuspended in 
100 µL PBS and stored at -80oC for future use. 3x105 cells were infected with different viral 
volumes and GFP expression from these cells were measured 8 days post-infection after 
treatment with TNF! (20 ng/mL) and TSA (400 nM) for 18 hours to obtain viral titers. To ensure 
single integration events per cell, the titering curves were used to infect Jurkat cells at a MOI of 
0.05-0.1. 

7.7.4 Cell sorting and flow cytometry 

 For bulk sorts, LGM2 infected Jurkat cells were stimulated with TNF! (20 ng/mL) 18 
hours prior to sorting and infected GFP+ cells were sorted. 

 For single cell sorts, Jurkat cells each infected with a single copy of LGM2 at unique 
integration sites were sorted as single cells into 96-well plates. These single cells were cultured 
and expanded for 14-21 days and viable clones were transferred to 24-well plates. The GFP 
distribution of viable clones were measured using the FC500 Flow Cytometer (Beckman 
Coulter). 

7.7.5 RNA fluorescence in situ hybridization 

To image fixed Jurkat cells, poly-L-Lysine coated plates are use to adhere the cells to the 
plate. 2-3 million cells are added to each coated plate and allowed to stand for 15 minutes. The 
cells are then fixed by treatment with formaldehyde and stored in 70% ethanol. The fixed cells 
are rehydrated using 2X SSC (300 mM NaCl, 30 mM sodium citrate, pH 7.0) and 35% 
formamide and hybridized for 16-18 hours at 300C in 40 µL of a mixture containing the probe 
(10% dextran sulfate, 2 mM vanadyl-ribonucleoside complex, 0.02% RNAse-free BSA, 40 
"g E.coli tRNA, 2x SSC, 35% formamide, 30 ng of probe). After overnight incubation, the slides 
are washed and treated with DAPI to identify cell nuclii. Since the slides are imaged for ~10-12 
hours, they are treated with 100 µL of buffer containing Glucose Oxidase and Catalase to 
prevent photo bleaching and mounted with a coverslip to prepare it for imaging. 

7.7.6 Stochastic model of gene expression 

 The RNA distributions acquired from RNA FISH were used to estimate the parameters in 
the stochastic two-state model of gene expression using the steady-state solution for the mRNA 
distribution shown in Section 7.4. Codes for Maximum Likelihood Estimation to obtain 
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parameter values for the two-state model were written in Mathematica. Codes will be made 
available upon request. 

7.7.7 DNase I sensitivity assay 

The EpiQ™ Chromatin Analysis Kit (Bio-Rad) was used for the DNase I sensitivity 
assay. Briefly, 250,000 cells were incubated with 2 µL DNAse I for 1 hour and after quenching 
the digestion reaction, genomic DNA is extracted from the samples. The level of HBB and LTR 
are then quantified by qPCR (Bio-Rad iCycler, iQ5) using the EpiQ Chromatin SYBR Supermix 
(Bio-Rad). Primers were designed to prime the following regions: 1) Within a large region of the 
LTR – LTR-F (5’-GGACTTTCCGCTGGGGACTTTCCAGGG-3’) and LTR-R (5’-
GCGCGCTTCAGCAAGCCGAGTCCTGCGTCGAG-3’); 2) Within Nuc-1 – Nuc1-F (5’- 
AGCTCTCTGGCTAACTAGGG-3’) and Nuc1-R (5’-AAAGGGTCTGAGGGATCTCTAG-3'); 
3) Within DHS-1 – DHS1-F (5’- GGGACTTTCCGCTGGGGAC-3’) and DHS1-R (5’- 
CCCAGTACAGGCAAAAAGCAGC-3’); and 4) Close to the 5’ end of Nuc-0 – Nuc0-F (5’- 
GAGCCTGCATGGGATGG-3’) and Nuc0-R (5’- CTCCGGATGCAGCTCTC-3’). Primers 
used to quantify HBB were: HBB-F (5’-AAGCCAGTGCCAGAAGAGCCAAGGA-3’) and 
HBB-R (5’-CCCACAGGGCAGTAACGGCAGACTT-3’). 
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