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ABSTRACT OF THE DISSERTATION

Concolic Testing of Programs with Concurrent Dynamic Data Structures

by

Xiaofan Sun

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, March 2023

Dr. Rajiv Gupta, Chairperson

Concolic execution combines concrete execution with symbolic execution to auto-

matically generate test inputs that exercise different program paths and deliver high code

coverage. However, when this technique is extended to multithreaded programs with con-

current dynamic data structures, the lack of support for exploring data shapes (the skeleton

that consists of symbolic pointers in node-based linked data structures) and efficiently ex-

ploring thread interleavings makes it hard to expose concurrency bugs that manifest only

when certain dynamic data structure shapes, program paths, and thread interleavings are

exercised. This thesis presents techniques to effectively explore data shapes for concurrent

dynamic data structures and optimize the exploration efficiency.

The approach presented first generates a data shape for a chosen path. By cap-

turing path constraints, we form a shape that satisfies path constraints and exercises the

chosen path. In addition, by capturing pointer-pointee relationships, we find how to adjust

the shape and find new shapes that also exercise the same path. Finally, using the shapes for

individual paths, we find a consistent shape that causes multiple threads to simultaneously
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follow their chosen paths for exposing concurrency bugs. We generate shapes for each thread

separately and provide an integration algorithm to merge the shapes into a consistent shape.

This approach does not require the user to write code that constructs data structures to

exercise desired paths by individual threads; rather, it automatically collects constraints to

generate consistent shapes during the concolic execution.

We also present a summarization-based technique to improve the efficiency of con-

colic testing further. Via unit testing of key functions that implement a concurrent data

structure, function summaries are derived that capture data structure shapes that cause

various function paths to be exercised. During the concolic testing of interprocedural paths,

these summaries are exploited to eliminate the repeated overhead of handling symbolic

pointers and creating dynamic objects by reusing function summaries. The summary also

contains symbolic memory accesses and synchronization events that guide application-level

concolic testing to identify and confirm potential data races.

To demonstrate effectiveness and efficiency of our approach, we developed two pro-

totypes: DSGEN is built on top of the GKLEE GPU concolic executor; and SSRD is built

on top of the Cloud9 concolic executor for multithreaded programs. DSGEN improves the

number of races detected from 10 to 25 by automatically generating 1,897 shapes in exper-

iments with concurrent operations on B-Tree, HAMT, RRB-Tree, and Skip List. SSRD,

using shape generation and function summaries, outperforms AFL++ and Cloud9 in both

effectiveness and efficiency in experiments with Unrolled Linked List, AVL-Tree, Skip List,

and Priority Queue. SSRD detects 74 races as opposed to 34 by Cloud9 and 11 by AFL++.
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Chapter 1

Introduction

With the rapid growth of large scale software systems and the widespread deploy-

ment of hardware that supports thread-level parallelism (e.g., multi-core processors and

GPUs), automated software testing has been receiving greater attention to enable identifi-

cation of concurrency bugs in multithreaded programs. Multithreaded programs frequently

use concurrent dynamic data structures (e.g., Concurrent Queue, Skip list, Hash Map, etc.)

to safely share state between different threads. The use of these concurrent data structures

greatly increases the difficulty of automated testing.

Effectively detecting bugs, such as data races, in multithreaded software is a chal-

lenging problem. Researchers have developed both static and dynamic techniques for au-

tomated testing. The complexity of static methods is often related to the code size, as

opposed to program run length, which makes them much more efficient than dynamic meth-

ods. Soundness is another advantage of static methods, that is, it can be proved that

they find all potential faults. However, these methods can suffer from the problem of false
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positives, which greatly increases the workload of manual confirmation of potential bugs.

Another limitation of static methods is that it is difficult to reproduce bugs and find the

conditions under the path errors occur. Typically, the dynamic methods are expensive and

can only find bugs that manifest during a program run. However, an exposed bug is real and

can be reproduced again via replay techniques. There has also been work done on developing

methods that combine static and dynamic techniques to combine the advantages of both.

Symbolic Execution is a powerful technique for automatically generating a sym-

bolic model of a program. Concolic Execution combines symbolic execution with concrete

execution to generate symbolic expression along with concrete values for the program inputs.

In comparison to other popular automated test generation techniques, e.g. static analyses

and fuzzing, symbolic execution has several advantages: (i) it follows executable paths in

the program so there are no false positives; (ii) it can generate inputs for hard to exercise

paths; and (ii) it finds specific inputs that expose an error. The symbolic execution tech-

nique is used in the following chapters to generate a set of path constraints to deliver high

test coverage.

1.1 Overview of Challenges and Approaches

Although concolic testing is a powerful technique for testing programs, its applica-

bility for testing of multithreaded programs that utilize concurrent data structures is limited.

This thesis addresses the following challenges to overcome this limitation.

Exploring Data Structure Shapes. Although symbolic/concolic execution is effective

and powerful for many real applications, programs with pointer-based dynamic data struc-
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tures are hard to test due to the path constraints that can only be satisfied by certain

data structure shapes. Therefore to achieve high path coverage, we need to manually create

many different data structure shapes which is time-consuming. In this thesis, we propose a

novel technique to automatically generate data structures with different shapes to exercise

different program paths.

Exposing Concurrency Bugs in Multithreaded Programs. In a multithreaded pro-

gram, a concurrency bug manifests when a pair of threads follow certain paths. Therefore,

we must generate a data structure shape that causes the threads to simultaneously follow

their respective chosen paths. Moreover, if a code segment being executed by two threads

contains N paths, then there are N2 path pairs that must be exercised to uncover con-

currency bugs. Therefore the complexity and cost of uncovering concurrency bugs is very

high. To achieve the above goal efficiently, we first generate individual shapes that cause

each of the N paths to be exercised. Then, to exercise a path pair, we integrate the two

shapes corresponding to the two paths such that the resulting shape causes the two threads

to exercise the chosen path pair.

Interprocedural Paths. Consider two functions f and g containing N and M paths

respectively. Consider an execution in which f and g are called in sequence. Thus, the call

sequence gives rise to M×N interprocedural paths. If we test these paths one by one, a great

deal of redundant work will be performed during exploration of data shapes via constraints

collection and solving. Therefore, we unit test functions f and g and create summaries for

the two functions. Interprocedural paths can then be efficiently tested using summaries of
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paths in f and g. In addition, summaries are also used to identify concurrency bugs and

guide exploration of thread interleavings to improve the efficiency of testing.

1.2 Overview of the Thesis

Existing systems for testing C/C++ programs do not support the exploration of

data shapes as pointers cannot be made symbolic (e.g., Cloud9 [29], Con2colic [37]) or they

do not support multithreading (e.g., CUTE [95]). Also, the cost of concolic testing explodes

due to large numbers of possible data structure shapes and interleavings of threads that

manipulate the data shape. Consequently, there is a need to design a powerful concolic

testing framework that supports symbolic pointers for the systematic exploration of data

structure shapes and employs new techniques to guide the exploration of paths and thread

schedules both effectively and efficiently. To fulfill the above goals, this thesis presents a

testing framework with the following features:

• Exploring data structure shapes. Chapter 3 presents our technique that makes

concolic testing capable of achieving high coverage of program paths and data shapes.

Therefore it increases the possibility of exposing concuurency bugs.

• Generating consistent shapes for multithreaded programs and GPU pro-

grams. Chapter 4 presents our technique for data shape exploration to exercise

path pairs for exposing concurrency bugs. We apply this approach to both multi-

threaded programs with modest number of threads and GPU programs with thousands

of threads.

4



• Efficient exploration using summarization and guided search. Chapter 5

presents a series of techniques to explore data structure shapes efficiently. We provide

a shape-aware summary to speed up path exploration with a data shape generation

algorithm. A loop-aware summary can handle the infinite exploration tree problem

for loops with symbolic latch conditions. Guided search can help thread scheduling to

detect data races in a more efficient way.

Before presenting the above results, in Chapter 2 we present background and related work.

Finally, in Chapter 6, we present our conclusions.

5



Chapter 2

Background and Related Work

Testing programs with concurrent dynamic data structures is a challenging prob-

lem. There are many known related works in automated testing, including fuzzing, symbol-

ic/concolic execution, model checking, static analysis-based techniques, and others. In this

chapter, we will introduce the related works and relevant background knowledge.

2.1 Automated Testing

There is rich literature on generating test inputs [21, 25,28, 45, 48,58, 60,61, 71,82,

91,96,106,115]. A number of techniques are aimed at generating test input for a given path

in a single-threaded program using various approaches: Godzilla [30] and Gotlieb et al. [45]

employ constraint solving; Grechanik et al. [48] and Petsios et al. [82] employ feedback-

directed fuzz testing; Mansour and Salame [71] developed stochastic search algorithms; and

Gupta et al. [49] developed iterative numerical techniques. However, these techniques cannot

systematically explore dynamic data structure shapes.
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For multithreaded programs the techniques of fuzzing [26, 54, 82, 93, 105], model

checking [78], and symbolic and concolic execution [15, 23, 29, 37, 62] are primary options

for testing. Fuzzing is the most common and practical automatic test generation method,

especially for large programs. However, current techniques are not effective in exploring the

large space of paths and thread interleavings for exposing concurrency bugs. Model checking

is another method for exploring thread interleavings. However, the cost is too high to cover

all the possible interleavings. Among these, [97] provides a new language that extends a

simplified form of sequential Java to support multithreaded program model checking using

the counterexample-guided abstraction-refinement framework; and bounded model checking

via lazy sequentialization [52] is a systematic way to check sequentially consistent C programs

that use POSIX threads. However, model checking methods incur cost of modifying current

multithreaded programs. Also they do not provide support for concurrent dynamic data

structures. Techniques presented in this thesis, based on symbolic execution and concolic

testing, require minor changes to the source code, support dynamic data structures, and can

be applied to multiple threads. The promise of symbolic/concolic execution is realized for

testing concurrent dynamic data structures.

2.2 Symbolic/Concolic Execution

Symbolic Execution uses symbolic input instead concrete input to execute a pro-

gram, solving the path constraints of a selected path to compute the possible input using an

SMT solver. This achieves better coverage during testing because we can explore the path

without giving a concrete input which is hard to provide manually or generate via a fuzzing
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engine. A symbolic execution engine will execute a program with symbolic input, and collect

a set of path constraints (PC) by constructing a symbolic expression of each variable which

consists of the branch conditions. However, there are several problems that make symbolic

execution incapable of exploring all the paths: (i) solver limitations - the solver may not be

able to solve a complex constraint in reasonable time (e.g., an expression containing a hash

function); (ii) execution environment may not be symbolically explored (e.g., system calls

and shared libraries); and (iii) accessing data structures using symbolic addresses.

To address these problems, concolic testing has been proposed by combining the

concrete execution along with symbolic execution, so that a concrete variable that is feasible

to a set of path constraints can be used to replace the symbolic variable to call system calls,

simplify the unsolvable constraints, and access the data structures using the concrete address.

A typical symbolic/concolic execution engine consists of a constraint collector, an

SMT solver, and a modeled execution environment (executor). The constraint collector will

collect constraints while executing the program for each variable. There are two major kinds

of constraints collector: (i) interpreter-based [23,29,64]; and (ii) compiler-based [83,84]. In

addition, once we meet branches and thread synchronization points during execution, there

is a scheduler in the constraints collector used to determine the exploration order of paths

and thread interleavings in presence of multithreading. The SMT solver is used to solve

constraints and generate the feasible input. The modeled execution environment is used to

model the execution environment of the program, like system calls and standard libraries.

Figure 2.1 presents the relationship between the three major components. Given

symbolic inputs S, the constraint collector will select a Path Pi and the execution of path

8



Figure 2.1: The overview of concolic testing.

Pi on S gives symbolic constraints Ci. The constraints are collected from branch conditions

along path Pi. Then, the constraints Ci are sent to the solver when we need a concrete

value to run some functions or we need to reduce execution complexity. It will produce

the concrete inputs Ii for symbolic inputs S and send to the executor. Finally, the bugs

are reported if it has and it moves to the next iteration to test path Pi+1 using random or

depth-first order until all user-expected paths are tested.

2.3 Concurrent Symbolic/Concolic Testing

Even though symbolic and concolic execution is a state-of-the-art technique for

exploring all paths and generating test inputs; however, they also face path and thread

interleaving explosion problems. KLEE [23] is one of the most well-known symbolic exe-

cution engines designed for LLVM IR. Cloud9 [29] is an extension of KLEE with added

multithreading support for POSIX. GKLEE [64] extends KLEE to GPU programs. COMPI

applies concolic testing to test MPI programs [65]. Con2colic [37] is another concolic testing

method for multithreaded programs which also supports exploring the contents of a data

structure and thread interleavings. However, in comparison to our approach, con2colic is
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based on a heuristic search rather than guided search, limiting its scalability. Moreover, it

cannot explore data shapes for pointer-based data structures. While our focus is on C/C++

programs, jCUTE [94] is a concolic unit testing tool for multithreaded Java programs, and

the data shape exploration is based on programming manually using data structure APIs.

Thus, unlike the techniques presented in this dissertation, the above techniques do not

explore dynamic data structure shapes and are expensive.

2.4 Optimization of Symbolic/Concolic Testing

A number of enhancements have been proposed to improve the efficiency of the

above techniques. Summarization is one method to deal with path explosion – in [41] it

is pointed out that compositional automatic test generation can scale to large programs

with many feasible paths. This approach is further extended to interprocedural paths in [5].

State merging [62] is another way to solve the path explosion problem by combining similar

states during execution. Chopped symbolic execution [104] can jump over some unrelated

functions during symbolic execution, which can reduce the chance of forking new states. Path

subsumption [113] proposes an annotation algorithm for branches and statements, which are

implied by the current state. The above methods only focus on the path explosion problem

but do not address other dimensions of data shape generation or thread interleavings. This

dissertation employs summarization to guide and speedup thread interleaving exploration

and speedup data shape exploration.

In all, there is no such method that can handle path explosion and thread interleav-

ing explosion while at the same time exposing data races in large-scale dynamic concurrent
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data structures. Solving this problem is the aim of the proposed research. Our preliminary

work on data shape generation via DSGEN [102] achieves good coverage needed to uncover

data races by causing concurrent threads to follow selected paths that expose data races.

Our symbolic execution-driven summarization of individual functions will further enhance

the efficiency of concolic testing.

2.5 Testing of Concurrent Data Structures

Checking concurrent data structures for dynamic data race detection is a chal-

lenging task due to the different shape requirements of different paths. CDSChecker [78]

provides a model-checking algorithm for modeling concurrent code under the C++ mem-

ory model. However, CDSChecker is not aimed for lock-based synchronization, and both

the path explosion problem and thread interleaving explosion problem is not addressed by

this algorithm. CDSSPEC [80] is a specification checker for the C++11 memory model.

However, it requires the use of a specification language to describe the data structure and

still has a high overhead. Shoal [6] is a system that extends SharC by grouping objects and

providing sharing rules for each group. It can avoid data races for concurrent data structures

by turning the data race detection problem into a sharing-rule violation detection problem.

Our preliminary work on DSGEN [102] uses a data shape generation method for detecting

data races in concurrent data structures of the CUDA platform.

Khurshid et al. [58] use symbolic execution to test library classes with generated

set and map data structures in Java but do not consider user-defined data structures.

Zhang [115] supports symbolic pointers and symbolic data structures. Burnim et al. [21],
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in addition, aim to create a worst-case input. Unlike the above techniques, CUTE [96]

supports concolic unit testing for C programs with data structure generation support. How-

ever, unlike the approach presented in this dissertation, the above methods are not aimed

at multithreaded programs and are not able to adequately test implementations of concur-

rent data structures. Path-based techniques in the presence of pointer-based dynamic data

structures have also been developed by Korel and Bogdan [60, 61]. Chung and Bieman [28]

generate data shapes using points-to information for statements along a selected path. Vis-

vanathan and Gupta [106] employ a two-phase approach based on branch constraint solving

to generate dynamic data structure structures – first, data shapes are generated to meet path

constraints, and then values for data fields within data structures are generated. Saingern et

al. [91] also handle linked data structures, including homogeneous and heterogeneous recur-

sive structures. These methods are powerful yet they lack support for concurrent dynamic

data structures in multithreaded CPU or GPU programs. Also, they are not integrated

into a concolic testing framework and thus do not address coverage issues and they lack

optimizations enabled via sub-paths sharing across many individual paths.

2.6 Data Race Detection

Both static and dynamic methods for data race detection have been widely stud-

ied [16,44,55,75,79,88,93,108]. They have their own advantages and limitations. Static race

detection methods include flow-insensitive type and language based methods [10, 17, 24, 43]

and flow-sensitive lockset-based methods [16,36,44,55,75,92,101,108]. Dynamic race detec-

tion methods include Happens-before [1,31,39,76] and Dynamic Locksets [2,27,35,77,92,107]
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based analyses. The happens-before analysis does not result in false positives but is expen-

sive. Dynamic lockset analysis relies on collecting memory access information and lock/un-

lock event tracing for race detection. However, it can lead to false positives. Thus, methods

that combine both approaches for efficiency and accuracy have been proposed [32,51,79,85,

114]. However, these methods rely on other techniques to test multiple paths and thread

interleavings to expose races. The large search space, especially when we also consider

dynamic data structure shapes, makes these methods very expensive.
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Chapter 3

Data Shape Generation

For a single-thread program, the data shape influences the branch taken when there

are symbolic pointers in the branch condition expressions. In multithreaded programs, data

race detection also requires specific data shapes to exercise the path pair for a pair of raced

threads. In this chapter, we will introduce the challenges of bug detection in programs with

complex data shapes and the basic idea of data shape generation. In general, there are

two reasons to use data shape generation: (i) One single shape is not enough to explore

all the paths in a program due to the different constraints of symbolic pointers in different

paths; and (ii) One single shape is not enough to explore all the potential bugs in a selected

path (or a path pair in multithreaded programs) due to the pointer sharing in the data

structure which may cause multithreaded bugs, e.g. data races. In the following sections,

we will introduce those two problems and give the basic algorithm to generate data shapes

to explore the paths and bugs.

In such programs, dynamic data structures with different shapes are needed to

exercise different paths and explore more potential bugs. Thus, pointer variables that act as
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links to construct the dynamic data structure and its shape must also be made symbolic and

then used to automatically generate dynamic data structures of suitable shape to exercise

a given path by a thread. However, symbolizing pointer-based dynamic data structures is a

big challenge for symbolic/concolic executors due to the large memory space and available

possibilities of pointers.

In this chapter, we present data shape generation which is the key idea in sym-

bolic/concolic execution to test multiple paths with different pointer constraints. We solve

concrete values for those symbolic pointers which satisfied the Pointer Constraints (PC)

and keep them adjustable for exploration.

3.1 Generating A Data Shape for a Selected Path

The dynamic data structure generation described in this section is inspired by the

method proposed in [106] which initially assumes that the pointer variable that provides

access to the data structure is simply null. Then, as it scans the code along the desired

path, it collects constraints on the shape of the dynamic data structure and solves them to

create the data structure of the desired shape. This approach is employed by our prototype

DSGEN to create a concolic testing framework capable of exploring different data structure

shapes based on a GPU concolic testing framework GKLEE.

During execution, when a memory access to a location marked as being part of a

symbolic data structure is encountered, it is intercepted by GKLEE and passed on to DSGEN

for handling. DSGEN collects relevant constraints, adapts the dynamic data structure shape

to satisfy them, and passes the data structure to GKLEE so it can successfully execute the
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memory access. To achieve the above, DSGEN needs to collect two kinds of information –

Pointer Constraints (PC) and Pointer-Pointee Relations (PPRs) – described below.

• Pointer Constraints (PCs) These are constraints that must be satisfied to ensure

that the thread follows its selected path (e.g., branch conditions evaluate appropri-

ately) and successfully executes pointer-based statements along the path (e.g., point-

ers that are dereferenced must not be null). When new data structure shapes are

explored for the same path, each generated shape must continue to satisfy all of the

path constraints.

• Pointer-Pointee Relations (PPRs) DSGEN must also track pointer-pointee rela-

tionships that are created by statements executed on all the selected paths. Each

relationship is of the form (p, q) such that pointer p currently points to q. Therefore,

pointer-pointee relationships essentially create the shape of the data structure.

Together, PCs and PPRs allow the exploration of shapes to exercise a given path

as well as explore different paths. In particular, when generating an input to exercise a given

path, PPRs are altered to create different shapes till eventually a shape is found to satisfy

all the PCs, that is, paths followed by the threads are preserved in this process. When a new

path is to be explored, a branch condition outcome is altered to explore a different path.

This results in modifying the corresponding PC and then resumption of shape generation

from the point at which branch outcome is altered to exercise the newly chosen path.

The data structure shapes formed by PPRs and the PCs associated with the fields

belonging to a symbolic data structure are the result of DSGEN’s actions that are determined

by the kind of operations encountered: pointer initialization, pointer dereferencing, pointer
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assignments, and branch conditions. For example, first-time dereferencing of a pointer typ-

ically causes memory allocation that expands the data structure and generates constraints

indicating that the pointer is no longer null. Pointer assignments generate constraints caus-

ing different symbolic pointers to share the same address and thus contribute to the formation

of data structure shape. Branch conditions may themselves involve pointer dereferencing,

and branch outcomes may assert that a pointer is null or not null. Next, we demonstrate

our approach for capturing pointer constraints and their role in exposing data races using

the example of the concurrent skip list data structure.

An Example. Consider the code in Listing 3.1 which presents two operations for a skip list

- insert and search for inserting in an ordered list and searching for a node corresponding

to a key value. The function search_node is a common function used by both insert and

search functions to find the node which contains key k.

Necessity of Shape Exploration in Path Testing. Some paths require a certain shape

to explore due to the branch conditions containing constraints related to the pointers. In

the skip list shape in Figure 3.1, assuming passed N0, 0, 0, and a local memory buffer pre to

search_node, the branch condition h->next[i]!=NULL at line 13 will take false. However,

with the same passed parameters, the skip list shape in Figure 3.2 will take true since there

is a node N1 at the next[0] field. Since data shapes influence the ability to successfully

exercise a given path, more bugs may be exposed while more paths are explored using

different shapes.
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1 #define MAXLEVEL 2

2

3 typedef struct Node {

4 key_t key; val_t value;

5 struct Node* next[MAXLEVEL];

6 pthread_mutex_t mutex;

7 } Node;

8

9 Node* search_node(Node* h, key_t k,

10 int i, Node** pre) {

11 klee_assume(i >= 0 && i < MAXLEVEL);

12 Node* next = NULL;

13 if (h->next[i]!=NULL && h->next[i]->key<k)

14 next = h->next[i];

15 if (next != NULL)

16 return search_node(next, k, i, pre);

17 pre[i] = h;

18 if (i == 0) return h->next[i];

19 return search_node(h, k, i-1, pre);

20 }

21

22 bool insert(Node* h, key_t k, val_t v) {

23 Node* prev[MAXLEVEL];

24 Node* curr = search_node(h, k, 1, prev);

25 if (curr != NULL && curr->key == k) {

26 if (curr == prev[1]->next[0])

27 prev[0] = curr; // complex

28 else curr->next[0]->value = v; // simple

29 curr->value = v; return false;

30 }

31 Node* node = create(k, v);

32 int level = rand_level();

33 pthread_mutex_lock(&(prev[0]->mutex));

34 node->next[0] = prev[0]->next[0];

35 prev[0]->next[0] = node;

36 if (level == 1) {

37 node->next[1] = prev[1]->next[1];

38 prev[1]->next[1] = node;

39 }

40 pthread_mutex_unlock(&(prev[0]->mutex));

41 return true;

42 }

43

44 val_t search(Node* head, key_t key) {

45 bool has_node = true;

46 pthread_mutex_lock(&(head->mutex));

47 if (head->next[0] == NULL) has_node = false;

48 pthread_mutex_unlock(&(head->mutex));

49 if (!has_node) return -1;

50 Node* prev[MAXLEVEL];

51 Node* curr = search_node(head, key, 1, prev);

52 if (curr != NULL && curr->key == key)

53 return curr->value;

54 return -1;

55 }

Listing 3.1: A Concurrent Skip List Example.

Figure 3.1: A data shape that
cannot expose the race.

Figure 3.2: A data shape that
exposes the race.

line# Condition Eval.
25 curr != NULL T
25 curr→key == k F
26 level == 1 T

line# pointer pointee
25 curr N0
33 prev[0] N1
34 node N2
35 prev[0]→next[0] N2
37 prev[1] N3
38 prev[1]→next[1] N2

Table 3.1: Pointer-pointee relations
(and its visualization) for insert
function along path with branch

conditions values T F T.
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Capturing Pointer Constraints. Consider the path with branch predicate evaluations

of T F T in function insert. Along this path, the data shape generated is captured by

the pointer-pointee relationships given in Table 3.1. The corresponding data structure that

satisfies these pointer-pointee relationships is also shown. All constraints in branch condi-

tions indicate the value of a pointer belongs to pointer constraints, so curr != NULL will

be collected at line 25. Dereferenced pointers can not be empty is another kind of pointer

constraint, so prev[0] != NULL, node != NULL, prev[1] != NULL will be collected. These

are created by statements along the path as follows: (i) line 25 dereferences pointer curr;

(ii) line 33 dereferences pointer prev[0]; (iii) line 34 dereferences prev[0] and assigns the

value of node to prev[0]→next[0]; and (iv) line 35 while dereferences prev[1] and assigns

it to prev[1]→next[1].

Solving Pointer-Pointee Relationship (PPRs). Dereferencing implies non-null point-

ers that point to other nodes as shown in Table 3.1. We first assume all the pointers deref-

erenced are pointing to different memory if it can not be inferred from branch constraints.

curr, prev[0], node, and prev[1] have been assigned N0, N1, N2, and N3 respectively. And

prev[0]->next[0] and prev[1]->next[1] has been assigned to node at line 35 and line 38.

The pointer-pointee relationship forms the current shape but is only one case that satisfies

the pointer constraints. We can adjust it as needed in the future.

3.2 Exploring Multiple Shapes for a Selected Path

During the exploration of shapes to explore more paths, usually, there are multiple

solutions satisfies the selected path. However, a single shape is not enough to expose the
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bug for multithread programs in some cases. In DSGEN, pointer constraints (PCs) must be

satisfied but the pointer-pointee relationship can be adjustable. We can compute different

groups of pointer-pointee relationships which satisfied the pointer constraints.

Necessity of Shape Exploration for Concurrent Bugs. Manifestation of the above

data race requires a skip list of a certain shape. In the skip list of Figure 3.1, prev[0] and

prev[1] refer to the same node. Therefore the lock at line 33 can protect node prev[1]

which is being modified and hence the data race between line 38 and line 14 does not occur.

However, in Figure 3.2, the skip list shown exposes the data race. Thus we see that it is

necessary to explore appropriate data shapes to expose the desired data race. Since data

shapes influence the node referenced in memory load/store expressions and lock operations,

there are concurrent bugs may be exposed if more shapes are explored. At the same time,

shape exploration plays a role in constructing shapes for multithreaded programs. When a

shape is suitable for one thread but not the others, we have a chance to construct another

shape suitable for both threads.

To help explore the data shapes, we designed a method predict(attr, s), which

identifies a new predicted value for attr such that it satisfies all the constraints in s. For

example, when making a pointer non-null, predictions considered include setting the pointer

to point to: newly allocated memory, itself creating a self-loop, or an existing object of the

appropriate type.
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Figure 3.3: DSGEN + GKLEE Prototype.

3.3 Shape Generation and Exploration in DSGEN prototype

Figure 3.3 provides an overview of the DSGEN based on a GPU concolic testing

engine - GKLEE system. GKLEE gives instructions to the Filter module that passes on the

memory accesses of the symbolic concurrent data structure to the Shape Generator and the

branch conditions to the Scheduler. All other instructions are passed directly to GKLEE’s

execution engine. The Scheduler provides branch coverage information for all threads to the

Coverage Recorder and selects new paths to explore. Note that for branch conditions that
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are symbolic, both true and false outcomes can be explored by path selection. The Scheduler

also provides constraints that arise from branch conditions to the Shape Constraints Manager.

The selection of alternate paths leads to the modification of these constraints. The Data

Shape Generator generates a data structure with a shape that satisfies constraints and passes

it on to GKLEE.

The Shape Constraints Manager also performs another important task. It is re-

sponsible for ensuring the generation of a non-conflicting data structure. Thus, when data

structures produced along paths followed by different threads differ, the constraints manager

must detect and resolve conflicts among them to produce a single non-conflicting dynamic

data structure shape for all the threads. Resolution of conflicts results in the generation of

a test case that exercises the path combination. If conflicts cannot be resolved, the current

combination of paths is abandoned. The search then moves on to the next combination of

paths that are selected according to the depth-first search strategy.

The functioning of the Data Shape Generator is driven by the memory accesses.

Starting from the previously generated shape, this module appropriately modifies the data

structure. As an example, a pointer dereferencing operation may lead to the expansion of

the data structure via memory allocation. On the other hand, when conflicts are to be

resolved, the data structure may need to be compacted. The actions of this module are at

the heart of DSGEN function and will be presented in detail in Section 4.

Table 3.2 lists the newly provided APIs that allow the programmer to identify the

dynamic data structure that is to be automatically generated and whose shapes are to be

explored. The function klee_make_data_structure makes x, which is a pointer or an array

22



Table 3.2: DSGEN API for dynamic data structures.

klee_make_data_structure (x, size, name)
klee_set_data_structure (x, size, name, function)
klee_set_double_link (name, offset, size, link, link_size)
klee_set_range (name, offset, size, min, max)
klee_set_memory_type (name, offset, size, type)

of pointers of given size, symbolic and assigns a name to the data structure that it provides

access to. This indicates to DSGEN that data structure must be automatically generated, its

constraints collected, and its shapes explored. Thus, as the data structure grows, all newly

created pointer fields must also be marked as symbolic.

In certain situations, a data structure that is not automatically generated (e.g.,

generated by the user by a manually written code) may need to be added to the symbolic

data structure and thus requiring that its pointer fields be made symbolic. The function

klee_set_data_structure provides this functionality. An additional parameter traverse is

provided by the programmer that fully traverses the data structure to collect the addresses

of all contained pointer fields so that klee_set_data_structure can mark them also as

symbolic. Since doubly-linked data structures are frequently used, the next API function

allows user to express their presence which simply guides the shape generation. Finally, the

last two APIs simply express a valid range of addresses and the kind of memory where it

resides.

Exploring Execution States. The GKLEE’s VM creates the state space for exploration

as follows. As a thread is being symbolically executed, if the VM determines that based

upon the current symbolic values an outcome of a condition can be either true or false, it
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forks off new states for true and false outcomes. Repeated forking creates a tree structure

representing a partitioning of all execution states – by exploring different paths in the tree,

coverage over program paths is achieved. As is generally the case for concolic testing tools,

the features modeled by the symbolic execution model can be exhaustively explored during

testing. However, under the constraints of the testing time budget, different strategies may

be deployed to prioritize the exploration of state space. GKLEE supports multiple search

strategies, and in this work, we relied on depth-first exploration of state space to identify

data races. Note that the predicates that cause forking of states can be independent of

threads or they can depend upon thread and block ids (denoted as tid and bid). In the latter

case, forking essentially partitions threads prior to fork into two classes of threads.

When it comes to dynamically linked data structures, GKLEE does not provide

any special support. It handles pointer variables using the simple methodology used by the

underlying KLEE system. Unfortunately, this makes input generation when testing functions

of a library implementing concurrent data structures a problem. To exercise execute states

of such a function, the input to the function must be an appropriately shaped and sized

dynamic linked data structure. Unfortunately, KLEE is incapable of exploring the space of

different shaped and sized data structures. Driven by the API already described, DSGEN,

through its special treatment of pointers, is able to explore the execution states that must

honor different constraints on these pointers (such as, pointers being null or non-null, shape

forming pointer-pointee relations, etc.). Since dynamic data structure can grow arbitrarily

large, to constrain the execution space, two configuration parameters are provided that limit

sizes of arrays used and the number of levels of links allowed. Limits on array sizes and the
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Table 3.3: DSGEN vs. GKLEE: # of paths explored and data structure shapes generated.

Shapes Generated # of Path Combinations

B-Tree GKLEE 1 126
DSGEN 1629 2667

HAMT GKLEE 1 47
DSGEN 122 282

RRB-Trees GKLEE 1 6
DSGEN 16 16

Skip List GKLEE 1 64
DSGEN 130 256

number of levels of links limit the size of the dynamic data structure which translates into

limits in the lengths of paths that are explored during depth-first exploration of paths.

Experiments of Path Exploration. We use GKLEE to explore paths using only one

manually created data structure comparing to our automatically generated data structures.

The result shows in Table 3.3, and we can notice using automatic data shape generation

explored much more paths in all 4 benchmarks - B-Tree, HAMT, RRB-Trees and Skip List.
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Chapter 4

Consistent-Shape Generation for

Multithreaded and GPU Programs

Data shape generation that we present automatically generates suitable dynamic

data structures with shapes that exercise desired paths, same or divergent. The algorithm

has two steps: generating data structures for each thread separately using the technique pre-

sented in Chapter 3; and integrating the generated data structures into one non-conflicting

data structure. The latter is the subject of this chapter.

4.1 Integrating Data Structures for Different Threads

We first consider a simpler situation, in which the per-thread data structures can

be compacted such that parts of the newly formed data structure come either from one

thread’s data structure or the other thread’s data structure, or they were present in both
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line# Path Constraints: Thread a line# Path Constraints: Thread b

25 curr ̸= NULL 25 curr ̸= NULL
25 curr→key ̸= k 25 curr→key == k
36 level == 1 26 curr ̸= prev[1]→next[0]

PPRs: Thread a PPRs: Thread b

line# Pointer Pointee line# Pointer Pointee
25 curr N0 25 curr N5
33 prev[0] N1 26 prev[1] N6
34 node N2 28 N5.next[0] N7
35 N1.next[0] N2
37 prev[1] N3
38 N3.next[1] N2

(a) Thread a (T F T). (b) Thread b (T T F). (c) Integrated for Both Threads.

Figure 4.1: A simple example of Skip-List data structure integration.

per-thread data structures. We refer to this as taking the union of the data structures. This

form of compaction is a simple combining of two data structures without violation of any

constraints and it will be illustrated when generating a shape that exposes the first race as

shown in Figure 4.5.

We have shown in detail how the constraints for Thread a are collected and the data

shape in Figure 4.1(a) is generated in chapter 3. Similar actions for thread b generate the

shape in Figure 4.1(b). Next, we will present the algorithm that integrates the two shapes

into one data structure that is shown in Figure 4.1(c). The per-thread data structures

generated satisfy their respective PCs and now they must be integrated to satisfy PCs for

the threads simultaneously.
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Given two threads, Ta and Tb, their path constraints PC(Ta) and PC(Tb), and

pointer-pointee relations PPR(Ta) and PPR(Tb), we make the following key observations:

• Feasibility – Since the integrated data structure must simultaneously satisfy path

constraints in PC(Ta) and PC(Tb), the presence of a pair of conflicting constraints in

PC(Ta) and PC(Tb) implies that no such integrated data structure exists. That is,

the feasibility of threads Ta and Tb simultaneously following the chosen paths requires

that PC(Ta) and PC(Tb) be conflict-free.

• Adjustment – The integrated data structure cannot in general be obtained by taking

the union of PPR(Ta) with PPR(Tb). This is because corresponding fields in PPR(Ta)

and PPR(Tb) may conflict with each other, i.e. have different pointees. Therefore

integration essentially involves adjustment of PPRs to make them consistent such

that the adjustments do not violate any constraints in PC(Ta) and PC(Tb), i.e., paths

followed are preserved.

A simple example of data shape integration. Figure 4.1 shows the integration

of data shapes for paths T F T and T T F. Thread a, which follows the path T F T, generates

the data shape in Figure 4.1(a). Another thread b, which follows the path T T F, generates

the data shape in Figure 4.1(b). Two shapes are integrated into one such that both threads

follow the same respective paths. The integrated data shape that is used to detect potential

data races is shown in Figure 4.1(c). The data shape integration consists of three steps:

1) prev in thread a’s shape contains pointers that do not exist in thread b’s shape, so the

reachable data shapes from prev are merged into the final data shape without any changes;
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Algorithm 1: An algorithm for integrating two data shapes.
Input: Pointers x and y that point to two data structures that need to be

compacted into a single non-conflicting data structure.
Output: Pointer x that now points to the compacted non-conflicting data structure

1 Procedure COMBINE(x, y):
2 if test_sets_conflict(cons(x), cons(y)) then
3 return combining failed
4 foreach attr ∈ x do
5 if (type(x.attr) ̸=pointer) then
6 continue ▷ non-pointer details omitted
7 if val(x.attr) = τ || val(y.attr) = τ then
8 if val(y.attr) ̸=τ then
9 val(x.attr)←val(y.attr)

10 ppr(x.attr)←ppr(y.attr)
11 cons(x.attr)←cons(x.attr)∪cons(y.attr)
12 else if val(x.attr)̸=val(y.attr) then
13 Ax ← adjustable(ppr(x.attr), cons(x.attr))
14 Ay ← adjustable(ppr(y.attr), cons(y.attr))
15 if ¬Ax & ¬Ay then
16 return combining failed
17 else if Ay & ¬Ax then
18 resolve(y.attr, x.attr)
19 else if Ax & ¬Ay then
20 resolve(x.attr, y.attr)
21 else
22 COMBINE(val(x.attr), val(y.attr))
23 cons(x.attr) ← cons(x.attr) ∪ cons(y.attr)
24 return combining succeeded
25 Procedure RESOLVE(α, β):
26 foreach (z.attr, s) ∈ ppr(α) do
27 foreach pc ∈ cons(β) do
28 if not has_conflict(ppr(α), pc) then
29 continue
30 ppr(α)← ppr(α) - depend((z.attr, s))
31 acons← simplify((z.attr), cons(α) ∪ cons(β))
32 if acons /∈ const then
33 (succ, c) ← predict((z.attr), cons(α) ∪ cons(β))
34 if not succ then
35 compaction failed
36 ppr(α)← ppr(α) ∪ c
37 val(z.attr) ← simplify((z.attr), cons(α) ∪ cons(β))
38 cons(α)← cons(α) ∪ cons(β)
39 else
40 ppr(α)← ppr(α) ∪ (z.attr, acons)
41 val(z.attr) ← acons
42 cons(α)← cons(α) ∪ cons(β)
43 break
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2) pointer curr is pointing to different memory objects in shapes for threads a and b, that

is, N0 and N5 respectively. The integration of memory objects N0 and N5 can be done by

transferring each field in N5 to N0 if there is no conflict, i.e. the path constraints are not

violated; and 3) N5.next[0] points to the memory object N6 in thread b. This pointer is

transferred to N0.next[0]. So the data shape in Figure 4.1(c) is generated and used for

confirming the potential race.

Next, we present Algorithm 1 that, guided by the above observations, explores

different adjustments to PPRs so they can be made consistent without violating PCs.

When conflicts among PCs are found, the algorithm reports that no integration is possible.

More specifically, Combine takes as its inputs two pointers x and y that point to per-thread

data structures and modifies the first pointed to by x into an integrated one. for the two

threads. In Algorithm 1, given a field fld in a symbolic data structure, val(fld) provides the

value of a pointer fld which can be untouched (τ), null, a concrete address, or a symbolic

expression. The cons(fld) denotes the set of subset of path constraints that involve fld.

Note that we only focus on pointer fields because they form the shape of the data structure

and mechanisms for data fields are already supported by GKLEE.

Lets us now consider the functioning of combine(x,y) where x and y are pointers

that point to the start nodes of the data structure. Lines 2-3 test for conflicts among path

constraints of x and y, and if one is found, combining is aborted; otherwise, each attribute

field of x and y are considered for combining. Lines 7-11 considers the case where the

attribute of x is untouched (i.e., τ) and hence the attribute of y is simply adopted by x

as this combining will not violate any path constraints. Lines 12-23 consider cases where
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attribute values are not equal and not untouched. For combining, they must be made equal

by adjusting one or both of them. The adjustable returns true or false indicating whether

or not an attribute’s PPR can be adjusted without violating corresponding PCs. Based

upon outcomes Ax and Ay, if possible, search for adjustments is carried out. If attribute of

only x or only y is adjustable, then the adjustment of the adjustable one is carried out via

call to resolve. If both are adjustable, a recursive call to combine is used to adjust both

attributes which will cause them to have the same value.

During integration, combine makes use of the resolve(α, β) procedure that re-

moves those PPRs from α node that conflicts with PCs in the β node. Given a single

PPR ppr, depend(lhs(ppr)) returns all the constraints that can be inferred directly or in-

directly from p. Also predict(attr, s) identifies a new predicted value for attr such that it

satisfies all the constraints in s. For example, when making a pointer non-null, predictions

considered include setting the pointer to point to: newly allocated memory, itself creating a

self-loop, or an existing object of the appropriate type. Note that simplify(c, α) is a GKLEE

method that simplifies the constraint c using the set of facts in α and has_conflict(p, c)

is another method that detects conflicts between a pointer-pointee relation p and a set of

path constraints c, if p does not satisfy the PC set c.

Now let us consider an illustration of integration performed by combine. The

first set of situations (lines 7-11) arise when at least one of corresponding pointer fields is

untouched, i.e. τ . Here the integrated data structure adopts the non τ value if one exists

or it is τ when both fields are τ . This situation alone is sufficient for integrating the shapes

in Figure 4.1 (c). The following execution call trace shows the steps of integration:
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combine (N0, N4)
11 cons(N0.child[0]) ← cons(N0.child[0]) ∪ cons(N4.child[0])
22 combine ( val(N0.next), val(N4.next) )
9 val(N3.child[0]) ← val(N5.child[0])
10 ppr(N3.child[0]) ← ppr(N5.child[0])
11 cons(N3.child[0]) ← cons(N3.child[0]) ∪ cons(N5.child[0])
23 cons(N0.next) ← cons(N0.next) ∪ cons(N4.next)

Initially combine is called with parameters N0(t0) and N4(t1). The shapes generated by

threads a and b are such that data structures rooted at the two remaining fields, N0.child[0]

and N5.child[0], are untouched τ in exactly one of the threads. So the trace follows the

true branch at line 7, updating cons(N0.child[0])) (line 11) at first. In the next iteration,

it’s calling combine (line 22) for their next field since both thread contains valid pointer

and the PPR(T0) and PPR(T1) are both adjustable. During the second recursive call of

combine, val(N3.child[0]) (line 9) and cons(N3.child[0]) (line 10) will be updated. After

handling the sub-combination in next field, cons(N0.next) will also be updated (line 23).

Therefore their integrated data structure adopts the non τ values for these fields leading to

the integrated data structure in Figure 4.1(c). The execution of combine and hence the

integration is complete. Note that the paths followed by the threads are preserved.

4.2 Creating a Non-Conflicting Data Structure

Sometimes, the integration is not always perfectly generate a data shape. A more

complex situation is one in which adjustments to data structure shapes are made during the

compaction process as will be illustrated when generating a shape that exposes the second

race of our example. Note that the compaction of per-thread data structures, always preserves
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line# Path Constraints: Thread a line# Path Constraints: Thread b

25 curr ̸= NULL 25 curr ̸= NULL
25 curr→key ̸= k 25 curr→key == k
36 level == 1 26 curr == prev[1]→next[0]

PPRs: Thread a PPRs: Thread b

line# Pointer Pointee line# Pointer Pointee
25 curr N0 25 curr N4
33 prev[0] N1 26 prev[1] N5
34 node N2 26 N5.next[0] N4
35 N1.next[0] N2 27 prev[0] N4
37 prev[1] N3
38 N3.next[1] N2

(a) Thread a (T F T). (b) Thread b (T T T). (c) Integrated for
Both Threads.

Figure 4.2: A complex example of Skip-List data structure integeration.

paths followed by threads. After succeeding or failing to generate a test input that exercises

the current path combination, concolic execution considers another path combination.

A complex example of data shape integration. Figure 4.2 shows the integra-

tion of data shapes for paths T F T and T T T. The data shapes of threads a and b are shown

in Figure 4.2(a) and (b), respectively. In Figure 4.2(c), the integrated shape is created using

the following steps: 1) Since both threads contain prev and curr, the pointer prev[0] is

first integrated. However, a conflict of prev[0] pointing to N1 for thread a and N4 for thread

b respectively is detected. The conflict is resolved by setting the pointer prev[0] is pointing

to N1 in thread b due to its pointee being modifiable. Observe there may be multiple ways

33



to resolve the conflict which can be explored if needed. All the pointers pointing to N4 are

modified to N1 so that the pointer N5.next[0] and curr are also changed to N1; 2) Then,

The pointer prev[1] is integrated by transferring N5 to N3 and the pointer N5.next[0] is

also transferred so the PPR N3.next[0] pointing to N1 is created; and 3) Because pointer

curr in thread b points to N1, and is not modifiable, the curr pointer in integrated result

uses the PPR curr pointing to N1.

Next, we consider a more complex situation if the branch at line 28 in Listing 3.1

takes true path where non-τ values are found in corresponding fields of data structures

generated by the two threads and PPRs conflicts are involved. In Figure 4.2, we first show

the PCs and PPRs, and then the two data structures generated are given in Figures 4.2(a)

and (b). Note that in this example the N3.next and N5.next are untouched (τ) in both

data structures while child[0] fields are untouched (τ) in each bottom level node. Thus,

their integration of related fields is non-conflicting.

On the other hand, the field N3.child[0], that is non-null in both data structures,

requires integration. This integration is carried by lines 12-23 of the Algorithm 1.

4.3 Race Detection in DSGEN prototype for GPU programs

Since making a thread follow a path is dependent upon the dynamic data struc-

ture and its shape, the objective of concolic testing is to generate dynamic data structures

with different shapes to explore executions along different paths by multiple threads. To

accomplish this task, our system enables two key functions. First, it allows pointers that

construct the concurrent dynamic data structures to be made symbolic. Second, it allows
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level = 1;

if (p != NULL)

found = false;
if (p->key[tid] <= x[bid]

&& x[bid] <= p->key[tid+1])

found=true;level++;
if (level==2)

parent = p; pid = tid;

p = p->child[tid];

if(!found)

p = p->next;

if(parent->next != NULL)

if(p->next)

parent->next->child[0]
= p->next;

parent->next->child[0] = NULL;

Start

B0

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

Start

B0

B1

T

B7

F
B2

T

B5

F

B8

T

End

F

B3

T

B4

F

F

B6

T

B9

T

B10

F

Figure 4.3: The Control Flow Graph of cu_skiplist_search.

the collection of constraints on data structure shapes that must be satisfied to cause the

selected paths to be followed by respective threads.
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SkipList Example Next we illustrate the use of above APIs and the functioning of our

system from the user’s perspective. For this purpose, we make use of the example that em-

ploys concurrent blocked SkipList data structure. The application code in supports searching

of a batch of keys in the SkipList by calling cu_skiplist_search function and maintains the

number of jumps in the data structure. The control flow graph of the cu_skiplist_search

function is given in Figure 4.3. Our objective is to generate inputs to enable testing of this

very function.

To cause automatic generation of the SkipList dynamic data structure, and explo-

ration of different shapes, we mark the root node of SkipList as a symbolic pointer using

the new API function klee_make_data_structure at line 36. The other non-pointer fields

in the SkipList nodes are marked symbolic using GKLEE’s klee_make_symbolic function at

line 38. In addition, symbolic threadIdx and blockIdx are also maintained by GKLEE to

generate fewer (typically two) threads.

In implementing the function cu_skiplist_search, we have manually introduced

data races. We consider the following two data races in this function for illustrating DSGEN.

1. The first read-write race arises between read access of the pointer field p->child[0]

at line 21 and write access of the pointer field parent->next->child[0] at line 30

that handles the situation in which a search requires updating of the linked hierarchy

of the parent node at line 30, while another thread is reading the child field at the

same node concurrently at line 21.

2. The second read-write race is between read access of the pointer field p->child[0] at

line 21 and write access of the pointer field parent->next->child[0] at line 29 where

36



the updating of child[0] field at line 29 conflicts with reading of the same node by

another thread at line 21.

Note that to test the cu_skiplist_search function the main program specifies grid size of

2 and block size of 1, giving us two threads: Thread a with (bid = 0, tid = 0) and Thread b

with (bid = 1, tid = 0).

Using two threads and corresponding selected paths, the data races may be exposed

by some path pairs, not exposed by other pairs, and different races may be exposed by

different path pairs. For example, no data races arise for the path pair shown in Figure 4.4

which takes a false branch at line 27. However, the first race is exposed by another path pair

shown in Figure 4.5 where Thread a executes line 21 and Thread b takes true branch at line

27 but the false branch is taken at line 28 causing line 30 to be executed. By exploring path

pairs we can uncover data races. The paths taken depend upon the differing shapes of the

data structure – for data structure in Figure 4.4 the path taken does not cause a read-write

race while for data structure shape in Figure 4.5 data race arises because updating of the

parent node is required.

Note that if the user were to write the code to construct the concrete data structure

shown in Figure 4.4, then concolic testing performed by GKLEE will not be able to alter

the outcomes of these branch conditions and the condition if (parent->next!=NULL) in

B7 will never be true; thus, parent node update will never occur and the race will not be

exposed. Even if, by coincidence, the user constructs a data structure that satisfies the

conditions for discovering the data race, it may not be able to use one data structure to

find all the races in different paths with different conditions if (p->next!=NULL) or not. On
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k0

key child next

K3

k1

N0

N1

N3

k4 k5N4 N5

Threads a & b follow the following paths
Thread a Start - B0 T - B1 T - B2 F - B4 - B5 F - B0 T - B1 T - B2 T
bid=0, tid=0 - B3 - B4 - B5 F - B0 F - B7 F - End
Thread b Start - B0 T - B1 F - B5 T - B6 - B0 T - B1 T - B2 F - B4
bid=1, tid=0 - B5 F - B0 T - B1 F - B5 T - B6 - B0 T - B1 T - B2 T - B3

- B4 - B5 F - B0 - B7 F - End

Figure 4.4: A Skip-List Shape that does not expose either the first or second data race.

the other hand, when the user makes the data structure symbolic using the DSGEN’s API,

DSGEN is able to generate the new shape shown in Figure 4.5 that causes the desired path

to be followed and making condition in B7 to evaluate to true and generate two different

shapes depends on the condition in B8. This triggers parent node updating and exposes the

data races that are identified using the collected traces.

While concolic testing is meant to explore different paths, it cannot achieve explo-

ration of paths without making pointer-based linked data structure symbolic. This is because

the path conditions in basic blocks B7 and B8 depend upon the shape of the dynamic data

structure. Only by making the dynamic data structure and its pointer fields symbolic, and

exploring different shapes, can the desired paths be exercised.

Next, let us see how path exploration is carried out by a thread in DSGEN. In

particular, in Figure 4.6 we show part of the path search space (full space is too large

to show) where some of the neighboring paths that will be explored via depth-first search
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k0

key child next

K3

k1 k2

N0

N1 N2

N3

k6 k7N6 N7

Threads a & b follow the following paths
Thread a Start - B0 T - B1 T - B2 F - B4 - B5 F - B0 T - B1 F - B5 T
bid=0, tid=0 - B6 - B0 T - B1 T - B2 T - B3 - B4 - B5 F - B0 F - B7 T

- B8 F - B10 - End
Thread b Start - B0 T - B1 F - B5 T - B6 - B0 T - B1 T - B2 F - B4
bid=1, tid=0 - B5 F - B0 T - B1 F - B5 T - B6 - B0 T - B1 T - B2 T - B3

- B4 - B5 F - B0 - B7 F - End

Figure 4.5: A Skip-List Shape that exposes the first data race but not the second race.

are shown. The predicate outcomes along the path are shown and data structure shapes

generated are also given. For example, the symbolic execution of the path highlighted in red

corresponds to the path followed by Thread b in Figure 4.5 and it leads to the generation of

the data structure shape shown at the bottom of the figure. Note that we mainly focus of

predicates on lines 14, 16, 17. This is because these predicates mainly influence the choice of

shape for the dynamic data structure while the other omitted predicates have their outcomes

determined by the chosen shape.

4.3.1 Experimental Setup

To study the effectiveness of our tool in detecting data races, we implemented

four important data structures and used them to compare the effectiveness of DSGEN with

original GKLEE (the system DSGEN is bulit on). The comparison shows two advantages of

our tool: 1) by automatically creating dynamic data structures of different shapes, it enables
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p = root
p != NULL

p->key[0] <=x[0] &&
x[0] <= p->key[1]

NULL

p = root->child[0]
p != NULL

p = root->next
p != NULL

...

True False

True False

p->key[0] <=x[0] &&
x[0] <= p->key[1]

NULL

True

False

𝜏

p = root->next->child[0]
p != NULL

p = root->next->next
p != NULL

True False

...

NULL

p->key[0] <=x[0] &&
x[0] <= p->key[1]

p = root->next->child[0]->child[0]
p != NULL

p = root->next->child[0]->next
p != NULL

True False

NULL

𝜏

False

True False

...
True

p->key[0] <=x[0] &&
x[0] <= p->key[1]

p = root->next->child[0]->next->next
p != NULL

...

True

False

NULL𝜏

NULL

𝜏

NULL

NULL

𝜏

key  child next

key  child next

key  child next

key  child next

False
...

True

B0 (L14)

B1 (L16)

B1 (L16)

B0 (L14)

B0 (L14)

B1 (L16)

B0 (L14)

B1 (L16)

B0 (L14)

Figure 4.6: The states exploration of dynamic data structure by Thread b of Figure 4.5.

40



effective concolic testing that explores many program paths; and 2) our tool can uncover

hidden data races that cannot be uncovered by GKLEE.

Our evaluation is based upon a diverse set of 25 races shown in Table 4.1. Both

read-write (rw) and write-write (ww) races, between threads from the same and different

warps, as well as divergent and non-divergent paths are included. To enable execution of

GKLEE a simple data structure is manually constructed and provided. While GKLEE’s path

exploration is based upon this single data structure, DSGEN is able to automatically generate

numerous data structure shapes and achieve higher path coverage and superior data race

detection. Next, we will discuss the four data structures considered.

Test Concurrent Data Structures We use CUDA implementations of the following

four widely used concurrent data structures that are briefly described next:

• B-Tree – Self-Balancing Search Tree B-Tree [8] is widely used in databases. GPU ac-

celerates dynamic queries and batch insertion. In Table 4.1, races 1-10 correspond to

B-Tree. The Grid Size and Block Size limits were set to 2 and 16 respectively.

• HAMT – Hash-Array Mapped Trie [11] A HAMT is an array mapped trie where the keys

are first hashed to ensure an even distribution of keys and a constant key length. It

achieves almost hash table-like speed while using memory much more efficiently. In

Table 4.1, races 11-15 correspond to HAMT. The Grid Size and Block Size limits were

set to 2 and 8 respectively.

• RRB-Tree – Immutable Radix Balanced Tree [12] The purpose of the RRB Trees is to

improve the performance of the standard Immutable Vectors by making the Vector
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Concatenation, Insertion as well as Split operation much more performant while not

affecting Indexing, Updating and Iteration speeds of the original Immutable Vectors.

In Table 4.1, races 16-20 correspond to RRB-Tree. The Grid Size and Block Size limits

were set to 2 and 2 respectively.

• Skip List – Probabilistic Ordered Data Structure [73, 87] A skip list is a probabilistic

data structure that allows O(log n) search and insertion complexity within an ordered

sequence of n elements. In Table 4.1, races 21-25 correspond to the Skip List data

structure. The Grid Size and Block Size were limited to 2 and 8 respectively.

Since the implementations of above data structures are based upon the correct

Table 4.1: The Data Races of Used in Evaluation.

Line No.: Function Name RaceId Data Race Type
61-98: sort 1 With Divergence (ww)
61-61: sort 2,3 Without Divergence (ww) and Interwarp (rw)
111-111: split_parent 4 Interwarp (ww)
140-235: node_split 5 With Divergence (ww)
140-239: node_split 6 With Divergence (rw)
271-276: node_insert 7 With Divergence (rw)
281-281: node_insert 8,9 Without Divergence (ww) and Interwarp (rw)
235-305: search_node 10 Global Memory (rw)
53-77: batch_insert 11 Interwarp (rw)
84-84: batch_insert 12 Without Divergence (ww)
84-108: search_node 13 Global Memory (rw)
104-108: search_node 14 With Divergence (rw)
77-106: search_node 15 Global Memory (rw)
27-27: unref 16,17 Without Divergence (ww) and Interwarp (rw)
27-29: unref 18 Interwarp (ww)
135-135: modify 19 Without Divergence (ww)
135-139: modify 20 Global Memory (ww)
32-32: insert 21 Interwarp (rw)
39-39: insert 22 Interwarp (rw)
78-92: create_node 23 Global Memory (rw)
105-105: create_node 24, 25 Global Memory (rw)
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algorithms provided in the noted citations, our implementations did not create any data

races. The data races were seeded in these implementations to compare DSGEN with GKLEE.

Metrics for Comparison The comparison will be made in terms of the following:

• The number of races found by GKLEE and DSGEN: There are four types of data

races that are detected by GKLEE: 1) Intra-warp Races Without Warp Divergence; 2)

Intra-warp Races With Warp Divergence; 3) Inter-warp Races; and 4) Global memory

races.

• The number of paths covered: path coverage in these experiments is defined as

number of path combinations exercised by the threads for the inputs generated by

concolic testing.

• The number inputs generated and different data structures generated are col-

lected as this compares the power of concolic testing employed by DSGEN vs. GKLEE.

• We also provide the number of execution steps and runtime for finding the races.

An execution step is the execution of an LLVM instruction using one of the simulated

CUDA threads. Execution time is the running time taken.
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Figure 4.7: DSGEN vs. GKLEE: Data Structures Generated vs. Path Combinations Explored
and Data Races Detected.
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Figure 4.8: DSGEN vs. GKLEE: Cost of Concolic Testing in Terms of Execution Time vs.
Number of Execution Steps.

4.3.2 Experimental Results

Effectiveness: Paths Explored and Races Exposed. The effectiveness of race detec-

tion is demonstrated by the results presented in Table 4.2 and Figure 4.7. We first note that

all 25 races introduced in Table 4.1 were successfully identified by DSGEN, but only 10 were

found by GKLEE. In particular, as shown in Table 4.2, GKLEE detected 2 out of 10 races in

B-Tree, 2 out of 5 races in HAMT, 3 out of 5 races in RRB-Tree, and 3 out of 5 races in Skip

List.
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Figure 4.9: Path Combinations Explored by GKLEE using the default data structure shape.

As indicated in Table 4.2, GKLEE could only explore 126, 47, 6, and 64 path

combinations using the default data structure shapes provided while DSGEN explored 2667,

282, 16, and 256 path combinations using 1629, 122, 16, and 130 different automatically

generated data structures. This shows that manually generating data structure shapes to

cover large number of path combinations would require inordinate amount of effort as the

programmer would have to manually generate a large number of data structure shapes.

We further note that DSGEN found all the races using a small subset of generated

data structures – 8 out of 1629, 4 out of 122, 4 out of 16, and 4 out of 130. We also

give #Adjustments which is the total number of adjustments made during integration of per

thread data structures. The data shows that integrated data structure cannot always be

obtained by the union of per thread data structures. These data structures explored 39, 13,

4, and 7 path combinations in all and can be reported to the user along with the concrete

inputs that expose the data race. Figure 4.7 further shows the subset of paths covered by

8, 4, 4, and 4 of the generated data structure shapes that were responsible for uncovering
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all the data races. The specific data race ids and corresponding path combinations are also

marked on the graph. Figure 4.9 gives the corresponding plot for GKLEE.

The above data clearly shows that to detect races, many path combinations need

to be explored, and this is only possible by generating different data structures of different

shapes. In absence of automatic data structure generation ability, GKLEE requires that

the user manually construct different data structure shapes and provide them to GKLEE.

However, constructing data structures that can expose data races is difficult for the user,

especially without knowing where the race may happen. For example, the race that goes

undetected by GKLEE for RRB-Tree involved the reference counting during object destruc-

tion. In addition, other races are harder to expose as they involve rare situations requiring

data structures of a particular shape and size. For example, when we analyzed the behavior

of GKLEE for BTree further, we found that the race conditions are usually hidden by branch

conditions that requires specific node size. Furthermore, some races require conflicting race

conditions that a single data structure cannot satisfy. For example, Skip List requires a child

node size less than 31 to expose race 21 and exactly equal to 31 to expose race 22.

Inputs Generated and Runtime Costs Finally, in Table 4.3 and Figure 4.8 we show

the runtime cost of DSGEN and GKLEE. The table shows that concolic testing based upon

DSGEN generated far more inputs than GKLEE: 829 vs. 61, 72 vs. 31, 7 vs. 3, and 256 vs.

64. This shows the power of DSGEN as only by generating different data structure shapes

can path combinations be explored and thus many different inputs generated.

For detected races, we also report #Thread Positions which is the number of dif-

ferent thread positions within thread blocks that are covered by the concrete inputs that
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expose data races. The range represents the minimum and maximum thread positions cov-

ered across all data races while the number in parenthesis is the maximum number of thread

positions available. This shows that although parametric flows represent multiple threads,

when data races are successfully exposed, concrete threads in thread blocks that are identi-

fied can occupy different positions.

The execution steps and execution time in seconds are also given. As we can see,

the runtime cost of using DSGEN was acceptable for cases considered, typically just a few

minutes. The plots in Fig. 4.8 show how the execution steps correspond to execution time

in seconds for DSGEN. There is no obvious bottleneck data structure observed during the

execution in our benchmarks. Since library functions being tested have limited execution

space, especially considering the use of parametric flows, we were able to exhaustively test

these functions.

4.4 Race Detection via SSRD for Multithreaded Programs

We also developed SSRD to evaluate our methods on multithreaded programs.

This prototype is built on top of Cloud9, which is a famous symbolic executor that supports

multithreaded programs using pthread APIs.

4.4.1 Experimental Setup

To study the effectiveness and efficiency of SSRD, we compared with two repre-

sentative race detectors, AFL++ (fuzzing+TSAN) and a lock-set based data race detector

using Cloud9(concolic execution+lockset). In the experiments, we tested and compared
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our system with them on lock-based implementations of the following five concurrent dy-

namic data structures: Skip List(SL), Unrolled Linked List(ULL), Priority Queue(PQ), and

AVL-Tree(AVL). These codes are modified from open source projects and augmented with

statements to trigger read-write and write-write data races. When running AFL++ and

Cloud9 data race detector, we provide additional code to create an initial shape for each

kind of the data structure and further testing of insertion, deletion, and search is based on

the initial shape. For SSRD, we will use a symbolic pointer as an automatic generated data

shape to test the data structure, all actions are based on the symbolic pointer. To limit the

size of generated shapes, we limit the length of pointer chain allowed.

Our system provides API for exploration of data shapes and thread interleavings.

First, we add a new API in cloud9, named klee_make_data_structure, to indicate a pointer

is pointing to an extensible data structure. Other symbolic values except pointers can be

marked using the normal clould9 API klee_make_symbolic. For AFL++ fuzzer, we coverted

the clould9 API klee_make_symbolic into an custom input function which can read data

from standard input stream and we provide a file with a few available data as the initial

seed. For exploitation of thread interleaving, the posix thread model is already built into

Cloud9. User creates a pair of threads using pthread API to execute functions concurrently

for testing. The detected concurrency bugs and corresponding input values are recorded in

log files.
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Table 4.4: Data Race Detection Effectiveness: Comparing Fuzzing(AFL), Concolic
Execution without (Cloud9) and with (SSRD) Shape Generation .

Test Function # of Paths Covered # of Data Races Detected
Case Name AFL Cloud9 SSRD AFL Cloud9 SSRD

SL
insert 3 52 3779 2 2 8
search 6 13 1479 0 0 2

ULL
insert 3 10 321 7 10 15
delete 16 13 78 2 1 4
search 16 16 93 0 0 3

PQ
insert 2 22 31 0 5 5
remove 2 16 1479 0 11 19

AVL
insert 1 7942 16329 0 4 6
delete 1 285 1322 0 1 12

4.4.2 Experimental Results

We evaluated the effectiveness of our system comparing it with traditional Cloud9

system with lockset based race detecting algorithm. Table 4.4 shows the path covered and

the number of data race detected using each approach. The AFL++ shows it can not

effectiveless find the data races. Since from all known races, it detects only 2 out of 10 in

skiplist, 9 out of 20 races in linked list, 0 out of 24 in priority queue and 0 out of 18 in AVL-

tree. We then note that Cloud9 can only detect a subset of data races that are detected by

SSRD - 2 out of 10 in skiplist, 9 out of 20 in linked-list, 16 out of 24 in priority queue, and

5 out of 18 in AVL-tree. At the same time, we observed that there is no new data race that

is detected by Cloud9 but not found by SSRD. There is only one race in linked list that are

finding by fuzzing which not find in SSRD which due to constraints solving problem. We

observe that the number of paths explored by SSRD 1.4×(31 vs 22) to 113.7×(1379 vs 13)

greater than Cloud9. This greater exploration of search space by SSRD is responsible for

uncovering many data races that are missed by Cloud9.
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Chapter 5

Improving Efficiency Via

Summarization and Guided Search

In this chapter, we provide an optimized approach of concolic testing that is effec-

tive and efficient in finding data races in multithreaded C/C++ programs with concurrent

dynamic data structures. Summarization is the main method to improve efficiency by using

concolic unit testing to precompute the shared constraints, data shapes and memory access

information. It also provides potential data race information for guided search which can

change the exploration order to quickly find the race. The shape exploration and memory

accesses can be reused during invoking summaries in concolic testing of the full program.

Thus, our testing process consists of two steps, a concolic unit testing step followed

by the full program concolic testing step. In the first step using unit concolic testing sum-

marization of individual functions that implement concurrent dynamic data structures is

carried out. At the same time, the memory accesses in summaries are used to identify pairs
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of paths that contain potential data races. In the second program concolic testing step, we

start from the main function and test the whole program with the aim of generating inputs

that confirm potential data races one by one. During this process, the data structure shapes

contained in function summaries are reused to direct the exploration of non-conflicting data

structure shapes for various paths in multiple threads. This directed search prunes the ex-

ploration of paths that cannot realize the potential data race. The reuse of data structure

shapes and other information in summaries improves the efficiency with which summarized

functions are executed during testing.

5.1 Shape-Aware Summarization

5.1.1 Overview

Summarization via Concolic Unit Testing Given a program P with a set of func-

tions Σ, let F be the subset of functions from Σ that corresponds to concurrent dynamic

data structure implementations and are candidates for summarization. For a given func-

tion f ∈ F , concolic unit testing of f is performed to build the decision tree δ(f). The

constructed decision tree corresponds to the tested paths in the function such that each leaf

node corresponds to a tested path from the start of the function to a return point. ∆ denotes

the set of summaries of functions in F . The overview of the concolic unit testing of function

f and the generated decision tree ∆(f) is shown in Figure 5.1.

In a decision tree δ(f), each node n ∈ δ(f) represents a conditional, a call to a

function, a synchronization operation, or a return from a function. All nodes are annotated
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Figure 5.1: Concolic Testing for Summarization of function f .

with shape S(n) and memory access M(n) summaries defined as follows:

• S(n) – the set of pointer-pointee relationships among symbolic pointers representing

the data structure shape that must be satisfied to enable the execution of n ∈ δ(f);

• M(n) – the set of symbolic names (globals and parameters) and concrete addresses

(locals) that correspond to the read/write memory accesses performed by n;

Also, branch nodes, call nodes, synchronization nodes, and return nodes are annotated with

additional information B(n), Cf (n), L(n), V (n) respectively as described below.

• B(n) – is the branch condition if n is a branch node;

• Cf ′(n) – contains name of function f ′ and the parameters for the call if n is a call

node;

• L(n) – contains lock/unlock action associated with n; and

• V (n) – is the return value if n is a return node (it is empty if there is no return value).
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Here, we briefly describe some key points about the unit testing that computes

δ(f). First, all global variables as well as the parameters of f are treated as symbolic

variables. Second, if f contains a function call, the return value of the callee function is

treated as a symbolic variable and the testing of paths following the call are explored using

the symbolic return value. In addition, since the callee may not be pure function (i.e., it

can have side effects), the local variables that are passed as parameters to the callee are

also treated as symbolic starting from the call site. In addition, the loops are handled by

limiting the number iterations and then enumerate all of paths they can generate.

Concolic Testing of Full Program After concolic unit testing, the function summaries

are constructed. We can use those summaries in the concolic testing of full program. Given

a list of user specified symbolic input, the target program will execute with both symbolic

and concolic input, and different paths will be explored. If the program contains multiple

threads, other threads will be executed once the program meets locks or wait signals. During

the thread scheduling, different thread interleavings will be explored.

Our approach improves the efficiency of full program concolic testing by taking

advantage of summaries in ∆. When a thread encounters a call to a function f for which

summary δ(f) is available in ∆, summary reuse is invoked instead of calling f . This ap-

proach eliminates overhead of constructing symbolic expressions, gathering and checking

constraints, and building data structure shapes that satisfy constraints. That is, some of

work performed during unit testing of a function is reused instead of being repeated during

each execution of the function during concolic testing.
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Given the current state of program ϕ just before node n in a summarized function,

ϕ is updated by affecting it using the summary associated with n as follows:

1. Shape Formation: Given state ϕ, the shape summary S(n) transforms the shape of

the data structure giving state ϕ′.

ϕ ==⇒
S

n
ϕ′

2. Memory Accesses: A memory access summary includes reads from locations and writes

to locations that copy symbolic or concrete values and changing state to ϕ′′.

ϕ′ ==⇒
M

n
ϕ′′

3. Updates based upon the type of node n:

• Branch- The expression eval(B(n) = true, ϕ) evaluates branch condition B(n)

and checks if it is true on ϕ. By evaluating eval(B(n) = true, ϕ′′) and eval(B(n) =

false, ϕ′′), and adding appropriate path constraints, new states are represented

as:

ϕ′′==⇒
B=true

n
ϕ′′
t or/and ϕ′′==⇒

B=false

n
ϕ′′
f

• Call to f ′- Update state by invoking callee f ′, using callee’s summary if available,

ϕ′′ ==⇒
Cf ′

n
ϕ′′′;

• Return node- Update state by mapping the return value to the caller ϕ′′ ==⇒
V

n
ϕ′′′;

or

• Synchronization- Applying L(n) to state ϕ′′ leads to state ϕ′′′, ϕ′′ ==⇒
L

n
ϕ′′′, where

executing threads state changes based upon the synchronization operation.
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Finally, updating state ϕ due to a sequence of statements ni−nj along a path is performed

as follows.

ϕ==⇒
δi−j

ni−nj

ϕ′ = ϕ ==⇒
δi

ni
ϕi ==⇒

δi+1

ni+1
ϕi+1 · · ·ϕj−1 ==⇒

δj

nj
ϕ′

Updating state via use of summary is more efficient than the normal function call

due to the following reasons:

– Lightweight Construction The checking of constraints, creation of data shape,

and construction of symbolic expressions that is carried out during concolic unit testing of

a function is reused during concolic testing of the full program. In Figure 5.2, when f’s

summary is reused, other than replacing formals by actuals and checking path condition,

the rest of the work is not repeated.

– Minimizing Memory Accesses Once symbolic expressions are simplified, some

memory accesses are eliminated – if multiple writes are directed to same address, only

the last write is needed. The computation of local variables may also be eliminated. In

Figure 5.2, for g(), the local variable b is eliminated, only last writes to a[0] and a[1] are

performed, and a[0] is read only once.

Illustration – Concurrent Skip List. Consider the code in Listing 3.1 which presents

two operations for a skip list - insert and search for inserting in a ordered list and searching

for a node corresponding to a key value. The function search_node is a common function

used by both insert and search functions to find the node which contains key k. Let

us assume that the main function creates two POSIX threads and calls thread0_main and

thread1_main that are the entry functions of the two POISX threads in this example.
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Figure 5.2: Benefits of Summaries: Construction Overhead.

Figure 5.3: Benefits of Summaries: Memory Accesses.

Figure 5.4: A data shape that cannot expose (left) and can expose (right) the race.

57



Figure 5.5: The decision tree for insert function.

Figure 5.6: The decision tree for search_node function.
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– Example data race. To allow an illustration of our method, our implementation

includes the following error. During the insertion of a new node in the skip list, insert

function finds the suitable position for insertion and collects all nodes that need to be

modified in the list prev (line 24, 34-39). Instead of locking every node in prev list, by

mistake we have locked only one node (line 33, 40). This leads to many data races in

insert and search_node functions. However, for illustration purposes we consider one

race. In function insert, since the mutex lock only protects node prev[0], line 38 and line

14 have a data race when prev[1]->next[1] is being written and h->next[1] is being read

at the same time since prev[1] and h represent the same node.

– Shape required. Manifestation of this data race requires a skip list with a certain

shape. For the skip list in Figure 5.4 left, prev[0] and prev[1] refer to the same node.

Therefore the lock at line 33 can protect node prev[1] which is being modified and hence

the data race between line 38 and line 14 does not manifest itself. On the other hand, in

Figure 5.4 right, the skip list shape shown exposes the data race. From this example we

conclude that it is necessary to explore appropriate data shapes to expose a desired data

race. Data shapes also influence the path taken and hence to exercise a given path, we must

use an appropriate shape.

– Summary Representation. Since functions insert, search, and search_node

implement the skip list concurrent data structure, their summaries will be generated. Fig-

ures 5.5 and 5.6 show the generated decision trees of functions insert and search_node.

Note that trees include call nodes, branch conditions, synchronization operations, and re-

turn nodes. For the highlighted path T F T in this decision tree, the data shape generated
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line# address value type
25 curr->key Load
34 prev[0]->next[0] Load
34 node->next[0] prev[0]->next[0] Store
35 prev[0]->next[0] node Store
37 prev[1]->next[1] Load
37 node->next[1] prev[1]->next[1] Store
38 prev[1]->next[1] node Store

Table 5.1: Memory accesses along path T F T in insert.

Figure 5.7: Data Structure Shapes at entry and return points of function invocations.
Gray/yellow statements are excluded from decision tree as their effect is captured by

shape/memory access summaries or they are fully evaluated during unit testing.
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is captured via pointer-pointee relations in Table 3.1 and the memory accesses summary is

given in Table 5.1. In all cases pointer dereferencing implies a non null pointer and thus

pointers point to other nodes in Table 3.1.

– Summary invocation. We illustrate the use of summaries in Figure 5.7 where a

thread creates an initial data structure and invokes function insert which in turn invokes

summarized recursive function search_node. All three function invocations use correspond-

ing function summaries. The data structures at function call and return boundaries is

shown. The changes involve mapping of symbolic names and also making changes to data

structure to reflect the effect of the function via use of summaries of data structure shapes

and write memory operations. The statements along the path followed are also shown with

statements that are not present in the decision tree are shown in gray and yellow such that

the effect of these statements on program state is achieved via use of shape and memory

access summaries.

The insert function is invoked with arguments R0, 1, v0 where R0 and v0 are

set to symbolic by the user. R0 points to a symbolic object R0.next[1] and a concrete

object R0.next[0] (also R1). The invocations of insert and search_node start with evalu-

ation of their decision trees and lead to actions that affect state as if functions are executed.

Upon invocation of each function, the arguments are mapped to symbolic names used dur-

ing unit testing. For insert, the symbolic names H, K, V used in unit testing of insert

are mapped to real arguments R0, 1, v0. The evaluation of first decision tree node in-

vokes search_node. The arguments H, K, 1 and local prev are passed to search_node.

Before invocation, local memory object prev is allocated and used as the output buffer for
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search_node. Also symbolic unit testing names h, k, i, p are mapped to reals, concrete or

symbolic, in the caller (i.e., H = R0, K = 1, 1, and prev). The recursive call search_node(h,

k, i-1, p) maps h2, k2, i2, p2 to R0, 1, 0, prev.

In the first invocation of search_node, the evaluation of branch conditions in the

decision tree uses symbolic arguments (e.g., h.next[i] != NULL becomes R0.next[1] !=

NULL) that can be true or false, but we choose to explore the true branch first. After

evaluating branch conditions, the appropriate data shape is processed to affect the current

data structure. Memory object R2 is created to satisfy pointer-pointee relationship in the

path. Finally, the memory operations are processed: the write p[i] = h is converted to

prev[1] = R0 and prev[0] = R0 in the first and second invocations.

In insert, the branch nodes are evaluated using the return value curr from

search_node. Since in the second invocation of search_node returns h.next[i], which

is R1, the return value curr refers to R1. The branch conditions become R1 != NULL and

R1.key == k. After calling of create and rand_level, the local variable node and level

become concrete values. During the evaluation of the subsequent decision tree nodes in Fig-

ure 5.5, lock/unlock events are processed, and memory accesses that write to nodes prev[0]

and prev[1] (which both refer to R0) are processed. After invocation of insert is complete,

all the local variables and names disappear upon the pop action of the current stack frame.

Note that all of the above actions were performed using function summaries which

optimizes the work performed.

62



5.1.2 Summary Invocation Algorithm

Next, we present the key details of our algorithms for summary invocation during

full program concolic testing. We assume the summary of each function interested in is

available.

During the concolic testing of the full program, a call to a summarized function f

is replaced by invocation of its summary. The invocation algorithm maps the symbolic and

concrete values, including pointers, obtained via concolic unit testing to the values in the

current state. The decision tree δ(f) of function f is used to determine which path is followed

and the program state impacted by execution of the path is updated by storing symbolic

addresses in memory. The invocation algorithm only handles the summarized functions.

Unsummarized functions, or paths whose summaries are unavailable, are executed as they

are by standard concolic testing.

The invocation process, presented in Algorithm 2, begins with a list of input pa-

rameters (symbolic or concrete values), an execution state ϕ, and the root node of the

decision tree of δ(f). The InvokeSummary function presents the actions for different node

types. For all node types, at line 2, first ϕ ==⇒
S

n
ϕs applies data shapes to the current state

ϕ. For a branch node, we evaluate the branch condition eval(B(n) = true, ϕ) (line 4-6)

and eval(B(n) = false, ϕ) (line 7-9) to decide whether branch condition is true, false, or

either. Then, we apply the branch condition to the path constraints in the new state(s). We

continue to process the child branches based on the evaluation results using new state(s) (at

line 6 and 9). For call, synchronization, and return node types we process memory accesses

ϕs==⇒
M

np−n
from the last non-branch node (line 11-12) since their side effects must be reflected
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in the new state ϕm. The new state will serve as the start state for a new call, return, or a

thread context switch. The state ϕ′ represents the state after applying C ′
f (n), L(n), or V (n)

based on the node type (line 12). Eventually, the final state ϕ′ will be pushed into state

queue Φ. To implement ϕ ==⇒
δ(f)

n
ϕs, the key actions when invoking a summary are defined

as follows:

(1) Create object mapping. Each memory object in the concolic unit test summary

is mapped to real memory corresponding to the executing program. This mapping is used

to convert the memory objects from concolic unit testing to the real memory objects in the

current execution state.

(2) Create value mapping. The value mapping is used to convert symbolic values

used in concolic unit testing to the values in the current execution state.

(3) Converting objects. As the decision tree path taken is identified, the memory

accesses to the objects in unit testing are converted to real objects by looking up the object

mapping and calculating the offset if the pointer is not pointing to the beginning of the

objects. Observe that multiple pointers in unit testing can map to the same object. Symbolic

values in memory are mapped into symbolic or concrete values in the current state using

value mapping.

For describing details of the above step, some utility functions need to be defined

first: getBase computes the base address of memory object; getOffset computes the off-

set of a field relative to the base address; isPointer determines if the current expression

represents a pointer or not; and finally read(p) can dereference a pointer p and read its

content.
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Algorithm 2: Summary Invocation – Steps 1, 2 & 3.
1 Procedure InvokeSummary(ϕ, n):

2 ϕ ==⇒
S

n
ϕs

3 if n is branch then
4 if eval B(n) can be true in ϕ then

5 ϕs==⇒
B=true

n
ϕt

6 InvokeSummary(ϕt, n.true_branch)
7 if eval B(n) can be false in ϕ then

8 ϕs==⇒
B=false

n
ϕf

9 InvokeSummary(ϕf , n.false_branch)
10 else
11 np ← the last non-branch node

12 ϕs==⇒
M

np−n
ϕm==⇒

C/L/V

n
ϕ′ based on the type of n

13 if n is return then
14 Φ.push(ϕ′)
15 else
16 InvokeSummary(ϕ′, n.child_node)
17 Procedure mapObjectInit(args):
18 obj_map, value_map ← {}, {}
19 foreach unit_arg, real_arg in args do
20 if isPointer(real_arg) then
21 b← getBase(unit_arg)
22 obj_map[b].base ← getBase(real_arg)
23 obj_map[b].offset ← getOffset(real_arg)
24 else
25 value_map[unit_arg] ← real_arg

26 return obj_map, value_map
27 Procedure mapObject(obj_map, value_mapper, S):
28 foreach pointer, pointee in S do
29 real,_= convert(obj_map, value_mapper, pointer, _)
30 data = read(real)
31 b = getBase(pointee)
32 o = getOffset(pointee)
33 obj_map[b].base ← getBase(data)
34 obj_map[b].offset ← getOffset(data) - o
35 value_map[pointee] ← real

36 Procedure convert(obj_map, value_map, a, v):
37 b = getBase(a)
38 o = getOffset(a)
39 b′ = obj_map[b].base
40 o′ = obj_map[b].offset + exprReplace(value_map, o)
41 return (b′ + o′), exprReplace(value_map, v)
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In Algorithm 2, ϕ ==⇒
S

n
ϕs can be implemented using mapObject and mapObjectInit.

First, we initialize the object mapping and value mapping by calling mapObjectInit with

the input parameter pairs, which are the parameters in current state and parameters from

the unit testing. Each pair of parameters is processed and added to the object mapping and

value mapping as initial information for which objects from unit testing and current state

map to each other. Each time during processing ϕ ==⇒
S

n
ϕs, mapObject is called by passing

the same object mapping, value mapping containers and the shape summary S(n) which is

a list of PPRs. First, the pointer is converted into the real memory address real and loaded

with the value data that real points to. If data is concrete value, which points to a memory

object, this object should be mapped to the object that pointee referenced to in the unit

testing (line 31-34). For handling address being writen and stored in the memory access,

the value mapping is updated (line 35).

The convert function converts a memory access with address a and value expres-

sion v (for write access) to a real memory object by looking up the object mapping and

value mapping. The memory access ϕ ==⇒
M

n
ϕm is implemented by converting the memory

reads and writes in M from unit testing into real memory object reads and writes. Only

the first read and last write for each memory address access is needed.

5.2 Summary-Guided Race Detection

Next, we provide a summary guided race detection algorithm based upon the

lockset algorithm [92], hybrid race detection [79], and the Cloud9 thread scheduling al-

gorithm [29]. Our race detection method has two phases. In the first phase, before program
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testing, we iterate over all the possible pairs of paths in a given summary to find potential

data races in the function. We use the lockset algorithm [92] to expose potential data races

from summaries for each pair of paths. When traversing a pair of different memory accesses

along two paths, if the accesses refer to the same address and do not hold the same lock,

then we record a potential data race involving the accesses. During program testing, in the

second phase, we use the thread scheduler to postpone the thread when it reaches one of

potential racing statements. This thread’s reactivation is prevented until another thread

reaches the corresponding racing statement confirming a race.

If two paths dereference pointers, the data race will only occur when both accesses

refer to the same memory object. Therefore, the integration of data structures for the two

paths into a non-conflicting consistent shape is required for potential data race detection.

Our integration algorithm accepts a pair of paths as the input and generates an integrated

data shape for the paths as the output. The integration is achieved by modifying the pointer-

pointee relationships for the two paths. If we have two different paths of the same function,

we can first start from the root pointer of all the parameters and local/global variables which

have been marked as symbolic variables, and combining the pointer-pointee relationship for

two paths. We illustrate this process using an example.

In the second phase, while testing the application, the scheduler explores inter-

leaving of threads to confirm a potential data race. An operation called postpone is used

to exercise thread interleavings. Once the current thread satisfies the conditions for a po-

tential data race, the scheduler postpones the thread to give another thread a chance to be

scheduled and progress to a point that realizes the data race. If a schedule is found that
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realizes the data race, the race is reported and thread is no longer postponed and allowed

to be scheduled to search for another data race.

Algorithm 3: An algorithm for data race detection
Input: The initial running state ϕ0 and a set of potential race set R
Output: An optimized scheduling of summary invocations.

1 Procedure SchedulingGen(ϕ0, R):
2 Q = ϕ0

3 ϕ = Q.pop()
4 while Active(ϕ) ̸= ∅ do
5 for t ∈ Active(ϕ) do
6 while t /∈ postponed(ϕ) do
7 t = nextThread(t, ϕ)
8 if all threads are in postponed(ϕ) then
9 postponed(ϕ) = postponed(ϕ) - t

10 ϕ′ = forkThread(ϕ)
11 Current(ϕ′) = t
12 runThreadUntilSync(ϕ′)
13 Q.push(ϕ′)

Algorithm 3 shows how the thread scheduler explores interleavings to confirm po-

tential data races. It continues exploring all paths and thread interleavings combinations

till testing time is exhausted. Active(ϕ) maintains a set of running threads. postponed is a

set of threads which are currently postponed and cannot be scheduled yet. The algorithm

checks when there are threads are running (Active(ϕ) ̸= ∅). For each running thread t, if t

is in Postponed(ϕ), we postpone the thread to schedule the next one using nextThread(t)

to get the next thread. If all threads are postponed, we remove the current thread from the

Postponed(ϕ) set to make sure there is no dead lock. Then, we fork a new state to explore

the thread scheduling for t and execute the thread t using runThreadUntilSync until it

meets a thread synchronization event (for example lock, unlock, etc). Finally, we push state

ϕ′ in the state queue Q to schedule the next synchronization event.
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5.3 Summarization and Guided Search in SSRD

The SSRD system is implemented under the Cloud9 framework [29] which provided

a scalable symbolic execution engine and a POSIX thread model which can be used to detect

bugs in multithreaded programs. For concolic testing of the full program that makes use

of functions of the concurrent dynamic data structure, we first identify potential data races

that may arise when multiple threads execute summarized functions that implement the

concurrent dynamic data structure. Given a function f ∈ F , and its summary δ(f) ∈ ∆, a

set of potential data races R is computed. Each data race in R is of the form r(ρi, ρj) where

ρi and ρj are paths whose simultaneous execution by different threads may cause a data

race according to δ(f). Symbolic variable set I represents all user defined symbolic variables

for program P . The concolic executor explores paths for confirming data races in R.

Figure 5.8: Exploring Path, Shape and Thread Interleaving.
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Figure 5.8 shows the concolic testing performed to identify realizable data races in

R via search guided by δ(f). The set of states maintained by the testing engine is shown

as Φ. State set Φ contains all possible execution states of the program P . A state ϕ ∈ Φ

contains the current status of all threads and the complete address space for all memory

objects. ϕ0 is the initial state of the program and T (ϕ) denotes all threads in a state ϕ such

that Active(ϕ) is the subset of threads that are ready to run and Running(ϕ) is the thread

in Active(ϕ) that is currently running under a scheduling policy. Finally, Postponed(ϕ) is

the subset of threads that have executed a statement involved in a potential data race and

are waiting for another thread to exercise the corresponding statement to confirm the data

race. This aspect of scheduling direct execution towards exposing a data race.

Let us briefly consider how the search is carried out. Starting from the initial state

ϕ0 for the program, such that the main function serves as the entry point, the concolic

executor explores paths and shapes, and thread interleavings when handling branch instruc-

tions and synchronization actions. For efficient path exploration using given input values

for I, different branch outcomes are forced and at the same time the corresponding states

are pushed into the state queue Φ. The thread interleaving exploration is guided by R as

follows. A thread is made to execute a path ρi involved in a potential data race and another

thread is made to explore all paths ρj ∈ R such that r(ρi, ρj) belongs to R. The data races

confirmed during exploration are reported.
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Table 5.2: SSRD Execution Time: Without Using (WO-Sum) and With Using (W-Sum)
Function Summaries + Summaries Construction Time. Negative percentages indicate

reductions, and reduction in parentheses means the reduction if we don’t calculate
summaries construction time.

Test Function Execution Time (s)
Program Name WO-Sum W-Sum Reduction

(+cons. time) (% w/o cons. time)

SL
insert 326.56 172.3 + 0.81 -47.0%(-47.2%)
search 116.19 98.29 + 0.75 -14.8%(-15.4%)

ULL
insert 1092.27 87.84 + 0.39 -91.9%(-92.0%)
delete 76.26 21.47 + 0.44 -71.3%(-71.8%)
search 268.32 66.31 + 0.53 -75.1%(-75.3%)

PQ
insert 15.45 23.77 + 0.88 59.5%(53.9%)
remove 111.26 8.58 + 31.39 -64.1%(-92.3%)

AVL
insert 41.47 18.42 + 0.76 -53.7%(-55.6%)
delete 212.06 122.61 + 0.98 -41.7%(-42.2%)

Table 5.3: Analysis of Execution Time: Reduction of Constraint Solving Time Using
(W-Sum) Function Summaries. # of Solved represents the number of constraints solved

during execution.

Test Function Constraints Solving Time # of Solved
Program Name % of W-Sum WO-Sum W-Sum

Total Time (% Reduction) (% Reduction)

SL
insert 45.27% -72.69% 100466 42336(-57.9%)
search 22.54% -35.15% 45948 28728(-37.5%)

ULL
insert 85.20% -96.95% 485212 46655(-90.4%)
delete 64.55% -94.38% 75548 3333(-95.6%)
search 73.56% -92.32% 164220 7140(-95.7%)

PQ
insert 95.64% 55.72% 5704 6764(18.6%)
remove 87.20% -92.27% 9486 527(-94.4%)

AVL
insert 48.66% -97.92% 19625 333(-98.3%)
delete 53.39% -96.40% 49887 3856(-92.3%)
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Table 5.4: Analysis of Summarization Benefits. # of Memory Access shows the number of
memory read/write during execution and Reduction shows the number of memory

read/write reductions once using summarization.

Test
Program

Function
Name

# of Memory Access W-Sum
Read(Reduction) Write(Reduction)

SL insert 4460946(-8.3%) 2122027(-5.3%)
search 2606982(-1.9%) 1204355(-1.4%)

ULL
insert 84180(-88.0%) 158774(-46.9%)
delete 14564(-86.1%) 14564(-66.5%)
search 38201(-81.1%) 38201(-52.9%)

PQ insert 993(-24.6%) 1352(-2.6%)
remove 6108(-36.7%) 7419(-3.2%)

AVL insert 28934(-48.0%) 34985(-74.4%)
delete 1357135(-2.5%) 703537(-23.0%)

5.4 Evaluation

The summaries play an important role in improving the exploration efficiency of

SSRD. Table 5.2 compares the performance difference with/without summarization. We

observed that with summaries (W-Sum) the execution time is reduced by 14.8% to 91.9%

over without summaries (WO-Sum) across the benchmarks. The overall efficiency of SSRD

is much better than Cloud9. However, there is one exception - the insert action for priority-

queue slows down when summaries are used. This is because the paths contained in sum-

maries are not encountered. Hence summaries do not yield any benefits, while cost is incurred

for generating and invoking them.

Table 5.3 provides the reductions in constraints solving time when summarization

is used. It shows that constraints solving accounts for a significant portion of the total time,

22.54% to 95.64% across the benchmarks. With summaries, we observed reductions ranging

from 35% to 97% in constraints solving time across the benchmarks, while the number of

constraints solved is reduced by 37.5% to 98.3%. The constraints solving time reflects the
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time spent on solving the branch condition and symbolic pointers. This is reduced using

summaries since there are solved branch conditions and generated data shapes in the saved

path summaries.

Table 5.4 presents the performance improvements of SSRD due to the reductions

in memory accesses. The number of read and write operations is reduced via summaries by

1.4% to 88.0% since there are memory read and write operations that are eliminated if their

results are pre-computed during concolic unit testing.
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Chapter 6

Conclusions and Future Work

In this dissertation, we studied concolic testing of programs with concurrent dy-

namic data structures, identified issues with effectiveness and efficiency, and developed tech-

niques to address them. First, an automated data structure shape generation algorithm was

developed to exercise a selected path. Second, a shape integration algorithm was developed

to cause multiple threads to exercise chosen paths simultaneously. Finally, to improve the

efficiency of data shape exploration, we presented function summarization via concolic unit

testing to enable the reuse of symbolic expressions and the precomputed data shapes when

finding a data shape that exercises chosen interprocedural paths.

We developed the DSGEN prototype that expands the applicability of concolic test-

ing to CUDA programs involving concurrent dynamic data structures. Our approach enables

the automatic generation of dynamic data structures of different shapes which cause differ-

ent program paths to be exercised by multiple threads. Our experience shows that DSGEN

is effective in testing complex data structures (B-Tree, HAMT, RRB-Tree, and SkipList).
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We also developed the SSRD prototype - an efficient and effective approach for

concolic testing of multithreaded programs that employ concurrent dynamic data structures

with the goal of uncovering data races. The key contributions of this work include sum-

mary computation and exploitation for efficiency and non-conflicting shape determination

and thread scheduling to guide concolic testing to expose data races. Our evaluation on

Skip List, Unrolled Linked List, AVL-Tree, and Priority Queue shows that our approach is sig-

nificantly more effective in uncovering data races than Cloud9 or AFL++. The reuse of

summaries leads to the lightweight creation of objects and elimination of memory accesses

during concolic testing thus significantly reducing its cost.

Future Work. The current prototypes that were developed have a few limitations. One

is for the loop structure with symbolic iteration numbers. A loop contains many paths but

only a few are captured by summarization, for example, we will only capture the first few

iterations. Hence reuse of the summary is limited. In future work, the loop structure can be

summarized with symbolized loop invariants and number of iterations to increase the reuse

of loop structure. Another limitation is with respect to support for atomic operations in

SSRD. The current prototype is focusing on pthread API with lock-based synchronization

primitives. The support for lock-free data structure and atomic operations should be added

to support a wider variety of concurrent programs.
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