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ABSTRACT OF THE DISSERTATION

Deep Scene Understanding

using RF and

its Fusion with other Modalities

by

Akash Deep Singh

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2023

Professor Mani B. Srivastava, Chair

Rich scene understanding is a critical first step in creating autonomous systems with situ-

ational awareness – i.e. systems that can not only perceive and comprehend their environ-

ments but also project what the future states are going to be. Current vision-based methods

of tackling this problem are inadequate as cameras are restricted to the visible spectrum.

While they can detect objects, track movements, and make inferences about human expres-

sions, they suffer from several challenges such as lack of depth information and weakness to

bad weather conditions. Moreover, there are many other modalities in which information

is present around us, and relying solely on one makes it susceptible to a higher chance of

failure.

Through my thesis, I aim to include RF (radio-frequency) modality in scene understand-

ing since RF has both complementary and supplementary properties to vision. My hypothesis

is that by fusing RF with vision, one can create a richer understanding of their scene which

I call ‘deep scene understanding’. There are four key enablers to deep scene understanding
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– (1) Detection of objects’ states and activities, (2) Localization of objects in a scene and

tracking them, (3) Developing methods to train machine learning models over RF data, and

(4) Understanding privacy and societal impacts of instrumenting spaces with sensors.

RF comes with its own set of challenges that make this sort of integration hard. Ad-

ditionally, instrumenting spaces with sensors such as RF sensors itself can lead to privacy

concerns. In solving these challenges, we present – (1) a framework to detect human activi-

ties using a mmWave radar that can ingest sparse and noisy radar point clouds and output

what activity is being performed in the scene. (2) a framework to detect, identify and localize

hidden objects such as cameras in a scene that may be monitoring a user but are not visible

to the naked eye. (3) a radar-camera fusion framework that can estimate dense depth in a

scene from a sparse radar point cloud and an image. (4) A self-supervised learning approach

that can leverage mutual information between a camera and a radar to train the radar. (5)

A user study to understand the privacy perceptions of users when spaces are equipped with

sensors.
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CHAPTER 1

Introduction

Smart and autonomous agents are entering all aspects of our lives. Self-driving cars are

poised to take over our roads soon, companies have started testing drone delivery systems,

and smart-home assistants along with their full suite of smart appliances have become an

increasingly integral part of our homes. If one were to replace human beings with these so-

called “smart” agents, these agents would first need to develop situational awareness which

is at par or even better than humans. Endsley’s model [Endsley, 2015] defines situational

awareness as not only the ability of an agent to perceive and comprehend its environment,

but also project what the next states are going to be. The first step to developing this kind

of awareness is to be able to understand the environment that an agent is in. This is where

scene understanding comes into play.

Visual systems are the current state-of-the-art when it comes to understanding envi-

ronments. Scene understanding in the literature surrounding these works has been defined

loosely as – “interpretation of videos from pixels to events” [INRIA, ]. This involves tasks

such as segmentation, classification, tracking, and scenario recognition. While vision as a

modality provides us with a rich and dense (in the sense of color) understanding of our

environments, it is restricted to the spectrum of visible light only. With the proliferation

of wireless devices and wireless standards of communication, a lot of information around

us flows in this radio-frequency (RF) spectrum which is outside the visible spectrum. In

addition, a lot of devices have electromagnetic (EM) emanations that can potentially convey

information about their states and type. As a result, while the current methods of scene

1



understanding are able to provide some preliminary ideas about the scene an agent is in,

they are inadequate as they miss out on using a lot of information in the RF spectrum

opportunistically to boost their inferences.

Additionally, vision is not robust to poor lighting conditions and bad weather – something

very common in a large part of our planet. Hence, one can not rely on just vision for safety-

critical applications. RF sensors such as radars on the other hand are robust to environmental

changes and have been used for a variety of applications in the past.

RF and vision share complementary and supplementary properties:

• RF can see in the dark, vision cannot.

• RF can capture depth, while vision can capture color

• RF can ‘see’ in the radio frequency spectrum, vision can capture the visible spectrum

• RF and vision can both do tracking and object detection

Research Challenges. RF comes with its own fair share of challenges which makes it

hard to use for sensing or integrate with other modalities. Some of these key challenges are:

• Sparsity: Unlike cameras, radars suffer from specular reflections – the amount of in-

formation about the scene captured by radar is very sparse. When this information is

used to generate a representation such as a point cloud, they are very sparse and often

vary in size based on scene dynamics. This makes it difficult to feed this data directly

into a neural network.

• Noise: Radar point clouds are noisy. Not only are the depth (z) and azimuth (x)

components noisy, but the elevation (y) is completely off for mmWave radars that do

not have an antenna element along the elevation axis.

• Encryption: Most of the data in the RF spectrum is either encrypted or is difficult to

attribute to a particular device. In addition, it is difficult to figure out which frequency
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bands are of use and which are not because of the excessive amounts of wireless traffic

in these regions. As a result, it is challenging to develop frameworks that can use this

information for meaningful inferences without breaking the encryption.

• Lack of Labeled Data: Radar data is difficult to label and the human annotation

process does not scale well with data collection. Hence, unlike vision and language

datasets, radar datasets have limited availability.

In solving the challenges above and combining RF with vision and other modalities for

scene understanding, I present my thesis titled Deep Scene Understanding.

Terminology The word ‘deep’ in Deep Scene Understanding has two meanings, firstly,

rather than just looking at the scene visually and making inferences, we want to achieve a

deeper understanding of what is happening – i.e. a richer understanding or one can say, we

aim to go beyond what cameras can see. Secondly, ‘deep’ also alludes to the set of techniques

– deep learning that I have made use of to realize my vision. There are three key enablers

(described below) that together make our understanding of any scene “deep”. These are:

1. Detection of objects states and activities

2. Localization of objects in a scene and tracking them

3. Developing methods to train machine learning models over RF data

4. Measuring privacy impacts of instrumenting spaces with sensors that enable Deep

Scene Understanding.

Now, let us discuss each facet of ‘Deep Scene Understanding’ in more detail.

1.1 Detection of objects states and activities

Detecting activities in a space can be important for a variety of reasons. In smart buildings,

detecting activities can help optimize the use of space and resources such as lighting and
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heating. In healthcare, activity detection can ensure the well-being of patients. It can also

help with ensuring that safety policies are being followed in factory settings. Similarly,

detecting object states (such as when a device is on/off) can help with figuring out when a

machine needs maintenance, or whether a camera installed in a space is recording or not. In

the following subsections, we discuss some contributions that this thesis makes in this space.

1.1.1 Human Activity Recognition via sparse point clouds obtained through a

mmWave radar

Unlike cameras, radars suffer from specular reflections – the amount of information about

the scene captured by radar is very sparse. This means that point clouds generated through

a (mmWave) radar are of non-uniform size. This makes it difficult to feed this data directly

into a neural network. We use voxelization to show that it is possible to not only use non-

uniform-sized point clouds as an input to neural networks but also use this approach to

classify activities being performed in a space with an RF sensor.

1.1.2 Detecting and identifying hidden sensors snooping on a user in a given

scene

The increasing ubiquity of low-cost wireless sensors has enabled users to easily deploy systems

to remotely monitor and control their environments. However, this raises privacy concerns for

third-party occupants, such as hotel room guests who may be unaware of deployed clandestine

sensors. Previous methods focused on specific modalities such as detecting cameras but do

not provide a generalized and comprehensive method to capture arbitrary sensors which may

be “spying” on a user. In this thesis, we propose SnoopDog, a framework to not only detect

common Wi-Fi-based wireless sensors that are actively monitoring a user, but also classify

and localize each device.

SnoopDog works by establishing causality between patterns in observable wireless traf-
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fic and a trusted sensor in the same space, e.g., an inertial measurement unit (IMU) that

captures a user’s movement. Once causality is established, SnoopDog performs packet in-

spection to inform the user about the monitoring device. We evaluated SnoopDog across

several devices and various modalities, and were able to detect causality for snooping devices

95.2% of the time.

1.2 Localization of objects in a scene and tracking them

The knowledge of the accurate location of an object in a space can be used for various tasks

such as discovering hidden sensors that may be spying on a user or trying to locate missing

objects. It is also useful for robot navigation and autonomous driving. In the following

subsections, we discuss some contributions that this thesis makes in this space.

1.2.1 Going from 2D to 3D – how to recover dense depth in the scene with

images and radar

We present a method for inferring dense depth from a camera image and sparse noisy radar

point cloud. Unlike existing works that densify the scene by learning a direct map from image

and sparse point cloud to dense geometry, we decompose the problem into two parts: (1)

Given the radar point cloud which has ambiguous elevation and noisy azimuth components,

our method maps a single point to the possible surfaces that may correspond to that point

in the image. By querying the set of radar points, our method produces a quasi-dense depth

map by associating radar points with likely image pixels. (2) We fuse the quasi-dense depth

map with the camera image to learn a dense depth representation of the scene.
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1.2.2 Localizing Hidden Snooping Sensors

We propose SnoopDog that can localize clandestine devices in a 2D plane using a novel trial-

based localization technique. We evaluated SnoopDog across several devices and various

modalities and were able to localize devices to a sufficiently reduced sub-space.

1.3 Developing methods to train machine learning models over

RF data

RF data is hard to label and hence it is difficult to train machine learning models with it

for a variety of tasks. As RF sensing proliferates, there is a need to create techniques that

can learn from this RF data without labels. In this thesis, we combine radio and vision to

automatically learn a radio-only sensing model with minimal human intervention. We want

to build a radio sensing model that can feed on millions of uncurated data points. To this

end, we leverage recent advances in self-supervised learning and formulate a new label-free

radio-visual co-learning scheme, whereby vision trains radio via cross-modal mutual informa-

tion. We implement and evaluate our scheme according to the common linear classification

benchmark, and report qualitative and quantitative performance metrics. In our evaluation,

the representation learned by radio-visual self-supervision works well for a downstream sens-

ing demonstrator and outperforms its fully-supervised counterpart when less labeled data is

used. This indicates that self-supervised learning could be an important enabler for future

scalable radio sensing systems.
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1.4 Measuring Privacy Impacts of Instrumenting Spaces with Sen-

sors

Privacy allows individuals to control how their personal information is collected, used, and

stored. In realizing the vision that my thesis presents, we will need to instrument spaces such

as homes, offices, roads, and plazas with a multitude of sensors. However, indiscriminately

installing sensors can lead to several privacy concerns such as what data is collected, how it

is collected, and how it will be used. Often, sensing in public spaces is done without user

consent which leads to further violations of their privacy expectations.

The existing notion behind privacy is that the sensors whose data can easily be under-

stood and interpreted by humans (such as cameras) are more privacy-invasive than sensors

that are not human-understandable, such as RF (radio-frequency) sensors. However, given

recent advancements in machine learning, we can not only make sensitive inferences on RF

data but also translate between modalities. Thus, the existing notions of privacy for IoT

sensors need to be revisited. In this thesis, we conduct an online study of 162 participants

from the USA to find out what factors affect the privacy perception of a user regarding a

device or a sensor. Our findings show that a user’s perception of privacy not only depends

upon the data collected by the sensor but also on the inferences that can be made on that

data, familiarity with the device and its form factor as well as the control a user has over

the device design and its data policies. When the data collected by the sensor is not human-

interpretable, it is the inferences that can be made on the data and not the data itself that

users care about when making informed decisions regarding device privacy.
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CHAPTER 2

Deep Learning for Non-uniform mmWave Radar Point

Cloud Data

2.1 Introduction

Although the recognition and monitoring of human activities can enable safety critical

applications–e.g., monitoring disabled and or elderly people living-alone that may need med-

ical attention [Attal et al., 2015,Ni et al., 2011]–the emergence of low cost sensing capabilities

have enabled ubiquitous possibilities of human activity recognition for everyday applications.

Several context aware applications have recently emerged such as workout tracking and effi-

cacy [Shen et al., 2017], and factory floor monitoring [Hu et al., 2014]. Traditionally, human

activity has been inferred either through ambient sensors (e.g., cameras) and/or wearable

sensors (e.g., smartwatches with IMUs). Although wearables have proven to be effective ap-

proaches for human activity recognition, it is not practical to assume that all of the subjects

in a space will use wearables that are compatible with the inference model. Ambient sensor

approaches are robust to heterogeneous environments since they do not rely on users having

a particular device. However, the sensor data from cameras carry a significant amount of

ambient information that may be of concern for privacy-sensitive applications. For instance,

there have been cases where cameras in the maternity ward of a hospital were used to spy

upon female patients [Bonifield, 2019]. In this context, cameras can be replaced by sensors

whose data can provide a sufficient amount of ambient information to realize the same utility,

e.g., if we only care about how many patients are in a room or whether there are a certain
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number of nurses in the ward.

Prior works have shown that less information-rich ambient sensors can effectively infer

human activities while not exposing subjects to privacy risks using radio frequency signals.

For instance, WiFall [Wang et al., 2016a] showed how WiFi routers can be used to detect

whether a human has fallen or not. However, the work is not robust beyond binary clas-

sification of two classes that are significantly different from each other. Generally, WiFi

has a narrow band (when compared to the high bandwidth of a mmWave radar) and does

not have sufficient range resolution to perform robust classification. Radars have begun to

emerge as a popular modality for activity recognition [Çağlıyan and Gürbüz, 2015] as they

provide the advantage of operating in any lighting condition and work through a multitude

of environmental conditions, e.g., fog and rain. Further, the emergence of millimeter-wave

technology has enabled cost-effective distributed sensing applications.

Millimeter-wave (mmWave) technology operates in the frequency range of 30GHz and

300GHz. Since, antenna size is inversely proportional to frequency, the higher you go up

in the frequency spectrum, the lower the size of antenna becomes. As a result, mmWave

radars are compact in size. Also, we can pack a large number of antennas into a very small

space which enables highly directional beam-forming (≈ 1◦ angular accuracy). Since these

radars have a large bandwidth, they have a superior range resolution. Further, new low

cost, off-the-shelf radars have led to an increase in the popularity of mmWave based sensing

solutions. However, these devices are resource-constrained and, instead of providing raw

data, their output is in the form of point clouds1. The number of points in each frame

captured by the mmWave radar varies, increasing the complexity of constructing a neural

network architecture that can process this data as is. Hence, several feature extraction and

data pre-processing techniques have been proposed in previous works which convert this data

into a format which is constant in size and can be given as input to a neural network [Zhang

and Cao, 2018a,Zhao et al., 2019].

1To get raw ADC data from these devices, you need to connect them with expensive hardware
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In this chapter, we propose RadHAR, a framework for human activity recognition that

utilizes point clouds generated from a mmWave radar. To account for the sparsity of the

mmWave radar point clouds, RadHAR leverages the notion that human activities typically

last over a few seconds and accumulates point clouds over a sliding time window. Each point

cloud is voxelized to overcome the non-uniformity of the data and is then fed into a set of

classifiers. We collected a new HAR dataset consisting of point clouds using mmWave radar

for 5 different classes of activities. We evaluated RadHAR and compared the accuracy

of various classifiers on the collected dataset. In our evaluation, the best performing deep

learning classifier composed of a set of convolutional layers and long-short term memory

layers can achieve an average test accuracy of 90.47%.

Contributions. Our contributions are summarized as follows.

• We propose RadHAR, a framework that performs human activity recognition using

a pre-processing pipeline for point clouds generated by mmWave radar.

• We evaluate different machine learning approaches for human activity detection using

point cloud.

• We generate a new point cloud dataset for human activity detection and make it

available open-source along with the data processing, classifier training and evaluation

code, and pre-trained classifiers.

The rest of this chapter is arranged as follows. In Section 5.2, we present the prelimi-

nary information required to understand the RadHAR framework. We provide an overview

of RadHAR and its implementation in Section 2.3, and evaluate the classification ap-

proaches in Section 5.7. The related work is presented in Section 5.13, and we discuss in

Section 5.12, respectively. The source code and datasets of RadHAR are available online

at https://github.com/nesl/RadHAR.
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2.2 Background

We provide the preliminary information necessary to understand the RadHAR framework.

We discuss the basics of mmWave radar physics.

2.2.1 Millimeter-wave Radar

Over the last several years, there has been a growth in low cost single chip radars that work

in the mmWave range. One family of such popular devices are Texas Instruments’ mmWave

radar. These sensors output the point clouds that contain information like x,y,z positions of

each point among other data.

Bandwidth and range resolution. Range resolution of a radar is its ability to distinguish

between 2 targets present very close to each other. The range resolution and bandwidth are

related as,

dres =
c

2B
(2.1)

where dres is the range resolution in m, c is the speed of light in m/s and B is the bandwidth

in Hz swept by the chirp of the radar. Hence, if we want a better range resolution, the

bandwidth should be high. The maximum continuous bandwidth for the radar that we used

is 4 GHz which corresponds to a range resolution of about 4 cm.

2.3 RadHAR Overview

The full pipeline of the RadHAR framework is depicted in Figure 2.1. The framework first

collects data from a mmWave radar that is monitoring a human. The point cloud data

is pre-processed before being fed into a HAR classifier. We present an overview of each

component in detail.
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Figure 2.1: RadHAR framework overview.

2.3.1 Data Collection & Pre-processing

We have used TI’s IWR1443BOOST [Instruments, 2019] radar to collect the new point cloud

dataset called MMActvity (millimeter-wave activity) dataset. It is a FMCW (Frequency

Modulated Continuous Wave) radar which uses a chirp signal. This radar works in the

76-GHz to 81-GHz frequency range. The radar includes four receiver and three transmitter

antennas, which enable tracking multiple objects with their distance and angle information.

This antenna design enables estimation of both azimuth and elevation angles, which enables

object detection in a 3-D plane [Instruments, 2018].

2.3.2 MMActvity Dataset

For data collection, the radar is mounted on a tripod stand at a height of 1.3m. The data

from the radar is sent to the laptop via ROS (Robot Operating System) messages over USB.

The ROS node running on the laptop is developed and described in [Zhang and Cao, 2018a].

To record and store the data, we use rosbag which another ROS package. Finally, we convert

these rosbags into .txt files. These files are then used to create voxelized representation of

the point clouds. The data collection and pre-processing pipeline is describe in Figure 2.3.
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Figure 2.2: Data collection setup.

We have collected the data from two users2. The users perform 5 different activities in

front of the radar as shown in Figure 2.2. These activities are: Walking, Jumping, Jumping

Jacks, Squats and Boxing. The data is collected in a continuous periods of about 20 seconds

for a subject performing the same activity. Some of the data files are longer than 20 seconds.

In total, we have collected 93 minutes of data. The description of the dataset can be found

in Table 2.1.

The captured point clouds contains spatial coordinates (x,y,z in meters) along with ve-

locity in meters/second, range (distance of the point the from radar) in meters, intensity

(dB) and bearing angle (degrees). The sampling rate of the radar is 30 frames per second.

2.3.3 Data Pre-processing

We divided collected data files into separate train and test files with 71.6 minutes data in

train and 21.4 minutes data in test. To overcome the non-uniformity in number of points in

each frame, we converted the point clouds into voxels of dimensions 10x32x32 (depth=10)

which makes the input of constant size irrespective points of the number of points in the

frame. We decided these dimensions empirically by testing their performance. In our voxel

2The data is collected from the authors and thus does not require approval from IRB.
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Activity # of data files Total duration (seconds)

Boxing 39 1115

Jumping Jacks 38 1062

Jumping 37 1045

Squats 39 1090

Walking 47 1269

Table 2.1: Details of the MMActivity dataset.

mmWave Radar Point clouds Voxelized representation of point clouds 
(10*32*32)

Time window of Voxelized representation
(60*10*32*32) 

TX

RX

Figure 2.3: Workflow of data preprocessing. The voxel size if 10*32*32. The time windows are

generated by grouping 60 frames (2 second) together.

representation, the value of each voxel is the number of data points present within its bound-

aries. While having large number of voxels may represent underlying information well, it

increases the data size by several orders of magnitudes.

Since activities are performed over a period of time, the time window from activities are

generated in-order to capture the temporal dependencies. We create windows of 2 seconds

(60 frames) having a sliding factor of 0.33 seconds (10 frames). The 2-second window was

chosen based on the previous works in human activity recognition from multimodal timeseries

datasets [Xing et al., 2018] and human identification using point clouds [Zhao et al., 2019].

Finally, we get 12097 samples in training and 3538 samples in testing. We use 20% of the

training samples for validation. In the time window voxelized representation, each sample

has a shape of 60 ∗ 10 ∗ 32 ∗ 32.
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2.3.4 Classifiers

We evaluate different classifiers on the MMActivity dataset. We train Support Vector Ma-

chine (SVM), multi-layer perceptron (MLP), Long Short-term Memory (LSTM) and convo-

lution neural network (CNN) combined with LSTM. We compare the inference capability of

these classifiers on the same train and test split of MMActivity dataset. These deep learning

classifiers are generally adapted in a wide range of applications. LSTM and CNN combined

with LSTM architectures are inspired from [Zhao et al., 2019]. Next, we explain the details

of classifiers (data inputs, architectures and training details).

2.3.4.1 SVM Classifier

The input to the Support Vector Machine (SVM) classifier is generated by flattening the time

window voxelized representation (60∗10∗32∗32) and then applying the Principal Component

Analysis (PCA) for dimensionality reduction. We used PCA to reduce the dimensions of

data from 614400 (60 ∗ 10 ∗ 32 ∗ 32) to 6000 which explained 80% of variance in data. SVM

with RBF kernel was used.

2.3.4.2 MLP Classifier

It is composed of fully-connected layers and an output layer. We flatten the time window

voxel representation (60∗10∗32∗32) of the sample to create input size of 614400 dimensions

for the MLP classifier. The MLP classifier has 4 fully connected layers followed by the output

layer. We use dropout layers to avoid overfitting. It has 39.35 million trainable parameters.

2.3.4.3 Bi-directional LSTM Classifier

A bi-directional LSTM layer consists of two LSTM layers operating in parallel. The input

to the first layer is provided as-is whereas the input is reverse copy of the data for the the
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second layer. As a result, a bi-directional LSTM layer preserves the information from both

the future and the past. This network consists of the Bi-Directional LSTM layer followed

by the 2 fully connected layers and an output layer. The input (60*10240) to the network

is created by preserving the time dimensions (60) and flattening the spatial dimensions in

the samples (10*32*32). We used Bi-Directional LSTM with size of 64 and 64 hidden units.

The Bi-directional LSTM classifier has 5.29 million trainable parameters.

2.3.4.4 Time-distributed CNN + Bi-directional LSTM Classifier

Time-distributed CNN applies CNN layers to every temporal slice of the input data. The

architecture of Time-distributed CNN + Bi-directional LSTM classifier consists of 3 time dis-

tributed convolutional modules (convolution layer + convolution layer + maxpooling layer)

followed by the bi-directional LSTM layer and an output layer. Overall the network has

291k trainable parameters. This classifier is directly trained on the the input sample with

its time and spatial dimensions.

Training and implementation. The classifiers were implemented using Sklearn and

Keras. We use GridSearchCV function from sklearn to optimize the hyperparameters (C

and gamma) of the SVM. Adam optimizer with a learning rate of 0.001 was used to train

deep learning classifiers. The models with minimum loss on the validation data was saved

after training for 30 epochs.

S.No Classifier Accuracy

1 SVM 63.74

2 MLP 80.34

3 Bi-directional LSTM 88.42

4 Time-distributed CNN+ Bi-directional LSTM 90.47

Table 2.2: Test accuracy of different activity recognition classifiers trained on the MMActivity

Dataset.
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Figure 2.4: Confusion matrix of time-distributed CNN + bi-directional LSTM classifier.

We now evaluate the aforementioned approaches.

2.4 Evaluation

As shown in Table 2.2, the classifiers trained for the human activity recognition have different

performance. The table reports average results of 5 different training sessions. The SVM

classifier has poor performance with test accuracy of 63.74%. One reason might be the input

to the SVM is not using the domain specific feature extraction approaches as used by Kim

et al. [Kim and Ling, 2009] where they use a Doppler radar (2.4 GHz) and then convert

the output into micro-Doppler signatures. All the three deep learning classifier are working

directly on the time window voxel data. MLP classifier consists of the fully connected

layers which doesn’t assume anything about the input data and has test accuracy of 80.34%.

Bi-directional LSTM classifier tries to learn the sequence of input data. The input data
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Figure 2.5: Variation of training and validation loss of Time-distributed CNN + Bi-Directional

LSTM

to the LSTM preserve the time component. Since human activities are performed over a

duration and due to preserving time sequence for input to LSTM, the LSTM performance

is significantly better then the MLP with test accuracy of 88.42%. The best performing

classifier is Time-distributed CNN + Bi-directional LSTM which has test accuracy of 90.47%.

Time-distributed CNN layers learn the spatial features from the data, as the point clouds

are spatially distributed and the Bi-directional LSTM layers learn the time dependency for

the activity windows. Our evaluation shows specialized spatial and temporal layers in deep

learning architectures can result in boost in accuracy. The confusion matrix for one of the

trained Time-distributed CNN+ Bi-directional LSTM classifier is shown in Figure 2.4. As

seen from the figure, the activity of jumping and boxing is confused with the walking. The

reason might be the similarities in the data for these activities. The variation of the training

loss and the validation loss for Time-distributed CNN + Bi-directional LSTM classifier with

the training epochs is shown in Figure 2.5.

Voxelized representation with velocities. All the evaluation presented above used the

voxel representation, where the value of each voxel is the number of data points present within

its boundaries. We also evaluated with the voxelized representation where the value of each

voxel is the sum of the velocity of all the points present within its boundaries. The Time-
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distributed CNN + Bi-directional LSTM classifier trained on velocity voxel representation

also had the similar performance as shown in Table 2.2. We now discuss the works directly

related to the RadHAR framework.

2.5 Related Work

Human activity recognition is widely explored using various sensing modalities. Researchers

have used sensors like cameras and inertial measuring units [Chen et al., 2015,Xing et al.,

2018, Sun et al., 2017], sound [Zhan and Kuroda, 2014,Xing et al., 2018] and WiFi [Wang

et al., 2016a]. However, optical sensors like cameras capture a significantly large amount of

information and sensors like inertial measuring units need to be present on the user body.

Micro-Doppler spectrograms using radars for human activity recognition have been stud-

ied in detail over the last decade [Çağlıyan and Gürbüz, 2015, Fairchild and Narayanan,

2016,Kim and Ling, 2009]. In [Kim and Ling, 2009], the authors use a Doppler radar to

collect data of 12 subjects performing 7 different activities. They create micro-Doppler spec-

trograms from this data and extract 6 features from it to train an SVM classifier. Unlike

our work, the radar used here is in the S-band (2-4 GHz).

Recently, researchers have exploited low-cost single-chip mmWave radar systems for per-

son identification and tracking [Zhao et al., 2019] and human activity recognition [Zhang

and Cao, 2018a]. In [Zhang and Cao, 2018a], the authors convert the point cloud data

into micro-Doppler spectrograms before using a CNN to classify it. In [Zhao et al., 2019],

the authors use voxelized representation of point clouds for human identification using a

LSTM and a CNN + LSTM classifier. Our deep learning classifier architectures are inspired

from [Zhao et al., 2019], however, we are targeting a different problem of human activity

recognition.

In this work, we show that the time window voxel representation of the sparse points

clouds can be used for human activity recognition. We evaluate multiple classifiers and

19



achieve test accuracies as high as 90% percent for the deep learning classifier based on the

convolutional layers and long-short term memory layer. Our evaluation shows that deep

learning approaches can achieve comparable performance to the previous domain specific

feature extraction approaches like used by Kim et al. [Kim and Ling, 2009].

2.6 Discussion and Future Research

We now discuss the limitations of our approach and enumerate future research directions.

Spatial and temporal dependencies in point clouds. As shown in Table 2.2, MLP

classifier has poor performance. The reason might be due to fact the fully connected layers

in MLP classifier makes no spatial and temporal assumption about the data. On the other

hand, Time-distributed CNN + Bi-directional LSTM classifier assumes spatial and temporal

dependency in the data and hence performs better.

Limitations of voxelized representation. Voxels result in significant increase in the

required memory and computation. This can be seen in dimensionality of each input sample

(60*10*32*32 = 614400), which has to be processed by the deep learning classifier. This begs

the need for neural networks which are trainable directly on point clouds. One such network

is the PointNet [Qi et al., 2017] which can be used for applications like object classification,

part segmentation and scene semantic parsing.
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CHAPTER 3

Fusion of RF and Vision to Exploit Complimentary

Properties

3.1 Introduction

Understanding the 3-dimensional (3D) structure of the scene surrounding us can support a

variety of spatial tasks such as navigation [Maier et al., 2012] and manipulation [Choi and

Christensen, 2010]. To perform these tasks, an agent is generally equipped with multiple

sensors, including optical i.e., RGB camera and range i.e., lidar, radar. The images from

a camera are “dense” in that they provide an intensity value at each pixel. Yet, they

are also sparse in that much of the image does not allow for the establishing of unique

correspondence due to occlusions or the aperture problem to recover the 3D structure lost

to the image formation process. On the other hand, range sensors are typically sparse in

returns, but provide the 3D coordinates for a subset of points in the scene i.e., a point cloud.

The goal then is to leverage the complementary properties of both sensor observations – an

RGB image and a radar point cloud that is synchronized with the frame – to recover the

dense 3D scene i.e., camera-radar depth estimation.

While sensor platforms that pair lidar with camera have been of recent interest i.e., in

autonomous vehicles, they are expensive in cost, heavy in payload, and have high energy and

bandwidth consumption [Raj et al., 2020] – limiting their applications at the edge [Shi et al.,

2016]. On the other hand, mmWave [Johnston, 1980] radars are orders of magnitude cheaper,

light weight, and power efficient. Over the last few years, developments in mmWave radars
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Figure 3.1: Depth estimation using a mmWave radar and a camera. (a) RGB image. (b) Semi-dense

depth generated from associating the radar point cloud to probable image pixels. (c) Predicted

depth. Boxes highlight mapping of radar points to objects in the scene.

and antenna arrays [IIZUKA et al., 2003] have significantly advanced the performance of

these sensors. Radars are already ubiquitous in automotive vehicles as they enable services

such as cruise control and collision warning [Eichelberger and McCartt, 2016]. Methods

to perform 3D reconstruction with camera and radar are also synergistic with the joint

communication and sensing (JCAS) paradigm in 6G cellular communication [Wild et al.,

2021,Alloulah et al., 2022,Zhang et al., 2021], where cellular base-stations will not only be

the hub of communication, but also act as radars, to sense the environment.

The challenge, however, is that a mmWave radar is a point scatterer and only a very

small subset of points (50 to 80 per frame [Caesar et al., 2020]) in the scene, often noisy

due to its large beam width, are reflected back into the radar’s receiver. Compared to the

returns of a lidar, this is 1000x more sparse. Additionally, most radars used in automotive

vehicles do not have enough antenna elements to provide the elevation of the points with a

high enough resolution to be useful – erroneous at worst (see Sec. 3.3).

As a result, camera-radar depth estimation requires (i) mapping noisy radar points with-

out elevation components to their 3D coordinates (and with calibrating their 2D image co-

ordinates i.e., radar-to-camera correspondence) and (ii) fusing the associated sparse points

with images to obtain the dense depth. Existing works have projected the radar points onto

the image and “extended” the elevation or y-coordinate in the image space as a vertical

line [Lo and Vandewalle, 2021] or relied on multiple camera images to compute the optical-

flow which in-turn has been used to learn the radar-to-pixel mapping [Long et al., 2021b].
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These approaches overlook that radar returns have noisy depth, azimuth and erroneous el-

evation. They also assume access to multiple consecutive image and radar frames, so that

they may use the extra points to densify radar returns in both the close (from past frames)

and far (from future frames) regions. In the scenario of obtaining instantaneous depth for

a given frame, the requirement of future frames makes it infeasible; if delays are permitted,

then an order of hundreds of milliseconds in latency is incurred.

Instead, we propose to estimate depth from a single radar and image frame by first

learning a one to many mapping of correspondence between each radar point and the probable

surfaces in the image that it belongs to – yielding a semi-dense radar depth map. The

information in the radar depth map is further modulated by an gated fusion mechanism to

learn the error modes in the correspondence (due to possible noisy returns) and adaptively

weight its contribution for image-radar fusion. The result of which is used to augment the

image information and decoded to a dense depth map.

Our contributions are: (i) to the best of our knowledge, the first approach to learn

radar to camera correspondence using a single radar scan and a single camera image for

mapping arbitrary number of ambiguous and noisy radar points to the object surfaces in the

image, (ii) a method to introduce confidence scores of the mapping for fusing radar and image

modalities, and (iii) a learned gated fusion between radar and image to adaptively modulate

the trade-off between the noisy radar depth and image information. (iv) We outperform the

best method that uses multiple image and radar frames by 10.3% in mean absolute error

(MAE) and 9.1% in root-mean-square error (RMSE) to achieve the state of the art on the

NuScenes [Caesar et al., 2020] benchmark, despite only using a single image and radar frame.

3.2 Related Work

Camera and lidar based depth estimation [Bergman et al., 2020, Fu et al., 2019, Hu

et al., 2021,Jaritz et al., 2018,Jaritz et al., 2018,Ma and Karaman, 2018,Qiu et al., 2019,Yang
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et al., 2019, Van Gansbeke et al., 2019, Wong et al., 2020, Wong et al., 2021, Wong and

Soatto, 2021, Xu et al., 2019, Zhao et al., 2021] leverages an RGB image as guidance to

densify a sparse lidar point cloud. Most of the works are focus on addressing the sparsity

problem. For example, [Chen et al., 2019,Ma et al., 2019,Uhrig et al., 2017,Yang et al., 2019]

designed network blocks to effectively deal with the sparse inputs. [Bergman et al., 2020]

estimates the lidar sampling location and predicts the depth map more accurately without

requiring high sampling rates. [Li et al., 2020a] used a cascade hourglass network, [Hu et al.,

2021, Jaritz et al., 2018, Yang et al., 2019] used separate image and depth networks and

fused their representations, and [Huang et al., 2019b] proposed an upsampling layer and

joint concatenation and convolution. [Van Gansbeke et al., 2019] leveraged confidence maps

to fuse predictions from different modalities, [Qiu et al., 2019, Xu et al., 2019, Zhang and

Funkhouser, 2018] used surface normals for guidance and [Cheng et al., 2020, Park et al.,

2020] use convolutional spatial propagation networks. Another line of work [Wong et al.,

2020,Wong et al., 2021,Wong and Soatto, 2021] focus on densifying the inputs through

interpolation [Wong et al., 2020] or spatial pyramid pooling [Wong et al., 2021,Wong and

Soatto, 2021]. However, lidars are expensive, have high energy consumption and are limited

in real world applications; whereas, mmWave radars are cheap to purchase and common in

many sensor platform. Adapting these methods to radar point clouds is nontrival since they

assume point cloud sizes of ≈30k points that are aligned to the image; in contrast radar

point clouds are on orders of 50 points with noisy azimuth and ambiguous elevation.

Camera and radar based depth estimation uses sparse mmWave radar point clouds

and camera images [Long et al., 2021b, Lin et al., 2020, Lo and Vandewalle, 2021, Long

et al., 2021a, Gasperini et al., 2021]. Unlike camera-lidar depth estimation, it brings new

challenges due to the sparsity and noise of the radar point clouds. [Long et al., 2021b]

learn a mapping from radar data to image pixels using a radar-to-pixel association and then

train a network to using a lidar point cloud is used predict dense depth. To deal with the

sparsity, however, [Long et al., 2021b] reproject multiple radar sweeps into the current frame
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to increase the density of points and use multiple camera images (some from the future) to

compute the optical and radar flow – something which is not practical in real world. [Lin et al.,

2020] propose a two-stage encoder-decoder architecture to reduce the noise in radar point

cloud, and like [Long et al., 2021b], also uses future frames. Similarly, [Lo and Vandewalle,

2021] create a height-extended radar representation and then fuse it with camera images to

generate dense depth. [Gasperini et al., 2021] fuses sparse point clouds as a weak supervision

signal during training and uses it as an extra input to enhance the estimation robustness at

inference time. However, these works either ignore the noise and error in radar points or use

multiple (future) images and radar scans to get obtain denser points points with additional

points in close and far regions. Unlike them, we only require a single image and radar scan

to produce dense depth.

3.3 mmWave Radar Point Cloud Generation

In this section, we describe the geometry that determines the generation of point clouds via

a mmWave radar. mmWave radars, like other radars send an electromagnetic (EM) [Vain-

shtein, 1988] wave through their transmitter. This wave hits the objects in the scene, reflected

back and collected at the receiver. Unlike visible light, who’s wavelength is in µm, mmWave

radars suffer from the challenge of specular reflections, due to larger wavelengths larger than

visible light. The lack of diffused reflections (which is the case of visible light) means that

only the objects that reflect back into the receiver of the radar are captured. Hence, only a

small portion of the scene is visible to the radar. The point clouds generated from a mmWave

radar will be sparser than a camera image by several orders of magnitude.

To resolve the location of these reflections, radars use multiple receivers. However, pop-

ular mmWave radars used in autonomous driving (such as the one used in nuScenes [Caesar

et al., 2020] data collection), lack the ability to resolve height of objects in the scenes – a

direct result of either not having antenna elements to capture elevation information or not
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(a) mmWave radar point cloud geometry (b) Elevation ambiguity in radar point clouds

Figure 3.2: Challenges with radar point clouds – an illustration of elevation ambiguity (y) and noise

in azimuth (x) and depth (z) components. (a-left) Shows the geometry of how the mmWave radar

point clouds are obtained in an ideal setting. (a-right) Shows the geometry of how the mmWave

radar point clouds are obtained when the radar lacks information along the elevation axis. As a

result, the radar assumes that all the points reflecting back into the receiver are reflecting from

the plane perpendicular to the radar. This means, that the value of y obtained will always be 0

– which renders it useless for any task. Due to this assumption, The values of both x and z will

also be noisy. ∆x = Rsinθ(1− cosϕ), ∆y = Rsinϕ, ∆z = Rcosθ(1− cosϕ). (b) (Updated version

of [Long et al., 2021b]) Shows a real world manifestation of this noise. Due to the ambiguity in

height, The points B and C have a difference in their depth while the point A is accurate since it

lies in the plane perpendicular to the plane of the radar. Hence, a projection of radar point clouds

on to the image plane using camera intrinsics and pose will not work.
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Stage-1: RadarNet

Stage-2: FusionNet

Figure 3.3: System Overview - Our two-stage architecture for estimating dense depth from a

mmWave radar point cloud and a camera image.

having sufficient compute to process reflections along the elevation.

As shown in Fig. 3.2, since the radar has no way on knowing where a reflection is coming

from along the elevation, it assumes that every reflection is coming from the plane perpen-

dicular to the radar. This causes ambiguity in elevation (y) while also making the azimuth

(x) and depth (z) noisy. In addition, the wider beam-width of mmWave radars also leads

to some noise along these axes. As a result, it is not possible to directly project the radar

point clouds onto the image plane using the pose and camera intrinsics and use them as

a means of obtaining depth of the scene. Previous works [Lin et al., 2020, Lo and Vande-

walle, 2021, Gasperini et al., 2021] do not account for this and perform adhoc operations

such treating the incorrect projections as is or extending each radar point along the y-axis

of an image. Unlike them, we learn to map radar points to probable surfaces in the scene to

recover denser radar point clouds.

3.4 Our Approach

Formulation. Our goal is to recover the 3D scene from a single RGB image I ∈ R3×H×W

and K points in a point cloud z, where a point z ∈ R3, H and W are the height and

width of the image – here K (akin to a batch dimension) may vary from point cloud to
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point cloud, which our method handles through our RadarNet (Sec. 3.4.1). We assume that

the point clouds are captured by mmWave radars, which typically have incorrect elevation

(y-) along with noisy azimuth (x-) and depth (z-) readings. We propose to learn a function

that outputs the dense depth d̂ ∈ RH×W
+ for every pixel in the image. Rather than directly

learning a map from I and z to d̂, we divide it into two sub-problems and solve them

sequentially – (i) find correspondences between each point in the noisy radar point clouds

and its probable projection onto the image plane to yield a semi-dense radar depth map and

(ii) fuse information from the semi-dense radar map and the camera images to output d̂.

Our approach is realized as two sequential deep neural networks: (i) RadarNet hθ param-

eterized by θ takes an RGB image I and a radar point z as input and outputs a confidence

map hθ(I, z) ∈ [0, 1]H×W for the probable surfaces that the point maps to in the image.

Alternatively, for K points in the point cloud z, hθ(I, z) outputs K confidence maps from

which we construct a semi-dense radar depth map by selecting the z-component of the radar

point corresponding to the maximum response greater than a threshold τ = 0.5 in the hy-

pothesis hθ(I, z) for each pixel to yield radar depth map ẑ ∈ RH×W
+ . This allows us to process

point clouds with any arbitrary number of points – for a single point, we naturally default to

selecting its z-component for any response greater than τ . (ii) FusionNet fω parameterized

by ω further fuses together I, ẑ and its confidence for each correspondence ĥθ(I, z) to yield

the dense depth map d̂ = fω(I, ẑ, ĥθ(I, z)) ∈ RH×W
+ . Fig. 5.1 shows the system overview of

our two stage approach.

3.4.1 Learning Radar to Image Correspondence

We assume that we are given a dataset with training samples comprised of an RGB image I,

radar point cloud z, ground truth lidar depth map dgt ∈ RH×W
+ . RadarNet hθ is comprised

of two encoders, one standard ResNet18 backbone [He et al., 2016] with 32, 64, 128, 128, 128

filters in each of its layers, respectively, to process the image and a multi-layer perception

(MLP) of 5 fully connected layers with 32, 64, 128, 128, 128 neurons, respectively, to encoder
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the radar points. The latent of the point cloud is mean-pooled and reshaped to the size of the

image latent, then together with skip connections from intermediate layers in the encoder,

decoded into response maps or logits. We apply sigmoid activations to the logits to obtain

the confidence scores hθ(I, z).

To illustrate the challenge of radar to image correspondence, we note that there exists

inherent ambiguities in determining radar to image correspondence since the point cloud

lacks a viable elevation component. Also due to the noise in radar points, both depth and

azimuth can vary between 10cm in the regions near the sensor and up to 40cm in the far

regions [Yang et al., 2020]. Thus, unlike previous works [Lo and Vandewalle, 2021] that

“extend” the radar point along the elevation (which would yield incorrect correspondences)

by copying its z-component along the vertical (y-) direction to create “radar lines”, we

propose to associate the radar points to the many probable surfaces in the image within a

search range of H × w image crop centered on the position of the point.

ROIAlign for efficient inference. A naive approach to mapping a radar point to probable

regions in the image is to simply score the entire image. However, this would require anH×W

search space for each point where most of it will yield low confidence scores – likely regions

will be localized to a H × w crop. Instead, one may observe that the K points in z maps

to the same scene and thus we only need to perform a single forward pass on the image and

K forward passes for z. To accelerate the process of finding these correspondences between

the radar points and the camera image, we propose to extract regions of interest (ROIs) in

the feature maps corresponding to each H × w crop using a ROI alignment mechanism [He

et al., 2017]. Each ROI is the region within which the true position of the radar point lies

– anywhere along the vertical axis H and within some region along the horizontal axis w as

shown in Sec. 3.3.

Hence, to process an image and its associated point cloud, we extract ROIs from the

image features for each point and stack them along the batch dimension. Hence, for K

points, we will also have K corresponding ROIs for each encoder scale, which will be passed
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to the decoder to yield K confidence maps. We predefine a K ×H ×W volume of zeros and

transfer the output K number of H × w confidence scores to their respective ROI locations

in the full H ×W image lattice to yield hθ(I, z).

We formulate the radar to image correspondence problem as a binary classification of each

pixel for a given radar point z, where high responses in hθ(I, z) indicate probable surfaces

for a given point. As a final step in the forward pass to yield the corresponded radar depth

map ẑ, for each pixel x ∈ Ω ⊂ R2 i.e., the image spatial domain, we choose the maximum

response over the K confidence maps hθ(I, z):

ẑ(x) =


z[k̂], if hθ(I, z)(x)[k̂] > τ

0, otherwise,

(3.1)

where k̂ = argmax
k
hθ(I, z)(x)[k] and τ = 0.5 a threshold.

Training RadarNet. we simplify the forward pass to just predicting the H×w confidence

score maps i.e. without the need to choose the maximum response. For supervision, ROIs

corresponding to the radar points are extracted from the ground truth dgt. To construct the

labels for binary classification, any pixel location in the ground truth dgt that is within 40cm

of the depth (z-) component of the radar point is set to belong to the positive class i.e., a

correspondence, otherwise the negative class. In practice, the ground truth dgt can be sparse

or semi-dense depending on the specification of the lidar so there is a lack of supervision

signal in regions where there are no lidar returns.

To address this, we assume that world surfaces are locally connected and piece-wise

smooth and build a scaffolding [Wong et al., 2020] over the scene to approximate its dense

structure. We then construct labels ygt ∈ {0, 1}H×w from the scaffolding and minimize a

binary cross entropy loss: ℓBCE = 1
|Ω|

∑
x∈Ω−

(
ygt(x) log y(x) + (1 − ygt(x)) log(1 − y(x))

)
,

where Ω ⊂ R2 denotes the spatial image domain, x ∈ Ω a pixel coordinate, and y = hθ(I, z)

the hypothesis of radar to camera image correspondence. By training RadarNet to map

radar points to regions in the image space, we are able to query RadarNet with arbitrary
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number of points to support the varied number of radar returns at each time frame to yield

a semi-dense depth map that are several orders of magnitude denser than the radar point

cloud.

3.4.2 Radar and Camera Image Fusion

Given the associated radar depth map ẑ and its confidence map ĥ(x) = max
k
hθ(I, z)(x)[k], we

propose to learn FusionNet fω to fuse ẑ ∈ RH×W
+ and ĥ ∈ [0, 1]H×W with the RGB image I.

FusionNet is comprised of two encoders with ResNet18 backbones, one with 32, 64, 128, 256,

256, 256 filters to encode the image ϕ(I) ∈ RM and the other with 16, 32, 64, 128, 128, 128

filters to encode the depth map concatenated with the confidence map ψ([ẑ, ĥ]) ∈ RN . The

two branches are processed separately and later fused together via an adaptive weighting

layer that learns the contribution of the depth encodings. This is because the radar points

are inherently noisy and the depth map putative correspondences and thus we use a learned

gating mechanism limit incorrect information flow from the depth branch. The reweighted

depth encodings are added to the image encodings and passed as skip connections to the

decoder to yield the dense depth map d̂ ∈ RH×W
+ .

Gated Fusion. While ẑ is denser than the measured radar returns, it is admittedly still on

orders of magnitude sparser than an image; hence, there will be many “empty” regions in

an encoding of ẑ and thus typical naive concatenation of the image and depth encodings [Fu

et al., 2019,Hu et al., 2021,Jaritz et al., 2018,Jaritz et al., 2018,Ma and Karaman, 2018,Qiu

et al., 2019, Yang et al., 2019, Van Gansbeke et al., 2019,Wong et al., 2020,Wong et al.,

2021,Wong and Soatto, 2021, Xu et al., 2019] would result in convolving over many zero

activations. To address this, we propose to augment the image features ϕ(I) with depth

encodings by learning a set of weights α = σ(p⊤ψ([ẑ, ĥ])) ∈ [0, 1]M and projecting ψ([ẑ, ĥ])

to match the dimensionality of ϕ(I) via ψ′(z) = q⊤ψ([ẑ, ĥ]) ∈ RN , where p and q are

trainable linear transformations and σ(·) the sigmoid function. The fusion step is given by

α · ψ′(z) + ϕ(I) to produce the skip connection at each encoder scale and also the latent,
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which are fed to the decoder to yield d̂ = fω(I, ẑ, ĥθ(I, z)) (see Fig. 5.1). Our gated fusion

mechanism modulates the amount of depth information being passed to the decoder based

on the training data and in effect learns the error modes of the radar depth map ẑ and its

confidence scores ĥ.

Training FusionNet. We assume access to the ground truth lidar depth dgt and minimize

the difference between the predictions d and dgt with an L1 penalty:

ℓL1 =
1

|Ωgt|
∑
x∈Ωgt

|dgt(x)− d̂(x)|, (3.2)

where Ωgt ⊂ Ω denotes the domain where ground truth dgt has a valid depth value.

3.5 Implementation Details

Dataset. We use the nuScenes [Caesar et al., 2020] outdoor driving dataset for our evalu-

ation. The dataset contains 1000 scenes of 20s duration each. A car is fitted with sensors

such as a lidar, mmWave radar, camera and IMU and is driven around Boston and Singa-

pore to collect these scenes. Since each sensing modality captures the scene at a different

frequency, [Caesar et al., 2020] provides frames where the time-stamps of data from all sen-

sors is very close to each other, called keyframes, which are annotated with object bounding

boxes. The dataset contains around 40,000 keyframes (≈40 samples per scene). We use the

nuScenes train-test split – 700 scenes for training, 150 for validation and 150 for testing.

Data Preprocessing. Following [Long et al., 2021b, Lin et al., 2020, Lo and Vandewalle,

2021, Long et al., 2021a,Gasperini et al., 2021], ground truth for a given frame is created

by accumulating future and past frames by projecting the lidar point cloud at each time

step to the frame of reference of the given frame – we use 161 frames in total (80 frames

each from the future and past, and the given frame) to yield dgt. Note: dynamic objects

given by the bounding boxes are removed from the point clouds from each time step before

projecting the points to the given frame. We used dgt to supervise FusionNet. For RadarNet,
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we perform scaffolding [Wong et al., 2020] on dgt to obtain an interpolated depth map, and

use it to create labels ygt for supervision. Note: We only use the accumulated lidar points

for training; for evaluation, we use the lidar depth maps provided by [Caesar et al., 2020].

RadarNet (Stage-1). We use ROIs of size H = 900 and w = 288 for the input image size

of 900 × 1600. For constructing ygt, any point in dgt within 0.4m of the z-component of a

given radar point is marked as a positive example. We set the weight of positive class to

2 and train using a batch size of 6. We used Adam [Kingma and Ba, 2015] with β1 = 0.9

and β2 = 0.999 to optimize RadarNet with a learning rate of 2e−4 for 75 epochs. We use

horizontal flip, saturation, brightness and contrast for data augmentations where each has a

50% probability of occurring. The values of brightness, contrast and saturation adjustment

are random uniformly sampled from 0.8 to 1.2. Training takes ≈ 36 hours for 75 epochs on

a NVIDIA RTX A5000 GPU.

FusionNet (Stage-2). We used Adam [Kingma and Ba, 2015] with β1 = 0.9 and β2 = 0.999

to optimize our network with a learning schedule 1e−3 for 100 epochs, then reduced to 5e−4 for

another 100 epochs, and finally reduced 1e−4 for 50 epochs. The augmentations used during

the training include horizontal flip, and brightness, saturation, and contrast adjustments,

each with 50% probability of occurring. Like RadarNet, the values of brightness, contrast

and saturation are random uniformly sampled from 0.8 to 1.2. We use a batch size of 16

with random crops of 448 × 448. Training takes ≈ 21 hours for 100 epochs on a NVIDIA

RTX A5000.

3.6 Experiments and Results

Baselines. We compared our method against different methods [Lo and Vandewalle, 2021,

Long et al., 2021b, Lin et al., 2020, Gasperini et al., 2021,Ma and Karaman, 2018,Wang

et al., 2018] in Table 3.2 using error metrics in Table 3.1. We downloaded the pre-trained

models from the official repositories for [Li et al., 2020a,Lo and Vandewalle, 2021,Long et al.,
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2021b] and test them on the official nuScenes [Caesar et al., 2020] test set. Results from [Lin

et al., 2020, Gasperini et al., 2021,Ma and Karaman, 2018,Wang et al., 2018] were taken

from their paper because code was unavailable or did not reproduce their numbers. We note

that several baselines utilize either multiple images or multiple radar point clouds or both

to estimate depth. For instance, RC-PDA [Long et al., 2021b] uses three camera images

and five radar scans to compute “Flow” where the additional frames and scans include those

from future timestamps. In real-world, one cannot expect to have access to information from

the future, so this is not feasible. Additionally, they project future (for increasing density

in far regions) and past (for increasing density in close regions) radar scans onto the current

frame to densify the radar returns. RC-PDA with HG is a variant of [Long et al., 2021b]

that uses an hourglass (HG) [Li et al., 2020a] network. DORN [Lo and Vandewalle, 2021]

combines 5 radar scans from 3 different radars.

We also provide an ablation study in Table 3.2 to gauge the gain from RadarNet. Instead

of using the semi-dense dense map concatenated with the confidence map, we simply train our

FusionNet to directly estimate dense depth using raw radar points and a camera image. The

results of this model as shown in Table 3.2 as Ours (No RadarNet). This also demonstrates

the drawback of projecting the raw radar points onto the image plane and treating the sparse

depth map (about 50 to 70 points per frame) as input – as customary in existing works [Lo

and Vandewalle, 2021,Lin et al., 2020,Gasperini et al., 2021,Ma and Karaman, 2018,Wang

et al., 2018].

Depth Considerations. According to the nuScenes [Caesar et al., 2020] documentation,

the range of the lidar sensor used is between 80 - 100 meters. However, the usable range is

only up to 70 to 80 meters [Weng et al., 2021]. Hence, we test all models with working code

between 0-50, 0-70 and 0-80 meters.
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Metric units Definition

MAE mm 1
|Ω|

∑
x∈Ω |d̂(x)− dgt(x)|

RMSE mm
(

1
|Ω|

∑
x∈Ω |d̂(x)− dgt(x)|2

)1/2
Table 3.1: Error metrics for evaluating the depth estimation benchmarks, where dgt is the ground

truth.
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Quantitative Results. We compare our methods with the existing methods at 50, 70, and

80 meters depth range in Table 3.2. Compared to baseline RC-PDA [Long et al., 2021b], our

method improves MAE by 22.3%, 37.6% and 41.3% and RMSE by 9.8%, 31.4% and 36.3%

when the depth is being evaluated up to 50, 70 and 80 meters respectively. Compared to

RC-PDA with HG [Long et al., 2021b], our method improves MAE by 25.3%, 40.5%, 43.8%

and RMSE by 13.3%, 34.4%, 38.8%. Our method outperformed DORN [Lo and Vandewalle,

2021] by 10.3%, 13%, 11.7% when compared based on MAE and evaluated up to 50, 70 and

80 meters respectively. Similarly, our method improves RMSE by 9.1%, 12.6%, and 11.8%

for those ranges. Overall, our method outperformed the best baseline evaluated by 10.3%

MAE and 9.1% RMSE. We attribute our success largely to RadarNet being able to correctly

correspond radar points to the objects in the scene, which has limited existing methods [Lo

and Vandewalle, 2021, Long et al., 2021b, Lin et al., 2020, Gasperini et al., 2021,Ma and

Karaman, 2018,Wang et al., 2018] that either directly used the erroneous points or perform

adhoc post-processing i.e. vertical extension [Lo and Vandewalle, 2021] on them.

Efficacy of RadarNet Ours (No RadarNet) method performs better than several baselines

in Table 3.2. The input to this method is a sparse depth map generated by projecting

the raw radar points onto the image plane. Although this depth map contains a somewhat

accurate distribution of depths in the scene, the locations are completely erroneous (Sec. 3.3).

The difference in performance of our method with and without RadarNet demonstrates the

advantage of our RadarNet model which not only helps in correcting the errors in the radar

point cloud but also densifies the radar output into a semi-dense depth map. This study

additionally confirms the detriment of input noisy radar points as a sparse depth map [Lo

and Vandewalle, 2021]. A qualitative comparison of our method with and without RadarNet

is shown in Fig. 3.5.

Qualitative Results. In Fig. 3.4, we plot the dense-depth output of our method and the

baselines on the nuScenes test dataset. We choose two representative scenes, one of a busy

intersection (left column) and one of a pedestrian crossing a road while the traffic is moving
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70m

0m

10%

0%
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Ours

RC-PDA

RC-PDA
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HG

DORN

Figure 3.4: Qualitative results for all the methods on two different images from the test set (best

viewed in color at 5x). The top row shows the image and the ground truth while the other rows

show dense-depth generated by various methods and the error. The range of depth is between

0−70 meter (as shown in the colorbar at the center) while the range of error is between 0% to 10%

(as shown in the colorbar on the right). We mark errors in different baselines with a red box and

contrast them with our own method.
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during overcast weather (right column). We plot the ground truth next to the image on the

right. Below the image and the ground truth, we show the output and error for our method

as well as the baselines. Our error is much lower (dark) compared to other methods (bright)

as evident in our quantitative improvements over them. We note that there is no supervision

available in the top part of the scene (the top part generally contains the sky), so all the

models hallucinate depth values for those pixels. On the left side, all models think the sky

to be a continuation of the buildings along the road. On the right side, since the weather is

overcast, all models think the sky to be a part of one of the nearby surfaces (due to the dark

color). We use a black box to mark the qualitative advantages of our model when compared

to the baselines (whose mistakes are marked with red boxes).

In the left column, our method is the only one which is able to pick up the bus in

front (green box, number 3) which is trying to switch lanes. RC-PDA with HG outputs the

wrong shape for the black car on the left side (number 1) of the scene where as the output

of DORN is full of linear streaks (possibly artifacts from training with sparse supervision).

For the building on the left side of the scene, our method shows a smooth increase in depth

whereas the other methods have abrupt changes. Box number 2 contains a white car in front

of a bus. Only our method picks up this change in depth for the two vehicles while some

baselines fail to capture it. Such is also the case for the traffic light post (number 4) that is

captured by our method but not by others. For all the baselines, the relative error is very

high (all white regions in the error map correspond to the relative error being 10% or more).

For our method, high errors are concentrated more along the edge of objects such as cars

and poles on the street.

In the right column, the scene depicts a pedestrian who is trying to cross the street

in the middle while a car is in the right lane and a truck (number 1) is in the turning lane.

The weather is overcast and the clouds above are dark. There is a tree branch (number

2) followed by a set of trees on the right top corner which is missed by both the RC-PDA

baselines. The DORN baseline is able to pick the tree branch but missed all the trees behind
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Scene Without RadarNet With RadarNet

Figure 3.5: Qualitative comparison between our method with and without RadarNet. RadarNet’s

quasi-dense output enables FusionNet to learn shapes of objects effectively as shown in the bounding

boxes above while also improving it’s quantitative performance.

it. It also misses a big portion of the car stopped in front. Both the RC-PDA methods

map two or three different depth values to the back of the truck. Since the background

immediately to the left of the truck is dark, both the methods think that it is a continuation

of that background. For all the baselines, the error is high (as shown in the error map)

whereas our models suffers high errors along object edges.

In Fig. 3.5 we show the qualitative comparison between our method with and without

RadarNet. While the model without RadarNet outperforms the baselines on quantitative

metrics, it is unable to effectively learn shapes of the objects in the scene such as cars.

This can be attributed to the fact that since metallic surfaces are better reflectors of radars,

RadarNet is able to learn the shapes of these surfaces. These learned shapes act as a priors

and enables FusionNet to learn scene geometry effectively.
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3.7 Discussion

As radar sensors become more ubiquitous in our surroundings, it is essential to develop

methods to integrate them with the existing inference pipelines such as the depth estimation

frameworks. However, unlike other sensors, the long range, large field of view and high

ambiguity of radar point clouds make it challenging for them to be used in the same manner

as other sources of point clouds such as lidars.

In this chapter, we focus on a single camera image and a single radar point cloud because

with the advent of JCAS with 6G, radars are going to be a part of our infrastructure. Our

cellular base-stations will sense their surroundings while also acting as the hub of communi-

cation. In such cases, since the sensor itself is not moving, there will be little to no benefit

of combining consecutive frames (such is the case with RC-PDA that use multiple camera

images) as to the sensor, the environment is stationary (ignoring small movements such as

human beings, cars, etc.). Hence, it is imperative that we work towards creating methods

that can estimate dense depth from a single vantage point.

The gated fusion mechanism of our FusionNet presents us with some advantages. Firstly,

in case of very noisy radar points, the model can learn to rely more on the image branch

by assigning a smaller weight to the depth branch. Secondly, in case the radar points are

completely erroneous, the model can learn to solely rely on the image input. Thirdly, this

mechanism ensures that in situations where the correspondence model is not very good, the

performance of the depth completion stage does not significantly suffer since it can correct

for error-prone values.

However, such a mechanism does have drawbacks. If the camera-radar setup is mis-

calibrated or mis-aligned, the network may assume the radar values to be ‘bad’ and only rely

on camera branch to predict depth. Additionally, it is well-known that softmax activations

of a deep neural network are neither calibrated nor a substitute for uncertainty. Hence, there

can be erroneous over-confident correspondences in the our RadarNet predictions. The goal
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of our gated fusion layer is to counteract such a case.
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CHAPTER 4

Learning over Unlabeled RF Data

4.1 Introduction

State-of-the-art deep learning (DL) sensing models have typically required manual annota-

tion of empirical data. For example, ImageNet, the flagship 14 million images dataset for

object recognition, took 22 human years to annotate [NYU, 2021]. Clearly, the progress of ra-

dio sensing should not hinge on the availability of laboriously annotated data. Alternatively,

radio sensing models could be trained on synthetic RF data using ray-trace simulations [Singh

et al., 2018,Hsiao et al., 2017,da Silva et al., 2020]. Since the environment is simulated, we

can specify the sensing scenario (i.e., label) first and then generate the corresponding data.

However, synthetic data would only provide a 1st-order approximation of the real-world

that is unlikely to meet the quality, scale, and richness requirements of highly-perfomant

deep radio sensing models. Current synthetic data generation techniques for RF work well

for simple environments, but their complexity-bounded performance degrades as we move

to more realistic scenes which mirror the real-world [Degli-Esposti et al., 2014,Lecci et al.,

2020,Fuschini et al., 2017].

Recent advances in self-supervised learning have demonstrated a viable alternative to

label-intensive supervised learning [Bengio et al., 2013]. Self-supervised methods provide

two key advantages. Firstly, they do not require labelled data. Instead of solving a specific

learning task, we solve an auxiliary task that helps the model learn (by proxy) the underlying

structure of the data. Secondly, self-supervised methods learn more granular and general-
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Figure 4.1: Contrastive radio-visual learning. Image y+ is a positive pair of radar heatmap x

because they are recorded simultaneously, while other randomly-sampled images y− are negative

pairs.

isable discriminative features than task-specific supervised methods [Henaff, 2020]. This

is because self-supervision generates higher information rate per sample than supervised

learning as captured eloquently in Yann LeCun’s cake analogy [LeCun, 2019].

In this chapter, we draw inspirations from recent Natural Language Processing (NLP)

breakthroughs [Devlin et al., 2018, T. B. Brown et al., 2020] and Computer Vision (CV)

successes [Chen et al., 2020b,Henaff, 2020] and propose a self-supervised method for radio

representation learning. Specifically, we formulate an auxiliary prediction task that con-

trasts RF heatmaps to camera images. We show that such auxiliary contrastive prediction

promotes learning powerful radio neural networks that can be specialised for specific sensing

applications. We argue that self-supervision for radio signals is an important enabler for

emergent 6G sensing systems.

The chapter describes the following contributions:

• To the best of our knowledge, this work is the first to demonstrate successful self-
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supervised representation learning for radio signals using cross-modal mutual informa-

tion (MI) with camera images. A loss function bounded by MI enables such label-free

learning.

• We specialise the self-supervised radio model for a downstream task that classifies

objects of interest in scenes from empirical measurements.

• We characterise our self-supervision-based model using a number of quantitative and

qualitative metrics. When evaluated against a fully-supervised baseline, we find that

the self-supervised model outperforms its supervised counterpart when less labelled

data is used for training.

4.2 Overview & Intuition

Radio heatmaps are sparse representations of the environment. They are difficult to interpret

and label by humans, because the underlying geometry of the physical space they capture is

not straightforward to decipher.

Fig. 4.1 depicts our proposed radio-visual co-learning scheme. The idea is to (i) match

a radio heatmap with its corresponding groundtruth image and (ii) contrast this true radio-

vision pairing against a number of false pairings using images sampled at random. The very

act of emphasising the contrast between positive and negative radio-visual pairings gives rise

to a robust learning signal as will be formalised and explained later. Further, this simple yet

powerful contrastive learning can be self-administered, assuming only synchronised radio-

visual measurements (i.e., true pairings). Hence, the contrastive learning scheme is also

self-supervised and needs no labels.
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4.3 Primer

We discuss next the foundational concepts of our self-supervised radio-visual learning.

4.3.1 Self-supervised learning

Unlike supervised learning where we need to manually annotate the data, self-supervised

learning leverages intrinsic labels which can be “contrived” using the data itself. The most

successful form of self-supervised learning to-date is in NLP, whereby a language model tries

to predict randomly masked words in sentences. Surprisingly, this simple contrived predic-

tion acts as a signal that forces the network to learn fundamental aspects that characterise

language altogether, e.g., word association and sentence-to-sentence context. In addition

to its groundbreaking applications in NLP [Devlin et al., 2018, T. B. Brown et al., 2020],

self-supervised learning has also seen numerous successes in domains such as vision [Doersch

et al., 2015] and multi-modal learning [Arandjelovic and Zisserman, 2018]. For example, vi-

sual self-supervised learning can be made to work by predicting whether randomly sampled

image patches are related or not [Doersch et al., 2015].

4.3.2 Contrastive loss

For self-supervision to be effective, the signal that drives learning should also accentuate

the difference (i.e. contrast) between true and false predictions and their data samples.

The contrast between a positive datum and negative data is at the heart of learning good

self-supervised models. There are many incarnations to such a contrastive loss [Oord et al.,

2018,He et al., 2020,Afouras et al., 2020]. InfoNCE is one contrastive loss designed to drive

learning in a way that preserves the mutual information (MI) between inputs [Oord et al.,

2018]. Concretely, referring to Fig. 4.2, let x and yi be two input signals encoded by two

neural networks fθ and gθ such that q = fθ(x) and ki = gθ(yi), assuming some weights

parametrisation θ. With each x, use K + 1 samples of y of which one sample y+ is a true
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Figure 4.2: Contrastive loss for self-supervised learning.

match to x and K samples {y−i }K−1
i=0 are false matches. Then the constrastive loss Lc is [He

et al., 2020]

Lc = −E
x,y

log

 exp (q · k+/τ)
exp (q · k+/τ) +

∑
i

exp (q · k−i /τ)

 (4.1)

where · is the dot product operator, k+/− = gθ(y
+/−) are encodings that correspond to true

and false y signals, vector k− = {k−i }K−1
i=0 holds K false encodings, and τ is a temperature

hyper-parameter.

The contrastive loss of Eq. (4.1) has enabled a wave of progress in self-supervised image

classification that inches ever closer and at times exceeds the performance of fully supervised

methods. Notably, SimCLR [Chen et al., 2020a] and MoCo [Chen et al., 2020b] are recent

examples of bleeding-edge self-supervised vision systems.

The contrastive loss Lc has information-theoretic connections to the MI between q and k

(vis-à-vis x and y). This can be seen noting the following. First, the expression exp (q · k/τ)

models a positive real score between q and k, which is proportional to the (unnormalised)

density ratio

exp (q · k/τ) ∝ p(k|q)
p(k)

(4.2)

Second, Eq. (4.1) has the form of a (K + 1)-way softmax classifier that matches q to its
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positive pair k+. Using Eq. (4.2) in Eq. (4.1), Oord et al. show that Lc preserves the MI

between q and k [Oord et al., 2018]. Specifically, Lc becomes lower bounded by the MI

between the encoded inputs1 and that using more negative samples K enhances the learnt

representation [Oord et al., 2018,Poole et al., 2019]

Lc(q, k
+,k−) ≥ log(K)− I(q; k) (4.3)

Loptimal
c (q, k+,k−) = log(K)− I(x; y) (4.4)

where I(q; k) & I(x; y) denote respective MI’s.

4.3.3 Cross-modal co-supervision

The notion of self-supervision can also be applied across different modalities for data with

inherent multi-modal signals, e.g., video. The sheer amount of video freely available on

the internet makes this proposition increasingly appealing. For instance, there is a body

of literature that studies how representations for audio and vision can be learnt jointly,

e.g., [Arandjelovic and Zisserman, 2017,Afouras et al., 2020] (and references therein). Besides

learning quality audio and vision features that are on par with supervised single-modal

approaches, additional cross-modal tasks can be automatically instantiated (from the joint

embeddings), e.g., synchronisation and object localisation [Afouras et al., 2020,Chen et al.,

2021].

Similar to NLP and vision, audio-visual self-supervised systems use a contrived auxiliary

task to promote cross-modal representation learning. Earlier works dealt with predicting the

correspondence of an image and an audio spectrogram snippet using a binary cross-entropy

loss, e.g., [Arandjelovic and Zisserman, 2017]. Audio-visual correspondence in this context

is static, i.e., from a single measurement snapshot. More powerfully, recent works extend

this correspondence to capture shared temporal dynamics between a video snippet and an

audio snippet, e.g., [Afouras et al., 2020].

1which are in turn lower bounded by the MI between the raw inputs

48



Figure 4.3: Radio-visual contrastive loss.

4.4 Radio-Visual Contrastive Learning

We next turn to discussing how to adapt the concepts treated in Sec. 4.3 for radio-visual

self-supervised learning.

4.4.1 Pre-training

Our objective is to leverage the co-occurrence of events in the radio and vision domains and

formulate a learning scheme that requires no labels. That is, the onset of an event of interest

across radio and vision will give rise to MI that can be captured and used as an automatic

learning signal. The judicious sampling of positive and negative data according to Eq. (4.1)

extracts cross-modal MI.

Data collation. In practice, we operate a pair of camera and radar devices that are syn-

chronised to continuously collect measurements. The synchronisation timestamps allow us

to construct the positive and negative data sample set Sd = {xt, y+t ,y−
t } and their respective

encodings Se = {qt, k+t ,k−
t }, at a given time instance t. The resultant dataset can be further

filtered by light2 object detection algorithms in the vision domain to: concentrate on learning

good encodings for specific objects of interest (e.g., pedestrians, cyclists, and cars), balance

2i.e., without laborious annotations such as bounding boxes
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their distributions, etc.

Architecture. Our machine learning model consists of two parts: (i) a radar branch and

(ii) a camera branch. During training, the two branches interact through the contrastive

loss of Eq. (4.1).

Representation learning. Let (xt, yt) be a pair of a radio heatmap and a correspond-

ing camera image, as depicted in Fig. 4.3. A neural network with two branches for radio

and vision ingests (xt, yt). For the vision subnetwork, we use a pretrained convolutional

model to encode yt, yielding a positive encoding k+t = gvision(yt). The vision subnetwork is

frozen and there is no gradient flowing back to it during training. This aspect is different to

self-supervised vision systems [Chen et al., 2020a,Chen et al., 2020b]. The idea is to leave

the vision encoder maximally consistent during training, which would significantly enhance

the contrastive learning of the radar subnetwork. Under our cross-modal settings, it also

makes sense to derive learning from the higher-entropy vision modality. We adopt a queue of

negative encodings scheme proposed by He et al. in their momentum contrast (MoCo) sys-

tem [He et al., 2020]. The negative encodings queue k−
t is constructed by utilising past image

encodings that do not correspond to the current radar heatmap3, i.e., k−
t = [k+t−1, · · · , k+t−K ].

The queue is a very efficient mechanism to enhance contrastive learning (cf. loss bound in

Eq. (4.3)) under practical compute and memory constraints. Throughout training, a radar

heatmap xt is encoded according to qt = fθ(xt), and a gradient is computed to optimise

for qt’s similarity to its positive image pair k+t and dissimilarity to K negative images in

k−
t . This K-way contrastive learning can be trivially extended for the mini-batch settings of

stochastic gradient decent (SGD).

3by construction of the dataset
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Figure 4.4: Linear classification as a function of number of negatives K, for two batch sizes.

Generally, linear classification is enhanced with contrastive learning against more negatives, which

agrees with the theoretical MI bound.

4.4.2 Fine-tuning

Contrastive representation learning concludes by arriving at a good fθ than can used in a

variety of sensing applications. A task-specific model is then constructed using the output

of fθ as features combined with a classifier head. Typically, sensing tasks also fine-tune (i.e.,

bias) these pre-trained representations towards application-specific criteria.

4.4.3 Implementation details

For both the vision and radio branches, we use pre-trained VGG-16 models [Simonyan and

Zisserman, 2014]. The VGG-16 model takes a image of 3× 224× 224 dimensions as input.

For the radar branch, the heatmap is resampled and replicated 3 times for a valid input.

The vision branch is frozen and only the radar branch is trained. We slice the VGG-16

model at the 4th layer of its classifier stage to obtain a 4096-dimensional feature vector, i.e.,

q, k ∈ R4096×1. We use MoCo’s shuffling trick to mitigate against batch normalisation (BN)

statistical issues [He et al., 2020]. BN’s statistical artefacts have also been observed in other
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works, e.g., [Labatie et al., 2021,Alloulah et al., 2021].

4.5 Experiments

4.5.1 Dataset

We use the Camera-Radar of the University of Washington (CRUW) dataset [Wang et al.,

2021b] for evaluating our radio-visual self-supervised learning. The dataset contains around

47, 000 image-heatmap pairs in a variety of settings such as empty parking lots, driving on

roads, and in front of buildings. Objects present in the dataset are: pedestrians, cyclists,

and cars. An example pair is depicted in Fig. 4.1.

Downstream task. We balance the class distribution of a subset of the dataset such that

there are 4 non-overlapped classes in any given scene: empty, pedestrian, cyclist, and car.

The resultant 4-category sensing task maps onto the envisioned 6G use cases, e.g., pedestrian

versus car discrimination for safety applications [Wild et al., 2021]. We use a standard 80/20

train/test split.

4.5.2 Training

Similar to MoCo [Chen et al., 2020a, Chen et al., 2020b], we use an stochastic gradient

descent (SGD) optimiser for contrastive pre-training. The learning rate starts at 0.03 with

an SGD weight decay of 1e-4 and momentum of 0.9. The learning rate decays according

to a cosine schedule. We use two mini-batch sizes: 64 and 128. We train in a distributed

fashion on 4 GPUs for 400 epochs, which takes ∼12 hours for VGG-16. For training the

fully-supervised baseline, fine-tuning, and the linear classifier, we use a 1e-4 learning rate.

For the fully-supervised baseline, we train for 300 epochs. For fine-tuning and the linear

classifier, we train 32 epochs only.
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Figure 4.5: Efficiency measured w.r.t. accuracy versus percentage of labels used for fine-tuning

(FT). Self-supervised efficiency is compared to its fully-supervised counterpart. Self-supervised

contrastive learning needs 32 epochs to exceed the level of performance of fully supervised training

using 128 epochs: a factor of 4× reduction in training.

4.5.3 Evaluation protocol

Linear classification. We benchmark the quality of our self-supervised radio representation

learning using the common linear classification protocol. Under the linear classification

protocol, we: (1) pre-train using contrastive learning, (2) freeze the learnt features, and then

(3) train a supervised classifier with a linear fully-connected (FC) layer whose output is

normalised using a softmax.

Efficiency. We investigate the data and training efficiency of the contrastive representation

fθ. Data efficiency refers to the amount of labels required to build a downstream task using

fθ. Training efficiency refers to the number of epochs required to converge to a downstream

representation with competitive performance. Both metrics are evaluated against their fully-

supervised counterparts.
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4.6 Results

4.6.1 Quantitative

We begin by examining the linear classification performance of self-supervised radio features.

Linear classification. Eq. (4.3) tells us that the contrastive loss benefits from increasing

the number of negatives. We investigate the effect of queue size K on the linear classification

accuracy in Fig. 4.4. For mini-batch size 64, we sweep K from 64 to 320 in 64 increments.

For mini-batch size 128, K ∈ [128, 256] only due to GPU resource constraints. Generally,

apart form a blip in mini-batch 64 at K = 128, linear accuracy increases steadily with K for

both mini-batches.

Efficiency. Fig. 4.5 depicts the label efficiency of self-supervised features and compares it to

the fully-supervised efficiency. Using all dataset labels, both achieve a comparable accuracy

of 97%. However, self-supervised features beat the supervised ones when we decrease the

number of labels used for training. For instance, with 1% labels, we see a gap of about

3.5% in favour of self-supervision. This observation is generally in agreement with recent

findings from the CV domain [Henaff, 2020], which report on even more drastic advantages

to self-supervision in the “low label density” regime.

In terms of training efficiency, the self-supervised features can reach the fully-supervised

performance quite quickly within 32 epochs of fine-tuning. This is corroborated in Fig. 4.6

that analyses the testing loss during fine-tuning against its fully-supervised counterpart.

This indicates that the self-supervised representation has indeed learnt good generalisable

features. We expect much greater data efficiency gains under more elaborate classification

settings, such as a 1000-category classification task [Henaff, 2020]. Note that unlike fully-

supervised systems, the initial training of self-supervised features would amortise over many

different downstream tasks.

54



Figure 4.6: Comparing the testing losses of the fully-supervised baseline and the fine-tuned model

with early stopping for the downstream classification task.

4.6.2 Qualitative

Learnt representation. As discussed in Sec. 4.4.3, we start the self-supervision of the

radio branch from a pre-trained vision VGG network. Could this, rather than contrastive

training, be responsible for the very good performance on the downstream task? After all,

objects showing as blobs in radio heatmaps should in theory also benefit from many learnt

vision filters, such as edge and contour detectors. To investigate this, we use t-SNE [Van der

Maaten and Hinton, 2008] to visualise the 128-dimensional features of the penultimate layer

for (a) a pre-trained VGG combined with randomly initialised classification head, and (b) our

fine-tuned contrastive model. Results are shown respectively in Fig. 4.7. Inspecting Fig. 4.7a,

no structure in the latent space can be discerned in relation to our 4-category downstream

task. In contrast, the latent space of our fine-tuned model exhibits clear clustering around

the 4 categories of the downstream task as evident in Fig. 4.7b.

4.7 Related Work

Self-supervised learning, where the model is trained on implicit labels present within the

dataset, has gained popularity in the fields of NLP and CV recently. In this section we

highlight some key related works.

Computer Vision. Self-supervised CV models trained with simple auxiliary tasks lead to
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Figure 4.7: t-SNE visualisation of learnt representations.

surprisingly good vision representation learning. Examples include solving puzzles [Noroozi

and Favaro, 2016], image colorisation [Zhang et al., 2016], and predicting image rotations [Gi-

daris et al., 2018]. For the latter for instance, self-supervised learning works by randomly

rotating all the images in a dataset and asking the model to predict these rotations. Bleeding-

edge self-supervision systems include SimCLR by Google [Chen et al., 2020a] or SwAV by

Facebook Research [Caron et al., 2020]. SimCLR generates two augmentations for the same

image and tries to maximise the similarities between their latent representations. SwAV

builds on SimCLR and adds multi-crop augmentation, i.e., two copies of an image at two

different resolutions. After training on auxiliary tasks, the learnt features are then fine-tuned

for a given downstream task.

RF Sensing. Self-supervised learning has recently been applied to radar systems research.

In [Orr et al., 2021], the authors propose a super-resolution method called Radar signal

Reconstruction using Self-supervision (R2-S2) which improves the angular resolution of a

given radar array without increasing the number of physical channels. In [Gasperini et al.,

2021], the authors propose R4Dyn which uses radars during training as a weak supervision

signal, as well as an extra input to enhance the depth estimation robustness at inference

time.
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CHAPTER 5

Detecting, Identifying and Localizing Devices using RF

5.1 Introduction

The proliferation of low-cost wireless sensors has facilitated increased adoption into smart

home, building, and city deployments [Staff, 2018b,Heater, 2019]. Although there are pro-

found positive impacts that ubiquitous sensor-rich environments can have on society, there

is an inherent risk in enabling users access to such pervasive sensing, particularly when these

environments host occupants oblivious to the presence of these sensors.

An individual’s privacy in these contexts is entirely at the discretion of the owner. Regu-

lation is unclear in informal settings, such as a guest residing in a homestay lodging. There

have been reported instances where a hosting owner has attempted to spy on homestay oc-

cupants [Fussell, 2019], motel lodgings [Jeong and Griffiths, 2019], and rooms aboard cruise

ships [Staff, 2018a]. There are even instances in well-established hotel chains and mall re-

strooms when a malicious employee or customer has bugged several rooms [Press, 2019].

Beyond commercial applications, Southworth et al. report that domestic abusers may use

such sensors for intimate partner stalking [Southworth et al., 2007]. Thus, potential victims

with privacy concerns must take a proactive approach to detect clandestine sensors.

The prevalent method to detect bugs relies on an RF receiver that senses if the received

power in a particular frequency range is above a certain threshold. However, as bug detectors

work on the principle of sensing surrounding RF signals, they can easily be triggered by

legitimate RF devices such as mobile phones, radios, smart TVs, and other smart devices,
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thus limiting the practicality of these detectors. An alternate method has emerged to detect

the presence of IoT devices based on network traffic statistics [Huang et al., 2019a]. However,

these methods only ascertain the presence of a device without semantic information regarding

device information, location, or whether the device is actually monitoring a user.

More sophisticated solutions have since emerged targeting wireless cameras specifically.

Wampler et al. [Wampler et al., 2015] showed that changing lighting conditions causes notable

variations to appear in a wireless camera’s video traffic; that is, video encoding leaks sensitive

environmental information. Flickering a light source for a short period of time can then be

used in correlation with network traffic changes to identify hidden cameras [Nassi et al.,

2019,Liu et al., 2018]. Similarly, an approach has been presented that correlates the Wi-Fi

traffic patterns of a trusted camera with Wi-Fi traffic patterns of other hidden cameras on

a network to detect whether they are simultaneously observing the same space [Wu and

Lagesse, 2019]. Unfortunately, these camera-specific approaches fail to generalize across

modalities. For example, varying lighting conditions would be ineffective for detecting a

hidden microphone or an RF sensor. In recent work, human motion was used to detect a

hidden camera with coarse localization (i.e., indoors or outdoors) [Cheng et al., 2018]. We

argue that human motion is an emblematic event to generalize across modalities, as the

objective in revealing bugs is typically to determine if the user is being observed.

In this chapter, we propose SnoopDog, a generalized framework to detect clandestine

wireless sensors monitoring a user in a private space. SnoopDog leverages the notion

of causality to determine if the values of a trusted sensor cause patterns in Wi-Fi traffic

stemming from other devices. In particular, SnoopDog works by having the user perturb

the trusted sensor values to observe if there is a causal pattern in the Wi-Fi traffic for a

different device. For instance, if a wireless camera or a motion detector is monitoring a

user who is wearing an inertial measurement unit (IMU), the IMU values will indicate a

causal relationship with the camera’s Wi-Fi traffic. SnoopDog utilizes encoding scheme

models of different wireless sensing modalities to classify the sensor type, and then cross-
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references packet headers with publicly available information of manufacturers to identify

the specific device model. We further introduce a novel fine-grained localization approach

that leverages sensor coverage techniques to locate a detected sensor. We implemented

SnoopDog using a user’s mobile phone for ground truth sensors and a laptop for sniffing

Wi-Fi traffic patterns. In the future, we envision SnoopDog to be implemented entirely

as an app on either a smartwatch or a smartphone, both of which have sufficient sensing

capabilities, but currently require Wi-Fi card improvements to allow for channel hopping in

monitor mode, thus making SnoopDog easily accessible to non-technical users.

SnoopDog operates in two stages. SnoopDog begins in a passive monitoring phase

that searches for suspicious causal patterns between the wireless traffic and the user’s normal

activity with their smartphone or wearable device. If a device is flagged as potentially

monitoring the user, an active phase is engaged, and the user is instructed to perform a

series of specific actions to detect the sensor with high accuracy. During the active phase,

localization can optionally be engaged to find the clandestine sensor. The user can either

skip the background or the active phase as per their convenience.

We evaluate SnoopDog over a representative set of wireless sensors following a taxonomy

of popular sensing devices that may be used for surveillance. The framework had a detection

rate of 96.6% and a device classification rate of 100% when the injected multi-modal event

was human motion. We show that the location of the bug can be narrowed down to a

sufficiently reduced region that easily facilitates a user’s search. This feature is a notable

improvement over existing approaches that only localize devices as either indoors or outdoors.

While SnoopDog cannot detect any wireless sensor monitoring the user (Section 5.11), it

can detect a broad set of commonly used wireless sensors [ama, b,ama, a,Ding et al., 2011].

Contributions: Our contributions are summarized as follows:

• We propose SnoopDog, the first generalized framework to detect hidden clandestine

sensors, including video, audio, motion, and RF. SnoopDog leverages the cause-effect
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relationship between a trusted set of sensor values and Wi-Fi traffic patterns when

observing a multi-modal injected event.

• We present a novel technique that leverages the notion of directional sensor coverage

to provide state-of-the-art localization for clandestine devices.

• We show how SnoopDog can reveal device information by cross-referencing packet

inspection with publicly available device manufacturer information.

• We evaluate SnoopDog with a mobile phone and a Wi-Fi packet sniffer on a rep-

resentative set of clandestine sensors and show a detection rate of 95.2% and device

classification rate of 100% when the injected multi-modal event is human motion.

5.2 Background

We provide an overview of that state-of-the-art approaches to detecting the presence of

wireless sensors in spaces. We then formalize the notion of detecting whether a sensor is

monitoring a particular area.

5.2.1 Detecting Wireless Sensors in Spaces

The general approach to detecting wireless sensors relies on the notion that a device’s wire-

less communication unintentionally leaks information in some out-of-band channel. Re-

cent works exploited these leaks to detect the presence of wireless, transmitting bugs1 in a

space [Sathyamoorthy et al., 2014,Valeros and Garcia, 2017]. The received power threshold

and frequency range can be set according to a target set of wireless devices. For instance, to

detect sensors that communicate over Wi-Fi, a device would scan frequency ranges around

2.4 GHz or 5 GHz. In tuning the received power threshold, there is a direct trade-off be-

1A bug in this context refers to a hidden device spying on the user.
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tween detection accuracy and false positives [Sathyamoorthy et al., 2014]. If the threshold

is too low, one may falsely attribute wireless signals from other devices in the space, like

mobile phones, to bugs. On the other hand, a high threshold risks ignoring wireless bugs

that are not within close proximity of the detector. As these detectors provide no semantic

information about the detected signals, it is difficult to assume whether or not the observed

signal is truly originating from a hidden bug [Valeros and Garcia, 2017].

As wireless sensors transmit their information via packets, another technique to detect

them uses packet sniffing. Approaches like DewiCam [Cheng et al., 2018] sniff wireless

packets and use their characteristics to train a classifier to identify whether or not a particular

device is a camera. However, even if the type of device is determined, it may or may not be

monitoring the user. If there is a camera monitoring the door of a house, it does not pose

the same threat to a user’s privacy as a camera that is monitoring the bedroom. Hence,

even if we are able to detect what type of device is present in the space, it is difficult to

characterize if its intention is adversarial. A direct way to identify whether a device poses a

potential privacy threat is to determine whether or not it is actively monitoring the user.

5.2.2 Detecting Sensors Monitoring a Space

If a wireless sensor is monitoring someone in a physical space, the data that it captures is

a function of the person’s interaction with the space. For example, if someone moves into a

space monitored by a motion detector, the sensor’s control mechanism may be triggered and

begin uploading relevant information to the cloud to be processed and forwarded (e.g., an

alert to the device owner or downstream actuation). Similarly, the information recorded by

a video camera captures variations due to motion within the captured scene–a characteristic

exploited by prior research on detecting hidden cameras [Nassi et al., 2019,Liu et al., 2018,Wu

and Lagesse, 2019]. To generalize across sensor modalities, we formalize the notion that if an

auxiliary sensor observes and measures a user’s interaction with their surroundings, we can

identify whether the user’s actions indicate a causal relationship with the hidden sensor’s
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wireless traffic. If such a relationship is found, then the sensor must be monitoring the user.

Detecting causality across sensor modalities. Given a target hidden sensor and access

to its sensor data, we aim to establish causality between its time-series data and another

sensor capturing the private space. A popular method to study causal relationships between

two series is Granger Causality [Granger, 1969]. According to Granger Causality, if a series

X Granger-causes series Y , then past values of X should contain information that helps

predict Y above and beyond the information contained in past values of Y alone. Formally,

if we have a series Y as:

yt = a0 + a1 ∗ yt−1 + a2 ∗ yt−2 + ....+ an ∗ yt−n, (5.1)

and we augment this series with the series X as follows:

yt = a0 + a1 ∗ yt−1 + ....+ an ∗ yt−n + b1 ∗ xt−1 + ....+ bm ∗ xt−m, (5.2)

then X Granger-causes Y if and only if Equation 5.2 gives a better prediction of yt than

Equation 5.1. Here, yt−k are called lags of y and xt−k are called lags of x where k ∈

[1, n]. However, several design challenges and goals lead up to establishing Granger Causality

between a trusted sensor and a remote sensor in a generalized fashion.

In the following section, we discuss the system model and the design of SnoopDog.

5.3 SnoopDog Overview

We present the SnoopDog’s threat model assumptions prior to enumerating the system

design.

5.3.1 System Model

We consider a system model for SnoopDog where a user has access to a laptop or smart-

phone device with a network card that can enter monitor mode to sniff wireless packets
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Figure 5.1: Overview of SnoopDog framework. (1) The SnoopDog framework first identifies if a

user is being monitored based on the cause-effect relationship between the values of a trusted sensor,

e.g., an IMU, and Wi-Fi traffic patterns. It then inspects the associated packets and identifies the

possible devices based on the physical (MAC) address. (2) Finally, SnoopDog localizes each device

by leveraging directionality and sensor coverage.

over the same channel as one or more clandestine sensors. The system should further be

equipped with a trusted set of ground truth sensors to establish causality between the sensor

values and the associated Wi-Fi patterns from the clandestine wireless sensor(s)2. These

capabilities entail a set of assumptions.

Wi-Fi sniffing assumptions. We assume that the Wi-Fi sniffer on the user’s device can

monitor the encrypted traffic streaming from the clandestine device. SnoopDog does not

require any form of granted access to a particular network, i.e., SnoopDog should be able

to sniff the device regardless of whether or not the network is closed or hidden. Unlike

previous solutions, this implies that the user does not need to know the SSID or password

of the network.

Causality assumptions. We assume that the user has a sufficient set of trusted ground

2We assume there may be additional, non-clandestine sensors that are monitoring the user. Such super-
fluous information is still informative, as the goal of this work is to detect all wireless sensors monitoring a
user.

63



truth sensors whose modalities are sensing any of the user’s activities that would exhibit a

causality with the Wi-Fi encoding patterns of any clandestine wireless sensors. The notion

of sufficient causality was formalized in Section 5.2.

5.3.2 Adversary Model

We focus on adversaries whose goal is to remotely spy on a third-party occupant of a private

space in real-time. This model is consistent with other state-of-the-art methods for detecting

hidden cameras [Cheng et al., 2018,Wampler et al., 2015,Nassi et al., 2019,Liu et al., 2018],

and is supported anecdotally by several cases where owners were live-streaming guests in

private spaces, e.g., [Fussell, 2019, Jeong and Griffiths, 2019]. Further, many commercially

available devices do not offer a local storage option for reasons of size, weight, power, and

cost – such is the case with six out of the popular thirteen devices we examined. Moreover,

live-streaming offers a more practical and scalable solution from a management perspective.

Thus, we assume the adversary uses an arbitrary set of wireless, commercial-off-the-shelf

(COTS) sensors that are tailored for clandestine placement. The communication between

the attacker and sensor may be encrypted and placed on an arbitrary wireless frequency band.

We further assume the adversary has deployed these clandestine sensors in a manner that is

not apparently visible to the user within the space. We focus on an attacker utilizing devices

that communicate over Wi-Fi, as this is the most prevalent method of wireless communication

for remote monitoring using commercial and consumer equipment3. An adversary may use

one of the several techniques mentioned in Section 5.10 to fool SnoopDog, for example

with cover traffic or local storage. Implementing these techniques can require modifying the

device firmware or physically interfacing with a proxy device (e.g., RPi), thereby increasing

the barrier-to-entry for potential attackers. Moreover, techniques such as cover traffic can

add significant and undesirable network overhead, particularly for a large number of sensors.

3Although SnoopDog focuses on Wi-Fi-connected devices, we discuss in Section 5.11 how such a system
could be generalized to other wireless communication standards and protocols.
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5.3.3 Design Overview

As depicted in Figure 5.1, SnoopDog detects and localizes a wireless sensor given access

to a trusted sensor that can measure and quantify the ground truth in the modality that

we are trying to detect. SnoopDog works in two phases. 1 Detecting and identifying

snooping wireless sensors. When a user first enters a new space, SnoopDog operates

in a background mode to determine whether a user is being monitored based on the cause-

effect relationship between the values of a trusted sensor (e.g., an on-body IMU) and Wi-Fi

traffic patterns. If the user wants to scan a room immediately, the background phase may

be optionally skipped; alternatively, the background phase offers a low-overhead solution to

bug detection. If a clandestine sensor is discovered, SnoopDog asks the user to perform

a unique perturbation in the space to further ascertain the presence of a snooping sensor.

The associated packets are then inspected to identify the possible device type based on

the physical (MAC) address. 2 Snooping sensor localization. In the second phase,

SnoopDog utilizes a trial-based localization technique to identify the specific placement

of the monitoring device. With the appropriate selection of ground truth sensor, that is,

a device which can semantically capture at least a subset of the events captured by the

snooping device, SnoopDog can detect clandestine wireless sensors of arbitrary modality.

5.4 Detecting and Identifying Snooping Wireless Sensors

This section outlines the ability of SnoopDog to detect whether a clandestine sensor is

actively snooping on a user. We describe the search space for wireless sensors, how to estab-

lish causality, how to generalize across modalities, and how to understand various sensors’

wireless transmission.
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5.4.1 Searching for Wireless Sensors

The adversary can create a Wi-Fi network and connect the snooping device to it. As a

result, the hidden device can be present in any of the possible Wi-Fi channels. Even though

SnoopDog does not need access to these networks, it still needs to scan all Wi-Fi frequencies

and look for any devices transmitting on them. 2.4 GHz and 5 GHz are the most popular

bands for Wi-Fi networks, and as such, we focus on those particular bands, even though the

SnoopDog scan region can be easily extended to include other ranges. During discovery,

the Wi-Fi Network Interface Card (NIC) scans through all channels sequentially to find

available access points (APs) [Wu et al., 2009,Hu et al., 2015]. Similarly, SnoopDog also

scans through all the Wi-Fi channels in monitor mode, but instead of looking for available

APs, it looks for transmissions in those channels and creates a list of devices using the MAC

address present in packet headers. As a result, SnoopDog does not need to be connected

to any specific AP to operate. Even if a network is hidden, its transmissions can still be

observed by monitoring the Wi-Fi channel. Thus SnoopDog can detect devices on any Wi-

Fi network. Because devices may transmit data intermittently, SnoopDog continuously

scans all Wi-Fi channels and actively maintains an aggregate set of traffic data. Once the

list of devices has been populated, SnoopDog then seeks to detect causality between user

activity and data being transmitted from each device.

5.4.2 Detecting Causality with User Activity

Detecting the cause-effect relationship between the action of a user in a space and the data

captured by a clandestine, wireless sensor requires access to two essential components: 1) a

ground truth sensor to capture information about the user in the space and 2) a represen-

tation of the data collected by the clandestine sensor. While data packets transmitted by

wireless sensors may be encrypted, the header information is not. This header information

provides us with the MAC address and payload size of each transmitted packet. This data
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can be grouped and aggregated for all the packets within a time window and provide infor-

mation as to how much data was transmitted by each device within that period. Given a

ground truth sensor, one can then identify causality between the ground truth sensor values

and the patterns in the volume of data transmitted by each device in the space. In con-

trast to machine learning techniques, a causality approach allows SnoopDog to find the

cause-effect relationship of arbitrary modality across any device that is transmitting causal

data. Because we are interested in the causality between two sensors, SnoopDog will utilize

Granger Causality (described in Section 5.2).

5.4.3 Characterizing a Representative Set of Snooping Sensors

In order to choose a set of ground truth sensors that can capture causality across any

modality, we focus on generalizing across a representative set, including cameras, RF, and

arbitrary sensors that report inferred (as opposed to raw) events.

Visual sensors. Wireless cameras are typically encoded with a codec that recognizes under-

lying patterns in the frames of the video and utilizes this information for compression. One

such codec is H.264 [Wenger, 2003]. An encoder first encodes the video using the standard,

and a decoder then reconstructs the original video with minor information loss.

Standard temporal compression algorithms compress the video with 3 key frame-types,

denoted I, P, and B frames. I frames (Intra-coded picture) hold complete image information,

whereas P and B frames contain fractional image information, i.e., scene differences. As

I frames are a complete image, they do not require any other frames to be decoded. P

frames (Predicted picture) only contain changes in the image from previous frames. The

information in a P frame is combined with the information of the I frame preceding it to

obtain the resulting image. B (Bi-directionally predicted pictures) frames can construct the

image from either direction using either changes from the I or P frames before them, changes

from I and P frames after them, or interpolation between the I/P frames before and after

them. B frames are most compressible, followed by P frames, and finally, I frames.
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Hence, with increasing motion in the scene recorded by an IP camera, there will be an

increase in the data that must be transmitted due to the increase in the number of P and

B frames sent. Camera traffic will increase as the number of pixels being perturbed in the

scene increases; similarly, traffic will decrease if the scene transitions to a stationary one. As

such, if a human subject were to perform some motion in the scene, stop for enough time

to let the camera traffic settle down, and then move again, it will result in a unique camera

traffic pattern that corresponds to the user’s motion. This cause-effect relationship between

human motion and camera traffic can then be used to discover if a wireless IP camera is

present in an occupied space. If there is no relationship between the camera traffic and user

motion, then the camera is not monitoring the user.

RF sensors. Low cost, off-the-shelf millimeter-wave (mmWave) RF sensors are available

that record the scene in the form of point-clouds. Recent works [Singh et al., 2019, Zhang

and Cao, 2018b] have shown that these point clouds can be used to infer human activity.

However, unlike a camera, a radar device is a point scatterer. Thus, at any given time, only

certain points in the scene reflect back. Hence, with motion in the scene, the number of

points captured in every frame by the sensor (radar) vary considerably. In an empty scene,

the number of points captured by these sensors is fairly constant but varies as subjects move

about the space. If such a sensor live-streams point-cloud data over Wi-Fi, the payload size

will vary over time with changes in the number of points captured in the scene by the sensor.

Hence, the network traffic will fluctuate with the number of points that are being captured

in the frame. As such, there exists a cause-effect relationship between the subject’s motion

and the device’s traffic.

Acoustic sensors. Another common type of bug used to snoop on people is a microphone.

With the growth in personal home assistant devices such as the Google Home or Amazon

Echo (Alexa) [Kepuska and Bohouta, 2018], it is trivial for someone to buy and install such

listening devices in their homes. Although they are typically triggered by a keyphrase such as

“Okay Google” or “Alexa”, there are “Drop In” features that facilitate remote snooping. An
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adversary can also change the wake word of these devices to enable recording conversations

of interest. Due to their compact form factor, they can be easily hidden. In such cases, these

devices will also work like event-based clandestine sensors. Hence, services like SnoopDog

that monitor traffic for change in network patterns and either correlate them with another

sensor recording of the same modality or find a cause-effect relationship with the ground-

truth can detect their presence using network sniffing [Kennedy et al., 2019,Wright et al.,

2008]. Here, instead of the IMU, we use the microphone on the user’s smartphone as the

trusted ground-truth sensor. In section 5.12-Q4, we discuss why it is challenging to detect

and localize acoustic sensors that are continuously streaming.

Wireless sensors that encode inferred events. Motion sensors do not transmit a con-

tinuous stream of information. Most off-the-shelf motion sensors are passive infrared (PIR)

based. They measure the infrared (IR) light from objects in their field of view. Any change

in this incoming IR light is inferred as motion. Instead of continuously transmitting, they

send data to their cloud service for processing once triggered by motion. Thus, if a user

moves around the room, stops, and moves again, there will be a unique cause-effect relation-

ship between user motion and device traffic. Additionally, a camera can be programmed to

continuously record video but only upload when a certain event occurs in the scene. These

cameras behave like motion sensors and hence can be treated similarly. Virtual assistants

also wait for trigger words to transmit a request to the associated cloud service, e.g., a user

uttering the device name to activate it [Kepuska and Bohouta, 2018].

5.4.4 Device Identification via MAC Address

A MAC address is a universally unique ID assigned to the Network Interface Controller

(NIC) for every networked device. It consists of 48 bits which are typically represented as

12 hexadecimal characters, i.e., xx:xx:xx:xx:xx:xx. The first 24 bits are the OUI (Orga-

nizationally Unique Identifier), which can uniquely identify a manufacturer or a vendor.

The MAC address of the sender and the receiver are contained within each exchanged Wi-
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Fi packet. More importantly, this information is not encrypted. As a result, SnoopDog can

obtain the MAC address to look up the device vendor. While we acknowledge that the MAC

address can be spoofed, this technique can still prove useful in the many cases where the

adversary is a non-expert and thus has not spoofed the MAC address. Traffic fingerprinting

techniques [Gao et al., 2010,Crotti et al., 2007,Apthorpe et al., 2018,Zuo et al., 2019,Ortiz

et al., 2019,Meidan et al., 2017,Miettinen et al., 2017] can also be used to overcome the

shortcomings of MAC-based identification. Additionally, in case of MAC randomization or

MAC spoofing, techniques such as the ones described in [Vanhoef et al., 2016] can be used

to first track the traffic from a particular device and then perform cause-effect analysis on

it.

SnoopDog contains a database with names and MAC addresses of known vendors that

manufacture surveillance devices. As SnoopDog detects more sensors, we add them to the

database.
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5.5 Snooping Sensor Localization

Algorithm 1: Localize identifies the location of a particular snooping sensor in a

defined region-of-interest

Input: The sensor’s MAC address

The region of interest

Output: The sensor’s location within the region

1 BBox← ∅

2 traversing ← BeginTraversingRegion(region)

3 while traversing do

4 userloc← DeadReckoningLocation()

5 inV iew ← GrangerCausality(MAC)

6 if inView then

7 BBox← BBox ∪ {userloc}

8 traversing ← SparseBBox(BBox)

9 Loop

10 MLE ←MostLikelySensorLocation(region,BBox)

11 if SufficientBBox(region, BBox) then

12 return (BBox,MLE)

13 trialRegion = GenerateTrial(MLE,BBox)

14 inV iew = PerformTrial(trialRegion)

15 if inView then

16 BBox← trialRegion

17 else

18 BBox← BBox \ trialRegion

Algorithm 1 details the trial-based localization used by SnoopDog to infer sensor

location. In the case of multiple active sensors, this process can be repeated for each device.
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Setup. Localization requires two input parameters: a region-of-interest to search over, and

the snooping sensor’s MAC address. To define the region-of-interest, we leverage Dead Reck-

oning [Patel, ,Levi and Judd, 1996,Beauregard and Haas, 2006] for indoor user localization.

A dead reckoning mobile application [Patel, ] on a user’s phone instructs the user to walk

the perimeter and capture the region boundary. Aside from identifying Granger causality

in traffic patterns, the MAC address is also used to ensure an appropriate trial method for

localization (e.g., via techniques discussed in Section 5.4.4 and [Huang et al., 2019a]).

5.5.1 Identifying Sensor Coverage

Although the malicious sensor is known to monitor somewhere within the region-of-interest,

it is unlikely to cover the entire region. Lines (1)-(8) narrow down the full search space

into a bounding box BBox of the sensor’s field-of-view. To begin, a user is instructed to

traverse the region (line 2). At regular time intervals, the user’s location is captured, and the

snooping sensor’s traffic is monitored for causality. Using the Granger Causality technique

described in Section 5.4, a particular location is identified as either within or outside sensor

coverage. This process continues until the bounding box is determined to have sufficient

density for performing trial-based localization, depending on the coverage area size.

The remainder of Algorithm 1 (lines 9-18) reduces the BBox scope of sensor coverage via

directional elimination. Repeated trials are performed to specifically target high-probability

origins in order to either identify or eliminate likely sensor locations. Each round begins by

solving for the most likely origin MLE for the sensor (line 10). While this process could

be performed randomly, utilizing physical information about the current bounding box can

significantly reduce the number of necessary trial rounds. For example, if the bounding box

shape can be reasonably fitted to a triangle, then the sensor is likely horizontal-facing and

placed on a wall. On the other hand, an ellipsoid coverage area likely indicates a sensor

placed on the ceiling or floor.

An iterative process then proceeds to reduce the area of possible sensor locations to a
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pre-defined threshold (e.g., 10% of the region), upon which the bounding box and MLE

are returned (line 11). In each iteration, a directional trial is conducted. GenerateTrial

identifies a suitable position and heading for the trial by selecting a point near the center of

the bounding box and facing the MPE (line 12). In our evaluation, we found distances of

approximately 3 meters to be the maximum applicable distance for a trial. The trial takes

one of many forms; for an inertial sensor, a user faces the designated direction and waves an

object (e.g., hand or shoe) closely in front of their chest while shielding this activity with

their body from any sensor present behind them. To trigger a camera sensor, a laptop plays

a video clip that randomly flashes the screen with different colors. For audio, a trigger sound

is played, and so on. If the trial results increased the device traffic, the bounding box is

reduced to areas within visible range (line 16); otherwise, those areas are removed (line 18),

and the next iteration begins.

5.5.2 Ensuring Sufficiently Reduced Region

In order to provide a guarantee that this localization method will always result in a minimal

bounding box that is sufficiently small (e.g., 10% of the search region), a key assumption

must be made: for any arbitrary bounding box, a trial can be identified which will eliminate

a proper subset of the bounding box. In the case of Algorithm 1, this assumption can be

reformed such that one can always construct a trial that eliminates at least a single point

contained within the bounding box set. Due to the directional nature of each trial, this

can be achieved simply by conducting a trial that is positioned directly between two points

within the bounding box, and facing directly towards one of the two points such that the

other is obstructed. In the case of two points with large intermediate distances, a two-phase

trial must be performed facing towards (and away from) each point, respectively.

Given the assumption that every trial can eliminate at least a single point from the

bounding box set, guaranteeing that Algorithm 1 will always reduce the region to a certain

size is trivial. In the worst case, for a bounding box of n points, n-1 trials must be per-
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formed. In practice, each trial can eliminate many points contained within the bounding

box. Furthermore, by leveraging the most likely sensor location, one can reduce the search

space significantly and with relatively few trials.

5.6 Implementation

This section presents the implementation details of SnoopDog. We use readily available

tools that are likely to be in a user’s possession.

5.6.1 Experimental Setup

Wi-Fi Packet Sniffing: The laptop’s (Lenovo Thinkpad) network card enters monitor

mode and uses Wireshark to capture all transmitted packets in the Wi-Fi frequency band to

aggregate traffic statistics for analysis. As it is not necessary to connect to a specific Wi-Fi

network to monitor traffic, SnoopDog can capture and identify clandestine wireless sensors

across all Wi-Fi traffic, even if they reside on a closed or hidden network. A smartphone can

also be used instead of a laptop, but requires a rooted [Sun et al., 2015] phone.

Collecting User’s Motion Data: User’s motion data is collected via the IMU present

on the smartphone (Google Pixel 3). The smartphone is placed either in the user’s hand

or inside the user’s pocket. 50 Hz accelerometer data is collected and used to study the

cause-effect relationship between motion and sensor traffic. We collect data along each of

the 3 axes and use them separately as if motion is present in only one direction, the other 2

axes contribute minimally to the analysis, and may instead serve as noise. The smartphone

is also used to collect audio and localize the user in his/her surroundings.
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5.6.2 Detecting the Cause-Effect Relationship between User Motion and Hid-

den Devices

While sniffing the network, SnoopDog classifies the networked devices present into two

categories: devices that transmit data continuously, and devices that have periodic or event-

based transmission.

5.6.2.1 Wireless Sensors that Encode Raw Data

Some representative sensors that continuously transmit variably encoded raw data include

camera and RF sensors.

Camera: When a camera is monitoring a static scene, its traffic is fairly constant, as shown

in Figure 5.2. As the scene is perturbed by human motion, the traffic changes rapidly.

However, it is yet unclear whether human motion causes this variation. As soon as the

user enters a new space, he or she can turn on SnoopDog, which works in the background

to correlate IMU data with Wi-Fi traffic of the transmitting devices. As users walk in a

space, the starting and stopping patterns of their motion are unique. This unique pattern

creates a fingerprint on the camera traffic. Once SnoopDog is able to determine a cause-

effect relationship between device traffic and user’s motion, it alerts the user. To definitively

ascertain the presence of a camera, SnoopDog asks the user to perform a stop-start-stop-

start-stop (S5) motion as follows: 1) the user stays stationary for some time to allow the

device traffic to stabilize. 2) The user performs jumping jacks at the current position. 3)

The user stops again and waits for the device traffic to settle. 4) The user performs jumping

jacks. 5) The user stops. The S5 motion causes a unique pattern to appear in the Wi-Fi

traffic as shown in Figure 5.3 (Cam. 2).

The entire detection phase requires 35 − 45 seconds. While the user is performing the

above S5 motion, SnoopDog sniffs the Wi-Fi packets on the network and records the

user’s IMU acceleration. Figure 5.3 plots the camera traffic after I-frame suppression and
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user accelerometer data while performing the S5 motion. We observe that camera traffic

is a function of human motion. When the human is static, the traffic is small, but when

the human begins performing jumping jacks, the traffic rate increases. To prove that the

accelerometer series indeed has an effect on the camera traffic, we leverage Granger Causality

using the statsmodel package in Python. The null hypothesis of the Granger Causality Test

is that the IMU series does not granger-causes the camera traffic series. Hence, if the p-value

of our test is below the threshold of 0.08, we can reject the null hypothesis and claim that

the IMU series granger-causes the camera traffic series. We selected this p-value using the

results obtained from the first camera. However, we evaluate our detection for all the other

cameras and show that this p-value threshold is optimal for all the cameras.
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Figure 5.2: Wi-Fi traffic captured from a camera for a static scene and a scene where a human is

walking around.

RF sensor: The detection process remains the same for RF as that of a camera. We use an

off-the-shelf mmWave RF sensor from Texas Instruments, as shown in [Singh et al., 2019].

We model the information obtained from the sensor as Wi-Fi traffic. The modeled Wi-Fi

traffic from the RF sensor due to human motion is shown in Figure 5.4. Unlike a camera,

RF sensors respond to a change in RF reflections from the scene.

76



Camera 1

Camera 2

Figure 5.3: Wi-Fi traffic of a snooping camera placed in the same space as the user (Cam. 2) and

a non-snooping camera placed in a different space (Cam. 1) and its comparison with IMU data of

the user being monitored in the scene.

As soon as motion occurs within the space, the traffic changes rapidly in response. This is

because the points captured by the RF sensor vary with motion. If the traffic of some device

which was static when there was no motion but changes rapidly when there is motion and

goes back to being static when motion stops, it is an indicator that the device is monitoring

user movement. To detect such devices, SnoopDog first monitors the traffic when the scene

is static. It then asks the user to perform the S5 motion in the space while SnoopDog

monitors the traffic. As soon as the user is finished, the user should leave the space so that

SnoopDog can monitor the traffic again and conclude the presence or absence of an RF

sensor.

5.6.2.2 Wireless Sensors that Encode Inferred Events

Sensors that encode inferred events transmit upon event detection. By examining network

traffic, it is difficult to ascertain if the device is transmitting periodic data, like a temperature

sensor, or transmitting inferred events like a motion sensor.
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Figure 5.4: Modeled Wi-Fi traffic for an RF sensor in a static scene and one where a user performs

our detection trial.

Motion Sensor: Typical off-the-shelf motion sensors have a timeout to prevent continuous

alerts. The motion sensor sends motion information to a cloud server, which in turn sends an

alert to the snooping user’s smartphone or performs an action like turning on lights. After

sending an alert, the sensor waits for the timeout period before it looks for more events.

This period is between 30 seconds and 3 minutes for most motion sensors. Similarly, there

can be other sensors in the scene that have a timeout period between uploading events.

To discover a device’s timeout period, SnoopDog correlates user movements with device

traffic. If two events are detected in the traffic of a device and the user was in motion during

the time between the two events, this time is noted as the timeout period. SnoopDog

uses its active phase to further improve the timeout estimation by asking the user to move

around the space until two events are detected in the device’s network traffic. SnoopDog

asks the user to move around the space, leave the space for the timeout period, and then

move around the space again. After that, the user moves out from the space and then waits

for the timeout period to end. If SnoopDog detects traffic by the device around the same

time the user moved and none when the user is not moving, it concludes that the traffic

of the device is caused by user movement. This process can be repeated to increase the

confidence of detection. In Figure 5.5, we move around the room and notice that the Wi-Fi
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(a) (b)

Figure 5.5: (a) Wi-Fi traffic of a motion sensor. The red-dotted line represents a motion event. (b)

Wi-Fi traffic of an Alexa device for the user repeating the same phrase 4 times.

traffic from the motion sensor responds to these motion events. Since this traffic is discrete,

we cannot perform time-series Granger causality analysis. Instead, we perform an activity

and track network response. To detect the presence of a motion sensor, we ask the user to

move around the room, wait for the timeout period, and move around again. SnoopDog

scans all device traffic within a period of 5 seconds after the motion to determine which

device responds to user motion. If the device has traffic activity after the user moved, then

the device is inferring events from the user motion.

Audio snooping: SnoopDog records user conversations in the background and monitors

the network traffic. If the occurrence of a certain phrase or a word causes the traffic of a

device to change, SnoopDog asks the user to repeat it until it can establish a causality

between the occurrence of that phrase and the traffic of the device. Once SnoopDog knows

the “wake word” for the acoustic home-assistant device, it repeats the recording several times

while monitoring the device traffic to increase the confidence level of detection.

In our implementation, we used an Amazon Echo and Echo Dot whose wake word was

“Alexa” and “Computer” and a Google Home Mini with the wake phrase “Hey Google”. In

Figure 5.5, we say the phrase “Alexa, what’s the time right now?” four times and observe
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four distinct events in the device traffic. In 35 trials with different phrases, SnoopDog was

able to detect causality 100% of the time. Additionally, we show the variations in device

traffic for Alexa Drop-In features when the Drop-In is active and when it is not active in

Section 5.9.

5.6.2.3 Device ID via MAC Address Lookup

SnoopDog checks its database for a match of OUI in the device’s MAC address. If present,

SnoopDog can inform the user with higher confidence that the device is indeed a surveil-

lance device. Otherwise, it is added to the database and identified as a clandestine sensor.

5.6.3 Device Localization

SnoopDog uses dead reckoning [Ojeda and Borenstein, 2007] and asks the user to walk

around the perimeter of the room to create rough map of the room. Next, the user performs

a detection trial at various locations in the room. More trials lead to better localization.

At every location, SnoopDog tries to establish a cause-effect relationship with the device

traffic. Regions with no cause-effect relationship are eliminated.

IP Camera: The traffic generated by a camera monitoring a scene will increase when the

scene is dynamic. To exploit this, we first monitor the traffic of the device identified as a

camera for 30 seconds over a static scene. Each trial consists of standing in a particular

location (e.g., the middle of the scene), pointing a laptop in a particular direction, and

playing a video that rapidly changes the colors on the screen of the laptop for 30 seconds.

This process is then repeated in different directions. If the camera is able to monitor the

laptop screen, its data rate during that period will be higher. On the other hand, if the

laptop screen is not visible, the camera’s traffic rate will be similar to the static scene. We

can eliminate a fraction of the space where no activity is detected and repeat the process

for the remaining region. In this way, we narrow down the possible region where a camera
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is located. We give a step by step walk-through of this process in section 5.7.

RF sensor: RF sensor localization is similar to that of a camera. However, since RF sensors

cannot detect the flickering screen of the laptop, we use human movement. SnoopDog asks

the user to stand in the middle of the space and wave their arm up and down rapidly in

front of them while shielding this motion from the other side of the space with their back.

If the RF device traffic does not respond to these stimuli when performed on one side but

responds to it on the other side, we can eliminate that space.

Motion Sensor: Motion sensors are triggered by motion in front of them. SnoopDog first

identifies the motion detector timeout (refer section 5.6.2.2), and then asks the user to stand

in the middle of the room before the timeout expires. After timeout expiry, they are asked

to move their hand in front of them while shielding it from the other side with their body.

Acoustic (Audio) sensors: SnoopDog records the wake word of the device and asks the

user to move around the room while this sound is repeatedly played from the smartphone

app. If the user walks around the room but does not find any place where there the traffic of

the device changes, we increase the volume and repeat the experiment. On the other hand,

if the sound played at every point in the room causes the traffic of the device to vary, we

decrease the volume and repeat the experiment. Finally, we identify areas where the sound

causes network response and areas where it does not. We continue to reduce the volume of

the device until the search space has been sufficiently reduced4.

5.7 Evaluation

We evaluated SnoopDog on a set of sensors from well-known brands as well as best-selling

sensors on Amazon. These are listed below in Table 5.1.

4A walk-through of this process is provided in Section 5.8
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Name Type Cost

Kamtron Camera $39.99

Panasonic (HomeHawk) Camera $77.64

Wansview Camera $29.99

Arlo (NetGear) Camera $107.50

Victure Camera $35.99

Foscam Camera $49.99

Ring (Amazon) Camera $59.99

Amazon Echo Dot Home Assistant $29.99

Amazon Echo Home Assistant $99.99

Google Home Mini Home Assistant $39.99

Kangaroo Home Motion Sensor $12.95

Samsung Smart Things Motion Sensor $24.99

TI IWR1443 RF Sensor $299.99

Table 5.1: List of snooping sensors evaluated

5.7.1 Sensors that Encode Raw Data

Wireless IP Cameras. For Granger causality analysis, we lag the first series by one

element at a time and observe what value of the lag results in the lowest p-value. Cameras

have a delay between when the scene changes and when the data is visible to the adversary.

We found that this delay can vary between a few milliseconds to up to 4 seconds. If the

adversary is using a tape delay in transmission, we can perform this analysis over a longer

delay period. Assuming symmetrical delay, SnoopDog sniffs the packets during the first

half of the transmission; we choose a lag value of 2 seconds.
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We evaluated our detection on 7 cameras. All of them use H.264/MPEG-4 codecs which

are the most popular codecs used for IP cameras. We performed 131 trials on 2 different

users5 to evaluate the detection accuracy. The results of our experiments are presented in

table 5.2. To improve the detection accuracy and confidence of detection, a user can perform

the detection trial several times and take a majority vote. The detection works well even

when a portion of the human body is occluded by objects such as a table.

Camera Trials Successful Accuracy

Panasonic 15 14 93.33%

Arlo (Netgear) 10 10 100%

Ring (Amazon) 10 9 90%

Foscam 15 15 100%

Wansview 30 29 96.6%

Kamtron 25 21 84%

Victure 26 26 100%

Total 131 124 94.65%

Table 5.2: Evaluation results for camera detection

RF sensors. We use a TI mmWave IWR1443 to evaluate the performance of SnoopDog.

In 20 experiments, SnoopDog was able to detect RF sensor’s presence every time.

5.7.2 Sensors Encoding Inferred Events

Motion Sensors. We evaluated on an off-the-shelf motion sensor from Kangaroo Security

and a smart-things motion sensor from Samsung. The smart-things sensors are a special case

as these sensors use Z-Wave and ZigBee to communicate with a smart-things hub which in

5The data is collected from the authors and hence does not require IRB approval.
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turn sends the information over Wi-Fi. As a result, SnoopDog can sniff the traffic of this

hub and establish causality. However, if there are multiple devices connected to the same

hub, SnoopDog will not be able to detect them. We performed 25 trials, and SnoopDog

was able to detect the motion sensors every time except for 3 trials. We suspect that this

was caused because the devices send some sort of “status” messages to their respective cloud

service which result in events in the sniffed traffic that throw the detection off.

Smart-home Assistants (Audio Sensors). In Figure 5.5, we say the phrase “Alexa,

what’s the time right now?” four times and observe four distinct events in the device traffic.

In 35 trials with different phrases, SnoopDog was able to detect causality 100% of the time.

Additionally, we show the variations in device traffic for Alexa Drop-In features when the

Drop-In is active and when it is not active in Section 5.9.

5.7.3 Quantifying False Positives and Negatives

Overall false positive rate. We perform false positive analysis for two separate cases. In

case one, we run cause-effect analysis for every device whose traffic has been captured (a

network can have devices such as phones, laptops, and other sensors in addition to snooping

devices) and find out if a device is falsely classified to be snooping on the user. In case two,

we perform our cause-effect analysis on a camera that is not looking at the scene to see

whether it will produce a false positive.

For case one, our experimental test-bed consists of devices monitoring the user such as

a camera, motion sensor, home assistant and RF-sensor. We also include innocuous devices

usually present in a scene such as smartphones, laptops, Wi-Fi-routers, smart-lights, and

embedded devices such as raspberry-pi. We ran this analysis for 50 trials. We found 2 false

positives for Active Phase and 9 false positives for Background Phase.

We divide case 2 into two separate parts. In the first part, a camera is placed in another

room (where the user who’s running SnoopDog is not present). Another person is moving
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freely in the room. In the second part, the person in the other room is sitting on a desk

and working while the camera is monitoring them. We show the results of our experiments

in Table 5.3. We perform these trial for both background detection and active detection.

The one detection for background phase is because the walking patterns of the user and the

person in the other room were similar. In such cases, a user can turn off the light in their

room and see if the traffic of the device drops. If it does, it means the camera is in their

room.

Case Total Trials
False Positives

Background Active (S5)

(1) User moving 15 1 (6.66%) 0 (0.00%)

(2) User working on a desk 10 0 (0.00%) 0 (0.00%)

Table 5.3: False-positives for a camera in a separate room

False negatives for background detection. SnoopDog’s background detection mech-

anism is most susceptible to false negatives since it relies on natural human motion rather

than active command and response patterns. Figure 5.6 shows camera traffic and IMU data

for a user walking randomly in a room. As long as the user stops at some point within

the detection period, SnoopDog is able to detect hidden devices. However, if the user is

continuously stationary or continuously in motion, SnoopDog fails to detect the presence

of clandestine sensors.

5.7.4 Snooping Sensor Localization

We evaluated SnoopDog for 4 different spaces with different sensor placements. The accu-

racy of localization in all of these cases depends on the user’s requirements. The user can

perform more trials to reduce the probable region where the sensor is placed. We use an

example to demonstrate how the SnoopDog localization algorithm works. To perform our
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Figure 5.6: Camera traffic and its comparison with IMU data

localization, we chose a room as shown in Figure 5.7. The camera is placed at a corner of

the room. We begin by performing our S5 detection trials in different parts of the room.

The location and results of our trials are shown. Based on these observations, we know that

the camera is present somewhere in the square region of the room and hence, we eliminate

the other part and start our trial-based localization.

- Causality not found

- Causality found

3.04 m

3.04 m

1.3 m
2 m

Figure 5.7: Lab dimensions and results of the detection trials.

We stand in the middle of the probable space and hold a laptop such that the screen is

pointing in one direction. Then we turn to the other side and repeat the same experiment.

We observe that there is a significant (>150%) increase in the camera data rate when the

laptop is pointed towards the left side. When pointed to the right, the data rate remains
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similar to that of an empty room. Thus we eliminate the right portion of the room from the

probable area. We again stand in the middle of the leftover space and repeat the experiments

until we achieve a sufficiently reduced space.

Figure 5.8: A walk-through of the trial-based localization algorithm in the laboratory environment

in Figure 5.7. The arrows represent the direction the laptop screen was facing.

5.8 Audio-based Localization for Personal Home Assistants

In this section, we describe the audio localization technique step-by-step. First, we place the

source of the sound (smartphone playing a phrase containing the wake word of the device) at

different points in the room and see how it affects the device traffic. Then we go around the

room while SnoopDog repeats that sound continuously and checks them for causality with

device traffic as shown in Figure 5.9. Sound played at the points marked as green produces

cause-effect relationship with the device traffic. We eliminate the regions where we detect no

causality. Next, we reduce the volume by 1 level and repeat our experiment in the left-over

space till we are left with a region of desirable size.

87



- Causality not found

- Causality found

3.04 m

3
.0

4
 m

1
.3

 m

2 m

Figure 5.9: Trial-based localization for acoustic sensors.

5.9 Traffic Variation of a Personal Home Assistant During Drop-

In

Drop-in started Drop-in stopped

Figure 5.10: Traffic variation of Amazon Echo Dot while dropping-in

As discussed in the previous sections, Amazon Echo devices allow the user to drop into any

of their Alexa devices and remotely listen to the audio in the room that they are placed in.
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This does not require any authentication on the device side during the drop-in. We perform

3 drop-ins on an Amazon Echo Device and show the traffic variation in Figure 5.10. From

the traffic variation, it is clear when the drop-ins start and when they end.

5.9.1 Overhead Analysis

Time: Sensor detection can happen in the background with minimal user intervention.

However, this will take some time. In situations where a user wants to immediately know

if he/she is being spied on by a sensor (such as when entering a changing room), they can

directly begin the active phase where they will perform the S5 motion. It takes about 40

seconds to perform active detection. For localization, each trial can take 30 seconds. Since

the localization space reduction is determined by the user, he/she can perform the trial any

number of times. If the total number of trials is n, the overhead will be about 30n seconds.

User effort: If the detection occurs in the background, there is no overhead in terms of user

involvement. However, both active phase and localization require user effort. In case the

user is suffering from physical disabilities, he/she may find it hard to follow through these

steps.

Wi-Fi Channel Hopping: In detection mode, SnoopDog must hop channels across all

frequencies as an adversary may have configured devices on different Wi-Fi frequency bands.

A transmitting device might inadvertently evade detection if it is hopping while SnoopDog

is scanning. Hence, we perform multiple scans of the entire Wi-Fi spectrum to reduce

misdetections. We would ideally monitor all Wi-Fi channels simultaneously, but this is

infeasible with a single WiFi radio. Multiple Wi-Fi radios will reduce the search space per

radio at additional cost and degraded portability.
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5.9.2 Effects of Range on Detection

Detection depends on the range of a sensor. The camera range is the depth which it can

record meaningful information from the scene. If the user stands too far from the camera,

their motion may not produce a significant variation in its traffic. For motion sensors and

RF sensors, the range is specified by the vendor. The motion sensor that we used has a range

of 15 feet (4.6 m) and the RF sensor we used had a range of 4 m. For Amazon Echo, the

range is a function of the loudness of sound. For cameras, we perform our detection trials

at different distances to find out the range.

We perform the S5motion in front of a camera at 1 m and gradually increase the distance.

We find that as we move away from the camera, the changes in its traffic decrease. For the

Wansview camera, the distance at which traffic changes are not enough to establish causality

is the smallest at about 3 m.

5.9.3 Failure Analysis

During our evaluation, SnoopDog’s detection failed during some trials for both cameras

and motion sensors. In this section, we will describe and discuss those cases.

Camera. SnoopDog failed to detect hidden cameras when the camera video froze (no

transmission) for a small duration during our detection trial. Another cause of miss-detection

were additional users in the scene since the network traffic due to their motion cannot be

filtered out. Also, when the user was present far from the camera (refer Section 5.9.2), the

traffic changes due to the motion of the user were not enough to establish Granger causality.

Motion Sensor. Motion sensors sometimes send status messages to the cloud service that

they are connected to. These transmissions happen in the form of a short burst. Since there

was no motion before these transmissions, they result in SnoopDog failing to establish

causality. While we cannot say with certainty what each of these transmissions are, we saw

multiple such transmissions when the sensor was started, during update, and sometimes
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even in between two motion events. A user can also query the sensor status from their

phone to which the sensor has to respond. SnoopDog failed to detect causality when these

transmissions were present in the network traffic of the motion sensor.

5.10 Techniques to fool SnoopDog

In this section, we discuss how an adversary can fool SnoopDog.

5.10.1 No Encoding or Data Padding

SnoopDog uses the relationship between encoding schemes and ground truth to find out

if there is a device which is monitoring the user. Hence, to fool SnoopDog, the sensors

can either send un-encoded raw data or they can pad the encoded data to make the data

rate constant. Cameras can either pad their traffic or they can send un-encoded images

frames. Since sending images will put a large overhead on the network bandwidth, padding

the traffic [Apthorpe et al., 2018] is a better idea. We pad the camera traffic with random

payload in Figure 5.11. Since SnoopDog cannot see what’s inside the payload, it can be

anything. The device can even send labels in the payload that help the server decide if this

is a valid packet or fake data generated to fool detection. Also in Figure 5.11, we pad the

traffic of a motion sensor to make it appear like a constantly transmitting device with no

variation in traffic in response to user’s motion.

For RF sensors, one can find out the maximum number of points it can output and then

always pad the information so that we are transmitting the maximum number of points

allowed. These extra points could all be zeros which would make it easier to filter them out

on the server side.
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Figure 5.11: Padding the motion sensor and the camera traffic

5.10.2 Adding Random Noise to the Data

Another way to fool SnoopDog is by injecting noise into the device’s wireless traffic at

random intervals for some time window. Since SnoopDog utilizes the change in device

traffic to ascertain a cause-effect relationship, the variations caused by injecting random

noise are able to fool the detection.

Devices that do not transmit continuously can randomly send information that creates

a pattern similar to their inferred event traffic. This way they can keep sending their in-

formation which is hidden within random traffic. We add random noise which appears like

regular traffic for a motion sensor in Figure 5.12.

5.10.3 Constantly Vary the Resolution of the Data Being Transmitted

For devices like camera, there are several video resolutions that an adversary can choose.

The higher the resolution, the better the video quality is. However, if an adversary chooses

a scheme where the video resolution is constantly varying, it will cause random changes in

the network traffic. Hence, even if the user’s motion is causing changes to the traffic, it is

overpowered by the changes in network traffic due to a variation in resolution.

For RF sensors, they can vary the number of maximum points that they transmit con-
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Figure 5.12: Injecting noise in the traffic of a motion sensor to fool SnoopDog

tinuously to achieve a similar effect.

5.10.4 Adding a tape/broadcast delay to the transmissions

An adversary can add a tape delay to the sensor transmissions, i.e. intentionally adding a

delay between when something was recorded and when it was transmitted. Since, we are

only looking for causality within a small time window, a high tape delay will be able to fool

SnoopDog . However, given enough storage capacity and time, it is possible for SnoopDog

to scan the entire recording to look for cause-effect relationship with user motion. But for

large tape delays, this is not practical.

5.11 Limitations

1: Only limited to VBR devices. Although SnoopDog can detect a wide variety

of commonly available sensors, it cannot detect any wireless sensor monitoring the user.
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For a sensor to be detectable by SnoopDog, the traffic must be encoded with a Variable

Bit Rate (VBR) algorithm and the data recorded by the sensor must change in response

to user perturbation which can be recorded by a ground truth sensor. That said, most

surveillance devices such as cameras, motion sensors and smart-home assistants today fall

into this category, and thus we believe SnoopDog can serve as a valid defense.

2: A technically capable adversary can fool SnoopDog if they know about its

existence. If the adversary suspects SnoopDog is in use, they can use one of the techniques

listed in Section 5.10. They can also use channel hopping or MAC randomization. We have

not evaluated SnoopDog for any of the above techniques.

3: Evaluation is limited to Wi-Fi devices and devices who route their traffic

through a Wi-Fi-hub only. We have evaluated SnoopDog for Wi-Fi-connected devices

only. For future work, this framework can be evaluated for other popular wireless commu-

nication standards. SnoopDog can be extended to standards like Zigbee [Kinney et al.,

2003], Z-Wave [Yassein et al., 2016], and Bluetooth [Muller, 2001,Haartsen, 2003] as long

as we have the following: 1) A receiver that can scan their probable frequencies and sniff

their packets to find if any devices are transmitting and 2) the ability to find unique device

IDs from packet headers and distinguishing header information from payload size. While

capturing Zigbee/Z-Wave packets will require additional hardware, recent works have shown

that it is possible for a Wi-Fi radio to perform cross-technology communication. [Li and He,

2017,Kim and He, 2015]

5.12 Discussion

Q1: What is the usability of SnoopDog? We envision SnoopDog to be implemented

as an app on either a smartphone or a smartwatch (or a combination of the two). This means

an end-user will not need any prior knowledge about causality and coverage of a device to

use it. SnoopDog will continuously work in the background to look for a cause-effect
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relationship between a user’s actions and device traffic. It will then guide a user step-by-

step through the entire localization procedure. Since an adversary can place a sensor at any

time (e.g.,when a user checks in a room, searches for devices, finds none and then leaves

for dinner after which the adversary places the spying device), SnoopDog will still find it

because it continuously works in the background. This will not cause any overhead in terms

of user involvement.

Q2: How can false positives be reduced? For false positive to occur during active

detection, the device’s traffic needs to map directly to the S5 motion during the active

phase and user’s motion during the background phase, which is unlikely. If there happens

to be another camera in an adjacent space monitoring another user who is performing the

detection trial within the same time window as the first user, it will trigger a false detection.

However, the probability of this happening is low. Nevertheless, it remains a possibility, and

mitigating such instances are highly desirable.

Simple strategies can significantly reduce the chances of false positives. First, during the

initial monitoring phase for wireless devices, any periodic trends in traffic patterns can be

noted; the detector trial should ensure its periods are not synchronous with such periodicity.

Furthermore, the detection process can be done multiple times with varying and erratic

period lengths. This will drastically decrease the chances of a false positive, as a device

would have to coincidentally follow this effectively random traffic pattern. Finally, the entire

process itself can be performed repeatedly; each iteration compounds the decrease in false

positive rate, such that it eventually reduces to a statistical impossibility.

Q3: Are there alternative approaches to causality? One alternative approach to

detecting snooping sensors is correlation. However, correlation does not imply causation.

If we have a sensor that measures the ground truth in the modality we want to detect, we

need to use causality analysis. For example, it takes the camera some time to process the

information and send it over to the server. So if we capture human motion with an IMU, the

camera traffic will lag the IMU time series. This is correctly captured by causality analysis
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but not by correlation. However, if instead of using a sensor to measure the ground truth, we

use another sensor that can capture the same modality that we are trying to detect, we can

use correlation because if both the devices are capturing the same event, their traffic should

show similar trends. Future work can also explore the efficacy of data-driven approaches

such as deep learning for time series classification.

Q4: Can we detect continuously streaming audio bugs? There are two ways to

encode audio, either constant bit rate (CBR) or variable bit rate (VBR). VBR techniques

make use of similarity in sound, such as prolonged silence, to reduce the amount of data

required for encoding. In contrast, CBR always encodes with the same number of bits.

Many off-the-shelf audio recorders and audio streaming apps use CBR. Since SnoopDog

only has access to the payload size of a packet, there must be variation in the payload to

determine causality. Hence, SnoopDog cannot detect CBR audio bugs.

Q5: What is the impact of a ground-truth sensor? Qualitatively, the ground-

truth sensor enables the detection of causality between human action and hidden sensors.

Even if all hidden devices were connected to an accessible Wi-Fi network (which is the

same system model used by IoTInspector [Huang et al., 2019a]), one would only be able

to detect the presence of a device on the network and not whether it is monitoring a user.

To quantitatively demonstrate and evaluate the impact of a ground-truth sensor, Figure 5.3

illustrates an example where an IMU enables SnoopDog to identify between a hidden sensor

monitoring a user and disregard a camera in a separate room. Moreover, one may argue that

an application can actively instruct the user to move and establish causality between the

period of instruction and the Wi-Fi traffic patterns. First, such an approach relies on a

general user motion model to establish causality during these time frames. Second, this

approach is not capable of background detection as it would rely on active command and

response patterns. In Table 5.3 case 1, without a ground truth sensor, the false positive rate

is 100%. With a ground truth sensor, this decreases to 6.66%.
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5.13 Related Work

This section presents the most relevant and related works.

Detecting hidden devices using RF signals. A popular tool to detect hidden devices is

called a bug detector [Nbc, 2019] – an RF receiver that can sense if the received power in a

frequency range is above a threshold. The problem with such devices is that they can produce

false alarms when used near other RF sources such as mobile phones or laptops [Valeros and

Garcia, 2017, Sathyamoorthy et al., 2014]. Also, they give no additional information about

the type of device or where it is located. After detection, the onus lies completely on the

user to physically find the device and verify if it is a surveillance device or not. The host

may have a wireless device to monitor the power consumption of his property, but to the

bug detector, it would seem similar to an IP camera.

Classifying devices on the network using wireless traffic sniffing. While services like

Princeton IoT Inspector [Huang et al., 2019a] collect traffic statistics to identify the types of

devices present on the network, they fail to identify if those devices are indeed spying on the

user or not. Just ascertaining the presence of a surveillance device is not enough. The device

may be present outside the house or it may be monitoring some part of the house which was

already disclosed by the home owner. In cases like this, just identifying such a device exists

is not enough, we also need to determine two important facets – is the device spying on the

user and is it located in an area of the house that has the potential to violate user privacy.

Moreover, tools like this need to have access to the network in order to be effective. If the

snooping devices are placed in a hidden network or on a password protected network, the

use cases of such a tool are limited.

Other network traffic analysis tools [sol, , Schmitt et al., 2018] utilize traffic data to

find which devices are consuming high bandwidth. Such techniques can be used to classify

audio and video data streams present in the wireless networks. However, with an increase

in streaming services [Steele, 2019,Kumar et al., 2019], it is difficult to distinguish camera
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video and audio flows with those of streaming services based on just their bandwidth usage.

Detecting cameras on the network using wireless traffic sniffing. Wampler et

al. [Wampler et al., 2015] and others [Nassi et al., 2019, Liu et al., 2018] show that infor-

mation leakage occurs in camera traffic due to how videos are encoded. They observe that

changing lighting conditions cause noticeable variations in the network traffic. Though these

techniques perform well, their performance degrades when the environment lighting changes

naturally. Additionally, while these techniques work well for a camera, they do not gener-

alize to other types of snooping devices, like RF sensors or motion detectors. Finally, in

order to be able to change the lighting conditions of a space, the user requires either spe-

cialized hardware (like an LED board or a bulb) or access to lighting controls, which is not

guaranteed.

Approaches like DewiCam [Cheng et al., 2018] exploit the correlation between human

motion and camera data flows to determine if the camera is indoors or outdoors.

In [Wu and Lagesse, 2019], Wu et al. use their own camera to record a scene while

simultaneously sniffing the network traffic. They compare the data rate and pattern of their

camera with other devices in the network to look for any similarities. If a similarity exists,

there is a high probability that the device is a camera.

Localizing wireless devices using RSSI. Received Signal Strength Indicator (RSSI) is

the estimate of the power received at the receiver from the transmitting device. The power

received drops with distance, and so does the RSSI. This property is leveraged to localize

devices using RSSI [Sun et al., 2014, Luo et al., 2011, Xue et al., 2017, Li et al., 2018].

However, due to phenomenon like multipath and shadowing, the accuracy varies from space

to space [Jondhale et al., 2016]. The error is very high (several meters). For small rooms,

such a result will be meaningless, as the snooping device can be effectively hidden anywhere.
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CHAPTER 6

Understanding Privacy Impact of Instrumenting

Spaces with Sensors

6.1 Introduction

With the recent growth in the Internet-of-Things (IoT), sensors and sensing devices have

infiltrated all aspects of our daily life – in smart homes, office spaces, and public areas. The

data collected by these sensors provide utility to the users whose data is being collected (e.g.

fitness activity tracking), or the device owner (e.g. home security). However, the opaque

data collection, storage, and processing by manufacturers and device operators has motivated

a discussion on privacy - particularly, how to instrument physical spaces with sensors and

what to disclose to the sensed users [Naeini et al., 2017, IGP, 2015, Emami-Naeini et al.,

2020].

Privacy discussions on invasiveness [Lee and Kobsa, 2017,Psychoula et al., 2018,Gochoo

et al., 2018] or sensitivity [Zhou and Piramuthu, 2015] of sensors informally allude to pro-

tecting the information representing a monitored user’s actions and behaviors in the physical

world. Non-expert users (someone who is not well-versed in various conceptions of privacy

(Section 6.3)) rely upon their prior experiences with a device or a class of devices to form

their notions of privacy. This notion is also reflected in several research works where in lieu

of the knowledge of privacy-conceptions, they use human-understandability as a proxy for

privacy. A common notion of privacy invasiveness is that sensors which capture data easily

understood by human sensory organs (e.g. visual and audio recordings) should not be placed
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in physically privacy-sensitive areas (e.g. bedrooms, changing rooms, or washrooms) [Tay-

lor, 2010,Schwartz, 2012]. This notion is the premise for several recent works claiming that

lower-dimensional RF sensors are more privacy-sensitive than visual sensors [Singh et al.,

2019, Billah et al., 2021, Aziz Shah et al., 2020, Rahaman and Dyo, 2021, Ashleibta et al.,

2021, Liu et al., 2019, Zeng et al., 2020, Yin et al., 2022, Feng et al., 2020, Gurbuz et al.,

2021, Li et al., 2021, Yang et al., 2021,Wang et al., 2021a, Fan et al., 2020, Saeed et al.,

2022,Raeis et al., 2021,Avrahami et al., 2018, Liu et al., 2021]. In particular, some works

claim that raw RF sensor data reveals less information than visual data such as camera

images [Fan et al., ,Raeis et al., 2021,Avrahami et al., 2018] due to poor interpretability by

humans. In reality, raw information collected by a visual sensor is not an image but merely

radiation on the individual pixel sensors, which is later translated, processed, and presented

as human-understandable images [Isola et al., 2011]. Similarly, low-dimensional RF sensor

data can be translated, abstracted, or “imaged” into privacy-sensitive information. This

begs the question:

RQ1a. If we take non human-understandable data collected by a sensor and convert it into a

more understandable form, will that change the user’s privacy perceptions about that sensor?

While humans cannot understand the information collected by RF sensors (e.g. EM

radiation collected at the receiver generally represented in the form of IQ samples [Scott,

2001]), they can certainly understand the inferences that algorithms can make on that data.

Importantly, advances in deep learning have enabled various inferences from RF data. These

various inferences may be privacy-sensitive, such as human emotion [Zhao et al., 2016] and

several forms of human activity recognition [Singh et al., 2019,Billah et al., 2021,Aziz Shah

et al., 2020, Rahaman and Dyo, 2021, Ashleibta et al., 2021, Liu et al., 2019, Zeng et al.,

2020, Yin et al., 2022, Feng et al., 2020, Gurbuz et al., 2021, Li et al., 2021, Yang et al.,

2021,Wang et al., 2021a, Fan et al., 2020, Saeed et al., 2022, Raeis et al., 2021, Avrahami

et al., 2018, Liu et al., 2021]. Other works [Zhao et al., 2018,Wang et al., 2020b] showed

that RF sensors could surpass a visual sensor’s capabilities by detecting human posture and
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activities through a physical wall. More critically, the advent of generative adversarial net-

works (GANs) [Goodfellow et al., 2014] has enabled the ability to synthesize images from

low-level information, including across modalities [Kezebou et al., 2020]. Deep learning has

enabled us to make privacy-sensitive inferences, as well as creating interpretable data repre-

sentations from low level structures - both of these capabilities require us to reconsider the

privacy perceptions surrounding RF sensors. Thus, we can further simplify RQ1a to ask a

second question:

RQ1b. What matters more to users when they are forming their privacy perceptions about

a device: the data collected by the device (modality and human-interpretability), or the in-

ferences that can be made on that data, or both?

Theories such as the mere-exposure effect [Bornstein and D’agostino, 1992, Bornstein

and Craver-Lemley, 2016] state that human preference for objects also depends upon their

familiarity with those objects. Hence, we also need to explore whether it is possible that a

user’s perceptions of privacy may be affected by how familiar they are with the device. This

sense of familiarity may include whether the user has interacted with that particular device,

other devices from the same manufacturer, other devices from the same family of the devices

or has worked on those devices in some capacity. This leads us to another question:

RQ2. How does familiarity with a device affect a user’s perception of its privacy-sensitivity?

Human beings create their first-impressions about an object using its physical appearance.

This phenomenon is also seen in shopping where the physical appearance of products greatly

influences a user’s decision to buy them [Creusen and Schoormans, 2005]. The physical

appearance of an object also invokes a user’s familiarity with that object [Bornstein and

Craver-Lemley, 2016]. Since sensing devices instrumented in a physical space do not come

with any disclosures or labels, users have to rely upon physical appearance to build privacy

perceptions of that device. This leads us to our next question:

RQ3. How does the physical appearance of a device affect a user’s privacy perception of that

device?
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For example, if a device that is considered to be innocuous, such as a WiFi router, were to

look like a more privacy-invasive device, such as a camera, will that affect a user’s privacy

perceptions?

Finally, with growing user concern over how data is being collected, stored and shared [Wang,

2016,Wang et al., 2016b], it is important to discuss how the amount of control (or lack

thereof) a user has over their data helps shape their privacy perceptions. Recent advance-

ments in machine learning have further exacerbated the rampant unauthorized secondary

use of data [Chen and Kim, 2013,Oliveira and Zaiane, 2010]. Furthermore, zero-day vulnera-

bilities [Bilge and Dumitraş, 2012] and the constant fear of devices being hacked [Rostami12

et al., ] have made users wary of installing sensing devices in their personal space. These

implications lead us to our final question:

RQ4. How does control over the design of a device and its data policies (type of data col-

lected, its storage and transmission) affect a user’s perception of privacy-sensitivity of that

device?

By answering questions RQ1b, RQ2, RQ3, RQ4 we investigate user perceptions of privacy

surrounding low-dimensional sensor data and how they compare against existing notions of

privacy for such data. We use RF sensors such as mmWave radar and WiFi router as

examples of low-dimensional sensors for our study due to their ubiquity and a recent surge

in their sensing applications. We aim to understand how factors such as modality of sensing

(data collected by the device), inferences that can be made on the data, familiarity, physical

appearance, and control help shape a user’s privacy perceptions regarding sensor privacy.

Intuitively, given that more and more spaces are instrumented with sensors, we aim to

validate (or invalidate) prior researchers’ notions of privacy given user perceptions. First, we

aim to compare the privacy perceptions of data and the inferences that can be made from

that data. Second, we study the impact of users’ prior knowledge about the properties of the

sensor in question, such as the sensor type, form factor, manufacturer, and data-processing

algorithm. Finally, we study the perceived privacy impact of a user’s control over the device
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configuration, the data collection, and data storage processes for a given device.

Study Details. To validate our hypothesis, we performed an online survey study1 on 122

respondents from the United States to measure users’ perception of privacy across the four

factors described previously: data information, prior device knowledge, physical appearance

and device control. Our study seeks to understand the contribution of each factor in helping

shape the privacy perceptions of users. We also present the respondents with scenarios and

open-ended questions that allow them to express their thoughts. We then conduct both

qualitative and quantitative analysis of the responses to answer our research questions and

ascertain the validity of our hypothesis.

Study Results. The main findings of our study are as follows:

• In the case of sensors that collect human-interpretable data (such as cameras), data

and inferences can be used interchangeably to inform user decisions regarding privacy.

• In the case of sensors that collect non human-interpretable data (such as RF sensors), it

is the inferences, rather than data collected, which affects a user’s privacy perceptions

most.

• When the data and inferences are not available, the physical appearance and familiarity

of a user with a device type are the primary factors that dictate how users perceive

the privacy-sensitivity of a device.

• If given complete control over the data policies and device design, users are more likely

to instrument their personal spaces with sensing devices.

Research Goals. Our goal is to study what factors affect the privacy perceptions of a non-

expert user when they encounter an IoT device. The factors discussed in this work can be

used in conjunction with other conceptions of privacy (Section 6.3) to better inform future

works that aim to instrument user-spaces with sensors.

1exempted as part of IRB approval process
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Contributions. The main contributions of our work are summarized as follows:

• We rigorously define (Section 6.4) and investigate the factors contributing to a non-

expert users’ privacy-sensitivity in the context of advances in deep learning for low-

dimensional sensor data. To the best of our knowledge, we are the first ones to do

so.

• We design and conduct a user study that aims to understand the impact of the defined

factors that affect a user’s privacy perceptions of devices.

• We discuss how researchers can utilize our findings to improve their disclosures regard-

ing privacy-sensitivity across sensing applications.

6.2 Related Work

We first describe related work on claiming RF to be less privacy sensitive than visual modal-

ities. We then cover research investigating different dimensions of sensor modalities that

affect user privacy perceptions. Lastly, we cover related research that seek to inform and

measure privacy behaviors of sensors and systems. To the best of our knowledge, our privacy

study is the first of its kind where we compare data collected from a device to the inferences

that can be made on that data in terms of their effects on a user’s privacy perceptions.

6.2.1 Claims without validation: RF is more privacy sensitive than camera/vision

There is a growing body of work, particularly in the RF domain, which seeks to replace

more ’privacy-invasive’ modalities (such as cameras) with RF sensing. The reason for this

replacement is at least in part due to concerns of privacy, with some works in this area

citing privacy as the primary reason for replacing modalities. Various application scenarios

arise where users may have information they wish to keep private - these scenarios involve

sensing and monitoring occupancy in buildings [Billah et al., 2021,Aziz Shah et al., 2020],
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understanding travel patterns in smart homes [Gochoo et al., 2018,Rahaman and Dyo, 2021],

inferring breathing patterns [Ashleibta et al., 2021, Liu et al., 2019, Zeng et al., 2020,Yin

et al., 2022], detecting posture and gesture at various granularities [Feng et al., 2020,Gurbuz

et al., 2021,Li et al., 2021,Yang et al., 2021,Wang et al., 2021a], and general daily life and

activity monitoring [Fan et al., 2020,Saeed et al., 2022,Raeis et al., 2021,Avrahami et al.,

2018, Liu et al., 2021]. However, these works are motivated by a notion of privacy that

has yet to be properly understood - a majority of these works directly claim that cameras

are more privacy invasive than the RF modality without specifying what this invasiveness

means. In the more extreme cases, some works claim that the RF modality has no issues

with privacy at all and is ’non-privacy invasive’. For several of these works, privacy is the

primary reason to choose RF modalities, due to an existing notion of privacy where data is

less privacy-invasive if it is less interpretable [Fan et al., ,Raeis et al., 2021,Avrahami et al.,

2018].

We argue that these claims have not been sufficiently validated, and this notion of pri-

vacy itself does not encompass a sufficiently deep understanding of what other modalities

are capable of. Time and time again we witness examples of unexpected privacy-invasive

inferences made by various modalities, such as reidentifying users based on accelerometery

data [Saleheen et al., 2021] or sensing sound from RF sensors [Wang et al., 2020b]. As

many of these related works focus on scenarios that monitor a user’s daily life and health

attributes (which are private from both a personal and legal [Rights (OCR), 2008] perspec-

tive), it is imperative that the capabilities of a modality are better understood before such

claims are made. This motivates a need to improve our understanding of what truly makes a

sensor ’privacy invasive’. In our study we seek to correct an existing notion that the privacy

perceptions of a particular sensor can be accurately judged based on data interpretability.

Our investigation of existing work has led us to the design of 4 relevant concepts that affect

user perception of sensing modalities.
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6.2.2 Exploring Privacy Sensitivity of Devices and Sensors

The ’privacy invasiveness’ of a sensor is not solely dependent on the sensing modality. There

are a number of works investigating different dimensions of sensors (appearance, familiarity,

etc.) and how they affect perceptions of privacy. [Ahmad et al., 2020] and [Koelle et al., 2018]

explore different physical designs of sensor mechanisms capable of describing sensing state.

More specifically, they explore how certain notifiers and actuators, such as lights and shutter

mechanisms, are capable of improving perceptions of privacy. [Ahmad et al., 2020] identifies

the concept of ’tangible privacy’, which describes a set of physical mechanisms on devices

to clearly represent privacy states of IoT devices, with the goal of minimizing uncertainty in

certain device states (such as being on or off). In a similar vein, [Koelle et al., 2018] focuses

on designs for body-worn cameras that clearly describe their sensing state. [Cheng et al.,

2019] designs a birdhouse-shaped camera system which grants privacy controls to inhabitants

in a home home setting. [Conference and Pierce, 2019] focuses on redesigning smart home

security cameras to both improve adoption while enabling privacy controls. In our study, we

consider how the concept of physical appearance affects user perception of privacy.

In addition to physical appearance of sensors, privacy perceptions of sensors are also

affected by the setting in which they reside, as well as the manufacturer of those sensors.

[Haney et al., 2021], [Zheng et al., 2018], and [Malkin et al., 2019] both study perceptions

of privacy regarding smart home devices, and how manufacturer trust affect these percep-

tions. [Haney et al., 2021] focuses on how users believe responsibility should be assigned

when it comes to handling privacy concerns of smart home devices - they consider different

combinations of personal, manufacturer, and governmental responsibility. [Zheng et al.,

2018] studies smart home users and their beliefs in privacy protections of devices - they find

that both brand familiarity and reputation in device manufacturers plays a primary role in

determining trust-based purchasing decisions. Lastly, [Malkin et al., 2019] describes trust

in different smart speaker manufacturers and how they handle data. [Velykoivanenko et al.,

2021] investigates the different features of fitness trackers, and how well users understand
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privacy implications in the fitness-tracker ecosystem. In this study, we also consider how the

concept of manufacturer familiarity and reputation influences privacy perceptions of devices.

In addition to manufacturer trust affecting privacy perceptions, [Zheng et al., 2018]

also studies how data-sharing behaviors from smart home devices is heavily influenced by

perceived benefit of sharing. [Akter et al., 2020] seeks to study image sharing behaviors

of visually impaired persons, and how different types of objects present in the images, as

well as familiarity with assistants affect sharing decisions. Unlike these works, we focus

on specific data-sharing behaviors when their intended inferences are known. We choose

inferences that have been shown to be possible on both cameras and RF modalities. [Jin

et al., 2022] studies smart home privacy-protective behaviors (SH-PPBs), examining how

people currently enforce privacy controls over smart devices, as well as raising ideas for new

privacy features - such features come in the form of physical design controls, but also as

software features (such as a data management portal). Similarly, our study also aims to

understand how varying levels of user control and knowledge of the sensor affects privacy

perceptions. [Naeini et al., 2017] identifies a set of factors influencing privacy preferences

in IoT scenarios - in particular, they focus on aspects of data collection of different devices.

[Zeng et al., 2017] explores different levels of familiarity with IoT technologies, and how

it influences knowledge of privacy and security risks arising in smart home scenarios. [Lee

et al., 2022] studies different privacy attitudes and privacy concerns regarding data collection

via a variety of modalities. [Baron and Musolesi, 2020] studies the privacy sensitivity of

different types of information captured in mobile services.

In our study of RF and camera modalities, we explore how familiarity, appearance, and

inferences from these particular sensors play a major role in privacy perceptions. Unlike

previous works, our goal is not to design new sensors, but rather to explore existing sensor

designs and consider the different factors affecting user privacy perceptions.
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6.2.3 Structuring and Measuring Privacy Properties

One active area of research relevant to our study is the creation of transparency mechanisms

for describing privacy properties of devices and systems. Creating such mechanisms often

requires structuring privacy properties into a set of concepts that are critical to privacy per-

ceptions of users. Privacy and Security labels [Emami-Naeini et al., 2020] for IoT devices

aim to provide concise insight into a device’s data collection behavior, enabling consumers

to make better device purchasing decisions. Such methods of improving transparency have

already been adopted by companies such as Apple [noa, a] and Google [noa, 2022], which

typically focuses on installation of mobile apps. In both cases, they distill a set of concepts

that are critical to helping users make better privacy decisions. Concepts include security-

update policies, sensor data collection, purpose, manufacturer, and several others. However,

these mechanisms often don’t include concepts relating to potential privacy-invasive infer-

ences, such as race, occupancy, and activity recognition. As we explore different dimensions

of privacy-invasiveness in our study, we believe our findings can be complementary to the

design of these transparency mechanisms and introduce new concepts.

In addition to creating a structured set of privacy properties that affect privacy per-

ceptions of devices, various works also seek to measure the privacy properties of systems.

Some existing methods focus on mobile applications [noa, b] and websites [noa, c]. For

example, PrivacyGrade [noa, b] aims to assign grades (ranging from A to D) to different

mobile applications based on discrepancies in behaviors described by the developer, and the

underlying application software. In the web domain, PrivacyScore [noa, c] seeks to provide

a ranking of websites based on presence of a set of security features. Another broad category

of works may also seek to describe formal privacy metrics [Wagner and Eckhoff, 2019] from

a technical perspective. Example categories include adversarial success, data similarity, and

several others - however, unlike these works, we seek to capture privacy perceptions from a

human perspective, with a focus on sensors rather than a system.
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Our study is partly inspired by previous works studying various dimensions of sensors.

We structure our study around several critical concepts affecting privacy perceptions in order

to break existing notions of privacy-invasiveness for RF sensing.

6.3 Privacy Conceptions and Terms in this Chapter

In this chapter, we use the terms privacy notion, privacy perception, and privacy preference

interchangeably to describe how a user perceives a device or a sensor from a privacy per-

spective - does the user think a device is going to protect their privacy or not? A device

that is designed with privacy in mind (or is perceived to protect user privacy) is considered

less privacy-invasive and more privacy-sensitive.

6.3.1 Popular Conceptions of Privacy

There are several conceptions of privacy [Nissim and Wood, 2018,Solove, 2008,Nissenbaum,

2009, Cranor, 2013]. In this section we discuss some popular conceptions. The definitions

for these conceptions have been borrowed from the works cited above.

• Contextual Integrity: Contextual integrity assesses how closely the flow of personal

information conforms to context-relative informational norms. More precisely, in a

context, the flow of information of a certain type about a subject from a sender to

a recipient is governed by a particular transmission principle. Contextual integrity is

violated when the norms in the relevant context are breached. Intuitively, it recognizes

that certain parties may obtain certain types of information about other parties under

the right terms and for the right reasons.

• Anonymization and De-identification: Many privacy technologies are designed

with the goal of de-identifying personal information. This approach equates privacy

protection with making personal information anonymous or de-identified, i.e. prevent-
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ing an individual’s information from being linked with him or her. The premise is that

it is impossible (or, at least, very difficult) to infer personal information pertaining to

an individual from a de-identified dataset or use it to violate an individual’s privacy in

other ways.

• Semantic Security: The definition of semantic security compares what an attacker

(without access to the decryption key) can predict about the message m given the

ciphertext c with what the attacker can predict about the message m without being

given the ciphertext c. The advantage that access to the ciphertext gives to any attacker

is quantified. Encryption schemes are designed to make this advantage so negligible

that access to the ciphertext does not give the attacker any practical advantage over

not getting any information about the message at all.

• Differential Privacy: It guarantees mathematically that a person, who is observing

the outcome of a differential private analysis, will produce likely the same inference

about an individual’s private information, whether or not that individual’s private

information is combined in input for the analysis.

When encountering a new sensor, a non-expert user will have no knowledge of these

conceptions and hence will rely more on their experiences with the device or the class of

devices. The privacy notions formed during this interaction between a non-expert user and

a sensor is what we aim to study in our work.

6.4 Method

In this section, we describe our survey formulation process and data analysis methods.
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6.4.1 Hypothesis

In this work, we want to challenge the notion that the most common factor affecting privacy

sensitivity of devices is the ability of human beings to understand their data. To evaluate

this notion and determine the characteristics affecting privacy perceptions in devices, we

came up with a set of 4 factors that affect how a user perceives the privacy-sensitivity of a

device presented to them. In the following sub-sections, we describe these factors and our

reasoning behind them.

6.4.1.1 Privacy Factor (1): User’s Prior Knowledge

Mere-exposure effect [Bornstein and D’agostino, 1992,Bornstein and Craver-Lemley, 2016]

states that the more familiar [Raghunathan, ] people are with something, the more preference

they have for it [Fang et al., 2007]. This effect is seen when people stick to the same brand of

cars, devices and even engage with same businesses in their daily lives. Building upon this,

we want to examine whether user’s prior knowledge of a device, family of devices, or the

manufacturer plays a role in their privacy perceptions of that device. Specifically, we want

to test the following hypothesis: A user’s familiarity with a device and its meta-properties

(e.g. manufacturer, device type) affect their privacy perceptions about that device.

6.4.1.2 Privacy Factor (2): Physical Appearance of the Device

Human beings tend of build their opinion about objects from the very moment they appear

in front of them. Such is the case in shopping where the appearance of products greatly

influences a user’s decision to buy it or not [Creusen and Schoormans, 2005]. Similarly,

whether at work or at a public space, when we see a sensor we immediately begin to associate

it with what we know. This association is often on the basis of its physical appearance only,

since no other information about that device is available. This physical appearance affects

the user’s familiarity with said device, which in turn affects privacy perceptions. At the
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same time, though the user may be familiar with the device, they may not necessarily be

comfortable sharing data from it - one example is a camera, which is familiar but users may

not feel comfortable around. In our study, we want to examine how the physical appearance

of a device affects a user’s privacy perception of it. Specifically, we want to test the following

hypothesis: If we take a device that users are comfortable and familiar with, and change its

physical appearance to that of a device that they are still familiar but no longer comfortable

with, their privacy perceptions about that device will change to being more negative. Since

familiarity also affects our perception based on physical appearances, this hypothesis is an

extension of the previous hypothesis.

6.4.1.3 Privacy Factor (3): Interpretable Data Representations

Several research works in the sensing community [Li et al., 2019b] equate privacy with the

ability for a human to make inferences on the raw data collected by that sensor. In [Li

et al., 2019b], the authors claim that RF sensors preserve visual privacy since it does not

capture the visual shape of the target - implying that since humans have vision as a sensory

modality, devices that collect vision data are more privacy-invasive. In other words, this

notion of privacy is based on using data representations which are less interpretable to

humans. Other works describe a similar notion, where RF data is more privacy preserving

than visual sensors due to having less-interpretable data representations [Fan et al., ,Raeis

et al., 2021,Avrahami et al., 2018]. However, in a world where the machine learning is used

to make inferences of the collected data, this notion is not sufficient to meaningfully ensure

privacy. In fact, works such as [Zhao et al., 2018] show that it is not only possible to extract

shape, but also posture of human targets using a radar.

In this study, we want to find out what causes users to perceive a device negatively in

terms of it’s privacy – the data representation it collects or the inferences that can be made

on that data. More specifically, we want to test the following hypothesis: When shown the

inferences that can be made on the (non-human interpretable) data collected by a sensor,
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the user’s privacy perceptions change about that device. Importantly, this allows us to study

changes in privacy perceptions when users are made aware of possible inferences from sensor

data.

6.4.1.4 Privacy Factor (4): Control over Device Design and Data Policies

As the world moves more and more towards data-driven methods for tasks such as learning

user preferences, modeling user behavior and selling ads, users have become wary of what

data they share and how it is being used [Wang, 2016,Hochheiser, 2015,Wang et al., 2016b].

Often times, even if the data is being used for one purpose, there is no way to tell if the

company collecting that data will start using it for another purpose [Brown and Muchira,

2004]. Such collected data can be used to make various inferences about users. As a result,

we investigate the effects of granting users varying degrees of control over collected data, and

how such control affects willingness to adopt sensing devices into their environment. More

specifically, we want to test the following hypothesis: If given more control over how data

is collected, transmitted and stored, users are more likely to instrument their spaces with

sensing devices.

6.4.2 Survey Study

To test our hypothesis we conducted an online survey on the privacy preferences of users

from diverse backgrounds. Participants took approximately 12-18 minutes to complete the

survey. In the survey, we showed participants images of sensing devices, the data collected

by those devices, and the inferences that can be made on that data. In addition, we also

posed some situational questions that allowed us to test our hypothesis. In the following

subsections, we dive deeper into our survey methodology.
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(a) (b) (c) (d) (e) (f)

Figure 6.1: We use 3 main classes of devices in our study. Each class has 2 different devices (in

order to ascertain that the user responses are dependent on the class of device and not on the

device itself.) These devices are a) An Amazon Blink home camera, b) Kasa Inoor Pan/Tilt Smart

Security Camera c) A Wayv mmWave radar from Aienstein AI, d) LifeSmart mmWave Human

Presence Sensor, e) LinkSys MAX-STREAM AC1300 WiFi router, and f) TP-Link AX1800 WiFi

6 router. In this chapter, we use RF devices to learn more about factors that govern user privacy

perceptions.

6.4.2.1 Selection of Scenarios

In our survey, we investigate whether it is the physical appearance, data representation, or

the high-level inferences that users most cared about when it came to privacy perceptions.

Additionally, we also investigate how familiarity with a sensor or family of sensors affects

its privacy perceptions. We followed a three-step approach to decouple various properties

from each other. We started by showing users an image of a device and asked them how

familiar they are with said device. Then we asked them to write what they believed the

device was. Finally we asked them whether they would be comfortable with installing said

device in their bedroom. Since we wanted to keep the study in context with radio-frequency

(RF) sensing, we chose to compare user opinions about privacy-sensitivity of cameras with

mmWave sensors, WiFi routers, and audio sensors – all of which are commonly used in

sensing tasks. Finally, the respondents were presented with several scenarios that measure

perceptions of privacy in the face of varying degrees of control over shared data from a device.
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6.4.2.2 Selection of Devices

In our survey, we mainly focus on 3 classes of devices – cameras, RF sensors (such as

mmWave radars) and WiFi routers. The goal of our survey is to highlight how users perceive

the privacy of RF sensors when compared to cameras (since cameras are considered to be

more privacy invasive by existing notions of sensor privacy). For our survey, we selected

three devices – a smart-home camera, a mmWave sensor and a WiFi router. While the

WiFi router has become ubiquitous in households, both cameras and mmWave sensors are

steadily gaining inroads into the smart-home ecosystem. mmWave based RF sensors have

been used for various applications such as human activity recognition [Li et al., 2019b,Ding

et al., 2021, Singh et al., 2019] over the past several years. Similarly, WiFi routers are also

being leveraged to make a variety of inferences about users in a space [Wang et al., 2017,Li

et al., 2019a,Chen et al., 2018]. Hence, we chose these devices to compare and contrast with

a camera.

To avoid a particular brand name or a form factor affecting a respondent’s decision

(ascertain that it is the class of device and not the device itself that is being shown that

affects a user’s response), we select two sets of images for all the three types of devices

as shown in Fig. 6.1. We presented some respondents with first set of images and other

respondents with second set of images. Our results show that both sets of images lead

to similar trends in user responses. For cameras and WiFi routers, we select best sellers

on Amazon.com while for a mmWave sensor we select commercially available off-the-shelf

devices (the choice for mmWave sensors is limited). Our two cameras include an Amazon

Blink Mini 1080p camera and a Kasa Indoor Pan/Tilt Smart Security Camera. Both of

these are best sellers on Amazon.com. For mmWave devices we selected an indoor mmWave

radar called Wayv Air which is manufactured by Ainstein AI and another device called the

LifeSmart mmWave Human Presence Sensor. Both of these devices are some of the only

commercially available off-the-shelf mmWave devices. For WiFi routers, we choose a TP-

Link AX1800 WiFi 6 Router (best seller on Amazon.com) and a Linksys MAX-STREAM
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AC1300 Dual-Band Mesh WiFi 5 Router. All the six devices are commercially available and

can be purchased online.

6.4.2.3 Selection of Sample Data Representations for each Device

In our survey, we show users a snapshot of the data collected by the sensing devices listed

above. We ask respondents about their privacy comfort levels with a device/sensor being

placed in their bedroom. To help them visualize this scenario, we chose a generic camera

image of two people sleeping on their bed as this best describes the scenario that our survey

mentions. For the mmWave radar, we took a data snapshot from the company’s website.

Finally, for the WiFi router, we chose the output of Wireshark packet sniffing to show the

sample data collected by it. Wireshark [Banerjee et al., 2010] is one of the most popular

open-source network analyzer that is widely used to analyze WiFi traffic.

6.4.2.4 Selection of Possible Inferences for each Device

For each sensing device listed above, we showed the respondents a list of potential inferences

that can be made on their data. These inferences and the research works that they are

derived from are listed below:

• Camera: (i) The number of people in the room [Teixeira and Savvides, 2007], their

clothing [Stearns et al., 2018, Huang et al., 2021], race [Layne et al., 2012], ethnic-

ity [Layne et al., 2012], body shape [Guan et al., 2009], height [Guan et al., 2009], and

posture [Guan et al., 2009]; (ii) Certain activities, behaviors, and health conditions of

the people [Ann and Theng, 2014,Demrozi et al., 2020]: having meals, drinking, smok-

ing, walking, praying, watching TV, using a smartphone, intimate moments (hugging,

kissing), and breathing rate [Massaroni et al., 2018].

• mmWave Radar: (i) The number of people in the room [Choi et al., 2017,Weiß et al.,

2020], body shape, height, and posture [Li et al., 2020b, Sengupta et al., 2020]; (ii)
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Certain activities, behaviors, and health conditions of the people [Li et al., 2019b,Ding

et al., 2021, Singh et al., 2019]: having meals, drinking, smoking, walking, praying,

watching TV, using a smartphone, intimate moments (hugging, kissing), and breathing

rate [Wang et al., 2020a,Chauhan et al., 2020].

• WiFi Router: (i) Websites that have been visited, total time spent on a smartphone,

and sleep schedule [Ohm, 2009,Hernandez-Quintanilla et al., 2021]; (ii) The number of

people in the room [Yang et al., 2018,Cheng and Chang, 2017], body shape, height,

and posture [Jiang et al., 2020,Ren et al., 2022]; (iii) Certain activities, behaviors, and

health conditions of the people [Wang et al., 2017,Li et al., 2019a,Chen et al., 2018]:

having meals, walking, praying, watching TV, using a smartphone, intimate moments

(hugging, kissing), and breathing rate [Abdelnasser et al., 2015,Gao et al., 2020].

6.4.2.5 Measuring Privacy Perceptions

To gauge how concerned users were regarding the privacy aspects of a sensor, we asked them

the following questions:

Q1. How comfortable are you with this device being placed in your bedroom and stream-

ing/recording data? (an image of the device is shown to the respondents) We start out with

this question since the the form factor of the device and its appearance are the first things

that users notice. Even before they are able to read more about the device, examine the

data it collects or look at the inferences that it makes, they are already forming privacy

perceptions of a device.

Q2. The data collected by the device shown below looks like the image on the right.

How comfortable are you with this device being placed in your bedroom given the data that it

collects? (an image of the device and the representation of its collected data is shown to the

respondents) This question helps us measure how much the human ability to interpret data

plays into the notions behind privacy. This also helps us evaluate the claims about privacy
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made by research works that use the human ability to understand raw data as a measure of

privacy.

Q3. The device shown below is from a company that promises that no humans look at

the raw sensor data captured by these devices - instead, only specific information (as a result

of processing) is shared. The processing algorithms can make the following inferences about

your activities, behaviors, and surroundings: [List of inferences]. How comfortable are you

with such a device being placed in your bedroom and sharing the inferences shown above?

(an image of the device is shown to the respondents) In this question, we explicitly tell the

respondents that the data collected by the devices are not shared with any human beings -

instead, only the inferences, as a result of processing, are shared. This helps us decouple the

notion of data representations from inferences and to see which of the two matters more to

the user in terms of privacy notions.

6.4.2.6 Equating Privacy Sensitivity with Comfort

Privacy-sensitivity and privacy-invasiveness are vaguely defined terms for describing privacy

perceptions, and it is difficult to convey their meaning to a non-technical user. Existing

research works that aim to measure privacy perceptions use questions like how comfortable?

to understand a user’s privacy expectations [Akter et al., 2020]. In our survey, we also use

this as a proxy for understanding privacy perceptions. The respondents answers to subjective

questions in our survey show that our question formation was able to convey the meaning

properly to them.

During the survey, the respondents were able to respond to questions on a 5-point Likert

scale [Joshi et al., 2015]. For familiarity, the scale was: (1) Very unfamiliar, (2) Unfamiliar,

(3) Have some idea, (4) Familiar, and (5) Very familiar. For comfort, the scale was: (1) Very

uncomfortable, (2) Uncomfortable, (3) Neutral - Neither comfortable nor uncomfortable, (4)

Comfortable, and (5) Very comfortable.
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6.4.3 Choosing a Common Private Space

In the US, a house is considered a private space [law, ]. Out of all parts of this private

space, bedrooms are considered to be the most private [Berry, 2020]. People use various

parts of their homes in different ways and may not always have a high expectation of privacy

there. Such is the case in home rentals where the host may place cameras and other sensors

in common areas of the house. However, instrumenting spaces like bedrooms with sensors

(such as cameras) is not allowed. Since people consider their bedrooms to be a sacred and

private space [Berry, 2020], we used the scenario of bedrooms as a tool to help us learn about

a user’s privacy perceptions.

6.4.4 Organization of the Survey

The survey contains 51 single-choice and subjective (open-ended) questions. The survey was

organized as follow:

• Consent form that describes who is collecting the data, why is it being collected and

how it will be shared with other researchers.

• Demographic questions about age, gender, annual income, educational background,

and familiarity with technology to learn how these factors play into privacy perceptions.

• We show users an image of a device, ask them what they think it is, how familiar they

are with it. Then we ask them how comfortable they are if said device is installed in

their bedrooms.

• In the next section, we show the users an image of a device and a snapshot of the data

that it collects. We then ask them how comfortable they are if said device is installed

in their bedrooms.

• In the next section, we show users images of various devices, and a set of inferences that

can be made on the data collected by the device. We also describe a scneario where the
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manufacturer of the device has promised not to share the raw data with any human,

and only share certain inferences. We ask the users again about how comfortable they

are if said device is installed in their bedrooms.

• We present the users with a hypothetical scenario in which we ask them to assume

that they create their own camera from scratch and then ask them how comfortable

they are if this camera is installed in their bedrooms.

6.4.5 Data Analysis

In this section, we describe our data analysis procedures, both quantitative and qualitative.

6.4.5.1 Quantitative Analysis

The data collected in the survey does not meet the assumptions of parametric tests – normal

distribution and equal variance of errors. This is because the users have responded with

extreme opinions (very uncomfortable or very comfortable) for several questions in the survey.

We have one dependent variable – comfort level and several independent variables (physical

appearance, data, inference, control, and familiarity).

To analyze our data, we choose non-parametric tests such as the Wilcoxon signed-rank

test, Kolmogorov–Smirnov test and the Spearman correlation coefficient test with associ-

ated p-value. We use the Wilcoxon test because our study has a repeated-measure design.

When having such a design, there might be dependencies among participants’ responses to

these repeated questions. hence we use the Wilcoxon signed-rank test which is a repeated

measures test of dependency. It is performed between two paired groups and used to mea-

sure the whether the two related paired samples come from the same distribution. The null

hypothesis for the Wilcoxon signed-rank test is that two related paired samples come from the

same distribution. The Kolmogorov–Smirnov test is used to find similarity between two dis-

tributions. The null hypothesis of Kolmogorov–Smirnov test is that the two distributions are
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similar. Additionally, the statistic D of the Kolmogorov–Smirnov test is small (closer to 0)

when the two distributions are similar and close to 1 when the two distributions are different.

Suppose we have two distributions F and G. The Spearman correlation coefficient test with

associated p-value is used to measure monotonicity of the relationship between two datasets.

The p-value indicates the probability of an uncorrelated system producing datasets that have

a Spearman correlation at least as extreme as the one computed from these datasets.2

In addition, we also use the mean µ, standard deviation σ and 95% confidence interval to

describe the overall distribution of user opinions. The user opinions can range from a value

of 1 to 5 where 1 means are very negative opinion and 5 means a very positive opinion.

6.4.5.2 Qualitative Analysis

The survey contains several questions where respondents were allowed to give open-ended

answers. For each device shown to the respondents, we asked them to name what they

think the device was. Additionally, we also asked the users two scenario based open-ended

questions. These questions were:

• OE1. Suppose you create your own camera from scratch. You control what the camera

looks like, what parts go inside it, what data it collects, and where the data is stored.

How comfortable would you be with that camera being placed in your bedroom given

that no one else can see the data except you? Please explain the choice you made in

the previous question briefly.

• OE2. Which of the following cameras will you prefer if you have to place one inside

your home? [The choices were: (i) A camera from a well-known brand that does not

sell ads or ad revenue is not a major revenue source for them, (ii) A camera from a

company whose main source of income is ad revenue and sells your data to advertisers,

(iii) A camera from a company based in the USA, (iv) A camera from a company based

2The definitions of the tests have been taken from their respective pages in the Scipy documentation.
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in a country that you do not trust]Please explain your answer in the previous question

briefly.

In order to better understand how a user’s privacy perceptions change when give more

control over the data policies and the design of the device, we perform qualitative analysis

on OE1. All the open-ended answers were coded in a bottom-up approach using inductive

coding by two researchers. The researchers met frequently to discuss and iteratively code

the answers.

6.4.6 Recruitment

We conducted our survey on Prolific [Palan and Schitter, 2018] [Now prolific.co] during June

and July 2022. During the survey, we set a filter to only allow respondents in the US and 18

years or older to participate in the survey. The respondent matching was done by Prolific.

Each user was able to participate in the survey once.

6.4.7 Compensation and Ethical Considerations

We recruited the participants through Prolific. The participants were free to choose to

participate in the survey. Once the participants selected the survey, they were redirected to

a Google form where they were shown a consent form describing the purpose of the study,

as well as how the data will be collected and stored. After reading the consent form, the

participants could back out of the survey if they chose to do so, without any penalty. After

completing the survey, the participants downloaded a ‘completion code’ and entered it into

their Prolific account to mark themselves as complete. Each participant was paid $2.75 for

completing the survey. Based on the time taken by each respondent, that amounted to a rate

of around $16.75/hour (based on calculations done by Prolific). The study was exempted by

our institutions review board (IRB) as a part of the IRB approval process.
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6.4.8 Data Release

The responses collected during the survey have been anonymized (the Prolific ID associated

with each response has been deleted) and the responses are available publicly at: Link Hidden

for Anonymity Purposes.

6.5 Findings: Quantitative Analysis

In this section, we describe the quantitative findings of our survey.

6.5.1 Age and Gender

A total of 162 respondents completed the survey on Prolific. Out of the 162 participants,

94 (58%) identified as male, 64 (39.5%) identified as female, 3 (1.85%) neither identified as

male nor as female and 1 chose to not disclose their gender.

Amongst the 162 participants, 5 (3.1%) were less than 20 years of age (and 18 years or

older), 110 (67.9%) were between 21 and 40 years of age, 39 (24.1%) were between 41 and

60 years of age and 8 (4.9%) were above 60 years of age.

6.5.2 Education and Technical Level

During the survey, we asked the respondents to self-identify their education level. We asked

them to select the highest level of education that they have achieved. 52 (32.1%) of the

total respondents’ reported their highest level of education as high-school, 23 (14.2%) as

Associates, 51 (31.5%) as Bachelors, 32 (19.8%) as Graduate and 4 (2.5%) as Professional.

In order to assess the technical savviness and familiarity of the respondents with sens-

ing devices and the internet-of-things (IoT) in general, we used modified versions of some

questions from the Mozilla’s ‘How connected are you?’ survey [Mozilla, ]. We asked the re-

spondents: How would you describe yourself when it comes to your knowledge of information
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technology? The options were:

• I am an expert: I build my own technical systems (e.g., computers), run my own

servers, and code my own apps.

• I am technically savvy: I know my way around a computer pretty well. When anyone

in my family needs technical help, I’m the one they call.

• I am an average user: I know enough to get by.

• I am a novice: Technology scares me! I only use it when I have to.

Out of the total 122 respondents, 17 (10.5%) considered themselves experts, 94 (58%)

considered themselves technically-savvy, 48 (29.6%) considered themselves average and 3

(1.9%) considered themselves as novice.

6.5.3 Data vs Inferences

In this section we explore what matters more to users regarding the privacy-invasiveness of

a device/sensor – is it the intepretability of data representations, the possible inferences, or

both? We ask the users three questions (listed in Section 6.4.2.5) to decouple the contribution

of data and inferences in forming notions around privacy. In the first question, we show a

picture of the device and ask the respondents how comfortable are they with the said device

being placed in their bedrooms. This helps us determine any preconceived notions that the

users may have about the privacy-sensitivity of a device based on its physical appearance.

In the second question, along with the image of the device, we also show a sample snapshot

of the data collected by the device. This helps us gauge how the intepretability of data

representations affects a user’s perception of privacy. Finally, in the third question, we show

the respondents a set of inferences that can be derived from the data collected by the sensor.

We also tell them that the data collected by the sensor will not be seen by another human

being and instead be processed (via some algorithms) and then only the inferences will be
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shared. This helps us understand how the knowledge of inferences affects a user’s perception

of privacy. In the following subsections, we show the quantitative results for the three classes

of sensing devices on the three questions listed above in Fig. 6.1.

6.5.3.1 Camera

We showed the users pictures of a camera (Fig. 6.1) and asked about their comfort level

if it were to be placed in their bedroom. Since cameras are ubiquitous today, only 22

out of the 162 respondents said that they were either unfamiliar or very unfamiliar with

it. Additionally, since cameras are considered to be privacy invasive, we found that people

were not comfortable with installing it in their bedrooms Fig. 6.2. 124 out of the 162 total

respondents (µ = 1.85, σ = 1.08, 95% CI = [1.69, 2.03]) were either very uncomfortable or

uncomfortable when just shown the image of the camera. Next, we showed the respondents

an image of the same camera, but with a snapshot of a sample data (image) captured by

it. We asked the users, the same question regarding their comfort level with installing this

device in their bedrooms. 141 out of the 162 total respondents (µ = 1.51, σ = 0.90, 95%

CI = [1.37, 1.65]) were either very uncomfortable or uncomfortable, as shown in Fig. 6.2.

We performed a Wilcoxon signed-rank test between the responses after looking at just the

physical appearance and the responses after looking at both the physical appearance and

the data collected by the camera and found that the difference was statistically significant

(V = 306.5, p < 0.0000054) meaning that showing the collected data representation from

the sensor caused a significant shift in their privacy perception. Next, we showed the users

an image of the same camera with a list of inferences that can be made on the data collected

by it (with the condition that humans won’t be able to see the raw data). 137 out of the 162

total respondents (µ = 1.60, σ = 0.95, 95% CI = [1.46, 1.75]) were either very uncomfortable

or uncomfortable, as shown in Fig. 6.2. We performed a Wilcoxon signed-rank test between

the responses after looking at just the physical appearance and the responses after looking at

both the physical appearance and the list of inferences that can be made by the camera and
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found that the difference was statistically significant (V = 700.5, p < 0.00082). Additionally,

we did not find a statistically significant difference between the responses after looking at

the physical appearance of the camera with the data that it collects and the responses after

looking at both the physical appearance and the list of inferences that can be made by the

camera (V = 270.5, p = 0.07). To further analyze the relationship between the data and the

inferences, we perform a Kolmogorov–Smirnov test between the two and find that the two

distributions are similar (D = 0.049, p = 0.9895). This means that for a camera, both

the data representations and the inferences lead to similar privacy perceptions.

This can be attributed to the fact that since users can look at camera images and make their

own inferences, both data and inferences contains similar amounts of human understandable

information.
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Figure 6.2: User comfort level when shown (a) an image of the camera, (b) an image of the camera

and a snapshot of the data that it collects, (c) an image of the camera and list of inferences that

can be made on the data that it collects (assuming that only inferences and not data are being

shared)

6.5.3.2 mmWave Radar

We showed the users picture of an off-the-shelf mmWave radar (Fig. 6.1) and asked about

their comfort level with placing it in their bedroom. mmWave radars are relatively new in

the sensing world and hence, only 3 out of the 162 respondents said that they were familiar

with it. We found that when shown an image of just the radar, users were not comfortable
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with installing it in their bedrooms Fig. 6.3. 88 out of the 162 total respondents (µ = 2.28,

σ = 1.08, 95% CI = [2.12, 2.45]) were either very uncomfortable or uncomfortable. Next, we

showed the respondents an image of the same radar but with a snapshot of a sample data

captured by it. We asked the users the same question regarding their comfort level with

installing this device in their bedrooms. Since the data captured by the radar is not human

interpretable, the number of users that were either very uncomfortable or uncomfortable

decreased to only 71 out of the 162 total respondents (shown in Fig. 6.3) (µ = 2.67,

σ = 1.09, 95% CI = [2.50, 2.84]). We performed a Wilcoxon signed-rank test between

the responses after looking at just the physical appearance and the responses after looking

at both the physical appearance and the data collected by the mmWave radar and found

that the difference was statistically significant (V = 1018.5, p < 2.95× 10−5) meaning that

showing users the data collected by the sensor caused a significant shift in their privacy

perception. Next, we showed the users an image of the same mmWave radar with a list of

inferences that can be made on the data collected by it (with the condition that humans

won’t be able to see the raw data). 117 out of the 162 total respondents (µ = 1.99, σ = 1.11,

95% CI = [1.82, 2.16]) were either very uncomfortable or uncomfortable (shown in Fig. 6.3).

We performed a Wilcoxon signed-rank test between the responses after looking at just the

physical appearance and the responses after looking at both the physical appearance and the

list of inferences that can be made by the mmWave radar and found that the difference was

statistically significant (V = 1589.5, p = 0.0023). We also found a statistically significant

difference between the responses after looking at the physical appearance of the mmWave

radar with the data that it collects and the responses after looking at both the physical

appearance and the list of inferences that can be made by the mmWave radar (V = 596.0,

p < 4.86× 10−11). To further analyze the relationship between the data and the inferences,

we perform a Kolmogorov–Smirnov test between the two and find that their is no similarity

between the two distributions (D = 0.284, p < 3.70 × 10−6). We conclude that for a

mmWave radar, since the data is not human understandable but inferences are,
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the data and the inferences lead to different privacy notions. In fact, when shown

the inferences, the users’ privacy perceptions become more negative. This shows

that inferences lead to more informed privacy decisions by the users since mmWave radar

data is not human interpretable, whereas inferences are. Additionally, since people are not

familiar with mmWave sensors, their unfamiliarity initially dominates their decision making

about placing this sensors in their bedrooms.
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Figure 6.3: User comfort level when shown (a) an image of the mmWave radar, (b) an image of

the mmWave radar and a snapshot of the data that it collects, (c) an image of the mmWave radar

and list of inferences that can be made on the data that it collects (assuming that only inferences,

not data, are being shared)

6.5.3.3 WiFi Router

We showed the users pictures of a generic WiFi router (Fig. 6.1) and asked about their com-

fort level with placing it in their bedroom. Since WiFi routers are ubiquitous today, only 8

out of the 122 respondents said that they were either unfamiliar or very unfamiliar with it.

Additionally, since WiFi routers are considered to be innocuous, we found that people were

very comfortable with installing it in their bedrooms (Fig. 6.4). 122 out of the 162 total

respondents (µ = 3.97, σ = 1.11, 95% CI = [3.80, 4.14]) were either very comfortable or com-

fortable when just shown the image of the WiFi router. Next, we showed the respondents an

image of the same WiFi router but with a snapshot of a sample data (Wireshark snapshot)

captured by it. We asked the users the same question regarding their comfort level with
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installing this device in their bedrooms. Since the Wireshark output is not interpretable

by regular users, 100 out of the 162 total respondents were either very comfortable or com-

fortable (Fig. 6.4) (µ = 3.67, σ = 1.08, 95% CI = [3.51, 3.84]). We performed a Wilcoxon

signed-rank test between the responses after looking at just the physical appearance and the

responses after looking at both the physical appearance and the data collected by the WiFi

router and found that the difference was statistically significant (V = 647.0, p < 3.83×10−5)

meaning that showing users the data collected by the sensor caused a significant shift in their

privacy perception. Next, we showed the users an image of the same WiFi router with a

list of inferences that can be made on the data collected by it (with the condition that

humans won’t be able to see the raw data). 89 out of the 162 total respondents were now

either very uncomfortable or uncomfortable Fig. 6.4 (µ = 2.59, σ = 1.39, 95% CI = [2.37,

2.80]). The total number of uncomfortable users went from 13 (when shown just the phys-

ical appearance of the WiFi router) initially to 61 (when also shown the list of inferences).

We performed a Wilcoxon signed-rank test between the responses after looking at just the

physical appearance and the responses after looking at both the physical appearance and

the list of inferences that can be made by the WiFi router and found that the difference

was statistically significant (V = 271.0, p = 8.63 × 10−19). We also found a statistically

significant difference between the responses after looking at the physical appearance of the

WiFi router with the data that it collects and the responses after looking at both the phys-

ical appearance and the list of inferences that can be made by the WiFi router (V = 237.5,

p < 2.26× 10−16). To further analyze the relationship between the data and the inferences,

we perform a Kolmogorov–Smirnov test between the two and find no similarity between the

two (D = 0.410, p < 2.07× 10−12). We conclude that showing inferences for a common

home device like a WiFi router causes a very large negative shift in the privacy

perception of that device. This shift in privacy perception is different from the one which

happens when users are shown the data representation, since the data collected is not human

interpretable. Hence, for sensors that collect non-human-interpretable data, it is
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the inferences, and not the data collected, that have a higher impact on how

users perceive the privacy-sensitivity of a device.
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Figure 6.4: User comfort level when shown (a) an image of the WiFi router, (b) an image of the

WiFi router and a snapshot of the data that it collects, (c) an image of the WiFi router and list

of inferences that can be made on the data that it collects (assuming that only inferences and not

data are being shared)

6.5.4 Physical Appearance of the Device and Familiarity

WiFi routers are one of the most common IoT devices in homes in the US [Associates, ]

– something that is also reflected in the responses to the question – How familiar are you

with the following device/sensor [with an image of a generic WiFi router]. Hence, it is not

surprising to see that most of the users thought of it as a benign device and were comfortable

with installing it in their bedrooms. In order to understand how physical appearance affected

perceptions of privacy, we found two WiFi router designs that look drastically different. One

is an Asus Blue Cave Wifi router that looks like a camera from certain angles, and second

is a Maurice Misho Radar Router Design that looks like a microphone. The responses

are shown in Fig. 6.5. Initially, when shown the image of a generic WiFi router, only

18 (11.1%) of the total respondents (µ = 3.97, σ = 1.11, 95% CI = [3.80, 4.14]) were

uncomfortable with installing it in their bedrooms. However, when shown a WiFi router

that looks like a microphone, 83 (51.2%) (µ = 2.48, σ = 1.05, 95% CI = [2.31, 2.64]) were

uncomfortable and when shown a WiFi router that looks like a camera, 83 (51.2%) out of
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the total 162 (µ = 2.49, σ = 1.31, 95% CI = [2.29, 2.70]) respondents were uncomfortable.

We performed a Wilcoxon signed-rank test between responses for a generic WiFi router and

a WiFi router that looks like a microphone and found that the difference was statistically

significant (V = 140.5, p < 1.981 × 10−21). Similarly, the difference between responses

for a generic WiFi router and a WiFi router that looks like a camera was also statistically

significant (V = 227.5, p < 1.27 × 10−18). We also performed a Wilcoxon signed-rank

test between responses for a WiFi router that looks like a microphone and a WiFi router

that looks like a camera but did not find a statistically significant difference (V = 1629.5,

p = 0.73). Additionally, to further analyze the relationship between the responses for a

WiFi router that looks like a microphone and a WiFi router that looks like a camera, we

performed a Spearman Correlation Coefficient Test between the two and found a moderate

Spearman correlation (R = 0.47, p < 4.385 × 10−10). Hence, we conclude that when the

data collected and inferences are not disclosed to users, the physical appearance

of a device can be manipulated to influence the users’ privacy perception of that

device.
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Figure 6.5: User comfort level when shown (a) an image of a generic WiFi router, (b) an image of

a WiFi router that looks like a microphone, (c) an image of a WiFi router that looks like a camera.

6.5.5 Control

To find out how control over device configuration and data policies affects a user’s per-

ception on privacy, we presented the respondents with a scenario where they get to build
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a camera from scratch – they can control the physical appearance, hardware components,

data collected and how the data is stored. We then asked the same question regarding their

comfort levels with placing this camera in their bedrooms. The user responses are shown

in Fig. 6.6. We see that initially, only 19 (11.7%) (µ = 1.85, σ = 1.08, 95% CI = [1.69,

2.03]) out of the total 162 respondents were comfortable with placing a third party camera

in their bedrooms, however, when given complete control over the device, 90 (55.6%) out of

the total 162 respondents (µ = 3.28, σ = 1.42, 95% CI = [3.06, 3.51]) are comfortable with

placing this camera in their bedrooms. We performed a Wilcoxon signed-rank test between

two sets of responses and found that the difference was statistically significant (V = 284.0,

p < 1.26 × 10−18). Additionally, we also performed the Kolmogorov-Smirnov test between

the two sets of responses and found that there indeed was a statistically significant difference

between the two (D = 0.438, p < 2.31 × 10−14). Hence, we conclude when given com-

plete control over the device design and data policies, users are more likely to

instrument their personal spaces with sensing devices.
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Figure 6.6: User comfort levels with installing a camera in their bedroom when given full control

over it’s design and data policies. Notice that more users are willing to put a camera in their

bedrooms if given more control.

6.6 Findings: Qualitative Analysis

In this section, we analyze and group users’ subjective responses to the following question

in our survey, in order to better understand the factors that guide a user’s privacy decision

making process:

132



OE1. Suppose you create your own camera from scratch. You control what the camera

looks like, what parts go inside it, what data it collects, and where the data is stored. How

comfortable would you be with that camera being placed in your bedroom given that no one

else can see the data except you? Please explain the choice you made in the previous question

briefly.

We first categorized the sentiment of user responses as either positive or negative –

positive if their response suggested that they were comfortable with the camera being placed

in their bedroom and negative is they were not comfortable with the camera being placed in

their bedroom. The sentiment was analyzed by the two researchers coding the qualitative

responses using the open-ended answers.

Fear Unauthorized Data 
Access Uneasiness with Sensing Lack of a use case

Risk of data breach

Fear of getting hacked

Lack of expertise in device security

Security Risks

Fear of being recorded

Violation of personal space

Don’t want a camera

Violation of privacy

No purpose of device

Lack of device knowledge

Figure 6.7: We employed inductive coding to code the open-ended responses. For the answers with

a negative sentiment, the following themes (in blue) and codes (in red) emerged.

6.6.1 Why users don’t want to place a camera in their bedroom even when

given complete control over it’s design and data policies?

From the responses with a negative sentiment, our inductive qualitative analysis method

yielded ten codes. These codes can further be organized into three distinct themes. Fig. 6.7

shows these codes (red) and their associated themes (blue). We describe each theme in more

detail below.
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6.6.1.1 The Fear of Unauthorized Data Access

In our study, 43 (26.5%) out of the total 162 respondents expressed some concern regarding

their data being accessed without their authorization. Not only is this the case when com-

panies are storing their data but also for devices that they design and control themselves.

This unauthorized access can include data breach (N=21), device being hacked (N=24), lack

of a user’s expertise with designing security focused device (N=3) and other security risks

that modern internet-connected devices face (N=1)3. One respondent mentions: All systems

are hackable. I will never be “the only person” who has access to any digital input/output.

Privacy does not exist in this world. Other users said: “Cameras are hacked all the time. If

someone wants it, they will get it. If I made it myself I would be even more wary”, “Even

though I know that no one else can see the data, I would irrationally believe that somebody

eventually would see the data. So I would continue to be uncomfortable with the camera.”,

and “There is never a guarantee that no one else can see the data but me, that’s a wishful

fantasy, but if data exists its unlikely to stay with only one person”. One user mentioned

“There’s no such thing as a completely secure piece of technology if it can connect to the

internet at all.”. This shows the despite given complete control over the design of the device

and its data policies, some users still believe that their data can be accessed by others. In

fact, some users are more concerned about privacy if they had created a device, since a

manufacturer will be able to do a better job than them when it comes to protecting the data

and implementing state-of-the-art security techniques.

6.6.1.2 Uneasiness with Sensing

Despite knowing about the inferences or given full control over the device some respondents

were not comfortable with instrumenting their bedrooms with a camera. 30 (18.5%) out

of the total 162 respondents were concerned with a sensor such as camera being placed

3multiple codes can be assigned to the same response.
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in their bedrooms as they either found it “weird” or as something that will cause them

paranoia. This uneasiness with sensing can be caused by a fear of being recorded (N=10),

a perceived violation of personal space (N=8), a perceived violation of privacy (N=2), not

wanting a camera for unspecified reasons (N=9), and a lack of device knowledge (N=2).

Several respondents made comments such as: “I would still feel as if I’m being watched”,

“I don’t want a camera in my bedroom at all”, “I don’t want a camera in my bedroom even

if no one else could see it”, “It would still feel like there is something watching me at all

times...”, “I don’t like cameras in my bedroom it creates the wrong atmosphere and makes

me uncomfortable knowing something is always recording”, “all this stuff is like spying to

me”, “...a camera in general makes me feel like I’m on display” and “Even though no one

else can access the data, I still feel uncomfortable having everything filmed in my bedroom.

I don’t want to record my every movement and activity, even if no one else can view it.”

This shows that despite the best intentions of a manufacturer, there are users who don’t

want their private spaces monitored. One needs to be mindful of such preferences when

instrumenting spaces with sensors and devices.

6.6.1.3 Lack of a Use Case

In addition to above specified themes, we also found out that 3 (1.85%) users did not want

to install any cameras in their bedroom as it served no purpose to them. These users wrote

“This type of camera does not serve a purpose to me”, “..I do not have a necessity..”, and

“...I also have no reason to put a camera in my room.” This shows that manufacturers

should try to prove the utility of their devices to the users. Instrumenting a space with

sensing devices without consulting the users about their needs and doing a use-case study

should be avoided.
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Figure 6.8: We employed inductive coding to code the open-ended responses. For the answers with

a positive sentiment, the following themes (in blue) and codes (in red) emerged.

6.6.2 Why users are likely to place a camera in their bedroom even when given

complete control over it’s design and data policies?

In addition to analyzing why users don’t want to instrument their personal spaces with a

camera, we also analyzed the positive responses – reasons why users wanted to instrument

their spaces with cameras. Our inductive qualitative analysis method yielded five codes.

These codes can further be organized into three distinct themes. Fig. 6.8 shows these codes

(red) and their associated themes (blue). We describe each theme in more detail below.

6.6.2.1 Utility

Some users are likely to instrument their spaces with cameras is due to the utility that is

provides. In our survey, respondents stated “If I lived with other people I might want to know

if other people are going in my bedroom ” and “i would let it only collect data if there was a

break in”. This shows that demonstrating utility is a possible method that can be used to

improve the adoption rate of a particular device.

6.6.2.2 Control over the device

By far, a majority of users wanted to place a camera in their bedroom largely because they

can control its data collection (N=19) and the access to collected data (N=40). Several

respondents noted “I control what it sees so it doesn’t worry me”, “If I could control what it
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saw and collected I might be ok with it”, “If I can control the flow of data, I am comfortable

with placing the device in my bedroom”, “If I had complete autonomy of what the data collects

and how it is used, and I only have access to it, I would feel very comfortable because I would

design it to suit my privacy needs and protect myself”, and “There is no chance that my

personal data could be used in the wrong way if I have total control of how it’s used.” These

comments validate our hypothesis that a user’s notions about the privacy sensitivity of a

device depend upon the amount of control they have over it.

6.6.2.3 Knowledge of the device

Additionally, we also find that the more knowledge about how a device works that users have,

the more likely they are to use it appropriately. In our survey, several (N=11) users said

that since they knew how the device works, they are fine with placing it in their bedrooms.

Some responses included “If I know what it is doing at all times I wouldn’t mind it being in

my room”, “I would know exactly what is collected and where the data is going”, and “Now

that I know what it’s used for, I’m not worried about other companies collecting my data”.

6.7 Discussion

In this section, we discuss key findings of our work, how they can be used by the general

community and some limitations of our study.

6.7.1 Key Findings

Our results show that perceptions of privacy do not solely depend upon the intepretability a

sensor’s data representations, but also on other factors such as possible inferences, physical

appearance, familiarity and control. Our main findings are summarized below:

Data Representation vs Inference: When the data collected by the sensor is human
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interpretable, it does not matter which of the two are shown to the users as users can make

inferences themselves by looking at the data. However, when data is not human intrepretable,

we found that inferences have more affect on the overall privacy perceptions of the user. In

case of both mmWave radar and WiFi router, showing inferences caused a larger negative

shift in the overall privacy perception of the device than the data.

Physical Appearance and Familiarity: We found that users were less likely to install

sensors in their homes that they are not familiar with. Additionally, when users look at a

device, they try to find associations between the appearance of that device and any other

device that they may have come across. This is evident when users see a router that looks

like a camera and mistake it to be a camera and hence change their perception completely.

When data and inferences are not disclosed, people use physical appearance and their sense

of familiarity to make any judgements about the device.

Control: When given full control over the device design and data policies, users are more

likely to install sensing devices in their private spaces and have an improved privacy percep-

tion of the device.

6.7.2 Limitations of our Study

This section discusses some limitations in our study that future research can address. In this

study, we showed the users images of a sensor, the data collected, and a list of inferences that

can be abstracted from the data. A more thorough in-person study can collect user data

using a variety of sensors and show the collected data and the inferences to the users and

then ask them about their privacy perception. We expect that when users see their own data

and inferences instead of someone else’s, it may have a higher impact on their opinions. This

approach is analogous to ex-post transparency studies that visualize users’ personal data

disclosure [Murmann and Fischer-Hübner, 2017]. Moreover, future work can contextualize

the inferences from sensor data in current data-sharing practices in commodity markets, e.g.,

understanding how user opinions change before and after they learn how companies might
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share these inferences with third parties [Farke et al., 2021]. Finally, our study only focuses

on sensors in spaces with a high expectation of privacy, such as bedrooms. Future studies

can also learn how users’ privacy expectations change with the space where the sensors are

present (e.g., bedroom vs. balcony).

6.7.3 Rethinking Privacy in Future IoT/Sensing Privacy Research

In this section, we discuss how researchers, manufacturers and users can use the implications

of our study to guide future research, design, and instrumentation of sensing spaces.

Avoiding Assumptions about Sensor Privacy. In light of this study, we hope re-

searchers will avoid using blanket statements about the privacy-sensitivity or privacy-invasiveness

of devices such as RF sensors, without a user study. Users are key stakeholders in deciding

the privacy viability of sensors and sensing paradigms, and they should have a say in what

gets instrumented in their spaces.

Sensor Privacy in the ML world: Relying solely upon human interpretability of sensor

data as a predictor for privacy-sensitivity of a device is misguided. We believe that laws

and policies need to account for the recent advancements in machine learning in order to

determine what type of data to collect from human subjects. Our recommendations are not

just useful for RF sensors but can also be applied to any sensing modality.

Today, machine learning algorithms are used in all facets of our lives for various decision

making tasks. In future research, instead of only asking What inferences can a human make

from this data?, we need to ask What inferences can a machine learning model abstract from

this data? Recent advances in visual-language intelligence that can convert one modality

to another such as DALL-E [Ramesh et al., 2021] show that it is now possible to transform

text to images. Since our study highlighted the impact of inferences from RF sensor data on

user privacy notions, future researchers can extrapolate to scenarios where the embeddings in

sensor data-based machine learning models will increasingly carry more semantic information
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that, in theory, can also be translated to imaging data understandable to humans. Thus,

future research can understand the semantic information encoded by sensor data, which

may enable future privacy-preserving techniques, e.g., as is done with privacy-preserving

techniques for visual images [Kawamura et al., 2020].

Sensor Privacy Disclosure. There have been several attempts such as the nutrition label

for privacy [Kelley et al., 2010] that aim to disclose information about what the sensor is,

what type of data does it collect, why is the data being collected, or where the data is

stored. When implemented, such approaches can help users learn more about a device and

make a better decision about their comfort and privacy expectations with installing such a

device in their spaces. However, in light of the key findings in our work, we believe that

every manufacturer should also disclose three more things about a device to better guide this

decision making process – (1) inferences that will be made on the data (2) inferences that

can possibly be made on the data collected and (3) an example of some common devices and

sensors that are similar to the device in question in terms of functionality. The manufacturers

can collect a list of all possible inferences that can be made on the data collected by the

sensor from research papers and then divide them into simpler categories. For example,

radar sensors can: understand the shape and size of the scene, shape and size of objects

and human subjects in the scene, activities being performed, gestures being made, speed of

objects, vibrations in the surfaces (which can be used to recreate sound) and vital signs.

Disclosures that focus on inferences and use easy to comprehend language for non-technical

users need to be used in spaces where privacy needs to be prioritized.

Sensor Privacy Control: In order to make users feel more comfortable, device manufac-

turers and researchers can work together to create paradigms where users have more control

over the design and placement of the device without sacrificing utility. In addition, data

policies need to allow users the right to have their data deleted when they want to. Before

using the data for training new models or for selling ads, express user consent needs to be

sought. Finally, in some cases, control means the right to not be monitored at all. The idea
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that some users wish to remain anonymous and out of range of any sensing device needs to

be respected as well.
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CHAPTER 7

Conclusion and Future Work

In this thesis, we looked at how RF can be used independently and with other modalities

such as vision and IMU to create a deeper and richer understanding of our surroundings.

In Chapter 2, we presented RadHAR [Singh et al., 2019] framework for HAR using the

time window voxel representation of sparse mmWave radar point clouds. Our evaluation of

the classifier shows that deep learning classifiers can be directly trained on the time window

voxel representation and can achieve test accuracy greater than 90%. The classical machine

learning approaches require domain-specific feature extraction and show poor performance

on the voxels. Deep learning classifiers are able to learn the feature extraction transformation

by directly training on the voxels. The classifiers which are designed to handle the spatial

and temporal dependencies in data perform better than the fully connected deep learning

classifier.

In Chapter 3, we presented a radar-camera fusion method to estimate dense depth [Singh

et al., 2023]. Unlike depth completion with images and lidar points, radar-camera depth

completion introduces a series of challenges largely due to the assumptions made while

obtaining radar point clouds. These assumptions introduce ambiguity when projecting the

point clouds onto the image plane. In this work, we addressed this challenge by proposing

a two-step approach for obtaining dense depth via the fusion of a radar point cloud and

an image. The method is motivated by our understanding of radar point cloud generation

mechanics and is designed to correspond noisy and ambiguous radar points to image regions

in a data-driven fashion. While we do not bar the case where correspondences are off i.e.
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over-prediction, our experiments show that the proposed method achieves better results

compared with other methods (i.e. 10.3% in mean absolute error (MAE) and by 9.1% in

root-mean-square error (RMSE) improvement) of obtaining dense depth via radar-camera

fusion.

In Chapter 4, we showed that self-supervised learning can be used to train radio models

using a radio-visual co-learning approach, and without relying on laboriously labelled data.

This technique can help enable next generation of applications that rely on training machine

learning models over large-scale unlabeled RF data.

In Chapter 5, we presented SnoopDog [Singh et al., 2021], a framework to detect, identify,

and localize Wi-Fi based sensors monitoring a person in an arbitrary space. SnoopDog works

by establishing causality between a set of ground truth sensors monitoring a user and the

transmitted information of wireless devices on a Wi-Fi network. It then uses this causality

to perform trial-based localization. We implement SnoopDog on a set of commonly available

devices such as a smartphone and a laptop and evaluate our solution on a set of representative

clandestine sensors. The framework had a detection rate of 95.2% and a device classification

rate of 100% when the injected multi-modal event was human motion or sound.

In Chapter 6, we conduct a user study to show that the idea that the privacy sensitivity

or the privacy invasiveness of a device depends only upon the human interpretability of

the data collected by that device is incorrect. Additionally, we show that a user’s privacy

perceptions regarding a device or a sensor depend upon a combination of multiple different

factors such as the data collected by the device, the inferences that can be made of that data,

the user’s familiarity with the device and the amount of control that the user has over the

design and data policies of the device. This is in contrast to existing notions of privacy which

assume that human interpretability is primary in determining the privacy-invasiveness of a

sensor. We hope that in light of the key findings in this paper, manufacturers will improve

their disclosure process by adding the key factors highlighted in this paper to better guide

decision-making when it comes to privacy.
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Possible extensions of works presented in this thesis are discussed in the following sub-

sections.

7.1 Human Activity Recognition using RF

Our method works over point clouds generated from a mmWave radar which are sparse and

noisy. However, over time mmWave radars have improved and can now provide denser and

more accurate measurements of the scene. Future research can study new methods that can

leverage better-quality data to improve our performance.

Additionally, we studied a simple set of activities such as jumping and walking. In the

real world, activities are complex and hence works need to study the performance of mmWave

sensors in capturing complex activities in real-world settings.

Several research studies such as [Geng et al., 2022] have already shown superior perfor-

mance using raw time series signals instead of point clouds. These studies can be built upon

in the future for more novel applications.

7.2 Detecting and Localizing Hidden Sensors

While our work can detect and localize hidden wireless sensors, it requires a time-consuming

and cumbersome process to do so. The amount of user effort required to search for hidden

devices can be a barrier for a lot of people especially the ones with disabilities.

More work needs to be done in order to make these techniques accessible to end users in

a user-friendly way.
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7.3 Radar-Camera Fusion for Depth Estimation

While our method beats the current state-of-the-art techniques when it comes to estimating

depth, its performance is still worse than that of a Lidar. As radars and deep learning

techniques to process them improve, new methods can be developed to can achieve Lidar-

like performance using a camera and a radar.

7.4 Measuring Privacy Impacts of Instrumenting Spaces with Sen-

sors

During the course of our research, we found an additional factor that affects a user’s privacy

perception of a device or a sensor – Utility. There is a tradeoff between utility and privacy

– when presented with a highly desirable use case, users are more willing to accept sensors

that they would have otherwise rejected due to privacy concerns. Future research can study

this tradeoff.

Additionally, while we study only the sensing aspect of the problem, real-world systems

are often closed-loop – they provide some sort of output after ingesting the sensory data.

Future research needs to study privacy perceptions of such closed-loop systems.
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