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THE INDEX MAP IN ALGEBRAIC K-THEORY

OLIVER BRAUNLING, MICHAEL GROECHENIG, JESSE WOLFSON

Abstract. For a ring R, we give a new construction of the universal KR-torsor TK → KTate(R)

constructed by Sho Saito, and its analogue for general idempotent complete exact categories. We
study the classifying map of this torsor in detail, showing that it is an equivalence, relate it to a

boundary map in a K-theory localization sequence, construct an explicit simplicial model, and link it
to the index theory of Fredholm operators. The torsor is also related to canonical central extensions
of loop groups. Just like classical loop group theory has features of K-theory (e.g. determinant
bundles, the tame symbol cocycle for Kac-Moody extensions), the K-theory torsor relates higher
loop groups with higher K-theory. We compare the K-theory torsor to previously studied dimension
and determinant torsors.

1. Introduction

This paper applies algebraicK-theory to solve a problem posed independently by Kapranov [Kap95]
and Drinfeld [Dri06]. To state the problem, recall that a central feature in the theory of loop groups is
the Kac-Moody central extension. Over an equicharacteristic local field, Kapranov observed that this
extension arises from a natural “determinantal” torsor. Variations of this torsor appear in a wide array
of geometric settings, including Kontsevich’s construction of motivic integration [Kon95], Kapranov
and Vasserot’s construction of the chiral de Rham complex [KV04], Beilinson–Bloch–Esnault’s work
on de Rham ε-factors [BBE02], Drinfeld’s approach to the Uhlenbeck compactification of the moduli
of vector bundles on an algebraic surface [Dri06] [Bar15], and Chinburg–Pappas–Taylor’s arithmetic
higher Riemann-Roch theorem [CPT15].

The theory of Tate objects in exact categories provides a natural framework to study all of these
constructions in a unified manner. We refer the reader to Section 2 for a more detailed review. The
following result of Saito [Sai15, Theorem 1.2] on the algebraic K-theory of Tate objects casts a new
light on the aforementioned constructions.

Theorem 1.1 (Saito). For every idempotent complete exact category C, we have an equivalence of
non-connective K-theory spectra ΩKTateel(C) ≃ KC.

Even before Saito’s work appeared, Kapranov and Drinfeld (the latter following Beilinson) observed
that the structure of determinantal torsors was reminiscent ofK-theory. This motivated the following.

Problem. [Dri06, Problem 5.5.3] “The notion of determinantal Torsor is very useful, and its rigorous
interpretation in the standard homotopy-theoretic language of algebraic K-theory would be helpful.”
Specifically, one has to

(A) Clarify what the term “torsor” should mean when talking about a generalized K-theory torsor.
(B) Relate the torsor to the delooping (or the “Calkin category” in the context loc. cit.)
(C) Show that the K-theory torsor indeed truncates to the graded determinant torsor.
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Due to the higher homotopical nature of the K-theory space it is not immediately obvious what
is meant by a K-theory torsor. While the notion of torsors over such objects has been implicit in
the homotopy theory literature for some time, it has received renewed attention in the framework
of ∞-topoi [NSS15]. A short summary of this approach is given in [Sai14, Section 2]. Using this
framework, Saito answered the first two parts of Drinfeld’s problem as a consequence of his delooping
theorem. For the present article, we use the following minimalistic approach to torsors: we have an
equivalence of ∞-categories (see Theorem 2.19 in [NSS15] or Lemma 7.2.2.1 in [Lur])

B : {group objects in Spaces} ≃ {pointed and connected spaces}.

The functor B will also be called the classifying space functor. For a group object G in the∞-category
of spaces, specifying a G-torsor on a space X , say

T //X,

can be taken to mean to provide a map X → BG, which is then called classifying map; see Theorem
3.17 in [NSS15]. We may therefore always work in terms of classifying maps.

Once this foundational question has been settled, the problem is divided into two tasks. First of all
such a K-theory torsor needs to be defined and its basic properties proven, and secondly compatibility
with the determinantal torsor needs to be established. The first part is addressed by Saito’s papers
[Sai15] and [Sai14]. He uses the delooping to construct the torsor, so in his approach the sub-problem
(B) is tautologically solved.

In this paper we develop a different point of view which yields a new construction of Saito’s torsor.
Firstly, we give an explicit simplicial construction of the classifying map, and then prove (B) in our
new setting, which is non-trivial because of the very different construction. We then show agreement
(up to sign) with Saito’s torsor, and finally settle (C), the compatibility with the determinantal torsor.
Specialized to Drinfeld’s setting, our main result is as follows.

Theorem 1.2 ( Corollaries 3.4 & 3.5 & Proposition 4.5). Let R be a ring, let Tate(R) be the category
of Tate R-modules, Then there exists a natural KR-torsor

(⋆) TK // Tate(R)×

such that the following properties hold:

(1) Multiplicativity: A short exact sequence V0 →֒ V1 ։ V2 of Tate R-modules induces an
equivalence of torsors

TK |V0 ⊗KR TK |V2

≃ // TK |V1 ,

and
(2) Determinant: The fiberwise 1-truncation of TK // Tate(R)× is the (graded) determinantal

torsor

Det // Tate(R)×.

Corollary 1.3. Let V be a Tate R-module.

(1) The restriction of the KR-torsor to BAut(V ) gives the classifying map of a central extension
of Aut(V ) by the infinite loop space ΩKR.

(2) Composing with the map to the 1-truncation τ≤1KR, this yields the Kac-Moody extension of
Aut(V ) by Gm = Ωτ≤1KR.

Assertion (1) is tautological, since one defines a central extension of a group G by a spectrum E,
in terms of its classifying map G // Ω∞Σ2E. Assertion (2) follows from Proposition 4.5.

This extension has also been intensely studied by M. Sato and his school, and the cocycle giving
it is frequently referred to as the Japanese cocycle. We in fact prove this theorem for Tate objects in
an arbitrary idempotent complete exact category C. In this generality, we obtain a KC-torsor

TK // Tateel(C)×,
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taking the place of (⋆). We leave the details to the main body of the paper. Saito’s Theorem 1.1 shows
an abstract equivalence of non-connective K-theory spaces ΩKTateel(C) ≃ KC and therefore indicates

that a much stronger version of the multiplicativity assertion holds (as conjectured by Kapranov).

Theorem 1.4 (Corollaries 3.5 & 3.10). Let C be an idempotent complete exact category. The KC-

torsor TK // Tateel(C)×, on the classifying space of elementary Tate objects in C, extends to a
KC-torsor on the K-theory space KTateel(C). The classifying map of this extended torsor,

Index : KTateel(C)
//BKC,

agrees with the map induced by Saito’s KTateel(C)
//ΣKC up to sign, and hence is an equivalence of

infinite loop spaces.

Remark 1.5. To explain the name of this map, note that Tate objects can be understood as an
abstraction of formal loop spaces, and the index map of the theorem then arises from an analogue of
the construction of the index bundle of families of Toeplitz operators.

Our last main result establishes a close relation between the index map and boundary maps in
K-theory. To state the most important example, let R be a ring, and denote by Pf (R((t))) the exact
category of finitely generated projective R((t))-modules. Let

T : Pf (R((t))) // Tate(R)

be the canonical functor which sends the rank one free module R((t)) to the Tate R-module R((t)).
Combining the functoriality of boundary maps with Theorem 3.9 one immediately obtains the following
theorem.

Theorem 1.6 (Boundary). There exists a canonical homotopy commuting triangle (i.e. commuting
triangle in the ∞-category of spaces)

KR((t))

T

��

−∂
// τ≥0ΣKR

KTate(R)

Index

66❧❧❧❧❧❧❧❧❧❧❧❧❧

.

where τ≥0ΣKR denotes the (infinite looping) of the connective cover of the suspension of the non-
connective K-theory spectrum of R.

For the rest of the introduction, let us list further results, which have not been part of Drinfeld’s
problem:

Operator Theory. We view the above as theorems primarily about the operator theory of Tate
objects, rather than as theorems about algebraic K-theory. As such, for an elementary Tate object
V , we pay particular attention to the composite

BAut(V ) //KTateel(C)
Index // BKC.

By looping this map, we obtain an A∞-map

Aut(V ) //KC.

In Section 3.5 and in a sequel [BGW16a], we give two complementary constructions of the A∞-
structure of this map, one combinatorial and suited to non-homotopical settings such as the study
of AutTate(R)(R((t))), and one ∞-categorical and suited to homological settings such as the study of
Tate objects in stable∞-categories (cf. [Hen]). These constructions encode computations of the index
of automorphisms of Tate objects, and of higher torsion invariants of tuples of such. In [BGW14],
we apply this to establish the compatibility of our K-theoretic definition of higher Contou-Carrère
symbols with the existing definitions in dimensions 1 and 2.



4 OLIVER BRAUNLING, MICHAEL GROECHENIG, JESSE WOLFSON

Relation to Index of Fredholm Operators. In Section 3.6, we explain how the map Index provides
a precise analogue of the classical index map

Fred(H) //Ktop
C

from the space of Fredholm operators on complex Hilbert space to the classifying space of topological
K-theory, cf. Jänich [Jän65] and Atiyah [Ati89]. To stress this analogy, let us state this classical
result back to back to our version for Tate objects:

Theorem 1.7.

(1) Let (H,H+) be a polarized, separable complex Hilbert space. The space of Fredholm operators
Fred(H+) is equivalent to

Ktop
C
∼= Ω

(

BGLres(H,H
+)

)+
,

where the outer superscript + refers to Quillen’s +-construction.
(2) Let R be a ring. The R-module R((t)) admits a canonical structure of an elementary Tate

object in the category of finitely generated projective R-modules, and we have an equivalence

KR
∼= Ω

(

BAutTate(R) (R((t)) )
)+

.

Determinant Torsors and Central Extensions. In the spirit of Drinfeld’s problem, the K-theory
torsor of Theorem 1.4 unifies the constructions which have arisen in the literature (e.g. [KP81], [Kap],
[AK10], [BBE02], [FZ12]), and extends them from one and two-fold loop groups, to general linear
groups over arbitrary higher local fields. Further, the present treatment allows one to bring algebraic
K-theory to bear on the study of these objects. We discuss these connections in detail in Section 4.
In particular, we show the following (see Subsections 4.2-4.4).

Theorem 1.8. Let R be a commutative ring.

(1) The 1-truncation of the index map

B(Tate(R)×) // BZ

classifies the dimension torsor on the category of Tate R-modules, cf. [Dri06, Section 3.5].
(2) The 2-truncation of the index map

B(Tate(R)×) // B PicZR

classifies the graded determinantal torsor on the category of Tate R-modules, cf. [Dri06,
Section 5.3].

(3) Denote by 2-Tateel(R) the category of elementary Tate objects in Tate(R). The 3-truncation
of the index map

B(2-Tateel(R)×) // B2 PicZR

classifies the torsors of “graded gerbal theories” on the category of 2-Tateel(R). For R a field,
this coincides with the 2-gerbe constructed by Arkhipov and Kremnitzer [AK10].

(4) The morphism −Index corresponds to the torsor constructed by Saito in [Sai14].

A primary motivation for studying these torsors is that they allow one to define higher Kac-Moody
extensions for iterated loop groups, or, more generally, for reductive groups over higher local fields. A
key feature of these extensions, which we pursue in depth in a sequel [BGW14], is that they deform
over families of higher local fields. In loc. cit., we use the tools of this paper to relate the 1 and
2-dimensional Contou-Carrère symbols to these K-theoretic extensions. We also use K-theory to
define the higher Contou-Carrère symbol over a family of n-dimensional local fields, and we then use
standard techniques of K-theory to give a short, conceptually simple proof of reciprocity laws in all
dimensions.

In the present paper, we restrict our attention to the torsors which have previously appeared in the
literature, recovering those discussed above, and also constructing a torsor sketched by Frenkel and
Zhu [FZ12] (see Section 4.5 for more details). As Frenkel and Zhu emphasize, this torsor should be the
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starting point of a “geometric representation theory” of higher extensions of double loop groups. To
date, only tentative steps have been taken toward understanding the representation theory of iterated
loop groups, e.g. [GK04], [GK05], [GK06], [AK10], [FZ12], and [Saf15]. We hope that the methods of
this paper should enable future progress in this direction.

Outline of the Paper. This paper is formulated in the language of Tate objects in exact categories
and algebraic K-theory. In Section 2.1 we recall the relevant background on exact categories and Tate
objects. A primary reference for exact categories is Bühler’s excellent survey [Büh10], while our earlier
article [BGW16b] contains the necessary background on Tate objects. We next proceed, in Section 2.2,
to recall key facts about the algebraicK-theory of exact categories, following Waldhausen’s framework
[Wal85]. In particular, we recall in some detail Waldhausen’s construction of the cofiber sequence
associated to a map of exact categories; this will form the basis for our comparison of the index map
and the boundary map in K-theory. Experts in K-theory should feel free to skip this section, though
we remark that the material on “left path spaces” (i.e. Definition 2.30 – Proposition 2.34) is not in
Waldhausen and may prove useful beyond the present work. With this in hand, we provide, in Section
2.2.5, a precise treatment of boundary maps in the K-theory localization sequence (cf. Proposition
2.38). While this description is strongly suggested by Waldhausen, it is not established in loc. cit. and
we were unable to find an independent reference. In the process of giving this description, we also pin
down a sign ambiguity in the boundary map in the K-theory localization sequence (cf. Proposition
2.39).

In Section 3, we construct the index map and establish its key properties as detailed in Theorems 1.2,
1.4 and 1.6. En route, we construct a simplicial map whose geometric realization is homotopy equiv-
alent to the index map; this gives a “Kan-ian” construction of an A∞-homomorphism Aut(V ) //KC

and encodes index and torsion invariants of automorphisms of elementary Tate objects. In a sequel
[BGW16a], we revisit the question of the A∞-structure, and give a “Segal-ian” construction of this
map, which has the benefit of working mutatis mutandis for Tate objects in stable ∞-categories as
considered by Hennion.

In Section 3.6 we compare our constructions with classical ones. We compare the index map for
Tate objects to the index theory of Fredholm operators. We then construct the K-theory torsor,
describe its sections, and study its truncations in connection with previous work.

Acknowledgements. We thank Y. Kremnitzer for introducing us first to these questions and then to
each other. We thank E. Getzler, M. Kapranov, R. Nest and B. Tsygan for helpful conversations. We
would like to thank T. Hausel for supporting a visit of the first and the third author to EPF Lausanne,
where part of this work was carried out. J.W. also thanks K. Saito and IPMU for the pleasant working
conditions while this article was being completed. We would like to thank A. Beilinson and V. Drinfeld
for supporting a visit of the first and second author to the University of Chicago, where this paper
was completed. We thank I. Zakharevich for pointing out a mistake in an earlier version of the paper.
We thank the anonymous referee for greatly improving the presentation of the material.

2. Preliminaries

2.1. Exact Categories. The first paragraph of this subsection is devoted to the definition of exact
categories, and related notions. In Paragraph 2.1.2 we recall the basics of Ind, Pro, and Tate objects,
which form the main players of the present text.

2.1.1. Definitions. For the convenience of the reader, we recall the definition of exact categories below.
More details can be found in Bühler’s excellent survey [Büh10].

Definition 2.1. We denote by C an additive category.

(a) A kernel-cokernel pair is given by maps

X →֒ Y ։ Z

with X →֒ Y being the kernel of Y ։ Z, and Y ։ Z being the cokernel of X →֒ Y .
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(b) The structure of an exact category on C is given by a class E C of kernel-cokernel pairs. A
map X →֒ Y , serving as the kernel in a kernel-cokernel pair in E C, is called an admissible
monic. Similarly, a map Y ։ Z, which serves as a cokernel in a kernel-cokernel pair of E C,
is called an admissible epic. The following axioms have to be satisfied:
(1) identity morphisms are admissible monics and admissible epics,
(2) the composition of two admissible monics is an admissible monic, similarly for admissible

epics,
(3) pushouts of admissible monics along arbitrary maps exist, and are again admissible mon-

ics; similarly, pullbacks of admissible epics along arbitrary maps exist and are again
admissible epics.

(c) An additive functor F : C // D is called exact, if it maps E C to E D. If F : C // D is fully
faithful and exact, we call it fully exact, if every kernel-cokernel pair F (X) →֒ F (Y ) ։ F (Z)
in E D stems from a kernel-cokernel pair in C.

(d) We note by Catex the 2-category of exact categories, exact functors, and natural transforma-
tions.

We will refer to the kernel-cokernel pairs in E C as short exact sequences or extensions in the exact
category C.

Example 2.2. For a ring R we denote by Pf (R) the additive category of finitely generated projective
modules. Considering kernel-cokernel pairs obtained from short exact sequences of R-modules, with all
constituents being finitely generated projective, we obtain a natural exact structure on this category.

The next definition recalls the notion of being idempotent complete. This notion is reminiscent of
the properties of linear projectors, familiar from linear algebra.

Definition 2.3. We say that an additive category C is idempotent complete, if every idempotent
splits, i.e. for every morphism p : X // X, satisfying p2 = p, we have an isomorphism X ∼= Y ⊕ Z
taking p to the idempotent 0⊕ 1Z .

Every exact category can be embedded into an idempotent complete exact category, in an essentially
unique way.

Proposition 2.4. (cf. [Büh10, Proposition 6.10]) For every exact category C there exists a fully exact
embedding C →֒ Cic into an idempotent complete exact category, which is 2-universal with respect to
this property.

Following Schlichting [Sch06, Def. 1.3 & 1.5], we recall the notion of left s-filtering subcategories of
exact categories. The perk of left s-filtering inclusions is that a corresponding quotient can be formed
in the 2-category of exact categories. The definition given below is an equivalent, but simpler version,
which was communicated to us by Bühler (see [BGW16b, App. A] for a reproduction of Bühler’s
argument, which compares the definition below with Schlichting’s).

Definition 2.5. Let C →֒ D be a fully faithful exact functor between exact categories.

(a) The inclusion is left special, if for every object Z ∈ C, and every admissible epic G ։ Z in
D, we have a commutative diagram with exact rows in D

X � � //

��

Y // //

��

Z

1Z

��

F � � // G // // Z,

with the top row being an extension in C. The inclusion is called right special, if Cop →֒ Dop

is left special.
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(b) The inclusion is left filtering, if every morphism Y // F in D, with Y ∈ C, factors through
an admissible monic Z →֒ F with Z ∈ C:

Y //

  
❆
❆
❆
❆
❆
❆
❆

F

Z.
?�

OO

It is called right filtering if Cop →֒ Dop is left filtering.
(c) It is left s-filtering, if it is both left special and left filtering. It is called right s-filtering if

Cop →֒ Dop is left s-filtering.

With this definition in hand, we are able to recall Schlichting’s exact quotient category D /C.

Definition 2.6. Consider a left s-filtering inclusion of exact categories C →֒ D (see Definition 2.5).

(a) Let Σe be the class of morphisms in D, which are admissible epics with kernel in C. The left
s-filtering condition guarantees that Σe satisfies a calculus of left fractions (see [Sch04, Lemma
1.13]).1

(b) Following [Sch04, Def. 1.14], the localization D[Σ−1
e ] will be denoted by D /C. It inherits

an exact structure, by considering the images of short exact sequences in D in the additive
category D /C ([Sch04, Prop. 1.16]).

2.1.2. Admissible Ind, Pro and Tate Objects. This paragraph provides an informal introduction to
Tate objects in exact categories. Full details are given in [BGW16b]. Let C be an exact category. In
loc. cit., the authors defined, for an infinite cardinal κ,

(1) the exact category Indaκ(C) of admissible Ind-objects in C ([BGW16b, Def. 3.3]),
(2) the exact category Proaκ(C) of admissible Pro-objects in C ([BGW16b, Def. 4.1]),

(3) the exact category Tateelκ (C) of elementary Tate objects in C ([BGW16b, Def. 5.1]), and

(4) the exact category Tateκ(C) of Tate objects in C as the idempotent completion of Tateelκ (C)
([BGW16b, Def. 5.26]).

The study of these constructions goes back at least to Lefschetz [Lef42, Ch. II.25], Artin–Mazur
[AM69], Kato [Kat00], Beilinson [Bei87], and Kapranov [Kap01]. For κ = ℵ0, a recent treatment
has also been given by Previdi in [Pre11]. For a ring R, Drinfeld [Dri06] has studied a related
notion of Tate R-module. The category of countably generated Tate R-modules in Drinfeld’s sense is
equivalent to the category Tateℵ0(Pf (R)) ([BGW16b, Thm. 5.30]). In general, Drinfeld’s category of
Tate modules is a fully exact sub-category of Tate(Pf (R)). For uncountable cardinalities, the authors
provide a geometric interpretation in terms of flat Mittag-Leffler modules of the category Tate(Pf (R))

in [BGW16b], based on work by Šťov́ıček and Trlifaj ([BGW16b, App. B]).
For the exact category Vectf (k) of finitely generated vector spaces over a discrete field k, the

category Indaκ(Vectf (k)) is equivalent to the category of discrete vector spaces generated by a basis of
cardinality at most κ. A guiding example is the vector space k[x] ∈ Indaℵ0

(Vectf (k)). The category
Proaκ(Vectf (k)) is equivalent to the category of topological duals of discrete vector spaces of cardinality
at most κ. The topological vector space k[[t]] ∼= (k[x])∨ is an important example, where the topology
on k[[t]] is the t-adic topology, i.e. the finest linear topology such that the sequence {tn}n∈N converges

to 0. The category Tateelκ (Vectf (k)) is equivalent to the category of topological vector spaces of the
form V ⊕W∨ where V and W are discrete vector spaces of cardinality at most κ. By definition, this
is Lefschetz’s category of locally linearly compact vector spaces [Lef42, Ch. II.25]. The archetypical

example is the topological vector space k((t)) ∼= k[[t]]⊕ t−1k[t−1] ∈ Tateelκ (Vectf (k)).

1Conversely, as we learned from private correspondence with Bühler, if Σe satisfies a calculus of left fractions, then
C is left filtering and closed under extensions in D.
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The categories of admissible Ind-objects, admissible Pro-objects, and elementary Tate objects are
related by a commuting square of fully exact embeddings

(1) C
� � //
� _

��

Indaκ(C)� _

��

Proaκ(C)
� � // Tateelκ (C)

The inclusion functors in this diagram are well-behaved with respect to taking quotients (see
Definition 2.5).

Proposition 2.7. ([BGW16b, Prop. 3.10, 5.8, 5.10 & 5.32]) Let C be an exact category. The inclu-

sions C →֒ Ind
a

κ(C) and Pro
a

κ(C) →֒ Tate
el

κ (C) are left s-filtering. The inclusion Ind
a

κ(C) →֒ Tate
el

κ (C)

is right filtering. The quotient exact categories Indaκ(C)/C and Tateelκ (C)/Pro
a

κ(C) are equivalent with
respect to the map induced by the inclusion

(Indaκ(C),C) →֒ (Tateelκ (C),Pro
a

κ(C))

of pairs of exact categories.

Remark 2.8. If C is idempotent complete, then as a consequence of [BGW16b, Theorem 6.7], one can

also show that the inclusion Indaκ(C) →֒ Tateelκ (C) is right special.

Following Sato–Sato [SS83], we consider the set of all lattices in an elementary Tate object. The
archetypical example of such is the inclusion

k[[t]] ⊂ k((t)).

We observe that k[[t]] is a Pro-object, and the quotient
⊕

n≥1 k〈t
−n〉 is an Ind-object. This is the

defining quality of lattices.

Definition 2.9. Let V be an elementary Tate object in C.

(1) A lattice L →֒ V of an elementary Tate object is an admissible sub-object, with L ∈ Proaκ(C) ⊂

Tateelκ (C) and the cokernel V/L ∈ Indaκ(C) ⊂ Tateelκ (C).
(2) The Sato Grassmannian Gr(V ) is the partially ordered set of lattices in V , where L0 ≤ L1 if

there exists a commuting triangle of admissible monics

L0
� � //
� p

  
❇
❇
❇
❇
❇
❇
❇
❇

L1� _

��

V

Lattices and the Sato Grassmannian play a key role in our study of Tate objects. Assertion (c) in
the theorem below, is viewed by the authors as the main result of [BGW16b].

Theorem 2.10. ([BGW16b, Prop. 6.6, Thm. 6.7]) Let C be an exact category.

(a) Every elementary Tate object in C has a lattice.
(b) The quotient of a lattice by a sub-lattice is an object of C.
(c) If C is idempotent complete, and L0 →֒ V and L1 →֒ V are two lattices in an elementary Tate

object V , then there exists a lattice N →֒ V with L0, L1 ≤ N in Gr(V ). Similarly, L0 and L1

have a common sub-lattice M ⊂ L0, L1.

The following convention helps us to avoid awkward notation.

Remark 2.11. From now on we consider the infinite cardinal κ as fixed, and omit the cardinality
bound from the notation, i.e. for an exact category C we denote by Inda(C), Proa(C), and Tateel(C)
the corresponding exact categories.

The justification for this omission is that algebraic K-theory is not sensitive to a change of the
cardinality κ (cf. Corollary 3.8).
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2.2. Algebraic K-Theory. The results of this article are formulated in the language of algebraic
K-theory. Primary references include Quillen [Qui73], Waldhausen [Wal85], and Schlichting [Sch04,
Sch06]. In addition to recalling necessary material and fixing notation, the primary purpose of this
section is to prove that a map which arises in Waldhausen [Wal85] is, up to sign, the boundary map
in the K-theory localization sequence (cf. Propositions 2.38 and 2.39). Of course, the choice of sign
depends on choosing an orientation of the path space of a based space X . We follow convention (and
Waldhausen) and define PX to be space of paths beginning at the base point. Readers only interested
in this result are encouraged to skip to the bottom of Section 2.2.5.

Remark 2.12. For convenience, we make use of the language of∞-categories when discussing homotopy
coherent diagrams, i.e. a homotopy coherent diagram of spaces will equivalently be described as a
“commuting diagram in the ∞-category of spaces”. We take Lurie [Lur] as a primary reference. We
will use the language “strictly commuting” to indicate when we are working in a 1-category (e.g.
of spaces), or by slight abuse of terminology, to denote a diagram of categories which commutes up
to canonical equivalence. We note that in general, a commuting diagram in an ∞-category encodes
an infinite amount of data. In practice, one constructs these by constructing a strictly commuting
diagram in a 1-category (or a 2-commuting diagram in a 2-category) and then applying a functor to
the desired ∞-category. In this work, every commuting diagram in an ∞-category will arise in this
fashion.

2.2.1. The K-Theory Space of an Exact Category.

Definition 2.13 (Waldhausen). Let C be an exact category. Denote by S•(C) the simplicial object in
exact categories defined as follows. The exact category of n-simplices Sn(C) is defined to be the exact
category with objects given by strings of admissible monics in C

(X1 →֒ X2 →֒ · · · →֒ Xn)

along with choices of quotients Xj/Xi for all i < j. The face maps are given by

di : (X1 →֒ · · · →֒ Xn) 7→ (X1 →֒ · · ·Xi−1 →֒ Xi+1 →֒ · · · →֒ Xn),

for i ≥ 1, and
d0 : (X1 →֒ · · · →֒ Xn) 7→ (X2/X1 →֒ · · · →֒ Xn/X1).

The degeneracy maps si : Sn(C) // Sn+1(C) are defined by repeating the i-th entry. We refer to this
simplicial object as Waldhausen’s S-construction.

Definition 2.14. For a category C we denote by C× the maximal sub-groupoid of C, i.e. the groupoid
obtained by discarding all non-invertible morphisms from the category C.

Definition 2.15. For an exact category C we define the K-theory space KC as the loop space

KC = Ω|S•(C)
×|

where | · | denotes geometric realization.

Remark 2.16. The simplicial object S•(C)
× has the property that its space of 0-simplices is a singleton.

Hence, every 1-simplex induces a loop in the geometric realization. Therefore, we have a map

C× ∼= S1C
× // Ω|S•(C)

×| = KC,

which is natural in C.

2.2.2. Additivity. The fundamental property of algebraic K-theory is established in the following
“Additivity Theorem”. All of the results of this paper can be understood as consequences of the
Additivity Theorem combined with Theorem 2.10.

Theorem 2.17 (Waldhausen’s Additivity Theorem). ([Wal85, Theorem 1.4.2, Proposition 1.3.2(4)])
Let F1 →֒ F2 ։ F3 be an exact sequence of functors C1

// C2. Then the map

|S•F2| : |S•(C1)
×| // |S•(C2)

×|
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is naturally homotopic to

|S•F1 ⊕ S•F3| : |S•(C1)
×| // |S•(C2)

×|.

Several equivalent reformulations exist. We will need the following one.

Definition 2.18 (Waldhausen). Let D be an exact category, and let C1 and C2 be full sub-categories of
D which are closed under extensions. Define E(C1,D,C2) to be the full sub-category of E D consisting
of the exact sequences X1 →֒ Y ։ X2 with Xi ∈ Ci.

Note that, because C1 and C2 are closed under extensions in D, E(C1,D,C2) is closed under exten-
sions in E D; in particular, it is an exact category.

Theorem 2.19. ([Wal85, Theorem 1.4.2, Proposition 1.3.2(1)]) The projection

|S•(E(C1,D,C2))
×| // |S•(C1)

×| × |S•(C2)
×|

(X1 →֒ Y ։ X2) 7→ (X1, X2)

is a homotopy equivalence.

2.2.3. The K-Theory fiber Sequence. A fundamental consequence of the Additivity Theorem is that

an exact functor C
f

// D determines a natural fiber sequence of K-theory spaces. We recall relevant
details from [Wal85] here.

Definition 2.20. Let C be an exact category. Define the right path-space of S•(C) to be the simplicial
diagram of exact categories P rS•(C) with n-simplices

P rSn(C) := Sn+1(C),

with the face map di given by the face map di+1 of S•(C), and with the degeneracy map si given by
the degeneracy si+1 of S•(C).

The face maps d0 : Sn+1(C) // Sn(C) determine a map of simplicial diagrams of exact categories

P rS•(C) // S•(C).

Definition 2.21. ([Wal85, Definition 1.5.4]) Let C
f

// D be an exact functor. Define the simplicial
diagram of exact categories Sr

•(f) to be the strict pullback

Sr
•(f)

δ

��

// P rS•(D)

��

S•(C)
f

// S•(D)

.

Explicitly, the n-simplices Sr
n(f) consist of the the full sub-category of Sn(C)×Sn+1(D) on the objects

(Y1 →֒ · · · →֒ Yn;X1 →֒ · · · →֒ Xn+1)

such that
(f(Y1) →֒ · · · →֒ f(Yn)) = (X2/X1 →֒ · · · →֒ Xn+1/X1)

for all i ≥ 1. The face and degeneracy maps are the products of the face and degeneracy maps for

S•(C) and P rS•(D). The map Sr
•(f)

δ // S•(C) is the projection onto the S•(C)-factor.

The Additivity Theorem implies the following.

Proposition 2.22. (cf. the proof of [Wal85, Proposition 1.5.5]) Let C
f

// D be an exact map of
exact categories. The map

Sr
n(f)

qr
// D×Sn(C),

(Y1 →֒ · · · →֒ Yn;X1 →֒ · · · →֒ Xn+1)
✤ qr

// (X1, Y1 →֒ · · · →֒ Yn)
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induces an equivalence

|S•(S
r
n(f))

×|
≃ // |S•(D)

×| × |S•(Sn(C))
×|.

Proof. A right inverse to the above map qr is given by the map

Sn(C)× D
σ // Sr

n(f)

sending

(X,Y1 →֒ · · · →֒ Yn)
✤ σ // (Y1 →֒ · · · →֒ Yn;X →֒ X ⊕ f(Y1) →֒ · · · →֒ X ⊕ f(Yn)) .

It remains to exhibit a homotopy |S•σ| ◦ |S•q
r| ≃ 1|S•(Sr

n(f))|
. For this, consider the functors

Sr
n(f)

α // Sr
n(f)

(Y1 →֒ · · · →֒ Yn;X1 →֒ · · · →֒ Xn+1)
✤ α // (0 →֒ · · · →֒ 0;X1 →֒ · · · →֒ X1)

and

Sr
n(f)

β
// Sr

n(f)

(Y1 →֒ · · · →֒ Yn;X1 →֒ · · · →֒ Xn+1)
✤ β

// (Y1 →֒ · · · →֒ Yn; 0 →֒ f(Y1) →֒ · · · →֒ f(Yn)) .

Then we have a natural isomorphism σ ◦ qr ∼= α⊕ β as well as a short exact sequence of functors

α →֒ 1Sr
n(f)

։ β.

By the Additivity Theorem (Theorem 2.17), there exists a homotopy

|S•σ| ◦ |S•q
r| ≃ |S•1Sr

n(f)
|.

We see that |S•q
r| is a homotopy equivalence as claimed. �

Let Dtriv

• denote the constant simplicial diagram on D. The identity map D
1 // D extends to an

exact map of simplicial diagrams of exact categories

Dtriv

•
// Sr

•(f).

Applying the S-construction to this map, we obtain an exact map of bisimplicial diagrams of exact
categories

S•(D)
v−triv

•

q
// S•S

r
•(f),

where the superscript “v − triv” indicates that the bisimplicial object is constant in the vertical
direction.2 Applying the S-construction to the map

Sr
•(f)

δ // S•(C),

we obtain an exact map of bisimplicial diagrams of exact categories

S•S
r
•(f)

S•δ // S•S•(C).

The above maps determine a strictly commuting square

(2) (S•(D)
×)v−triv

•
//

��

S•(S
r
•(f))

×

S•δ

��

∗ // S•(S•(C))
×.

Proposition 2.22 provides the core of the proof of the following.

2We adopt the convention that in a bisimplicial set X•,•, viewed as a first quadrant diagram, the first bullet denotes

the horizontal coordinate, while the second denotes the vertical one.
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Proposition 2.23. ([Wal85, Proposition 1.5.5]) The geometric realization of the square (2) is a
homotopy pullback square, equivalently a cartesian square in the ∞-category of spaces.

Corollary 2.24. ([Wal85, Corollary 1.5.6]) Let C1
f

// C2
g

// C3 be a sequence of exact functors.
Then the strictly commuting square

|S•(C2)
×| //

��

|S•(C3)
×|

��

|S•(S
r
•(f))

×| // |S•(S
r
•(gf))

×|

is a homotopy pullback, i.e. a cartesian square in the ∞-category of spaces.

If we consider the sequence C
1 // C

f
// D, we obtain the following.

Corollary 2.25. ([Wal85, Corollary 1.5.7]) Let C
f

// D be an exact functor. Then the strictly
commuting square

(3) |S•(C)
×|

��

f
// |S•(D)

×|

��

|S•S
r
•(1C)

×| // |S•S
r
•(f)

×|

.

is a homotopy pullback, i.e. a cartesian square in the ∞-category of spaces.

Lemma 2.26. Let C be an exact category. Then |Sr
•(1C)

×| = |P rS•(C)
×| ≃ ∗.

Proof. Denote by S•(C)
×
• the bisimplicial set obtained by taking the nerves of the groupoids Sn(C)

× in
the vertical direction, and denote by P rS•(C)

×
• the analogue for P rS•(C)

×. For each m, the horizontal
simplicial set P rS•(C)

×
m is obtained from S•(C)

×
m by forgetting the zeroth face and degeneracy maps

and shifting all simplicial indices down by one (i.e. P rSn(C)
×
m = Sn+1(C)

×
m and the ith face and

degeneracy maps are given by the maps di+1 and si+1 on Sn+1(C)
×). Recall (e.g. from [Dus01, p.

219]) that the maps

dn+1
0 : P rSn(C)

×
m ⇆ S0(C)

×
m = ∗ : sn+1

0

are the value on n-simplices of a homotopy equivalence

P rS•(C)
×
m ≃ ∗.

Because geometric realization preserves level-wise weak equivalences, we conclude that |P rS•(C)
×| ≃ ∗

is a weak equivalence. �

Proposition 2.27 (Waldhausen). Let C
f

// D be an exact functor. The homotopy equivalence of
Lemma 2.26 determines a homotopy which makes the square

(4) |S•(C)
×|

��

f
// |S•(D)

×|

��

∗ // |S•S
r
•(f)

×|

homotopy commute and a homotopy pullback.

If we take D to be the zero category, we see that the square (4) induces the inclusion of 1-simplices
map

|S•(C)
×| // Ω|S•S•(C)

×|
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of Remark 2.16. The proposition shows that this is in fact an equivalence. By iterating the S-
construction, one sees that the K-theory space KC of an exact category C is canonically an infinite
loop space. We denote the corresponding connective spectrum by KC.

Remark 2.28. For an exact category C, the connective spectrum KC admits a natural non-connective
variant KC, capturing negative K-theory groups. The constructions of the present paper extend to
non-connective K-theory and similar invariants of exact categories. We leave this to future work.

We conclude this paragraph by introducing a dual version of the relative S-construction, which
plays a role in the applications below.

Definition 2.29. Let C be an exact category. Define the left path-space of S•(C) to be the simplicial
diagram of exact categories P ℓS•(C) with n-simplices

P ℓSn(C) := Sn+1(C),

with the face map di given by the face map di of S•(C), and with the degeneracy map si given by the
degeneracy si of S•(C).

The face maps dn+1 : Sn+1(C) // Sn(C) determine a map of simplicial exact categories

P ℓS•(C) // S•(C).

Definition 2.30. Let C
f

// D be an exact map of exact categories. Define the simplicial diagram of
exact categories Sℓ

•(f) to be the strict pullback

Sℓ
•(f)

δ

��

// P ℓS•(D)

��

S•(C)
f

// S•(D)

.

Explicitly, the n-simplices Sℓ
n(f) consist of the the full sub-category of Sn(C)×Sn+1(D) on the objects

(Y1 →֒ · · · →֒ Yn;X1 →֒ · · · →֒ Xn+1)

such that

(f(Y1) →֒ · · · →֒ f(Yn)) = (X1 →֒ · · · →֒ Xn)

for all i ≥ 1. The face and degeneracy maps are the products of the face and degeneracy maps for

S•(C) and P ℓS•(D). The map Sℓ
•(f)

δ // S•(C) is the projection onto the S•(C) factor.

Lemma 2.31. Let C
f

// D be an exact functor. Denote by fop the induced functor on opposite cate-
gories, and denote by t : ∆ //∆ the functor which sends a finite ordinal to its opposite (equivalently,
t∗ reverses the order of simplices in a simplicial diagram). Then there exists a natural equivalence of
simplicial diagrams of exact categories

t∗Sr
•(f

op)op
≃ // Sℓ

•(f).

We emphasize that on the left hand side, we have first replaced f by fop, then applied Sr
•(−), then

taken the opposite categories in the simplicial diagram Sr
•(f

op) and then reversed the orientation of
the simplices in this diagram.

Proof. We begin by observing that Sr
n(f

op)op is equivalent to the category consisting of objects

(Ȳ ; X̄;ϕ) := (Yn ։ · · ·։ Y1;Xn+1 ։ · · ·։ X1;ϕ)

where Yn ։ · · · ։ Y1 is a string of admissible epics in C, Xn+1 ։ · · ·։ X1 is a string of admissible
epics in D, and ϕ is an isomorphism

(f(Yn) ։ · · ·։ f(Y1))
∼= // (ker(Xn+1 ։ X1) ։ · · ·։ ker(X2 ։ X1)).
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A morphism (Ȳ 0; X̄0;ϕ0) // (Ȳ 1; X̄1;ϕ1) consists of a collection of morphisms

Y 0
i

// Y 1
i

X0
i

//X1
i

making all of the appropriate diagrams commute.
Consider the assignment which sends (Yn ։ · · ·։ Y1;Xn+1 ։ · · ·։ X1;ϕ) to

( ker(Yn ։ Yn−1) →֒ · · · →֒ ker(Yn ։ Y1) →֒ Yn;

ker(Xn+1 ։ Xn) →֒ · · · →֒ ker(Xn+1 ։ X1) →֒ Xn+1; ϕ̃),

where ϕ̃ denotes the isomorphism

(ker(Yn ։ Yn−1) →֒ · · · →֒ ker(Yn ։ Y1))

∼= (ker(Xn+1 ։ Xn) →֒ · · · →֒ ker(Xn+1 ։ X1))

induced, by Noether’s lemma, from ϕ. This extends to an equivalence of categories

Sr
n(f

op)op
≃ // Sℓ

n(f),

where the inverse is defined in the analogous manner.
Under this equivalence, the face map di on Sr

n(C
op ⊂ Dop)op corresponds to the face map dn−i

on Sℓ
n(C ⊂ D), while the degeneracy si corresponds to the degeneracy sn−i. Letting n vary, these

equivalences determine an equivalence of simplicial diagrams of exact categories. �

Remark 2.32. Note that the equivalence of Lemma 2.31 fits into a natural commuting square

(Dop)op //

1

��

t∗Sr
•(f

op)op

≃

��

D // Sℓ
•(f).

Taking D = 0 in the lemma above, we obtain the following.

Corollary 2.33. There is a natural equivalence t∗S•(C
op)op ≃ S•(C).

Combining this with the results above, we obtain the following.

Proposition 2.34. Let C
f

// D be an exact functor.

(a) The map

Sℓ
n(f)

qℓ
// Sn(C)× D,

given on objects by the assignment

(Y1 →֒ · · · →֒ Yn;X1 →֒ · · · →֒ Xn+1)
✤ qℓ

// (Y1 →֒ · · · →֒ Yn, Xn+1/Xn)

induces a homotopy equivalence

|S•(S
ℓ
n(f))

×|
≃ // |S•Sn(C)

×| × |S•(D)
×|.
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(b) There exists a natural strictly commuting cube

(5) |S•(C
op)×|

fop

//

≃
))❚

❚❚
❚❚

❚

��

|S•(D
op)×|

≃
))❙

❙❙
❙❙

❙

��

|S•(C)
×|

��

f
// |S•(D)

×|

��

|S•S
r
•(1Cop)×| //

≃
))❙❙

❙❙
❙❙

|S•S
r
•(f

op)×|
≃

))❙
❙❙

❙❙

|S•S
ℓ
•(1C)

×| // |S•S
ℓ
•(f)

×|.

in which all the diagonal arrows are equivalences. In particular, the front face is a homotopy
pullback, and its lower left corner is contractible.

Proof. For the first statement, the definition of the map qℓ ensures that, under the equivalences of
Lemma 2.31, it is naturally isomorphic to the map

Sr
n(f

op)op
qr,op

// Sn(C
op)op × (Dop)op,

where qr is the map associated to Cop fop

// Dop in Proposition 2.22. Applying the S-construction,
we obtain a map

S•(S
r
n(f

op)op)
S•q

r,op

// S•(Sn(C
op)op)× S•(D).

By Corollary 2.33, this map is naturally equivalent to

t∗S•(S
r
n(f

op))op
t
∗S•q

r

// t∗S•(Sn(C
op)× Dop)op

For any groupoid G, the assignment (on morphisms) g 7→ g−1 determines a natural equivalence of

groupoids G
≃ // Gop. There is also a canonical natural equivalence |t∗X |

≃ // |X | for any simplicial
set X•. Applying both of these equivalences, we see that the previous map fits into a commuting
square of spaces

|t∗(S•(S
r
n(f

op))op)×|

≃

��

|t∗S•q
r |

// |t∗(S•(Sn(C
op)× Dop)op)×|

≃

��

|S•(S
r
n(f

op))×| // |S•(Sn(C
op)× Dop)×|.

Applying the canonical equivalence |S•(Sn(C
op) × Dop)×|

≃ // |S•(Sn(C
op))×| × |S•(D

op)×|, we see
that the bottom map is the equivalence of Proposition 2.22.

The second statement follows by a similar argument. The equivalences G ≃ Gop and |X | ≃ |t∗X |
determine a commuting cube

|S•(C
op)×|

fop

//

≃
++❱❱

❱❱
❱❱

❱❱

��

|S•(D
op)×|

≃
**❱❱

❱❱
❱❱

❱

��

|t∗(S•(C
op)op)×|

��

fop

// |t∗(S•(D
op)op)×|

��

|S•S
r
•(1Cop)×| //

≃
++❱❱

❱❱
❱❱

❱

|S•S
r
•(f

op)×|
≃

**❱❱
❱❱

❱❱
❱

|t∗(S•(S
r
•(1Cop))op)×| // |t∗(S•(S

r
•(f

op))op)×|.
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Applying the equivalence of Corollary 2.33 to the outer S•, we see that the front face of this square
fits into a commuting cube

|t∗(S•(C
op)op)×|

��

≃

++❲❲
❲❲

❲❲
❲❲

❲❲

fop

// |t∗(S•(D
op)op)×|

��

≃

++❲❲
❲❲

❲❲
❲❲

❲❲

|S•(C)
×|

f
//

��

|S•(D)
×|

��

|t∗(S•(S
r
•(1Cop))op)×|

≃
++❲❲

❲❲
❲❲❲

❲

// |t∗(S•(S
r
•(f

op))op)×|
≃

++❲❲
❲❲

❲❲❲
❲

|S•(S
r
•(1Cop)op)×| // |S•(S

r
•(f

op)op)×|.

Applying the equivalence of Lemma 2.31 to the inner S-construction, we obtain a commuting cube

|S•(C)
×|

f
//

��

1

**❱❱
❱❱

❱❱
❱❱

❱❱
|S•(D)

×|

��

1

**❯❯
❯❯

❯❯
❯❯

❯

|S•(C)
×|

f
//

��

|S•(D)
×|

��

|S•(S
r
•(1Cop)op)×| //

≃
**❱❱

❱❱
❱❱

❱
|S•(S

r
•(f

op)op)×|
≃

**❯❯
❯❯

❯❯
❯

|S•(t
∗Sℓ

•(1C))
×| // |S•(t

∗Sℓ
•(f))

×|.

By a final application of the equivalence |X | ≃ |t∗X |, we see that the front face of this cube is
equivalent to the front face of (5). Composing this equivalence with the cubes above, we obtain the
cube (5) as claimed. �

2.2.4. The Localization Sequence for Exact Categories. In [Sch04], Schlichting established a funda-
mental “Localization Theorem” for the K-theory of exact categories.

Proposition 2.35. (Schlichting [Sch04, Lemma 2.3]) Let C ⊂ D be the inclusion of an idempotent
complete, right s-filtering sub-category. Consider the map of simplicial diagrams of categories

Sr
•(C ⊂ D)

q
// D /C

given by the assignment

(Y1 →֒ · · · →֒ Yn;X1 →֒ · · · →֒ Xn+1) 7→ Xn+1.

Then all of the diagonal arrows are equivalences in the commuting cube

|S•(C)
×|

1
((◗

◗◗
◗◗

f
//

��

|S•(D)
×|

��

1
))❙

❙❙
❙❙

|S•(C)
×|

f
//

��

|S•(D)
×|

��

|S•S
r
•(1C)

×| //

((◗
◗◗

◗◗
◗◗

◗

|S•S
r
•(f)

×|
|S•q|

))❙
❙❙

❙❙

∗ // |S•(D /C)×|.

Combined with Proposition 2.34, this implies the following.

Proposition 2.36. Let C ⊂ D be the inclusion of an idempotent complete, left s-filtering sub-category.
Consider the map of simplicial diagrams of categories

Sℓ
•(C ⊂ D)

q
// D /C

given by the assignment

(Y1 →֒ · · · →֒ Yn;X1 →֒ · · · →֒ Xn+1) 7→ Xn+1.
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Then all of the diagonal arrows are equivalences in the homotopy coherent cube (i.e. commuting cube
in the ∞-category of spaces)

|S•(C)
×|

1
((◗

◗◗
◗◗

f
//

��

|S•(D)
×|

��

1
))❙

❙❙
❙❙

|S•(C)
×|

f
//

��

|S•(D)
×|

��

|S•S
ℓ
•(1C)

×| //

((◗
◗◗

◗◗
◗◗

◗
|S•S

ℓ
•(f)

×|
|S•q|

))❘
❘❘

❘❘
❘

∗ // |S•(D /C)×|.

Proof. Because C ⊂ D is left s-filtering, Cop ⊂ Dop is right s-filtering. We can now compose the cube
of Proposition 2.35 with the cube (5) of Proposition 2.34 to obtain a cube of the form above. By
tracing through the construction, we see that the equivalence in this cube

|S•S
ℓ
•(C ⊂ D)×|

≃ // |S•(D /C)×|

is given by the map |S•q| above. �

Combined with Propositions 2.27 and 2.34, these propositions give the following.

Theorem 2.37 (Schlichting’s Localization Theorem). Let C ⊂ D be the inclusion of an idempotent
complete, left or right s-filtering sub-category. Then the square

(6) KC
//

��

KD

��

∗ // KD /C

is a homotopy pullback.

2.2.5. Boundary Maps in Algebraic K-Theory. By the universal property of homotopy pullbacks, the
Localization Theorem associates, to a left or right s-filtering sub-category C ⊂ D, a boundary map

ΩKD /C
∂ //KC.

Explicitly, let q : D // D /C denote the canonical exact functor, and also the map on K-theory. For
a based space X , let PX denote the space of paths beginning at the base point, and let p : PX //X
send a path to its endpoint. The inclusion of the constant path ∗ // PKD /C induces a canonical
homotopy coherent cube (i.e. commuting cube in the ∞-category of spaces)

KC
≃

))❘
❘❘

❘❘
❘❘

❘

f
//

��

KD

��

1

%%▲
▲
▲
▲
▲

PKD /C ×KD /C
KD

//

��

KD

��

∗ //

((❘
❘❘

❘❘
❘❘

❘❘ KD /C
1
%%❑

❑❑
❑

PKD /C
// KD /C.

in which the diagonal arrows are all equivalences. By the universal property of homotopy pullbacks,
the front face determines a contractible space of maps

(7) ΩKD /C = PKD /C ×KD/C
∗ // PKD /C ×KD/C

KD.

The space of homotopy inverses of the homotopy equivalence

KC

≃ // PKD /C ×KD/C
KD
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is contractible. Therefore, up to a contractible space of choices, the map (7) determines a map

ΩKD /C
∂ //KC.

We refer to this as the boundary map in the localization sequence.
For our applications, we will need to be able to describe this map in some detail. We therefore

use this section to explain how the results of Waldhausen which we recalled above lead to an explicit
description of this boundary map.

The proof of the Localization Theorem gives a canonical equivalence from the K-theory localization
sequence to the looping of the Waldhausen fibration sequence (4). To avoid a proliferation of Ωs on
the page, we will describe the boundary map

(8) Ω|S•S
r
•(f)

×|
∂ // |S•(C)

×|.

Note that the boundary map in K-theory is obtained by applying Ω to this map. Note also that, by
Proposition 2.34, our description will immediately imply an analogous description of the map

Ω|S•S
ℓ
•(f)

×|
∂ // |S•(C)

×|.

Proposition 2.38. Let C
f

// D be an exact functor. The boundary map (8) fits into a canonical
homotopy commuting triangle (i.e. commuting triangle in the ∞-category of spaces)

(9) Ω|S•S
r
•(f)

×|

∂
))❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚

Ω|S•δ|
// Ω|S•S•(C)

×|

≃

��

|S•(C)
×|.

The equivalence in the triangle is inverse to the equivalence induced by the inclusion of vertical 1-

simplices S•(C)
1 // S•S1(C).

Proof. By Corollary 2.25, the commuting square of exact functors

C
1 //

f

��

C

��

D // 0

determines a commuting cube of spaces

|S•(C)
×|

1 //

f
))❘

❘❘
❘❘

��

|S•(C)
×|

))❘
❘❘

❘❘
❘❘

❘❘

��

|S•(D)
×| //

��

∗

��

|S•S
r
•(1C)

×|
1 //

))❘
❘❘

❘❘

|S•S
r
•(1C)

×|

))❘
❘❘

❘❘

|S•S
r
•(f)

×|
|S•δ|

// |S•S•(C)
×|

in which the left and right faces are homotopy pullbacks. By Lemma 2.26, the lower rear corners
of this diagram are contractible. Therefore, by the universal property of homotopy pullbacks, this
diagram determines a canonical homotopy commuting square

Ω|S•S
r
•(f)

×|

∂

��

Ω|S•δ|
// Ω|S•S•(C)

×|

≃

��

|S•(C)
×|

1 // |S•(C)
×|
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or equivalently, a homotopy commuting triangle as in (9). As Waldhausen observed in [Wal85, Lemma
1.5.2], the equivalence induced by the right face of the above cube is inverse to the equivalence

|S•(C)
×|

≃ // Ω|S•S•(C)
×| induced by the inclusion of vertical 1-simplices S•(C)

1 // S•S1(C). �

Combining the above, we obtain the following.

Proposition 2.39. If C ⊂ D is the inclusion of an idempotent complete, right s-filtering sub-category,
then there exists a canonical homotopy commuting square (i.e. commuting square in the ∞-category
of spaces)

Ω|S•S
r
•(C ⊂ D)×|

≃

��

// |S•(C)
×|

1

��

Ω|S•(D /C)×|
∂ // |S•(C)

×|

where the bottom map is the boundary map associated of the localization sequence, and the top map is
the composition

Ω|S•S
r
•(C ⊂ D)×|

Ω|S•δ|
// Ω|S•S•(C))

×|
≃ // |S•(C)

×|.

Similarly, by tracing through the proof of the above, we see that if C ⊂ D is the inclusion of an
idempotent complete, left s-filtering sub-category, then there exists a canonical homotopy commuting
square

Ω|S•S
ℓ
•(C ⊂ D)×|

≃

��

// |S•(C)
×|

1

��

Ω|S•(D /C)×|
−∂

// |S•(C)
×|

where the top map is the composition

Ω|S•S
ℓ
•(C ⊂ D)×|

Ω|S•δ|
// Ω|S•S•(C)

×|
≃ // |S•(C)

×|.

3. The Index Map

In this section, we use Theorem 2.10 to define the index map ΩKTateel(C)
Index //KC. In Theorem 3.23

and Corollary 3.25, we produce an explicit combinatorial model for this map. Using the Additivity
Theorem, we show in Theorem 3.6 that the index map is an equivalence. We conclude this section
with Theorem 3.9, where we relate the index map to the boundary map associated by the Localization
Theorem to the left s-filtering inclusion C ⊂ Inda(C).

3.1. The Categorical Index Map. For n ≥ 0, denote by [n] the partially ordered set {0 < . . . < n},
and denote by Fun([n],C) the category of functors from the partially ordered set [n], viewed as a
category, to a category C.

Definition 3.1. Let C be an exact category. Define the Sato complex Gr≤• (C) to be the simplicial
diagram of exact categories with

(1) n-simplices Gr≤n (C) given by the full sub-category of Fun([n + 1],Tateel(C)) consisting of se-
quences of admissible monics

L0 →֒ · · · →֒ Ln →֒ V

where, for all i, Li →֒ V is the inclusion of a lattice,3

(2) face maps are given by the functors

di(L0 →֒ · · · →֒ Ln →֒ V ) := (L0 →֒ · · · →֒ Li−1 →֒ Li+1 →֒ · · · →֒ Ln →֒ V ),

3To see that this is an exact category, observe that because Pro
a(C) and Ind

a(C) are closed under extensions in

Tate
el(C), Gr

≤
n (C) is closed under extensions in Fun([n+ 1],Tateel(C)).
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(3) and degeneracy maps are given by the functors

si(L0 →֒ · · · →֒ Ln →֒ V ) := (L0 →֒ · · · →֒ Li →֒ Li →֒ · · · →֒ Ln →֒ V ).

The simplicial object Gr≤• (C) allows us to introduce the index map.

Definition 3.2. Let C be an exact category. The categorical index map is the span of simplicial maps

(10) Tate
el(C)←− Gr≤• (C)

Index // S•(C),

where the left-facing arrow is given on n-simplices by the assignment

(L0 →֒ · · · →֒ Ln →֒ V ) 7→ V,

and Index is given on n-simplices by the assignment

(L0 →֒ · · · →֒ Ln →֒ V ) 7→ (L1/L0 →֒ · · · →֒ Ln/L0).

3.2. The K-Theoretic Index Map. In this section, we explain how the categorical index map
determines an index map in K-theory.

Proposition 3.3. Let C be an idempotent complete exact category. Then the map from Gr≤• (C) to

Tateel(C) of (10) induces an equivalence

|Gr≤• (C)
×|

≃ // |Tateel(C)×|.

The core of the proof is the fact that the fibers of the above map are classifying spaces of filtered
partially ordered sets, and hence contractible. In more detail:

Proof of Proposition 3.3. Geometric realizations are homotopy colimits. Similarly, the groupoidGr≤n (C)
×

is the Grothendieck construction of the set-valued functor

Gr≤n (−) : Tate
el(C)× // Set,

i.e. it is a homotopy colimit in the category of groupoids.
Commuting the two homotopy colimits we obtain the following equivalence

|Gr≤• (C)
×| ≃ hocolim

V ∈Tateel(C)×
|Gr≤• (V )|.

For a fixed Tate object, the geometric realization |Gr≤• (V )| is the classifying space of the category
corresponding to the partially ordered set Gr(V ). Because the partially ordered set Gr(V ) is directed
(Theorem 2.10(c)), its classifying space is contractible. This implies that

|Gr≤• (C)
×| ≃ hocolim

Tateel(C)×
{⋆}| ≃ Tate

el(C)×|.

�

Corollary 3.4. Let C be idempotent complete. The categorical index map determines a map

Index : Tateel(C)× // |S•(C)
×| ∼= BKC.

Moreover, using the canonical equivalence Sk(Tate
el(C)) ≃ Tateel(Sk(C)) [BGW16b, Prop. 5.13],

we also obtain the following.

Corollary 3.5. Let C be idempotent complete. The categorical index map determines a map of infinite
loop spaces

(11) BIndex : |S•(Tate
el(C))×| // |S•S•(C)

×|

which fits into a commuting triangle

(12) Tateel(C)×

��

Index // Ω|S•S•(C)
×|

Ω|S• Tate
el(C)×|

ΩBIndex

44❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥
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Proof. Recall from [Wal85, p. 329] that the infinite loop space structures on |S• Tate
el(C)×| and

|S•S•(C)
×| are given by the chain of equivalences

|S×n
• (Tateel(C))×|

≃ // Ω|S×n+1
• (Tateel(C))×|,

and

|S×n+1
• (C)×|

≃ // Ω|S×n+2
• (C)×|,

which are determined by the inclusions of 1-simplices

∆1 × S×n
• (Tateel(C))× // S×n+1

• (Tateel(C))×,

and

∆1 × S×n+1
• (C)× // S×n+2

• (C)×.

For each n, we have a map

|S×n
• (Tateel(C))×|

≃ // |Tateel(S×n
• (C))×|

≃ // |Gr≤• (S
×n
• (C))×| // |S•S

×n
• (C)×|.

By inspection, these maps fit into a commuting square

S×n
• (Tateel(C))×

��

Index // |S•S
×n
• (C)×|

��

Ω|S×n+1
• (Tateel(C))×|

ΩBIndex // Ω|S•S
×n+1
• (C)×|

for each n. For n = 0, this square gives the triangle (12). Taken together for all n, these squares show
that (11) is a map of infinite loop spaces. �

3.3. The Index Map is an Equivalence. Our goal in this section is to prove the following theorem.

Theorem 3.6. Let C be an idempotent complete exact category. Then the K-theoretic index map is
an equivalence.

Remark 3.7. In Section 3.4, we show (independently of Theorem 3.6) that the K-theoretic index map
is equivalent to −1 times Saito’s equivalence. In light of this result, the theorem above is a direct
consequence Saito’s delooping result [Sai15, Theorem 1.2]. We deduce the present theorem directly
from the definition of the index map, and Waldhausen’s Additivity Theorem [Wal85]. In Section 3.6,
we explain how the present theorem can be understood as the analogue for algebraic K-theory of
the equivalence, due to Atiyah and Jänich, between the space of Fredholm operators on a separable
complex Hilbert space and the classifying space of topological complex K-theory.

Proof of Theorem 3.6. It suffices to prove that, for each n, the map

Gr≤n (C)
Index // Sn(C)

induces an equivalence

|S•(Gr≤n (C))×|
≃ // |S•Sn(C)

×|.

For n = 0, observe that Gr≤0 (C) = E(Pro
a(C),Tateel(C), Inda(C)). Therefore, by the Additivity Theo-

rem (Theorem 2.19), we have an equivalence

|S•(Gr≤0 (C))
×|

≃ // |S•(Pro
a(C))×| × |S•(Ind

a(C))×|.

The Eilenberg swindle shows that the right hand side is contractible. We conclude that the map

|S•(Gr≤0 (C))
×| // ∗ = |S•S0(C)

×|

is an equivalence.
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Next, consider the functor

Gr≤n (C) // E(Proa(C), Gr≤n (C), S
ℓ
n(C ⊂ Inda(C)))

which sends (L0 →֒ · · · →֒ Ln →֒ V ) to

L0
� � //
� _

��

L0
� � //
� _

��

· · · �
�

// L0
� � //
� _

��

L0� _

��

L0
� � //

����

L1
� � //

����

· · · �
�

// Ln
� � //

����

V

����

0 �
�

// L1/L0
� � // · · · �

�
// Ln/L0

� � // V/L0.

A quick check shows that this is an equivalence of exact categories. By the Additivity Theorem
(Theorem 2.17) and by Proposition 2.34, we conclude that the map

Gr≤n (C)
// Proa(C)× Sn(C)× Inda(C)

(L0 →֒ · · · →֒ Ln →֒ V ) 7→ (L0, L1/L0 →֒ · · · →֒ Ln/L0, V/Ln)

induces an equivalence

|S•(Gr≤n (C))
×|

≃ // |S• Pro
a(C)×| × |S•(Sn(C))

×| × |S•(Ind
a(C))×|.

By the Eilenberg swindle, the projection

|S• Pro
a(C)×| × |S•(Sn(C))

×| × |S•(Ind
a(C))×| // |S•(Sn(C))

×|

is an equivalence. The map

|S•(Gr≤n (C))×|
Index // |S•(Sn(C))

×|

is the composite of the above two maps, and is therefore an equivalence. �

Corollary 3.8. Let C be an idempotent complete exact category, and let κ ≤ κ′ be a pair of infi-
nite cardinals. Then the exact functor Tateelκ (C) // Tateelκ′(C) induces an equivalence in K-theory

KTateelκ(C)
≃ //KTateel

κ′ (C)
.

Proof. We have a commuting diagram

Tateelκ (C)

��

Gr≤κ,•(C)oo

��

Index // S•(C)

1

��

Tateelκ′(C) Gr≤κ′,•(C)
oo Index // S•(C)

After applying |S•(−)
×|, all of the horizontal arrows become equivalences (by Proposition 3.3 and

Theorem 3.6). The corollary now follows from the 2 of 3 property for equivalences. �

3.4. The Index Map as a Boundary Map.

Theorem 3.9. Let C be an idempotent complete exact category. Let

∂ : ΩKInda(C)/C
//KC

be the boundary map in the K-theory localization sequence associated to the left s-filtering embedding
C ⊂ Inda(C). Then the K-theoretic index map fits into a canonical homotopy commuting triangle

(13) ΩKTateel(C)

q

��

Ω2BIndex // KC

ΩKInda(C)/C

−∂

66♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠

.
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where the left vertical map is given by the functor Tateel(C)
q

// Inda(C)/C which sends an elementary
Tate object V to V/L for any choice of lattice L →֒ V .

The proof of Saito’s Delooping Theorem [Sai15] implies the following.

Corollary 3.10. Let C be idempotent complete. The index map is canonically equivalent to −1 times
Saito’s delooping

ΩKTateel(C)
≃ //KC.

Proof of Theorem 3.9. The assignment

(L0 →֒ · · · →֒ Ln →֒ V ) 7→ (L1/L0 →֒ · · ·Ln/L0;L1/L0 →֒ · · · →֒ Ln/L0 →֒ V/L0)

determines a map of simplicial diagrams of categories

Gr≤• (C) // Sℓ
•(C ⊂ Inda(C))

which fits into a 2-commuting triangle

Gr≤• (C)

��

Index // S•(C)

Sℓ
•(C ⊂ Inda(C))

δ

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦

.

We also have a 2-commuting square

Tateel(C)

��

Gr≤• (C)oo

��

Inda(C)/C Sℓ
•(C ⊂ Inda(C))oo

where the bottom horizontal map is the restriction to 1-simplices of the equivalence appearing in the
proof of Proposition 2.35, and where the left vertical map is the functor described above.

Applying the S-construction, we obtain a commuting diagram of spaces

|S•(Tate
el(C))×|

��

|S•(Gr≤• (C))×|
≃oo

��

BIndex // |S•S•(C)
×|

|S•(Ind
a(C)/C)×| |S•S

ℓ
•(C ⊂ Ind

a(C))×|
≃

oo

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

.

By Proposition 2.39, after inverting the left-facing equivalences and taking the double loop spaces, we
obtain a contractible space of homotopy commuting triangles of the form (13). �

3.5. A Combinatorial Model of the Index Map. In this section, we introduce convenient sim-

plicial models of |Gr≤• (C)×| and |S•(C)
×| which allow us to construct the map

|Tateel(C)×| // |S•(C)
×|

as an explicit simplicial map from the nerve of Tateel(C)×.

Remark 3.11. We pause for a moment to explain the data exhibited by such a map.

(1) From the perspective which we adopt in this section, the combinatorial model of the index
map can be understood as a universal computation of indices, symbols, and higher torsion
invariants of automorphisms of elementary Tate objects. In order to define the computation,
we require a sequence of auxiliary choices. Theorem 2.10 ensures that the data required for
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these choices exist, while the framework of simplicial homotopy theory ensures that the end-
result is independent of the choices.4 We conclude this section with a sample computation
which explains the name of the index map.

(2) From another perspective, this simplicial map encodes an A∞-map

Aut(V ) //KC

for all elementary Tate objects V . More precisely, recall (e.g. [GJ09, Chapter V]) that there
exists a model structure, essentially due to Kan, on the category sSet0 of reduced simplicial
sets, i.e. simplicial sets having a unique vertex. There is also a model structure, essentially
due to Moore, on the the category sGrp of simplicial groups, and a Quillen equivalence

G : sSet0 ⇄ sGrp : W,

with G ⊣ W . At the level of the underlying ∞-categories, this equivalence corresponds to
the adjoint equivalence Ω ⊣ B• between the ∞-category of group-like A∞-spaces and the
∞-category of pointed connected spaces. Both the nerve N•Aut(V ) of the group Aut(V ) and
the model we use of BKC are reduced simplicial sets, so the construction falls within this
classical framework.

However, there exists a different, and, for many purposes, more natural approach to E1-
objects in an ∞-category, essentially due to Segal. In [BGW16a], we develop a formalism
which allows us to produce an efficient Segal-style model for this A∞-map in the ∞-category
of spaces.

(3) From a third perspective, which we develop in Section 4, this simplicial map can be understood

as specifying the data of a KC-torsor T // Tateel(C)×, or as specifying, for each elementary
Tate object V , a KC-torsor T |V with a coherent action of Aut(V ).

Notation 3.12. Throughout this section, I ⊂ [n] will denote a non-empty sub-set.

Given a groupoid G and a functor F• : G // sSet, denote by
∫

G
F• the Grothendieck construction of

F•. Explicitly,
∫

G F• is the simplicial diagram of categories whose category of n-simplices is the usual
Grothendieck construction of Fn.

Given an elementary Tate object V , denote by Gr≤• (V ) the nerve of the partially ordered set Gr(V ).

As we observed in the proof of Proposition 3.3, the assignment V 7→ Gr≤• (V ) defines a functor

Gr≤• : Tateel(C)× // sSet

with
∫

Tateel(C)×
Gr≤• = Gr≤• (C)

×. Starting with this observation, we now introduce several construc-

tions which allow us to define a simplicial model for the inverse of the equivalence |Gr≤• (C)×|
≃ //|Tateel(C)×|.

3.5.1. Subdivision and Kan’s Ex1.

Definition 3.13. The subdivision of the linearly ordered set [n], denoted sd([n]), is the partially
ordered set consisting of all non-empty sub-sets I ⊂ [n], ordered by inclusion.

By taking the nerve of sd([n]), we obtain a functor

∆ // sSet

The left Kan extension of this functor along the Yoneda embedding gives a functor

sd: sSet // sSet.

Example 3.14. The simplicial set sd∆1 consists of two 1-simplices x0 and x1 glued at their ends

•
x0 // • •

x1oo

4Though we do not pursue this here, we also expect that, given two sequences of such auxiliary choices, one can
directly construct a homotopy between the resulting simplicial maps by a sequence of similar choices.
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Definition 3.15. Let X• be a simplicial set. Define Ex1(X)• to be the simplicial set whose n-simplices
are given by

Ex1(X)n := homsSet(sd∆
n, X•).

Example 3.16. The example above shows that a 1-simplex of Ex1(X) consists of two 1-simplices x0

and x1 of X glued at their ends.

The assignment I 7→ max(I) defines a natural map of partially ordered sets

sd([n]) // [n].

This extends to a natural transformation sd(−) // 1(−), which, in turn, defines a natural transfor-

mation 1(−)
// Ex1(−). The following is one of the foundational results of simplicial homotopy

theory.

Lemma 3.17 (Kan). ([Kan57], cf. [GJ09, Theorem III.4.6]) Let X• be a simplicial set. The map
X•

// Ex1(X)• is a weak equivalence.

When X• is the nerve of a poset P , Ex1(X)• admits a particularly simple description.

Example 3.18. Let P be a partially ordered set. Denote by P• its nerve. Then

Ex1(P )n ∼= {(xI)I⊂[n] | xI ∈ P for all I, and xI < xJ for I ⊂ J}.

The face ith face of a simplex (xI)I⊂[n] is given by the functor

J 7→ xdi(J)

Conversely, the ith degeneracy of a simplex (xI)I⊂[n] is given by the functor

J 7→ xsi(J).

Under the inclusion Set →֒ Cat, we obtain a functor

sdh : sSet
sd // sSet →֒ sCat.

Definition 3.19. Let X• : ∆
op // Cat be a simplicial category. Define Ex1,h(X)• to be the simplicial

category with

Ex1,h(X)n := FunsCat(sd
h ∆n, X•).

From the definition, we have obEx1,h(X)• ∼= Ex1(obX•). Morphisms in Ex1,h(X)• are morphisms
of diagrams. This forms the basis of the following lemma.

Lemma 3.20. Let G be a groupoid, and let F• : G // sSet be a functor taking values in simplicial
sets. Then

Ex1,h
∫

G

F• =

∫

G

Ex1 F•.

Proof. From the definition, objects of the category Ex1,h
∫

G
Fn are pairs (V, L), where V ∈ G and

L ∈ Ex1(F (V ))n. A morphism (V0, L0)
g

// (V1, L1) in Ex1,h
∫

G Fn consists of a morphism V0
g

// V1

in G such that F (g)(L0) = L1. We see that Ex1,h
∫

G Fn is, by definition, the category
∫

G Ex1(F )n. A
similar exercise shows the equality of face and degeneracy maps. �

Lemma 3.21. Let X• be a simplicial diagram of categories. Then the map

X•
// Ex1,hX•

induces a weak equivalence

|X |
≃ // |Ex1,hX |.



26 OLIVER BRAUNLING, MICHAEL GROECHENIG, JESSE WOLFSON

Proof. Given a simplicial diagram of categories X•, let X•,• be the bisimplicial set obtained by taking
the nerve (in the vertical direction) of the categories Xn. Unpacking the definition, we see that
Ex1,hX•,• is the bisimplicial set with

(Ex1,hX)•,n = Ex1X•,n.

Similarly, the map

X•,•
// Ex1,hX•,•

is the map of bisimplicial sets given on horizontal n-simplices by

X•,n
// Ex1 X•,n.

By Lemma 3.17, this is a weak equivalence for all n. �

3.5.2. The Diagonal of the Grothendieck Construction. Let G be a groupoid, and let F• : G // sSet

be a functor taking values in simplicial sets. Taking the nerves of the groupoids
∫

G F• (in the vertical

direction), we obtain a bisimplicial set
∫

G F•,•.

Concretely, (n,m)-simplices of
∫

G
F•,• consist of a string of isomorphisms in G

x0
g1

// · · ·
gm

// xm

along with elements yi ∈ Fn(xi) such that F (gi)(yi) = yi+1. Because all the gi are isomorphisms, we
see that (n,m)-simplices of

∫

G
F•,• are equivalent to tuples

(x0
g1

// · · ·
gm

// xm, y) ∈ NmG × Fn(xm).

Applying the diagonal functor, we see that n-simplices of d(
∫

G F )• consist of tuples

(x0
g1

// · · ·
gn

// xn, y) ∈ NnG × Fn(xn).

The degeneracy si is the product of the ith degeneracy maps in F•(xn) and N•G. For i < n, the face
map di is given by the product of the ith face maps in F•(xn) and N•G, while the face map dn is given
by

dn(x0
g1

// · · ·
gn

// xn, y) := (x0
g1

// · · ·
gn−1

// xn−1, F (gn)
−1(y)).

In the case Ex1,hGr≤• (C)× =
∫

Tateel(C)× Ex1Gr≤• , the previous description combines with Lemma

3.20 and Example 3.18, to give the following.

Lemma 3.22. Let C be an exact category. Then

|Gr≤• (C)×| ≃ |d(Ex1,hGr≤• (C)
×)|.

Further, the n-simplices of the simplicial set d(Ex1,hGr≤• (C)
×)• consist of tuples

(V0
g1

// · · ·
gn

// Vn, {LI}I⊂[n]) ∈ Nn Tate
el(C)× × Ex1 Gr≤n (Vn).

In this description, the degeneracy si is the product of the ith degeneracy maps in N• Tate
el(C)× and

Ex1Gr≤• (Vn). For i < n, the face map di is given by the product of the ith face maps in N• Tate
el(C)×

and Ex1 Gr≤• (Vn), while the face map dn is given by

dn(V0
g1

// · · ·
gn

// Vn, {LI}I⊂[n]) := (V0
g1

// · · ·
gn−1

// Vn−1, {g
−1
n Ldn(J)}J⊂[n−1]).
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3.5.3. A Combinatorial Model of the Index Map.

Theorem 3.23. Let C be an idempotent complete exact category. A section of the map

(14) d(Ex1,h Gr≤• (C)
×)• //N• Tate

el(C)×.

is constructed according to the following induction.

(1) For each V ∈ Tateel(C)×, choose a lattice L0,[0] →֒ V .
(2) For the inductive step, suppose that for each k < n, for each non-degenerate simplex

g = (V0
g1

// · · ·
gk

// Vk) ∈ Nk Tate
el(C)×,

and for each non-empty subset I ⊂ [k], we have specified a collection of lattices Lk,I(g) →֒ Vk

satisfying:
(a) if I ⊂ di([k − 1]) ⊂ [k] for i < k, then

Lk,I(g) = Lk−1,si(I)(dig),

(b) if I ⊂ dk([k − 1]) ⊂ [k], then

Lk,I(g) = gkLk−1,sk−1(I)(dkg),

(c) and, for all I ⊂ J ⊂ [k], Lk,I(g) is a sub-lattice of Lk,J(g).
Then, let

g = (V0
g1

// · · ·
gn

// Vn) ∈ Nn Tate
el(C)×

be a non-degenerate simplex, let I ⊂ [n] be a proper, non-empty subset, and let i be any number
such that I ⊂ di([n− 1]) ⊂ [n]. Define

Ln,I(g) :=







Ln−1,si(I)(dig) if i < n

gnLn−1,sn−1(I)(dng) if i = n.

Then Ln,I(g) is a well-defined lattice of Vn, independent of the choice of i, and we complete
the inductive step by choosing a lattice Ln,[n](g) →֒ Vn which contains Ln,I(g) as a sub-lattice
for all proper, non-empty subsets I ⊂ [n].

The induction constructs a collection of lattices {Ln,I(g) →֒ Vn}I⊂[n] for every n and every non-

degenerate simplex g ∈ Nn Tate
el(C)×. These families are such that the assignment

(15) g 7→ (g, {Ln,I(g) →֒ Vn}I⊂[n])

defines a right inverse

N• Tate
el(C)×

L // d(Ex1,hGr≤• (C)
×)•

to the map (14).

Remark 3.24. The theorem is properly understood as a construction in the setting of groups acting
on directed posets. To wit, for any directed poset P and any group G acting on P , the induction of
the theorem extends, mutatis mutandis, to construct a section of the map Ex1(P )//G //N•G.

Proof. For ease of notation, we will leave the elementary Tate object Vn implicit in the course of the
proof, e.g. we write (15) as

g 7→ (g, {Ln,I(g)}I⊂[n]).

For the proof, we need to establish the following claims:

(1) That for a proper, non-empty sub-set I ⊂ [n], Ln,I(g) is well-defined.
(2) That we can make the choices of Ln,[n](g) required for the induction.

(3) That, for each non-degenerate n-simplex g ∈ Nn Tate
el(C)×, the collection {Ln,I(g)}I⊂[n] of

the inductive step satisfies the inductive hypothesis for the next stage.
(4) That the assignment (15) defines a simplicial map.
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For the first claim, suppose that i < j < n are in [n] \ I (i.e. I ⊂ di([n− 1]) ∩ dj([n− 1]) ⊂ [n]). We
claim that

Ln−1,si(I)(dig) = Ln−1,sj(I)(djg).

By assumption, sj(I) ⊂ di([n−2]), while si(I) ⊂ dj−1([n−2]). Therefore, by the inductive hypothesis
and by the simplicial identities, we have

Ln−1,sj(I)(djg) = Ln−2,sisj(I)(didjg)

= Ln−2,sj−1si(I)(dj−1dig)

= Ln−1,si(I)(dig)

as asserted. It remains to show the case where j = n. For this, we first suppose that i < n − 1. We
claim that

Ln−1,si(I)(dig) = gnLn−1,sn−1(I)(dng).

By assumption, sn−1(I) ⊂ di([n − 2]), while si(I) ⊂ dn−1([n − 2]). Therefore, by the inductive
hypothesis and by the simplicial identities, we have

gnLn−1,sn−1(I)(dng) = gnLn−2,sisn−1(I)(didng)

= gnLn−2,sn−2si(I)(dn−1dig)

= Ln−1,si(I)(dig)

as asserted.
Finally, suppose that i = n− 1. Note that, because the maps sn−2 and sn−1 are equal on [n] \ {n−

1, n}, our assumption on I implies that sn−2(I) = sn−1(I) ⊂ [n− 1]. Then we claim that

Ln−1,sn−1(I)(dn−1g) = gnLn−1,sn−1(I)(dng).

By assumption, sn−1(I) is contained in dn−1([n−2]) ⊂ [n−1]. Therefore, by the inductive hypothesis,
by the simplicial identities, and by the equality sn−2(I) = sn−1(I), we have

gnLn−1,sn−1(I)(dng) = gn−1gnLn−2,sn−2sn−1(I)(dn−1dng)

= gn−1gnLn−2,sn−2sn−2(I)(dn−1dn−1g)

= Ln−1,sn−2(I)(dn−1g)

= Ln−1,sn−1(I)(dn−1g).

We have established the first claim.
The second claim follows, by Theorem 2.10, from our assumption that C is idempotent complete.

Indeed, for every elementary Tate object V , a lattice L0,[0] →֒ V exists. For the induction step, the
lattices Ln,I(g) →֒ Vn are given, and it remains to choose a lattice Ln,[n](g) →֒ Vn containing all of
these as proper sub-lattices. Such a lattice exists by Theorem 2.10 (there are finitely many non-empty
sub-sets of [n]).

We now turn to the third claim and verify that for each non-degenerate simplex g ∈ Nn Tate
el(C)×,

the collection {Ln,I(g)}I⊂[n] satisfies the inductive hypotheses. Because we have already shown that
the Ln,I(g) are well-defined, the first two inductive hypotheses are satisfied by definition. It remains
to show that if I ⊂ J , then Ln,I(g) is a sub-lattice of Ln,J(g). For J = [n] this follows by definition.
Now suppose we are given a proper, non-empty subset J ⊂ [n]. Suppose there exists i < n such that
J ⊂ di([n− 1]) ⊂ [n]. Then for any I ⊂ J , we have

Ln,J(g) = Ln−1,si(J)(dig),

and

Ln,I(g) = Ln−1,si(I)(dig).
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By the inductive hypothesis, because si(I) ⊂ si(J), we see that Ln,I(g) is a sub-lattice of Ln,J(g). It
remains to consider J = dn([n− 1]). For any I ⊂ J , we have

Ln,J(g) = gnLn−1,[n−1](dng),

and

Ln,I(g) = gnLn−1,sn−1(I)(dng).

By the inductive hypothesis Ln−1,sn−1(I)(dng) is a sub-lattice of Ln−1,[n−1](dng). We conclude that
Ln,I(g) is a sub-lattice of Ln,J(g), as required.

We conclude the proof by showing that we have indeed defined a simplicial map. A map of simplicial
sets is uniquely determined by its value on non-degenerate simplices.5 Therefore, it is enough to check
that the above assignment respects the face maps. For this, we begin by showing that, for all i < n,
we have

di(g, {Ln,I(g)}I⊂[n]) = (dig, {Ln−1,J(dig)}J⊂[n−1]).(16)

From Example 3.18 and Lemma 3.22, we see that the left hand side is equal to

(dig, {Ln,I(g)}I⊂di([n−1])⊂[n]),

where the collection {Ln,I(g)}I⊂di([n−1])⊂[n] denotes the (n− 1)-simplex of Ex1Gr≤• (V ) which sends
J ⊂ [n− 1] to Ln,di(J)(g). On the other hand, by the inductive definition and the simplicial identities,
we have that

Ln,di(J)(g) := Ln−1,sidiJ(dig)

= Ln−1,J(dig).

This establishes the equality (16).
We must also show that

dn(g, {Ln,I(g)}I⊂[n]) = (dng, {Ln−1,J(dng)}J⊂[n−1]).(17)

From Example 3.18 and the description of Lemma 3.22, we see that the left hand side is equal to

(dng, {g
−1
n Ln,I(g)}I⊂dn([n−1])⊂[n]),

where the collection {g−1
n Ln,I(g)}I⊂dn([n−1])⊂[n] denotes the (n − 1)-simplex of Ex1 Gr≤• (V ) which

sends J ⊂ [n− 1] to g−1
n Ln,dn(J)(g). On the other hand, by the inductive definition and the simplicial

identities, we have that

g−1
n Ln,dn(J)(g) := g−1

n gnLn−1,sn−1dnJ (dng)

= Ln−1,J(dng).

This establishes the equality (17) and we therefore conclude that the map is simplicial. �

Corollary 3.25. Let C be idempotent complete. Let L be a map as in the previous theorem. Then
the geometric realization of the composite

N• Tate
el(C)×

L // d(Ex1,h Gr≤• (C)
×)•

dEx1,h(Index)
// d(Ex1,h S•(C)

×)•(18)

is equivalent to the index map.

Proof. By Lemma 3.22, we see that |L| gives a left inverse to the equivalence

|Gr≤• (C)
×|

≃ // |Tateel(C)×|.

Similarly, by Lemma 3.21 and the equivalence |X•,•| ≃ |d(X)•|, we see that

|dEx1,h(Index)| ≃ |Index| : |Gr≤• (C)
×| // |S•(C)

×|.

5e.g. this follows from the definition of the n-skeleton functors, and the fact that every simplicial set is the union of
its n-skeleta.
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The corollary now follows from the definition of the index map. �

The corollary represents a universal calculation of symbols and higher torsion invariants for au-
tomorphisms of Tate objects. As an example of the information this contains, we now compute the
value of the map

BAut(V ) = π1(|Tate
el(C)×|, V )

Index // π1(|S•(C)
×|) = K0(C).

The construction above shows that, once we have chosen a lattice L →֒ V (denoted L0,[0] above), we
have

L(e) = (e, {L}I⊂[1])

where the collection {L}I⊂[1] denotes the 1-simplex of Ex1Gr≤• (V ) which sends I ⊂ [1] to L. Therefore,
Index(e) consists of two copies of the degenerate 1-simplex joined at their ends. We conclude

[Index(e)] = 0 ∈ K0(C)

as expected.
Now let g ∈ Aut(V ) be a non-trivial automorphism. The construction above shows that, having

chosen L, to define L(g), it suffices to choose a lattice N which contains both L and gL as sub-lattices

(we denote N by L1,[1](g) above). The map L(g) sends g to the loop in d(Ex1,hGr≤• (C)×)• given by

(g, gL // N Loo ) ∈ N1 Tate
el(C)× × Ex1 Gr≤1 (V ).

Applying the categorical index map, we obtain the loop in d(Ex1,h S•(C)
×) given by

•
N/gL

// • •
N/L

oo

Passing to π1, this gives

[Index(g)] = [N/gL]− [N/L] ∈ K0(C).

Corollary 3.25 ensures that this value is independent of our choices (as one can also check directly).

Example 3.26. Let k be a field. The ring of Laurent series k((t)), has a canonical structure of
an elementary Tate vector space over k. An invertible element f =

∑∞
i≥n ait

i ∈ k((t))× gives an

automorphism of the Tate module k((t)) which takes the lattice k[[t]] ⊂ k((t)) to the lattice tnk[[t]].
Taking L0,[0] = k[[t]] and L1,[1](g) = tminn,0k[[t]], we conclude that

[Index(f)] =







[

−k〈t−1, . . . , t−n〉
]

∈ K0(k) if n < 0
0 ∈ K0(k) if n = 0

[

k〈1, t, . . . , tn−1〉
]

∈ K0(k) if n > 0

where [k〈. . .〉] denotes the class of the k-vector space with generators 〈. . .〉. In particular, if we identify
±n with ±[kn] ∈ K0(k) for n ∈ N, we have [Index(f)] = n ∈ K0(k). So, in this example, π0 of the
index map recovers the winding number of a non-vanishing formal Laurent series f .

3.6. Comparison with Index Theory in Topological K-Theory. We now relate the index map
to similar constructions defined in the context of index theory for Fredholm operators on Hilbert space.
The general analogy is well known, and dates back at least to Sato–Sato [SS83] and Segal–Wilson
[SW85]. Our goal here is to elaborate this analogy by adding Propositions 3.30 and 3.35.

3.6.1. The K-Theory of Tate Objects as an Analogue of Fredholm Operators. Let H be a complex
separable Hilbert space, e.g. L2(S1;C). Recall that a bounded operator

A : H //H

is Fredholm if dimker(A) < ∞ and dim coker(A) < ∞. Denote by Fred(H) the space of Fredholm
operators (topologized as a subspace of the space of bounded operators on H). The space Fred(H)
is endowed with a tautological complex

Index• // Fred(H)
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whose fiber at A ∈ Fred(H) is the complex

H
A //H.

Theorem 3.27 (Atiyah [Ati89], Jänich [Jän65]). The complex Index• // Fred(H) is perfect, i.e.
its restriction to any compact subspace X ⊂ Fred(H) is quasi-isomorphic to a bounded complex of
finite-dimensional topological vector bundles.

A perfect complex E• //X on a space X defines a map

X //Ktop
C

from X to the classifying space of topological complex K-theory, sending x ∈ X to χ(E|x).
6 In

particular, the tautological perfect complex defines a map

(19) Fred(H)
Index
−−−→ Ktop

C
,

sending A ∈ Fred(H) to χ(H
A
−→ H).

Theorem 3.28 (Atiyah, Jänich). The map Fred(H)
Index
−−−→ Ktop

C
is an equivalence.

Let R be a ring. The Sato Grassmannian Gr(R((t))) can be understood as an analogue of the
space Fred(H). We have a map

πR[[t]] : R((t)) // R[[t]],

given by forgetting the principal part of a formal Laurent series. Utilizing this map, we observe that
a lattice L ⊂ R((t)) corresponds to the operator

(20) L
πR[[t]]|L
−−−−−→ R[[t]].

This operator has finite-dimensional kernel and cokernel, so (20) allows us to think of lattices as
algebraic Fredholm operators. In the Hilbert space setting, this identification of a lattice with an
operator defines a weak equivalence between Fred(H) and the Segal–Wilson analogue of the Sato
Grassmannian (c.f. [PS86, Chapter 7]).

We now consider the tautological complex of R-modules

γ• //Gr(R((t))),

whose fiber at a lattice is the complex (20). Just as above, this perfect complex corresponds to a
classifying map

Gr(R((t))) // Perf(R)×,

where now Perf(R) is the classifying stack of perfect complexes of R-modules. Composing with the
map Perf(R)× //KR, we obtain an analogue of (19)

Gr(R((t))) //KR.

However, from the perspective of the Atiyah–Jänich theorem, it is a crude analogue of (19): because
the source is a presheaf of sets while the target is a presheaf of spaces, it cannot possibly be an
equivalence.

A richer analogue of (19) exists. The Sato Grassmannian Gr(R((t))) is a torsor for the group
Ind-scheme Aut(R((t))). In particular, we can view an automorphism g ∈ Aut(R((t))) as a Fredholm
operator by the assignment

(21) g 7→ gR[[t]]
πR[[t]]
−−−−→ R[[t]]

6We can see this directly as follows. Denote by Perftop the stack which assigns to a space X its (∞-)category of
topological perfect complexes Perftop(X). Under the Yoneda embedding, a perfect complex E• //X is equivalent to

a map X
E // Perftop(−)×. We obtain the map X

E //K
top

C
by composing X

E // Perftop(−)× with the canonical

map Perftop(−)× //KPerftop(−), followed by the equivalence KPerftop(−) ≃ K
top

C
. The formula in terms of the Euler

characteristic follows from the definitions.
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where gR[[t]] denotes the translate of the lattice R[[t]] under g. The analogue of Aut(R((t))) in the
Hilbert space setting is the “restricted general linear group” GLres(H,H

+) of a polarized Hilbert
space.7 The Segal–Wilson Grassmannian is a homogeneous space for this group, and the analogue of
(21) induces a weak equivalence between the restricted general linear group and the space of Fredholm
operators on H+. This justifies us in viewing Aut(R((t))) as a richer algebraic analogue of the space
of Fredholm operators. Tracing through the discussion above, we obtain a map

(22) Aut(R((t))) //KR,

sending g to χ(gR[[t]]
πR[[t]]
−−−−→ R[[t]]). The same reasoning as above shows that this map cannot be an

equivalence.
However, as we now explain, the infinite loop space ΩKTateel(C) should be understood as an analogue

of Fred(H+). A detailed argument follows from the +-construction.
Recall that the perfect radical of a group G is the largest proper subgroup P ⊂ G such that

[P, P ] = P . Every group has a perfect radical (c.f. [Wei13, Remark 4.1.5]), and the perfect radical is
a normal subgroup.

Definition 3.29. Let X be a connected space. A +-construction on X is a map X //X+ such that
the induced map on integral homology is an isomorphism and such that the kernel of the induced map
π1(X) // π1(X

+) is the perfect radical of π1(X).

A theorem of Quillen (c.f. [Ger73, Theorem 2.1]) shows that a +-construction exists and is unique
up to homotopy equivalence.

Proposition 3.30. Let R be a ring. The canonical map

Ω(BAut(R((t))))+ // ΩKTateel(R)

is an equivalence.

Proof. We show that Ω(BAut(R((t))))+ ≃ ΩKTateel
ℵ0

(R). By Corollary 3.8, this will imply the result

for uncountable Tate objects.
For any ring, the category Tateelℵ0

(R) of countable elementary Tate modules is split exact [BGW16b,
Prop. 5.23]. So, its K-theory as an exact category is equivalent to the K-theory of the symmetric
monoidal groupoid Tateℵ0(R)×.

Following Weibel [Wei13, Theorem 4.4.10], to characterize the K-theory of a symmetric monoidal
category (S,⊗) in terms of the +-construction, it suffices to show that

(1) for any a, b ∈ S, the canonical map Aut(a) // Aut(a⊗ b) is an injection, and
(2) there exists a sequence of objects {si}

∞
i=0 ⊂ S, such that for every b ∈ S, there exists b′ ∈ S

such that b⊗ b′ ∼= ⊗n
i=0si for some n.

Given such a sequence {si}, define Aut(S) := lim
−→n

AutS(⊗
n
i=0si). Then

Ω(BAut(S))+ ∼= ΩKS .

For (S,⊗) = (Tateelℵ0
(R),⊕), the first condition is immediately satisfied. For the second, it suffices to

observe that every countable elementary Tate module is a direct summand of R((t)) (see [BGW16b,
Prop. 5.24]). Taking s0 := R((t)) and si = 0 for i > 0, we obtain a sequence of the desired form and
conclude the result. �

Lemma 3.31. The canonical map BGLres(H,H
+) // (BGLres(H,H

+))+ is a weak equivalence.

Proof. This is an immediate consequence of the definition of the +-construction and the isomorphism
π1(BGLres(H,H

+)) ∼= Z. Recall that this isomorphism arises from the sequence of isomorphisms

π1(BGLres(H,H
+)) ∼= π0(GLres(H,H

+))

∼= π0(Fred(H+)),

7The restricted general linear group consists of bounded invertible operators whose commutator with the projection
onto H+ is Hilbert–Schmidt. For a longer discussion of this group and the Grassmannian, see [PS86, Chapter 6].
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and from the fact that the classical index map A 7→ dim(ker(A))− dim(coker(A)) induces a bijection
between π0(Fred(H+)) and Z (c.f. [Dou98, Theorem 5.35]). �

Along with the canonical equivalence GLres(H,H
+)

≃ //ΩBGLres(H,H
+), this gives the following.

Corollary 3.32. The canonical map GLres(H,H
+) // Ω(BGLres(H,H

+))+ is a weak equivalence.

Combined with the equivalence GLres(H,H
+) and Fred(H+), we see that Ω(BGLres(H,H

+)+)
is another model for Fred(H+), and that ΩKTateel(R) and, by extension, ΩKTateel(C) is its algebraic
analogue.

3.6.2. The Index Map and Perfect Complexes. We now give an alternative account of the index map
for a split exact, idempotent complete category C. Throughout this section we work with countably
generated Tate objects. The category Tate

el

ℵ0
(C) is split exact if C is [BGW16b, Proposition 5.23]. Let

V ∈ Tateelℵ0
(C), and L ∈ Gr(V ) a lattice in V . We choose a splitting π : V // L; as a first step we

define a complex (L′ π|L′

−−−→ L) for every lattice L′ ∈ Gr(V ), analogous to the one of (20).

Definition 3.33. Let C be a idempotent complete, split exact category. We denote by Perf(C) the
dg-category of perfect complexes in C, i.e. the Verdier localization of the pre-triangulated dg-category
Chb(C) at the localizing sub-category of acyclic complexes (cf. [Kel99, Sects. 2, 4]). The inverse of
the equivalence of K-theory spaces,8 induced by the exact functor C // Perf(C) will be denoted by

χ : KPerf(C)

∼=
−→ KC.

Definition 3.34. We denote by Gr(L,L′)(V ) the codirected set of lattices N in V , which are contained

in L and L′. It parametrizes a diagram in the category Chb(C), which sends N to (L′/N
π|L′

−−−→ L/N)

(concentrated in degrees 0 and 1 respectively). By virtue of the functor Chb(C) // Perf(C), we obtain
a Gr(L,L′)(V )-diagram in Perf(C). One sees that all inclusions N →֒ N ′ induce equivalent objects in
Perf(C), since the fiber of the resulting map of cones, is equivalent to

fib(N ′/N
id
−→ N ′/N) ∼= 0.

Since Gr(L,L′)(V ) is cofiltering, the homotopy limit of this system is canonically equivalent to the

complex (L′/N // L/N) for all N ∈ Gr(L,L′)(V ). We define (L′ π|L′

−−−→ L) to be

lim
Gr(L,L′)(V )

(L′/N // L/N) ∈ Perf(C).

After having clarified the notation, we are able to give the following interpretation of the index
map.

Proposition 3.35. Let C be an idempotent complete, split exact category, V ∈ Tate
el

ℵ0
(C) and let

L →֒ V be a lattice. Fix a splitting πL : V // L of the inclusion L →֒ V . The composition

Aut(V ) // ΩKTateel
ℵ0

(C)
Index
−−−→ KC

is equivalent to the map
Aut(V ) //KC,

which sends g to χ(gL
πL−−→ L) (cf. Definition 3.33).

Proof. We claim that we have a homotopy bicartesian square

(gL
π|gL
−−−→ L) //

��

gL/N

��

0 // L/N,

8cf. Gillet–Waldhausen’s theorem [TT90, Thm. 1.11.7].
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in Perf(C), where N ∈ Gr(L,gL)(C;V ) is a lattice contained in both L and gL. To see this, we observe
that (gL→ L)[1] is equivalent to

cone(gL/N // L/N).

The cone of a morphism of cochain complexes is a model for the cofiber. In particular, (gL → L) ∼=
cone(gL/N // L/N)[−1] is a model for the fiber. We obtain the asserted bicartesian square.

By the definition of K-theory, this implies

χ(gL
π|gL
−−−→ L) ≃ [L/N ]− [gL/N ].

The latter agrees with Index(g). �

We can summarize the above discussion as follows. For an elementary Tate object V in an idempo-
tent complete, split exact category C, a lattice L →֒ V gives rise to a canonical homotopy commuting
square (i.e. commuting square in the ∞-category of spaces)

(23) Aut(V ) //

��

Gr(V )

��

ΩKTateel(C)
// KC,

where the top horizontal map sends g to the lattice gL; and the right hand side vertical arrow maps

the lattice L′ to χ(L′ π|L′

−−−→ L). The lower left, upper right and upper left corners are all algebraic
analogues of Fred(H), while each map to KC is an algebraic analogue of the map (19).

By Theorem 3.6, the bottom horizontal map, i.e. the index map, is an equivalence

Index : ΩKTateel
ℵ0

(C)
≃
−→ KC.

We view this as an algebraic analogue of the Atiyah-Jänich equivalence between the space of Fredholm
operators and the classifying space of topological complex K-theory (Theorem 3.28).

4. K-Theory Torsors

Let R be a ring. Denote by Tateelℵ0
(R) := Tateelℵ0

(Pf (R)) the category of elementary Tate R-
modules. In [Sai14], Sho Saito gives a construction of a K-theory torsor. He uses the abstract
delooping equivalence

KTateel(C)
∼ // BKC

from [Sai15], applied to the category C := Tateelℵ0
(R). Concretely, he constructs the classifying map

for the torsor, and then employs a concept of higher-homotopical torsors in the framework of∞-topoi,
as has been developed by [NSS15]. Such torsors generalize classical torsors in that the fiber no longer
needs to be a (strict) group, but can be a group object in the ∞-category of Spaces.

We will look at his construction from a new angle. Instead of the delooping equivalence, we put
our index map from Definition 3.2 centerstage. That is, we work with the classifying map as given
by Corollary 3.4. As in Saito’s setup, via [NSS15], this describes a torsor. A priori there is no reason
why this torsor should have much to do with Saito’s. Moreover, we have a number of tools available
for our torsor, e.g., the combinatorial model of Section 3.5.

In the context of the ring R our approach amounts to considering our index map

KTateel
ℵ0

(R)
Index // BKR

as the classifying map of a KR-torsor over KTateel
ℵ0

(R). We shall explain how classical dimension

and determinantal torsors arise as truncations of this KR-torsor. We hope that this will provide the
beginning of a satisfactory answer to [Dri06, Problem 5.5.3] as well as shed light on the relation between
the various torsors arising in [Kap], [BBE02], and [AK10]. As we shall see below, our treatment via
the index map yields the dual of the torsor classified by Saito’s map, and in a form which can be
directly compared to the classical constructions of dimensional and determinantal torsors.
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Recall that the category of countable Tate R-modules, Tateℵ0(R), is the idempotent completion

of the category of elementary Tate R-modules Tate
el

ℵ0
(R). The assignments R 7→ Tateℵ0(R) and

R 7→ Tateelℵ0
(R) are functorial with respect to flat base change, and we view them as defining presheaves

of categories on the Nisnevich site of rings.
From Drinfeld, we see that the inclusion Tateelℵ0

(R) →֒ Tateℵ0(R) is Nisnevich-locally an equivalence
[Dri06, Theorem 3.4], and further that Tateℵ0(−) is a Nisnevich sheaf [Dri06, Theorem 3.3]. In other

words, Tateℵ0(−) is the Nisnevich sheafification of Tateelℵ0
(−).

The same holds after we pass to K-theory. From Thomason–Trobaugh [TT90, Theorem 10.8] and
the local vanishing ofK−1 [Dri06, Theorem 3.7], we know that the (homotopy) Nisnevich sheafification
of BKR is given by Ω∞ΣKR, where KR is the non-connective K-theory spectrum of R. We remark
that Nisnevich-local vanishing of K−1 is used to similar effect in Osipov–Zhu’s [OZ16, p. 28] and
Saito’s [Sai14]. Denote the (homotopy) Nisnevich sheafification of a presheaf F of infinite loop spaces
by L(F ).9 Drinfeld’s observations imply that the natural map KTateel

ℵ0
(R)

//L(KTateel
ℵ0

(R)) extends to
a map

KTateℵ0
(R)

// L(KTateel
ℵ0

(R)).

Sheafifying the index map, we obtain a natural map

KTateℵ0
(R)

// L(KTateel
ℵ0

(R))
L(Index)

// Ω∞ΣKR .

By Theorem 3.6, this map gives natural isomorphisms on πi for i > 0. By [Dri06, Theorem 3.6], we
also have that it gives an isomorphism on π0. We conclude the following (compare with the role of
the Nisnevich topology in Saito’s work [Sai14]):

Proposition 4.1. The index map extends to an equivalence of Nisnevich sheaves of infinite loop
spaces

(24) KTateℵ0
(−)

Index

≃
// Ω∞ΣK− .

Below, we explain how the 1 and 2-truncations of this map give rise to the dimension and deter-
minantal torsors of [Kap].

We can also consider the category 2-Tateelℵ0
(R) of elementary 2-Tate R-modules, defined by 2-Tateelℵ0

(R) :=

Tateelℵ0
(Tateℵ0(R)) (cf. [BGW16b, Section 7]). In this setting, the index map takes the form

K2-Tateel
ℵ0

(R)
Index //BKTateℵ0

(R).

Post-composing with (24), we obtain a natural map

(25) K2-Tateel
ℵ0

(R)
Index

2
//BΩ∞ΣKR .

We will explain how the 3-truncation of this map gives rise to the 2-gerbe of [AK10].

4.1. The Index Torsor for Elementary Tate Objects. We begin by considering the general case
of an idempotent complete exact category C. In Corollary 3.4 we introduced the map

Index : Tateel(C)× // BKC
∼= |S•(C)

×|,

by replacing Tate
el(C)× by the geometric realization |Gr≤• (C)

×|, and using the natural map of simpli-
cial groupoids

Gr≤• (C)
× // S•(C)

×,

which sends (L0 →֒ · · · →֒ Ln →֒ V ) to (L1/L0 →֒ · · · →֒ Ln/L0). Let

T // Tateel(C)×

9N.b. the ∞-category of sheaves of infinite loop spaces is the ∞-categorical localization of the ∞-category of
presheaves of such at the local equivalences. The L stands for “localization” functor.
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be the KC-torsor classified by this map, and let T |V be the fiber of this torsor at an elementary Tate
object V . We now explain how the index map allows us to give an elementary description of a part
of the space of sections of T |V .

We begin by observing that V determines a commuting square

Gr≤• (V ) //

��

Gr≤• (C)×

��

∗
V // Tateel(C)×.

By Theorem 2.10 (and its corollary, Proposition 3.3), the vertical maps induce equivalences after
realization.

We also note that the contractibility of P rS•(C)
× (Lemma 2.26) implies that the map

P rS•(C)
× // S•(C)

×

becomes equivalent, after realization, to the universal KC-torsor

∗ //BKC.

Therefore, from our construction of the index map, we see that every commuting triangle of the
form

(26) P rS•(C)
×

��

Gr≤• (V ) //

f

44❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

Gr≤• (C)
× Index // S•(C)

×

determines a section of the KC-torsor T |V . Unpacking the definitions, we see that sections of this
form admit a very classical description.

Proposition 4.2. The data of a map f : Gr≤• (V ) // P rS•(C)
×, fitting into a triangle of the form

(26), consists of:

(1) a map f : Gr(V ) // obC, and
(2) for each nested sequence of lattices L0 →֒ · · · →֒ Ln, a sequence f(L0) →֒ · · · →֒ f(Ln) of

admissible monics in C such that the assignment of monics to monics is functorial and such
that

f(L1)/f(L0) →֒ · · · →֒ f(Ln)/f(L0) = Index(L0 →֒ · · · →֒ Ln)

= L1/L0 →֒ · · · →֒ Ln/L0.

From the perspective of K-theory, we see that f encodes a map

Gr(V ) //KC

L 7→ f(L)

along with a coherent collection of homotopies

f(L0) + L1/L0 ≃ f(L1)

for every nested pair of lattices L0 →֒ L1. In particular, the coherence conditions are neatly encoded
in the higher simplices of the S-construction.

We can also observe, as a consequence of Theorem 2.10, that such a map f is determined, up to
homotopy, by its value on a single lattice. Indeed, for any two lattices L and L′, there exists a common
enveloping lattice N . Any such N determines a homotopy

f(L′) ≃ f(L) +N/L−N/L′,

and the machinery of Section 3.5 provides a systematic way of relating the homotopies associated to
different choices of N .
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It is worth noting, that without further work, we cannot extend the above to a description of
the entire space of sections of the KC-torsor T |V . However, for several truncations of this torsor of
classical interest, we can describe the entire space of sections in these terms. In the following sections,
we examine these truncated torsors for C = Pf (R) in more detail. For a related discussion of these
truncations in the abstract setting, see [Pre12].10

4.2. The Dimension Torsor. In this section we relate the 1-truncation of (24) to the dimension
torsor of [Kap] (see also [Dri06]). By descent, it suffices to treat the restriction of (24) to KTateel

ℵ0
(R).

We consider an elementary Tate R-module V ∈ Tateelℵ0
(R). The rank of finitely-generated projective

R-modules defines a natural map

K0(R) // Z
π0(SpecR).

For ease of notation, we assume from now on that SpecR is connected. The general case can be
recovered by Zariski sheafification.

The Tate R-module V gives rise to the Z-torsor, given by the set

T (V ) = {f : Gr(V ) // Z|f(L1) = f(L0) + rk(L1/L0), ∀ (L0 ≤ L1) ∈ Gr≤1 (V )}.

Such f are called dimension theories in [Kap]. We see that T (V ) is a Z-torsor as follows. First, the
action of k ∈ Z on T (V ) is defined pointwise, by f 7→ f +k. Second, one uses that any two lattices L0

and L1 admit a common upper bound to show that a function f ∈ T (V ) is determined by its value
at a single lattice f(L).

Since Gr(−) : Tateelℵ0
(R)× // Set is a functor, we see that the construction T (V ) is functorial as

well:

T (−) : Tateelℵ0
(R)× // BZ.

Here BZ denotes the groupoid of Z-torsors.
For every elementary Tate object V we have a map BAut(V ) // Tateel(C)×. We conclude therefore

the existence of a Z-torsor on BAut(V ), classified by the map

BAut(V ) //BZ.

Proposition 4.3. The map Tateelℵ0
(R)× // BZ, obtained as the composition of the Index map

Tateelℵ0
(R)×

Index
−−−→ BKR with the map BKR

B(rk)
−−−→ BZ (induced by the rank of finitely generated

projective modules), is equivalent to the map T (−) classifiying the dimensional torsor.

Proof. The map B(rk) : BKR
// BZ is equivalent to the geometric realization of the map

S•(C)
× //B•Z,

which sends (0 →֒ X1 →֒ · · · →֒ Xk) to (rk(X1), rk(X2/X1), . . . , rk(Xk/Xk−1)). Consequently, B(rk)◦
Index is equivalent to the geometric realization of

Gr≤• (Pf (R))× //B•Z,

which sends (V ;L0 →֒ · · · →֒ Lk) to (rk(L1/L0), . . . , rk(Lk/Lk−1)). This map induces an augmenta-

tion of Gr≤• (Pf (R))× by BZ, hence a Z-torsor on the simplicial space Gr≤• (Pf (R))×.

Since B0Z = {⋆} is a singleton, the Z-torsor above trivializes when pulled back to Gr≤0 (Pf (R))×.
Hence, every choice of a lattice L ⊂ V induces a trivialization. Given a nested pair of lattices L ≤ L′,
the two corresponding trivializations differ precisely by rk(L′/L). We therefore obtain for the space

of sections of the torsor B(rk) ◦ Index over a connected component BAut(V ) ⊂ Tateelℵ0
(R)× the set

of functions f : Gr(Pf (R), V ) // Z, satisfying f(L′) = f(L) + rk(L′/L) for all nested pairs L ≤ L′ of
lattices in V . This is precisely the definition of the torsor T (V ). �

10Note that we replace Previdi’s condition that C satisfies “AIC +AICop” with the condition that C is idempotent
complete. Mutatis mutandis, Previdi’s discussion of dimension and determinant torsors now applies to the 1 and
2-truncations of the KC-torsor considered here.
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4.3. The Determinant Torsor. We now investigate the 2-truncation of (24) and relate it to the
graded determinant torsor of [Kap] (see also [BBE02] and [Dri06]).

Denote by PicZR the symmetric monoidal groupoid of graded lines PicZR. A graded line is a pair
(L, n), where L is an invertible R-module, and n : SpecR // Z a Zariski-locally constant function.
The usual symmetry constraint of tensoring R-modules

φL,M : L⊗M ≃M ⊗ L

will be modified by a sign:

(L, n)⊗ (M,m) ≃ (L ⊗M,n+m)
(−1)mnφL,M
−−−−−−−−→ (M ⊗ L,m+ n) ≃ (M,m)⊗ (L, n).

For M ∈ Pf (R), the assignment M 7→ (ΛtopM, rk(M)) extends to a map of infinite loop spaces11

(27) detZ : KR
// PicZR .

We have a natural morphism

|Tateelℵ0
(R)×| //KTateel

ℵ0
(R)

Index
−−−→ BKR.

By composition with the graded determinant of equation (27), we obtain a morphism

B(detZ) ◦ Index : |Tateelℵ0
(R)×| // B PicZR .

The target is a sheaf of groupoids, so this extends to a morphism

(28) B(detZ) ◦ Index : |Tateℵ0(R)×| // B PicZR .

In particular, we see that Tateℵ0(R)× is endowed with a canonical PicZR-torsor.

Definition 4.4. Define the determinant torsor DR
//Tateℵ0(R)× to be the PicZR-torsor classified by

the map of (28).

Proposition 4.5. Let R be a ring, and let V be an elementary Tate R-module. The space of sections
Γ(Spec(R),DR|{V }) of the restriction of the determinant torsor to {V } ∈ Tateℵ0(R)× is equivalent to

the space of maps ∆: Gr(V ) // PicZR equipped with a coherent collection of equivalences

(29) ∆(L′) ≃ ∆(L)⊗ detZ(L′/L)

for every nested pair of lattices L →֒ L′. The coherence condition amounts to the commutativity of
the diagram

(30) ∆(L′′) //

��

∆(L′)⊗ detZ(L′′/L′)

��

∆(L)⊗ detZ(L′′/L) // ∆(L)⊗ detZ(L′/L)⊗ detZ(L′′/L′),

for all (L ≤ L′ ≤ L′′) ∈ Gr2(V ). In particular, DR|{V } is equivalent to the determinant torsor of V
as described in [Dri06, Section 5.2].

Proof. The proof is analogous to Proposition 4.3, we will therefore only sketch the general argument.
The composition B(detZ) ◦ Index is equivalent to the geometric realization of the map

Gr≤• (Pf (R))× //B•(Pic
Z

R),

sending L0 →֒ · · ·Ln →֒ V to (detZ(L1/L0), . . . , det
Z(Ln/Ln−1)). Using the canonical augmentation

of B•(Pic
Z

R), we obtain an augmentation of Gr≤• (Pf (R))× // B PicZR, hence a PicZR-torsor on the

simplicial space Gr≤• (Pf (R))×. Since Gr≤0 (Pf (R))× factors through B0(Pic
Z

R) = {⋆}, the correspond-

ing PicZR-torsor is trivialized on the cover Gr≤0 (Pf (R))× // Tateelℵ0
(R)×. To determine the space of

sections, it suffices to describe the descent conditions for the space of sections of the trivial torsor on
Gr≤0 (Pf (R))×. By inspection, we see that the trivializations corresponding to a nested pair of lattices

11The sign in front of φL,M ensures that this map is an infinite loop map.
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L →֒ L′ →֒ V differ by detZ(L′/L), as claimed in (29). The coherence condition (30) follows as well,
but we need to show that no further condition has to be imposed. To see this we observe the following:
since the space of sections is a groupoid, it is determined by restricting the simplicial object to the
2-skeleton. Hence, no further coherence conditions appear. �

Remark 4.6. In the previous section, we observed that the rank of finitely generated projective modules
defines a map BAut(V ) // BZ for any countable Tate module V . Applying Ω(−), we obtain a
group homomorphism ν : Aut(V ) // Z. Similarly, for each countable Tate R-module V , the map
BAut(V ) // B PicZR induces a monoidal map Aut(V ) // PicZR . These maps are in correspondence
with graded central extensions of Aut(V ). In particular, we see that the map ν extends to a graded
central extension of Aut(V ).

4.4. The Determinant 2-Gerbe. Let V be an elementary 2-Tate module. We now explain how one
can recover Arkhipov–Kremnitzer’s 2-gerbe of gerbal theories (cf. [AK10]) as a truncation of (25).

Let R be a ring, and let V be an elementary 2-Tate module. The map

BAut(V ) // 2-Tateel(R)×
Index

2
// BΩ∞ΣKR

B2 detZ //B2 PicZR

classifies a 2-gerbe on BAut(V ). By construction, this map arises as the geometric realization of the
simplicial map

Gr≤• (V )× // S• Tate(R)× //B•B PicZR,

where the second map sends (L0 →֒ · · · →֒ Ln →֒ V ) to (DR|L1/L0
, . . . ,DR|Ln/Ln−1

). The space

of sections of this 2-gerbe is equivalent to the space of maps ∆: Gr(V ) // B PicZR equipped with a
coherent collection of equivalences

∆(L′) ≃ ∆(L)⊗DR|L′/L

for a nested pair of lattices L →֒ L′. In particular, when R is a field, GR |{V } is equivalent to the
graded determinant 2-gerbe of the 2-Tate vector space V introduced by Arkhipov and Kremnitzer
[AK10, Thm. 5] (see also [Dri06, Section 5.2]). We refrain from spelling out the precise coherence
conditions, and refer the reader to loc. cit. for more details.

Arkhipov and Kremnitzer used the determinant 2-gerbe of a 2-Tate vector space to construct a
higher central extension of Aut(V ). As remarked in loc. cit., because their formalism only allowed
them to consider 2-Tate vector spaces, they were forced to view Aut(V ) as a discrete group. The
above construction allows us to define the central extension of the group scheme Aut(V ). Namely,
the extension is the algebraic 2-group given by the central term in the fiber sequence (in the category
of stacks over Spec(R)).

PicZR // ΩGR |BAut(V )
// Aut(V ).

We denote this algebraic 2-group below by Âut(V ). This generalizes the constructions of [OZ16, Sect.
5.2] to automorphism groups of arbitrary elementary 2-Tate objects.

4.5. The Determinant Gerbe on the Grassmannian of a 2-Tate Module. In [FZ12], Frenkel
and Zhu describe a conjectural determinant gerbe on the Sato Grassmannian of a 2-Tate R-module
in connection with a geometric representation theory of double loop groups. We give a rigorous
construction of this gerbe in this section, and use it to construct a basic categorical representation of

the aforementioned algebraic 2-group Âut(V ).
Let V be an elementary 2-Tate module. In Section 3.6.1, we saw how a choice of lattice L ∈ Gr(V )

gives rise to the square (23)

Aut(V ) //

��

Gr(V )

��

ΩK2-Tateel(R)
// KTate(R)
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Combining this with the index map (24) and the determinant, we obtain a map

(31) Gr(V ) //KTate(R)
// B PicZR .

The construction guarantees that, up to equivalence, this map is independent of the choice of lattice
L.

Definition 4.7. Let V be an elementary 2-Tate R-module. The determinant gerbe on the Sato
Grassmannian Gr(V ) is the PicZR-torsor GV

//Gr(V ) classified by the map (31).

Remark 4.8. In the present approach, the construction of the determinant gerbe follows from the
results of [BGW16b] on 2-Tate modules and from the construction of the index map.

We can give a more explicit description of the determinant gerbe. Fix a lattice L ∈ Gr(V ). From
the construction, we see that the fiber of the determinant gerbe at a lattice L′ is canonically equivalent
to

GV |{L′} ≃ D
∨
R|{L/N} ⊗PicZR

DR|{L′/N}

where N is any common sub-lattice of L and L′, DR is the determinant torsor on Tate(R)×, D∨
R is its

dual, and the tensor product of PicZR-torsors is as described in [Bei09, Section 2.2]. Equivalently,

GV |{L′} ≃ HomPicZR
(DR|{L/N},DR|{L′/N}).

Given a Tate R-module M , Drinfeld [Dri06, Section 5.4], following Beilinson–Bloch–Esnault [BBE02],
describes the determinant torsor DR|{M} in terms of invertible modules for a Clifford algebra ClM . In
more detail, the duality pairing gives a symmetric bilinear form on the Tate module M ⊕M∨. Denote
by ClM the Z-graded Clifford algebra associated to this form, with the grading given by placing M
in degree 1, and M∨ in degree −1. We similarly consider graded modules for ClM .

Definition 4.9. Let M be a Tate R-module, and let ClM be the graded Clifford algebra described
above. A graded Clifford module F is a Z/2-graded R-module, with a graded action of ClM , which is
continuous with the respect to the discrete topology on F . We say that F is a graded Fermion module
if the functor (−) ⊗R F , from Z/2-graded R-modules to graded ClM -modules, is an equivalence of
categories.

Denote by FermZ(M) the groupoid of graded Fermion modules for ClM . The groupoid FermZ(M)
carries a natural action of PicZR given by tensoring a graded Fermion module with a graded line.

Proposition 4.10. (Drinfeld [Dri06, Section 5.4] following Beilinson–Bloch–Esnault [BBE02]) Let
M be a Tate R-module. The groupoid FermZ(M) is a PicZR-torsor. For a graded Fermion module
F , and a lattice L ⊂ M , denote the annihilator of L ⊕ L∨ ⊂ M ⊕ M∨ in F by ∆F (L). Then
∆F (L) ⊂ F is a graded line, with the grading inherited from that of F . The assignment L 7→ ∆F (L) ∈
PicZR defines a graded determinantal theory, and the assignment F 7→ ∆F induces an equivalence

FermZ(M)
≃ //DR|{M} of PicZR-torsors.

Now let V be a 2-Tate R-module, and L ⊂ V a lattice, as above. The proposition allows us to
reformulate the fiber of the determinant gerbe GV at a lattice L′ as

GV |{L′} ≃ HomPicZR
(FermZ

L/N ,FermZ
L′/N ),

where N is any common sub-lattice of L and L′. From the perspective of categories of modules,
FermZ

M is the groupoid of indecomposables in the category ModssClM of semi-simple ClM -modules. A

homomorphism of PicZR-torsors is necessarily an equivalence, so a homomorphism FermZ
L/N

//FermZ
L′/N

corresponds to an equivalence of R-linear categories

ModssClL/N

≃ // ModssClL′/N
.

According to Morita theory, the groupoid of such equivalences is equivalent to the category of invertible
ClL/N −ClL′/N -bimodules.
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Let V be a 2-Tate R-module, and let GV // Gr(V ) be the determinant gerbe on Gr(V ). Fix a
lattice L ⊂ V , the fiber GV |{L′} at any lattice L′ ⊂ V is equivalent to the PicZR-torsor of invertible
ClL/N −ClL′/N -bimodules, where N is any common sub-lattice of L and L′.

As described in Section 4.4, the homomorphism Aut(V ) //B PicZR gives rise to a central extension

Âut(V ) of the group scheme Aut(V ) by the stack PicZR. The constructions guarantee that Âut(V )
acts on the determinant gerbe GV and that this action lifts the action of Aut(V ) on Gr(V ).

Denote by P Z

f (R) the category of finitely generated Z-graded projective R-modules. The category

P Z

f (R) carries a natural action of PicZR and the homotopy quotient

P Z

f (R)//PicZR
// B PicZR

defines a bundle of exact categories. The pullback of this bundle along the map Gr(V ) // B PicZR
defines a bundle of exact categories PV

//Gr(V ). As with GV , the construction ensures that ÂutV
acts on PV and that this action lifts the action of Aut(V ) on Gr(V ). In particular, we obtain an

R-linear representation of Âut(V ) on the category of global sections of PV
//Gr(V ).

Definition 4.11. Let V , Âut(V ) and PV be as above. The basic representation of Âut(V ) is given

by the action Âut(V ) 	 Γ(Gr(V ),PV ).

This picture suggests a more concrete description of the fibers of PV
//Gr(V ). Let V be a 2-Tate

R-module, and let PV
//Gr(V ) be the bundle of exact categories associated to GV as above. Given

a lattice L ⊂ V , it seems plausible that the fiber of PV |{L′} at any lattice L′ ⊂ V is equivalent to the
category of semi-simple ClL/N −ClL′/N -bimodules.

Frenkel and Zhu [FZ12] have previously constructed a basic representation of the C-points of

Âut(V ), when V is the 2-Tate space C((s))((t)) over C (they denote the C-points of Âut(V ) by

GL(V )). In their formulation, the basic representation consists of an action of Âut(V ) on a category
of semi-simple modules for a Clifford algebra associated to a lattice of V . We expect the following: let
V be an elementary 2-Tate space over C. The category of C-points of the representation Γ(Gr(V ),PV )

of the algebraic 2-group Âut(V ) is equivalent to the basic representation of the C-points of Âut(V )
constructed in [FZ12].
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Jan Šťov́ıček and Jan Trlifaj. MR 3510209
[Büh10] Theo Bühler, Exact categories, Expo. Math. 28 (2010), no. 1, 1–69. MR 2606234 (2011e:18020)
[CPT15] T. Chinburg, G. Pappas, and M. J. Taylor, Higher adeles and non-abelian Riemann-Roch, Adv. Math. 281

(2015), 928–1024. MR 3366858



42 OLIVER BRAUNLING, MICHAEL GROECHENIG, JESSE WOLFSON

[Dou98] Ronald G. Douglas, Banach algebra techniques in operator theory, second ed., Graduate Texts in Mathe-
matics, vol. 179, Springer-Verlag, New York, 1998. MR 1634900 (99c:47001)

[Dri06] Vladimir Drinfeld, Infinite-dimensional vector bundles in algebraic geometry: an introduction, The unity
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