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RESEARCH ARTICLE Open Access

A phase Ib study of utomilumab
(PF-05082566) in combination with
mogamulizumab in patients with
advanced solid tumors
Ezra E. W. Cohen1*, Michael J. Pishvaian2, Dale R. Shepard3, Ding Wang4, Jared Weiss5, Melissa L. Johnson6,
Christine H. Chung7, Ying Chen8, Bo Huang9, Craig B. Davis8, Francesca Toffalorio10, Aron Thall8

and Steven F. Powell11

Abstract

Background: Expressed on activated T and natural killer cells, 4-1BB/CD137 is a costimulatory receptor that signals
a series of events resulting in cytokine secretion and enhanced effector function. Targeting 4-1BB/CD137 with
agonist antibodies has been associated with tumor reduction and antitumor immunity. C-C chemokine receptor 4
(CCR4) is highly expressed in various solid tumor indications and associated with poor prognosis. This phase Ib,
open-label study in patients with advanced solid tumors assessed the safety, efficacy, pharmacokinetics, and
pharmacodynamics of utomilumab (PF-05082566), a human monoclonal antibody (mAb) agonist of the T-cell
costimulatory receptor 4-1BB/CD137, in combination with mogamulizumab, a humanized mAb targeting CCR4
reported to deplete subsets of regulatory T cells (Tregs).

Methods: Utomilumab 1.2–5 mg/kg or 100 mg flat dose every 4 weeks plus mogamulizumab 1mg/kg (weekly in
Cycle 1 followed by biweekly in Cycles ≥2) was administered intravenously to 24 adults with solid tumors.
Blood was collected pre- and post-dose for assessment of drug pharmacokinetics, immunogenicity, and
pharmacodynamic markers. Baseline tumor biopsies from a subset of patients were also analyzed for the
presence of programmed cell death-ligand 1 (PD-L1), CD8, FoxP3, and 4-1BB/CD137. Radiologic tumor
assessments were conducted at baseline and on treatment every 8 weeks.

Results: No dose-limiting toxicities occurred and the maximum tolerated dose was determined to be at least
2.4 mg/kg per the time-to-event continual reassessment method. No serious adverse events related to either
treatment were observed; anemia was the only grade 3 non-serious adverse event related to both treatments.
Utomilumab systemic exposure appeared to increase with dose. One patient with PD-L1–refractory squamous
lung cancer achieved a best overall response of partial response and 9 patients had a best overall response of
stable disease. No patients achieved complete response. Objective response rate was 4.2% (95% confidence
interval: 0.1–21.1%) per RECIST 1.1. Depletion of Tregs in peripheral blood was accompanied by evidence of T-
cell expansion as assessed by T-cell receptor sequence analysis.

Conclusions: The combination of utomilumab/mogamulizumab was safe and tolerable, and may be suitable
for evaluation in settings where CCR4-expressing Tregs are suppressing anticancer immunity.

Trial registration: ClinicalTrials.gov identifier: NCT02444793.
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Background
Cancer immunotherapy, in particular monoclonal anti-
body (mAb) antagonists of the programmed cell death
protein 1 (PD-1)/programmed cell death-ligand 1 (PD-
L1) pathway, has substantially helped patients with a
variety of solid tumor types, including non–small-cell
lung cancer (NSCLC) [1], squamous cell carcinoma of
the head and neck (SCCHN) [2], melanoma [3], bladder
cancer [4], and renal cell carcinoma [5]. Patients
whose tumors do not respond to PD-1/PD-L1 antago-
nists represent an increasingly recognized area of un-
met need [6]. Tumor cell extrinsic mechanisms, such
as the lack of T cells or the presence of immunosup-
pression [7], may define a subclass of patients who
would benefit from combinations that provide costi-
mulatory signals to antitumor T cells while removing
immunosuppressive cells. One such combination is
utomilumab plus mogamulizumab.
Utomilumab (PF-05082566) is a fully human immuno-

globulin G2 agonist mAb that binds to human 4-1BB/
CD137 with high affinity and specificity [8]. 4-1BB/
CD137 is a costimulatory receptor of the tumor necrosis
factor receptor superfamily expressed on activated im-
mune cells, including T cells [9], dendritic cells [10], and
natural killer cells [11]. 4-1BB/CD137 agonists promote
immune cell proliferation, survival, cytokine production
[12–15], formation of immunologic memory, and sus-
tained T-cell immune responses [16–18]. Lymphocyte
activation and favorable antitumor responses have been
elicited by utomilumab as well as other 4-1BB/CD137
agonists in multiple preclinical models [8, 13, 19–21]. A
phase I trial of utomilumab recently reported a favorable
safety profile and preliminary antitumor activity [22].
Mogamulizumab is a recombinant humanized mAb

targeting C-C chemokine receptor 4 (CCR4, CD194). It
was first approved in Japan in 2012 for relapsed or re-
fractory CCR4+ adult T-cell leukemia-lymphoma (ATL),
and approval for first-line treatment of CCR4+ ATL was
granted in 2014. Approval for additional indications of
relapsed or refractory CCR4+ peripheral T-cell lymph-
oma and cutaneous T-cell lymphoma was gained in
2014. In 2018 it was approved by the US Food and
Drug Administration and European Medicines Agency
for the treatment of relapsed or refractory mycosis
fungoides or Sézary syndrome after at least 1 prior
systemic therapy. CCR4 has been observed on regula-
tory T cells (Tregs) [23]. In vitro or in vivo mogamu-
lizumab treatment selectively depleted CCR4+ Tregs
and is associated with increased levels of tumor-
antigen–specific T cells [24, 25].
The combination hypothesis has been evaluated by

in vivo experiments in a murine melanoma model in
which the antitumor activity of 4-1BB/CD137 was sig-
nificantly improved when given in combination with an

anti-CD4 mAb that depleted Tregs as well as other
CD4+ cells [26]. Anti–4-1BB/CD137 treatment resulted
in the polyclonal expansion and differentiation of antitu-
mor CD8+ T cells into effective antitumor agents,
whereas CD4+ T-cell depletion facilitated the infiltration
of immune cells into the tumors and removed Treg hin-
drance [26].
The mechanistic data for utomilumab and mogamuli-

zumab as single agents coupled with the preclinical out-
comes supported clinical evaluation of the hypothesis
that depletion of CCR4+ Tregs by mogamulizumab
would enhance the efficacy of antitumor immune re-
sponses expanded by utomilumab.
This phase Ib study investigated safety, efficacy,

pharmacokinetics (PK), and pharmacodynamics of uto-
milumab plus mogamulizumab in patients with ad-
vanced solid tumors previously unresponsive to
currently available therapies or for whom no standard
therapy was available.

Patients and methods
Study design and objectives
This phase I, open-label, multicenter, multiple-dose
study was approved by the institutional review boards at
all nine centers in the US. Patients were enrolled be-
tween May 26, 2015 and February 7, 2017 (study com-
pletion October 10, 2017). The study was conducted in
compliance with the ethical principles originating in or
derived from the Declaration of Helsinki and in compli-
ance with the International Council for Harmonization
Good Clinical Practice Guidelines. All patients provided
written informed consent. The study is registered on
ClinicalTrials.gov (NCT02444793).
The primary objective of the study was to estimate the

maximum tolerated dose (MTD) of utomilumab in com-
bination with mogamulizumab in patients with advanced
solid tumors. Secondary objectives included assessment
of the safety profile, PK, immunogenicity, and antitumor
activity of the combination. Exploratory objectives in-
cluded the pharmacodynamic effect on immune parame-
ters in blood.

Patients
Refractory patients had a previously documented best
overall response (BOR) of non-complete response
(CR)/partial response (PR)/stable disease (SD) on PD-
1/PD-L1 treatment (includes progressive disease and
clinical deterioration); relapsed patients had docu-
mented BOR of CR/PR/SD but later progressed on
PD-1/PD-L1 treatment (includes progressive disease
and clinical deterioration).
Patients were not eligible if they had a history of auto-

immune disease; systemic anticancer therapy within 28
days prior to registration; radiation therapy within 14
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days prior to registration; therapeutic or experimental
mAbs within 28 days prior to registration; active and
clinically significant bacterial, fungal, or viral infection;
live vaccine within 30 days prior to registration; or
systemic corticosteroid therapy or any other form of
immunosuppressive therapy within 14 days prior to
registration.

Treatment
The starting dose for intravenous utomilumab was 1.2
mg/kg every 4 weeks, with escalation to 2.4 mg/kg and 5
mg/kg in the subsequent cohorts following the time-to-
event continual reassessment method (TITE-CRM). A
flat dosing of 100 mg utomilumab was also assessed.
Intravenous mogamulizumab 1mg/kg was administered
weekly for 4 consecutive weeks and biweekly thereafter,
following utomilumab dosing. Treatment with study
drugs was to continue until the first occurrence of one
of the following: completion of 24 months of treatment,
disease progression, patient refusal to continue, un-
acceptable toxicity, or study termination by the sponsor.

Study assessments
Safety
Safety assessments included dose-limiting toxicities
(DLTs) in the first 2 cycles and adverse events (AEs) char-
acterized by type, frequency, severity (as graded by Na-
tional Cancer Institute Common Terminology Criteria for
Adverse Events version 4.03). Causality was first assigned
by the site Principal Investigator and then all serious AEs
(SAEs) were adjudicated at a regular conference involving
all sites and sponsor. The following AEs were considered
DLTs if they were attributable to one or both study drugs:
grade 4 neutropenia, febrile neutropenia, grade ≥ 3 neutro-
penic infection, grade ≥ 3 thrombocytopenia with bleed-
ing, grade 4 thrombocytopenia, grade ≥ 3 non-
hematologic abnormalities, and grade 4 aminotransferase/
alanine aminotransferase increase. The MTD was defined
as the highest combination dose with a DLT rate < 30%
from the TITE-CRM model estimate.

PK and immunogenicity
Blood for utomilumab PK assessment was collected at
predose and end of utomilumab infusion on Day 1 of
Cycles 1–4; on Day 1 at predose and end of utomilumab
infusion; at 2, 6, and 168 h (Day 8) and 336 h (Day 15)
after the start of utomilumab infusion in Cycle 5; pre-
dose on Day 1 of Cycles 8, 12, 16, 20, and 24; and end of
treatment (EOT). PK samples for mogamulizumab were
collected at predose and end of mogamulizumab infu-
sion on Days 1, 8, 15, and 22 of Cycle 1; predose of Cy-
cles 2–4; on Day 1 at predose and at the end of
mogamulizumab infusion, and at 6 and 168 h after the
start of the mogamulizumab infusion, and predose on

Day 15 of Cycle 5; predose on Day 1 of Cycles 8, 12, 16,
20, and 24; and EOT. Samples were assayed using vali-
dated enzyme-linked immunosorbent assays in compli-
ance with standard operating procedures of the study
sponsor (Pfizer, New York, NY, USA) for utomilumab
and of Kyowa Hakko Kirin (KHK; Tokyo, Japan) for
mogamulizumab. Standard serum PK parameters were
estimated for both drugs using non-compartmental
analysis.
Blood samples for antidrug antibody (ADA) assess-

ments were collected at predose on Day 1 of Cycles 1, 3,
5, 8, 12, 16, 20, and 24, and EOT. If ADAs were de-
tected, additional samples were collected approximately
every 8 weeks until ADA levels returned to baseline.
Serum samples were assayed for ADAs using a validated
electrochemiluminescence (ECL) assay (anti-utomilu-
mab) and ECL-based ligand-binding assay (anti-moga-
mulizumab) in compliance with standard operating
procedures of the sponsor (anti-utomilumab) and KHK
(anti-mogamulizumab). ADA-positive samples were fur-
ther tested for neutralizing antibodies (NAb) using a val-
idated cell-based luciferase assay (anti-utomilumab) or
ECL-based ligand-binding assay (anti-mogamulizumab).

Pharmacodynamic assessments
Readouts included changes in peripheral blood bio-
markers, including cytokines, distribution of lymphocyte
subpopulations, and frequency of T-cell receptor (TCR)
sequences. Blood was collected for immunomodulation/
cytokine-release biomarkers at pre-infusion of utomilu-
mab on Day 1 and at the end of mogamulizumab infu-
sion for Cycles 1–4; pre-infusion of utomilumab on Day
1, at the end of utomilumab infusion, and 2 and 6 h after
the start of the utomilumab infusion of Cycle 5. Blood
for the characterization of lymphocyte subpopulations
was collected at predose on Day 1, and 2, 6, and 168 h
(Day 8) and 336 h (Day 15) after the start of infusion of
Cycles 1 and 5.
Analysis of serum cytokines and lymphocyte subpopu-

lations in peripheral blood was performed as described
by Tolcher et al. [27]. Lymphocyte subpopulations in the
current report were defined using CD45, CD3, CD4,
CD8, CD25, CD127, CD45RA, and CCR7. Expanded
TCR sequences were quantified as described by Rytle-
wski et al. [28]. Statistical assessments of effects seen in
the flow cytometry and TCR sequence expansion ana-
lyses were performed using Wilcoxon signed-rank test-
ing and Wilcoxon rank-sum testing, respectively.

Characterization of baseline tumor biopsies
Immunohistochemistry was performed to detect the
presence of PD-L1, CD8, FoxP3, and 4-1BB/CD137 in
the whole tumor and invasive margin (IM) of pretreat-
ment tumor biopsies. Immunohistochemistry testing of
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PD-L1 (clone E1L3N; Cell Signaling, Danvers, MA),
CD8 (clone C8/144B; Dako, Carpinteria, CA), FoxP3
(clone 236A/E7; Cell Signaling), and 4-1BB/CD137
(BBK-2; ThermoFisher, Rockford, IL) was performed by
Mosaic Laboratories, LLC (Lake Forest, CA).

Antitumor activity
Radiologic tumor assessments were conducted at base-
line within 28 days prior to treatment, and on treatment
every 8 weeks, starting from Cycle 1 Day 1 (up to 1 year),
then every 3 months. Assessments were also to be con-
ducted whenever disease progression was suspected, at
EOT, and during follow-up visits. Response was assessed
using RECIST1.1. Objective response was defined as
BOR of CR or PR from the date of first dose of study
treatment until disease progression. Both CR and PR
were confirmed by repeat assessments performed no
fewer than 4 weeks after the criteria for response were
first met.

Statistical analyses
A modified TITE-CRM method with cyclical adaptive
weight function was applied [29, 30]. The MTD was esti-
mated as the highest dose level associated with a < 30%
estimated DLT rate per the modified TITE-CRM design.
A dose-escalation steering committee was established to
facilitate the trial conduct process [31]. A sample size of
30 was estimated to provide an accurate estimate of the
MTD and to detect any unexpected toxicity occurring at
5% rate (in a non–dose-dependent fashion), with a prob-
ability of 0.79, and occurring at 10% rate with a prob-
ability of 0.96. The objective response was summarized
with objective response rate (ORR), and exact 2-sided
95% confidence interval (CI) for ORR was calculated
using the Clopper–Pearson method. Time-to-event end-
points were analyzed using the Kaplan–Meier method.
Point estimates of Kaplan–Meier rates and median times
were presented with their 95% CIs. The CIs for the me-
dian were calculated according to the Brookmeyer and
Crowley method.

Results
Patients and treatment
In all, 24 patients received mogamulizumab 1mg/kg in
combination with utomilumab dosed as follows: 1.2 mg/
kg (n = 11), 2.4 mg/kg (n = 4), 5 mg/kg (n = 3), and 100-
mg flat dose (n = 6). Most patients were male (79.2%)
and white (79.2%). The mean (range) age was 63.9 (53–
75) years. There were 11 patients with SCCHN, 10 with
NSCLC (n = 7 squamous and 3 adenocarcinoma), 2 pa-
tients with colorectal cancer, and 1 patient with ovarian
cancer, assessed by Response Evaluation Criteria in Solid
Tumors (RECIST 1.1). The majority (91.7%) of patients
had received at least 2 lines of anticancer drug therapy

(Table 1). Median (range) duration of treatment was 16
(4.0–41.3) weeks. All of the patients with squamous
NSCLC (n = 7), 1 with lung adenocarcinoma, and 7 with
SCCHN were relapsed or refractory to anti–PD-1/PD-L1
checkpoint inhibitor therapy. Nine (37.5%) and 15
(62.5%) patients had baseline Eastern Cooperative On-
cology Group performance status 0 and 1, respectively.
The dose-expansion phase of the study was not initiated
due to marginal efficacy.

Safety
No DLTs were observed at any utomilumab dose (1.2mg/
kg, 2.4mg/kg, 5mg/kg, 100mg flat dose) in combination
with mogamulizumab 1mg/kg. Although no DLTs were
observed up to 5mg/kg, the estimated recommended Phase
II dose was at least 2.4mg/kg per the TITE-CRM method;
as the 5mg/kg cohort only enrolled 3 patients, this dose
was not fully explored in this respect. The most common
(in ≥25% of patients), all-causality AEs were fatigue (45.8%),
rash (29.2%), and diarrhea (25.0%), all of grade 1 or grade 2
severity. Eight (33.3%) patients experienced all-causality
grade 3–4 AEs. Ten (41.7%) patients experienced serious
AEs (SAEs), all determined to be unrelated to utomilumab
or mogamulizumab; AE causality was initially assessed by
the site Principal Investigator and all SAEs were adjudicated
during regular conferences involving all sites and sponsor.
The majority of the treatment-related AEs were grade 1 or
2, and none were grade 4 or 5. Two (8.3%) patients in the
utomilumab 100mg/mogamulizumab 1mg/kg treatment
group experienced three grade 3 AEs determined to be
related to treatment: pneumonitis (utomilumab-related),
hypophosphatemia (mogamulizumab-related), and anemia
(both treatments). Three (12.5%) patients experienced
grade 5 AEs, determined to be unrelated to either
treatment. Of these patients, 2 occurred within 30 days after
the last dose of study treatment and were due to malignant
neoplasm progression/disease progression. The third
patient died due to sepsis during the follow-up period
(within 60 days after the last dose of study treatment).

PK and immunogenicity
Five patients had sufficient data to calculate PK parame-
ters at Cycle 5. Utomilumab systemic exposure based on
area under the serum concentration–time curve to last
measureable dose and maximum serum concentration
values appeared to increase with increasing dose. Due to
the low number of patients, the relationship between
serum PK parameters and dose could not be fully deter-
mined (Table 2).
Following co-administration with utomilumab, moga-

mulizumab PK was similar across groups, with accumu-
lation observed following multiple-dose administration
(Additional file 1 and Additional file 2).
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Thirteen of 24 (54.2%) patients that received utomilu-
mab tested positive for treatment-induced ADA and 11 of
24 (45.8%) were positive for NAb. One (4.2%) patient who
received mogamulizumab was confirmed positive for
treatment-induced ADA; no one in this group tested posi-
tive for NAb. The median onset for treatment-induced
ADA against utomilumab was 56.01 days (interquartile
range [Q1, Q3]: 55.88, 56.13) and the median onset for
NAb was 56.13 days (interquartile range [Q1, Q3]: 55.96,
56.97). The median duration of ADA and NAb was 0 and
0 days, respectively (interquartile range [Q1, Q3]: 0, 55.95
for ADA and 0, 62.84 for NAb). There was no substantial
impact of ADA/NAb on PK and safety when utomilumab
and mogamulizumab were administered in combination.

Pharmacodynamics
Patients treated with combination utomilumab/moga-
mulizumab showed a transient reduction in circulating
T cells at 6 h (p < 0.0001) (Fig. 1a), possibly due to
cytokine-induced adhesion of T cells to endothelial cells

[34]. There was not a significant (p < 0.05) relationship
between combination dose, T-cell reduction, and cyto-
kine levels observed in this study (data on file; Pfizer).
Levels of circulating CD8+ T cells largely returned to
baseline by 7 days (168 h) after start of dosing; however,
circulating CD4+ T cells did not fully recover by 336 h.
Statistically significant (p < 0.001) decreases in Tregs
(CD3 + CD4 + CD25 + CD127low/−) were observed at 6,
168, and 336 h (Fig. 1b), as predicted based on data from
a phase I study of single-agent mogamulizumab in pa-
tients with CCR4− lung and esophageal cancers [25]. Re-
ductions in effector memory (CD45RA−CCR7−) and
central memory (CD45RA−CCR7+) CD4 T cells were
also observed at the same time points (p < 0.01). Naïve
(CD45RA+CCR7+) CD4+ T cells were less strongly af-
fected. Within the CD8+ T-cell compartment, the central
memory subpopulation was reduced, relative to baseline,
at 6, 168, and 336 h (p < 0.005) to a greater degree than
either the naïve or effector memory compartments (Fig.
1c). These results are largely concordant with earlier

Table 1 Primary diagnosis and prior anti-cancer treatment

Number (%) of
patients

Mogamulizumab 1mg/kg + Utomilumab, by Dose Group

1.2 mg/kg
n = 11

100mg
n = 6

2.4 mg/kg
n = 4

5mg/kg
n = 3

Total
n = 24

CRC 1 0 1 0 2

NSCLC 2 6 1 1 10

Ovarian Cancer 0 0 0 1 1

SCCHN 8 0 2 1 11

Prior anti-cancer drug regimens

1 1 (9.1) 0 1 (25.0) 0 2 (8.3)

2 3 (27.3) 3 (50.0) 0 0 6 (25.0)

3 2 (18.2) 2 (33.3) 1 (25.0) 3 (100.0) 8 (33.3)

≥ 4 5 (45.5) 1 (16.7) 2 (50.0) 0 8 (33.3)

CRC Colorectal cancer, NSCLC Non-small-cell lung cancer, SCCHN Squamous cell cancer of head and neck

Table 2 Descriptive summary of serum utomilumab pharmacokinetic parameter values for Cycle 5

Parameter, Units Mogamulizumab 1mg/kg + Utomilumab, by Dose Groupa

1.2 mg/kg 100mg 5mg/kg

n 2 1 2

AUClast, μg·h/mL 907, 1440 2700 1620, 9270

AUClast,(dn), μg·h/mL/mg/kg 756, 1200 2490 323, 1850

Cmax, μg/mL 17.5, 20.0 27.8 86.6, 129

Cmax,(dn), μg/mL/mg/kg 14.6, 16.7 25.6 17.3, 25.8

Ctrough, μg/mL 1.30b 1.16 2.19, 5.48

Tlast, h 335, 336 309 25.1, 170

Tmax h 2.00, 2.03 6.00 1.00, 1.15
aIndividual patient value(s) are presented when N < 3
bOnly 1 patient had quantifiable Ctrough concentrations
AUClast Area under the serum concentration–time profile from time zero to the time of the last quantifiable concentration, Cmax Maximum observed serum
concentration, Ctrough Predose concentration during multiple dosing, dn Dose normalized, n Number of patients in the treatment group and contributing to the
summary statistics, Tlast Time of last measurable concentration, Tmax Time for Cmax
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Fig. 1 (See legend on next page.)
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findings [25] and consistent with observations that
CCR4 is expressed by central memory T cells [35, 36].
Longitudinal analysis of TCRβ CDR3 sequences in

peripheral blood by immunosequencing has been used
to track individual responses to a yellow fever vaccine
without prior knowledge of antigen specificity [37].
Immunosequencing was performed on peripheral blood
specimens from study patients, and expanded TCRβ
CDR3 sequences were identified using a beta binomial
model that controls for normal biologic variance over
time [28]. Comparison of the number of expanded
clones in patients treated with combination utomilu-
mab/mogamulizumab to the number of expanded clones
in patients treated with single-agent utomilumab [22]
suggests that the addition of mogamulizumab could pro-
mote peripheral T-cell expansion (p < 0.001), (Fig. 2).

Characterization of baseline tumor biopsies
Baseline tumor biopsies from patients with NSCLC
(n = 1) and SCCHN (n = 4) were analyzed for the pres-
ence of PD-L1, CD8, FoxP3, and 4-1BB/CD137
(Table 3). All biopsies were negative for PD-L1 expres-
sion on tumor cells, except for one SCCHN specimen
that had 10% PD-L1+ tumor cells. The biopsies had low
levels of infiltrating CD8+ (range, 1–17%) and FoxP3+

(range, 1–9%) cells, with CD8/FoxP3 ratios ranging
from 1 to 9. Also, 4-1BB/CD137 was observed on small
percentages (9, 10, and 14%) of cells in the IM. The
limited number of available specimens precludes gener-
alizations about the cohort.

Efficacy
The ORR was 4.2% (95% CI: 0.1–21.1%). Best percent
change from baseline in sum of longest diameters
(SLD) for target lesions is shown in the waterfall plot
(Fig. 3a). The spider plot (Fig. 3b) shows percentage
change from baseline in sum of SLD for target lesions
over time. One patient in the utomilumab 100 mg/
mogamulizumab 1 mg/kg group with PD-1 refractory
squamous NSCLC achieved PR, which occurred at the
first tumor assessment with a duration of response of
approximately 2 months.
The patient with PR had previously received carbopla-

tin and paclitaxel as first-line therapy (BOR of PR) and
nivolumab as second-line therapy (BOR of progressive
disease), and prior brain radiotherapy. This patient
tested positive for both ADA and NAb against utomiliu-
mab. The tumor was negative for PD-L1, with low levels
of infiltrating T lymphocytes while demonstrating rela-
tively higher numbers of 4-1BB/CD137+ cells and an ele-
vated CD8/FoxP3 ratio (Table 3). No patients achieved a
BOR of CR. Nine patients had BOR of SD, 10 patients
had BOR of progressive disease, and 4 were not evalu-
able. Representative baseline and post-treatment scans
highlighting tumor shrinkage in the patient achieving PR
are shown in Fig. 3c.

Discussion
In this phase I study of the combination of utomilumab
with mogamulizumab in patients with advanced solid tu-
mors, the MTD for utomilumab was determined to be at
least 2.4 mg/kg, and utomilumab doses up to 5 mg/kg
combined with mogamulizumab 1mg/kg were well

(See figure on previous page.)
Fig. 1 Fold-changes relative to baseline. Fold-changes are shown by lymphocyte populations in peripheral blood following treatment with
utomilumab and mogamulizumab. Results were aggregated across all utomilumab doses, as statistically significant differences between
utomilumab doses were not observed. a Major T-cell subpopulations relative to all white blood cells; b Treg and other major CD4+ T- cell
populations; and (c) major CD8+ T-cell populations. White blood cells were defined by forward and side light scatter. T cells were defined by
co-expression of CD3, CD4, and CD8. Naïve, central memory, and effector memory T-cell subpopulations were defined as CD45RA+CCR7+,
CD45RA−CCR7+, and CD45RA−CCR7−, respectively [32]. Tregs were defined as CD3+CD4+CD25+CD127low/ −[33]. Treg, regulatory T cell
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Table 3 Immunohistochemistry analysis of whole tumor and IM of pretreatment tumor biopsies

Cancer Type BOR %PD-L1+ %CD8+ ALLa %FoxP3+ ALLa CD8/FoxP3 ALLa %CB8+ IMb %FoxP3+ IMb %CD137+ IMb CD8/FoxP3 IMb

NSCLC PR 0.00 1.70 1.72 0.99 9.96 1.45 14.21 6.87

SCCHN PD 0.00 6.89 5.38 1.28 13.28 6.48 8.59 2.05

SCCHN SD 0.00 17.16 1.74 9.86 NE NE NE NE

SCCHN SD 10.00 13.69 4.98 2.75 NE NE NE NE

SCCHN SD 0.00 12.23 9.43 1.3 14.68 10.05 10.37 1.46

Marker-positive cells are reported as a percent of evaluated cells
aALL: The region encompassing the tumor and extending up to the leading edge, but not outside the tumor-normal interface
bIM: The region extending from 500 μm outside the leading edge of the tumor to 500 μm inside
BOR Best overall response, NE Not evaluable, NSCLC Non–small-cell lung cancer, PD Progressive disease, PD-L1 Programmed cell death-ligand 1, PR Partial
response, SCCHN Squamous cell cancer of head and neck, SD Stable disease
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tolerated. None of the patients experienced a DLT with
any dose combination. Utomilumab systemic exposure
appeared to increase with each dose escalation, but
the relationship between PK and dose could not be
fully evaluated owing to low patient numbers. Follow-
ing co-administration with utomilumab, mogamulizu-
mab PK was similar across dose groups, with
accumulation observed following multiple-dose ad-
ministration. There was no substantial impact of
ADA/NAb on PK and safety.
The peripheral blood biomarker analyses performed in

this study indicated that Tregs and at least some central
memory T cells were depleted, as was observed by Kur-
ose et al. in patients treated with single-agent mogamuli-
zumab [25]. Expansion of TCRβ CDR3 regions in the
combination cohort is consistent with the hypothesis
that mogamulizumab-mediated depletion of Tregs and
other CCR4+ cells can promote peripheral T-cell expan-
sion, although the durability of such expansion in con-
junction with potential central memory depletion cannot
be assessed.
Pretreatment tumor biopsy results were only available

for 5 of the 24 enrolled patients. Four tumor biopsies
were PD-L1-negative, including the biopsy from the pa-
tient with NSCLC who achieved PR. One patient with
SCCHN who achieved BOR of SD had a biopsy with a
10% PD-L1 tumor proportion score. It is possible that
many, if not most, of the enrolled patients had tumors
with minimal antitumor immune activity. The efficacy of
Treg depletion in such tumors is likely contingent on
the relationship between Tregs and that phenotype: if
Tregs are the primary causal agent, then removing them
should increase immune activity, but not if immune ac-
tivity is reduced for other reasons. The two hypotheses
cannot be differentiated in this study. The patient with
NSCLC who achieved PR had the highest CD8/FoxP3
ratio and proportion of 4-1BB/CD137+ cells in the IM,
coupled with the lowest CD8/FoxP3 ratio throughout
the tumor itself. This phenotype may suggest the exist-
ence of a utomilumab-responsive tumor-infiltrating
lymphocyte population in the IM that is being quenched
by Tregs closer to the tumor center. A larger, prospect-
ively designed study would be required for further defin-
ition of this phenotype and estimation of its prevalence.
This study was designed to test the hypothesis that de-

pletion of CCR4+ Tregs would enhance the effect of
anti-tumor T cells expanded in response to a 4-1BB
agonist. While the observed depletion of Tregs coupled
with TCR expansion in the peripheral blood is consist-
ent with this hypothesis, it is possible that other effects
of CCR4 depletion may affect clinical outcome. For in-
stance, depletion of CCR4+ T cell types, such as mem-
ory, Th1, Th2, and resident memory T cells [38–40]
could impact the anti-tumor response elicited by

combination therapy. It has been reported that CCR4 is
required for optimal T cell-mediated protection from in-
fluenza in mice [41], and surface CCR4 expression has
been observed on lymphocytes isolated from lung and
bronchoalveolar lavage fluid [42]. The transience of the
PR seen in a PD-1 refractory squamous NSCLC patient
may be consistent with attenuation of anti-tumor activity
mediated by CCR4-expressing T cells. It is also possible
that depletion of CCR4-expressing T cells leaves other
tumor-infiltrating Tregs unaffected, such as the CCR8-
expressing Tregs that have been noted in multiple tumor
types [43, 44].

Conclusion
The combination of utomilumab plus mogamulizumab
was well tolerated in patients with advanced solid tu-
mors, with a PR achieved by 1 NSCLC patient. The re-
sults of the translational analyses are consistent with the
hypothesized mechanism of action. Clinical benefit from
this combination may be meaningful for patients in
whom CCR4+ Tregs have induced a dormant CD8low/
PD-L1low phenotype that may be unresponsive to anti-
PD-1/PD-L1 therapy.
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