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A Model of Natural Category Structure
and its Behavioral Implications!

Jane Silber Douglas Fisher
Management of Technology Department of Computer Science
Vanderbilt University Vanderbilt University

Abstract: Fisher (1988) uses the COBWEB concept formation system to illustrate a
computational unification of basic level and typicality effects. The model relies on
probabilistic, distributed concept representations, and appropriate interaction between
cue and category validity. We review this work and report a new account of the fan effect.
This extension requires an additional assumption of parallel processing, but otherwise is
explained by precisely the same mechanisms as basic level and typicality phenomena.

INTRODUCTION

Cognitive modeling fits general computational mechanisms to the constraints of
psychological data. The problem of determining an initial starting point for cognitive
modeling has been implicitly addressed by several authors. Anderson (in press) suggests
a rational analysis, whereby a general class of behaviors (e.g., concept formation) are
associated with a performance function to be optimized. The guiding assumption is that
natural organisms are rational, albeit resource-bounded decision makers.

This paper traces the development of the COBWEB concept formation system (Fisher,
1987) from rational analyses by Gluck and Corter (1985), Kolodner (1983), and Lebowitz
(1982). Gluck and Corter provide insights on the absolute quality of conceptual
knowledge in their work on human basic level effects. Kolodner’s CYRUS and Lebowitz’s
UNIMEM provide general mechanisms of indexing and classification that we engineer to
fit the constraints of basic level effects. In Fisher (1988) the consistency of the resultant
model is verified with respect to basic level effects. However, the model also accounts for
typicality effects, which were not the focus of engineering. In fact, the model unifies these
effects and suggests heretofore unexplored interactions between basic level and typicality
phenomena. This paper extends the phenomenological basis of the model by accounting
for the fan effect (Anderson, 1976). The extensions required for this account are natural,
do not adversely affect earlier behavioral accounts, and suggest ways to improve the
robustness of COBWEB’s underlying learning mechanisms.

BASIC LEVEL EFFECTS AND RATIONAL CONCEPT FORMATION

Substantial experimental evidence suggests that there is a basic or preferred level of
human classification (Rosch, Mervis, Gray, Johnson, and Boyes-Braem, 1976; Jolicoeur,

1Requests for reprints should be sent to Douglas Fisher.
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Gluck, and Kosslyn, 1984). For example, when a subject is shown a picture of a collie
and asked to name it, the response will typically be dog, not collie, mammal, or animal.
Similarly, when asked to confirm that a pictured collie is a collie, dog, mammal and
animal, subjects will respond more quickly for dog than the other categories. These tasks
indicate that for a hierarchy containing {collie, dog, mammal, animal}, dog is the basic
level concept.

Gluck and Corter (1985) formulated category utility, which presumes that the basic
level maximizes ‘predictive ability’. For example, very few correct predictions can be
made about an arbitrary animal, but those that can be made (e.g., animate) apply to
many objects. In contrast, knowing something is a robin assures many predictions, but
they apply to much fewer objects. The basic level concept (e.g., bird) is where a tradeoff
between the ezpected number of correct predictions (e.g., has-feathers, beaks, flies) and
the proportion of the environment to which the predictions apply, P(N;)E(# correct
predictions| Ny ), is maximized. If P(A; = V;;|Ni) is the probability that an attribute
value will be predicted and this prediction is correct with the same probability then this
measure can be further formalized as:

P(Ni) ¥ T P(Ai = Vi | Ni)2. (1)

Category utility correctly predicts the basic level (as behaviorally identified by human
subjects) in two experimental studies (Hoffman and Ziessler, 1983; Murphy and Smith,
1982).

Gluck and Corter’s derivation of category utility is motivated by the same rational
arguments made by Anderson (in press): good classes are those that maximize correct
predictions that can be made about class members. Anderson develops a Bayesian
heuristic function to guide concept formation. In contrast, Fisher’s (1987) COBWEB uses
category utility to guide the incremental formation of classification trees (Kolodner, 1983;
Lebowitz, 1982). Fisher (1988) demonstrates that with an appropriate indexing scheme,
COBWERB consistently classifies observations at the same intermediate or basic-level
classes as human subjects (Hoffman and Ziessler, 1983; Murphy and Smith, 1982).

The indexing strategy is developed from category utility. In particular, (1) can be
rewritten (using Bayes Rule) as:

Yi X P(Ai = Vi) P(Ai = V5| Nk )P(Ni|Ai = V5j). (2)

Thus, category utility can be viewed as maximizing a weighted (by P(A; = V;;)) tradeoff
of cue validity (i.e., reflected in P(Ni|A; = V;;)) and category validity (i.e., reflected in
P(A; = V;;|Nx)). Indexing can be viewed as ‘compiling’ this similarity assessment
process. Individual attribute value indices are weighted by P(Ni|A; = V;;) and are
directed at nodes, N;, that maximize P(A; = V;;|N,)P(Ni|A; = V;;) (i.e., the collocation
(Jones, 1983)) of the value with respect to ancestors and descendents of Ny.

P(A; = Vij|Ni)’s are stored at nodes. Figure 1 illustrates that this strategy results in
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Animals Animate(1.0)

P(VeriebrateiBackbona)
= 1.0

Vertebrates P(Mammal|Warm-blooded)

= 0.67
Backbone(1.0)
P(Mammal|Warm-blooded, Vertebrate)
Mammals

= 0.65

Warm-blooded(0.98)

Figure 1: Opportunistic index placement (from Fisher, 1988).

opportunistic indexing ? that may jump levels. An object is initially classified at that
node, Vi, that maximizes the total cue validity (Rosch, 1978):

Y P(Ni|Ai = V), (3)

over the attribute values of the object that are used for indexing. Notice that because
category validity helps determine index placement it impacts object classification,
although it is not explicitly considered at classification time.

TYPICALITY EFFECTS

Importantly, COBWEB does not only account for basic level effects — the phenomena for
which it was engineered — but the indexing/classification mechanisms also account for a
second influential class of phenomena known as typicality effects (Mervis and Rosch,
1981; Smith and Medin, 1981; Rosch, 1978). Psychological studies indicate that some
members of a class are treated preferentially or as more typical of a class. For example,
in a target recognition task a robin will be recognized as a bird more quickly than will a
chicken. In particular, Rosch and Mervis (1975) demonstrate that object typicality
increases with the number of features shared with other objects of the same class and
varies inversely with the number of features shared with members of contrasting classes.
COBWERB'’s indexing scheme accounts for typicality effects found by Rosch and Mervis
(1975). These studies used letter strings like those of Figure 2a that were arranged into
categories A and B and taught to subjects. Subjects were then asked to verify category
membership of letter strings of A. Subjects consistently verified membership more
quickly for those strings of category A that shared many symbols with other strings of 4
and shared little with members of category B. To account for this data COBWEB
clustered over the collective letter strings of A and B. For example, Figure 2b shows a

A term due to Bareiss, Porter, and Weir (1987).
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VGZKD 4UZCo HPNWD
GZKDW 4UZRT
ZKDWN MSZR5 :
(1a) (1b) '

4KCTG
Figure 2: Letter strings and sample COBWEB tree (from Fisher, 1988).

partial tree over the strings of 1b. Because some members of category A may share more
in common with members of B than with other members of their own class, class A
strings are not necessarily localized at a single node. Rather, we assume that a string is
recognized (verified) as a category A member by classifying it to a node for which
P(Class= A|Ng) = 1.0. Verification time is simulated by the inverse of the total cue
validity scores (i.e., 1/total-cue-validity) used to classify the object; we assume that the
more an object predicts a node, the faster the object will be classified with respect to it.
COBWEDB’s category-verification time is ordered in precisely the same manner as human
subjects, regardless of intra- or inter- category overlap.

On the surface typicality and basic level effects appear to be disparate behaviors.
However, Fisher (1988) demonstrates that while concept trees may equate classes with
nodes (i.e., a local representation), members of a single class can also be ‘distributed’
throughout the tree. This enables a unified account of basic level and typicality effects
because individual concepts (i.e., the scope of typicality) and concept hierarchies (i.e.,
the scope of basic level effects) are represented by the same tree-structured
representation. This work provides the only computational account of any basic level
phenomena that we know of. In addition, the distributed account of typicality effects
(with respect to human data found in Rosch and Mervis (1975)) is novel. Finally, the
model accounts for known interactions between basic level and typicality effects
(Jolicoeur, Gluck, and Kosslyn, 1984) and predicts previously unexplored interactions.

FAN EFFECT

Work since (Fisher, 1988) has accounted for a third phenomena: the fan effect
(Anderson, 1976). The fan effect has been demonstrated in sentence recognition tasks.
Typically, simple sentences that consist of a person and a location are used:

(1-1) The doctor is in the bank. (1-2) The fireman is in the park.
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(2-1) The teacher is in the church. (2-2) The teacher is in the park.

The sentences vary in the number of features associated with the subject of the
sentences and the location in which the subject appears (e.g., ‘teacher’ appears in two
sentences). The numbers following each sentence indicate the size of the fan: the number
of sentences that contain the feature (person — location). After training on selected
sentences, recognition experiments are performed; subjects must respond as to whether
they have previously observed a sentence (true) or not (false). Recognition time increases
with the frequency that a person and location is present in training sentences.

For COBWEB, sentences are encoded as attribute value pairs. The set of objects, each
of which contains two attributes (i.e., person and location), is then used to create a
concept tree. A test set is a mixture of items that appeared in the original training set
(“trues”), and new sentences that have not been seen previously (“falses”).

One key processing assumption was added to the basic classification model. Many
studies in cognitive psychology have suggested that search through memory proceeds in a
parallel fashion. Triggering nodes in memory will cause activation to spread among all
related elements, perhaps with different degrees of strength or speed. The assumption of
parallel search was added to the COBWEB model. Rather than only examining the path
that maximizes total cue validity, all paths indexed by object (sentence) values are
explored. The search ends when indices lead no further or when the test item is found in
a node. For the “true” statements, COBWEB always locates the test object in a node,
thus ending the search. The total simulated time required to reach that node is the
resultant recognition time. The search for “false” test objects, on the other hand, will
end when all paths have been explored as far as possible. In these cases the limiting
factor 1s the time required to explore the slowest path. Our data compares favorably with
experimental data, in cases of true (observed) and false sentences and across all feature
frequencies. Figure 3 contains a portion of the tree produced by COBWEB when
presented with a set of person-location sentences. The dotted lines in the diagram
represent the indices that are used to recognize a test probe. In the training set, doctor
and church each appear in only one sentence, while park appears in two. When the
“false” probe The doctor 13 in the church is presented, COBWEB predicts that the
search will simultaneously follow both the doctor index and the church index, leading
from NO to N% and N6. Both of these paths are exhausted with a total time of 1 unit. In
contrast, the “false” probe The doctor is in the park has a longer response time, because
park appears in two sentences and has a larger fan. The search resulting from this probe
proceeds from N0 to N3 along the doctor index, requiring 1 unit of time. However, the
search simultaneously follows the park index from N0 to N2, requiring 1 unit of time, and
then from N2 to N7, requiring another unit. Therefore, 2 units of time are required
before N7 is reached and the model can identify the probe as false.

Table 1a shows the mean recognition times for “true” and “false” statements in actual
human experiments (Anderson, 1976). In comparison, the (unfitted) reaction times

888



SILBER & FISHER

Person = -

. location =
doclor..~

T park

i
N2
P(pork)

ark) = 0.67
P(church) = 0.33

/location =
¢ church

'ocol"i_on =

P{bank) = 1.0

: N7
P(church) = 1,0

Figure 3: Concept tree for person-location experiment.

Table 1: Fan effect mean reaction times. Mean time for ‘true’ statements are shown above
the mean time for ‘false’ statements.

Sentences/person Sentences/person

1 2 3 1 2 s
1[1.11]1.17]1.22 1]10.50(0.83 {0.95
1.20 ] 1.22 ] 1.26 1.00 | 1.50 | 2.25
Sentences / 2{1.1711.20 | 1.22 2114712301225
location 1.25 ] 1.36 | 1.29 1.551.70 | 1.82
811.15(1.23|1.36 J11.65(2.30|2.85
1.26 | 1.47 | 1.46 1.62 11971 2.07

(a) (b)

predicted by the COBWEB model are displayed in Table 1b. COBWEB produced a
concept hierarchy from the same training set used in human experiments; the data
presented here are averaged over several trials. We expect systematic increase in time as
the number of sentences per person and per location increase, comparisons of relative
magnitude are most meaningful. In the recognition time tables, there are 36 possible
comparisons of relative size (18 each for “trues” and “falses”). Human experiments and
COBWEB simulations each resulted in 3 comparisons that are not in the expected
direction.

There is great similarity between the COBWEB account of the fan and typicality
effects. Typicality studies are generally based on target recognition tasks that require
subjects to classify an instance as a member of a category. Instances with high
inter-category similarity are associated with longer response times, while high
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intra-category similarity produces shorter response times. On the other hand, Anderson’s
(1976) ACT model predicts that instances with a large fan resulting from many
associated propositions will have longer response times; ACT accounted well for the
human data. This produces an apparent contradiction in that objects with features
shared with many other objects (i.e., persons or locations appearing in many sentences)
produce longer times in the fan effect, but are apparently more “typical”, thereby
resulting in shorter times according to the typicality effect. However, further examination
of the learning task reveals that these two findings are consistent, and the explanation
rests on the distinction between intra- and inter- category similarity. When propositions
or sentences are learned in fan effect studies, each is remembered as an individual case, or
category. Persons or locations that appear in a large number of sentences correspond to
attributes that are common to more than one category, i.e., high inter-category similarity
not intra-category similarity. Thus, the direct relationship between fan size and response
time closely parallels the relation between typicality and inter-category similarity. The
COBWEB model accounts for typicality and fan effects in the precisely the same
manner; the fan effect emerges as a special case of typicality effects in which the classes
being learned are singletons. Although the original COBWEB typicality studies were
conducted without the parallel processing assumption (Fisher, 1988), similar results are
obtained when parallelism is incorporated.

CONCLUDING REMARKS

We have extended the scope of behaviors accounted for by COBWEB. By our account,
the fan effect is a special case of typicality phenomena. We are extending our research in
several directions. First, computer experiments reveal that very early in concept
formation our indexing scheme is very sensitive to the ordering of observations. Indexing
is easily fooled and led astray. In general, our indexing procedure and tree structure are
too inflexible. Early in training desirable classes can fluctuate wildly. Our work with the
fan effect suggests that rather than placing (classifying) an object along a single best
path, it may be more desirable to place (classify) it along a number of paths. In fact, the
category utility indexing scheme is easily extensible to allow this — without the use of
arbitrary thresholds that characterize other systems (Kolodner, 1983; Lebowitz, 1982).
Classification along multiple paths leads naturally to a directed acyclic graph structure
(DAG). A DAG is more robust in that is allows orthogonal classes to develop (e.g.,
mammal or reptile or bird or ... or fish versus carnivore or omnivore or herbivore).
Classes that do not prove useful later in training can be pruned out. Thus, a rational
analysis (Anderson, in press; Gluck & Corter, 1985) initially led to a model of certain
psychological effects, but an inverse process is also valuable: modifications to the
cognitive model suggest extensions that are primarily computational improvements.
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