UC Irvine

UC Irvine Previously Published Works

Title

Correction: Modeling the Effects of Integrating Larval Habitat Source Reduction and Insecticide Treated Nets for Malaria Control

Permalink

https://escholarship.org/uc/item/5bd992kp

Journal

PLoS ONE, 4(11)

ISSN

1932-6203

Authors

Yakob, Laith Yan, Guiyun

Publication Date

2009-11-02

DOI

10.1371/annotation/9d928eac-d6d9-4e75-bb1a-3a25c930c77f

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

PLoS One. 2009; 4(11): 10.1371/annotation/9d928eac-d6d9-4e75-bb1a-3a25c930c77f. Published online Nov 2, 2009.

PMCID: PMC2775991

abilistica crimie Nov 2, 2000.

doi: 10.1371/annotation/9d928eac-d6d9-4e75-bb1a-3a25c930c77f

Correction: Modeling the Effects of Integrating Larval Habitat Source Reduction and Insecticide Treated Nets for Malaria Control

Laith Yakob and Guiyun Yan

Copyright Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

There was an error in one of the symbols of Equation 1. Please view the correct equation here:

$$R_0 = \frac{me^{-\mu T}}{(r\mu)G^2}$$

Footnotes

Competing Interests: No competing interests declared.

Articles from PLoS ONE are provided here courtesy of Public Library of Science

	ICE	USA	CAN	RUS	SWE
θ_1	0.0182	0.0182	0.0177	0.0179	0.0176
	151000	152000	148000	149000	147000
θ_{1b}	0.0016	0.0018	0.0013	0.0013	0.0017
	14000	15000	11000	11000	14000
$ au_1$	0.0027	0.0025	0.0018	0.0035	0.0026
	3000	3000	2000	4000	3000
θ_{A}	0.0200	0.0211	0.0211	0.0209	0.0198
	167000	176000	176000	174000	165000
θ_2	0.0019	0.0010	0.0013	0.0026	0.0014
	16000	9000	11000	21000	12000
θ_{2b}	0.0010	0.0004	0.0003	0.0004	0.0007
	9000	4000	3000	4000	6000
τ_2	0.0047	0.0051	0.0047	0.0078	0.0052
	6000	6000	6000	9000	6000
$ au_{S}$	0.0297	0.0267	0.0157	0.0390	0.0310
	36000	32000	19000	47000	36000