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This dissertation contributes to the field of mechanism design and, in particular,

to the study of robust mechanisms, which concerns the construction of allocation

mechanisms that perform well across a wide range of environments. It consists of

two parts. The first part— Chapters 1 and 2—studies zero-sum games between a

profit-maximizing mechanism designer and an information designer with the oppo-

site goal in public good provision setups. They consider distinct yet related setups,

yielding distinct economic implications. The second part—Chapter 3—concerns the

construction of a double clock auction that implements various designer objectives

other than exact efficiency in an exchange environment

Chapter 1 studies an informational remedy to a well-known example of market

failure: a public good sold by a profit-seeking enterprise. A monopolist sells a pub-

lic good to a group of buyers who privately observe a signal about their valuation.

The public good is sold through an optimal mechanism subject to the ex-post incen-
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tive constraints. This paper studies an information design problem, characterizing

the regulator’s solution, a signal distribution that maximizes the buyers’ expected

payoffs in an optimal mechanism. It limits the impact of free-riding while impos-

ing indifference on the monopolist so that the public good is always sold with any

number of agents. Such desirable properties are achieved through a carefully chosen

negative correlation between signals and a lower bound on the total value of trade.

Moreover, the monopolist earns a finite expected profit even with infinitely many

buyers, thereby completely losing his market power.

Chapter 2 devises a robustly optimal mechanism for public good sales. A monop-

olist seller has a public good to sell to a group of buyers. He has limited knowledge of

the buyers’ private information: Only the maximal, minimal, and expected valuation

of each buyer is known to the seller. We characterize a strong maximin mechanism of

public good provision. The maximin mechanism qualitatively depends on the number

of agents and the common expected valuation. Buyers report the quantity demanded

to the monopolist. If the expected valuation is high relative to the number of buyers,

then the veto mechanism, which supplies the public good by the maximal demand,

is optimal. In other words, each buyer cannot enjoy more than their own demand

report. Buyers are charged an exponential price in their quantity demand. Other-

wise, the capped proportional mechanism is optimal. It supplies the public good by

the sum of demand reports and each buyer can demand at most some portion of the

public good.

Chapter 31 constructs a clock implementation of optimal mechanisms for ex-

change economies, which are a marketplace where traders enter an initial position

1Co-authored with Pavel Andreyanov (HSE) and Tomasz Sadzik (UCLA)
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for some asset and may end up being a buyer or a seller after the trade. In our clock

implementation, the auctioneer runs two clocks simultaneously to each side of the

market and traders make a quantity report to each clock separately. Moreover, the

auctioneer charges personalized prices, which are a sum of the common clock state

and individual taxation, to implement mechanisms whose objective is other than

exact efficiencies, such as profit maximization.
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CHAPTER 1

Informational Regulation of Public Good

Monopolists

1.1 Introduction

Profit-oriented enterprises often supply a good that is non-excludable and non-

rivalrous—a public good—to a group of consumers. A security service provides safety

to all residents in a community. In some other cases, these enterprises make a collec-

tive decision, which resembles a public good, for a group of individuals. Survival of

a financially troubled firm is also “a public good” to its creditors because, in spite of

the fact that they privately have to bear the cost of lessening the debt, the benefit

from survival is enjoyed by all creditors. Pollution claim settlement is another exam-

ple, where a pollution emitting company tries to compensate local residents so that

it can continue operation. In this case, pollution is a “public bad” to the residents.

There are many other examples.

Efficiency in private provision of a public good is hampered by two well-known

forces. First, profit-oriented companies wield market power to raise profit, while

withholding the supply. Second, agents—buyers of a public good—have incentives

to free-ride on contributions of others. Though previous studies, such as Güth and
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Hellwig (1986) and Rob (1989) showed that the impact of the two forces is substan-

tial, they considered a relatively specific setup, the independent private value model.

Crémer and McLean (1988) stands on the other extreme, showing that it is possible

to achieve efficient outcomes if private information is correlated. Then we have a

question: How does the nature of private information determine the impact of mar-

ket power and free-riding? Alternatively, we may study the same question from the

policymaker’s viewpoint. They could consider an indirect regulation that carefully

designs private information of the buyers to tame the two forces to promote efficiency.

This gives an alternative to policymakers, instead of direct regulations traditionally

used, where governments take over private companies to operate them as a public

enterprise, or place restrictions on their operation.1

To answer the above questions, this paper considers an information design prob-

lem, where we consider judicious information provision to the buyers of the public

good, characterizing the regulator’s solution. It is a signal distribution that maximizes

the agents’ welfare in an expected-profit maximizing mechanism of public good pro-

vision. It eliminates any efficiency loss due to under-provision of the public good via

an optimal mechanism that always sells the public good at any signal profile realized

on the regulator’s solution, under the assumption that the public good is costless

and the agents are not harmed by the public good. In addition, it limits the impact

of free-riding by ensuring that the total value of sale is bounded below. We also con-

struct the posted-price distribution, which is a signal distribution that maximizes the

agents’ welfare if the monopolistic seller is restricted to use simple mechanisms that

1To limit the impact of free-riding, countries across borders specify conditions where property
rights of each agent could be overridden for a public project. (see Tirole (1988) for textbook treat-
ment and Armstrong and Sappington (2007) for a recent survey)
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post a fixed price to each buyer. The posted-price distribution has similar properties

as the regulator’s solution, but it ensures that each agent’s signal is bounded below.

We study the welfare properties with many agents, showing that each agent pays

a vanishing amount and the monopolist earns a finite expected profit both in the

regulator’s solution and the posted-price distribution. In this sense, the monopolist

loses his market power with many agents.

We obtain a couple of additional results. First, we characterize the set of surplus

division among the monopolist seller and the buyers, which could be realized by

some signal distribution. Notably, the regulator could implement any division of

surplus among the seller and the buyers without causing under-production of the

public good. Second, we construct the maximin public good sales mechanism, where

the monopolist seller maximizes the worst-case expected profit subject to a limited

knowledge on the true information structure.2 The maximin mechanism is a scoring

mechanism with two agents, which supplies the public good by the total score. On

the other hand, with more than three agents, the maximin mechanism is no longer

a scoring mechanism.

We consider the standard public good provision problem with private information,

preceded by the regulator’s information design problem. The regulator maximizes the

agents’ welfare by choosing a signal distribution, subject to the constraint that the

signals are supported between 0 and 1, and are in expectation some µ ∈ (0, 1).

Specifically, the sequential game between the regulator and the monopolist unfolds

as follows. First, the regulator chooses a signal distribution, which lets the agents—

buyers of the public good—to privately observe their expected valuation of the public

2We solve the maximin mechanism design problem as an intermediate step to solve the regulator’s
problem.
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good. Next, the monopolist observes the regulator’s choice and chooses an optimal

mechanism. Then the agents play a dominant strategy equilibrium in the mechanism.

We assume that the public good is costless so that it is always efficient to be supplied.

This assumption allows us to focus on the interplay between the buyers’ private

information and the monopolist’s profit-maximizing behavior.

We solve the regulator’s problem by noticing the equivalence between the regula-

tor’s solution and the minimax solution, which is a signal distribution that minimizes

the expected profit of an optimal mechanism, if there is an optimal mechanism that

sells with probability 1 in the minimax solution. If the total welfare is fixed at the

ex-ante efficient level, then maximizing the agents’ payoff is equivalent to minimiz-

ing the monopolist’s profit. We consider a zero-sum game between the monopolist

and the ‘profit-minimizer’, whose objective is to minimize the expected profit of the

monopolist. We then solve the minimax problem jointly with the maximin problem,

where the monopolist maximizes the worst-case expected profit of a mechanism, sub-

ject to the same ex-post incentive constraints. We use the property that the minimax

and maximin solution then constitutes a saddle point in the zero-sum game between

the monopolist and the profit-minimizer to solve the minimax problem.

We identify a characterization for the minimax and maximin solutions, respec-

tively, using the intuition that players make each other indifferent across equilibrium

strategies in zero-sum games. First, the minimax solution is characterized by the

monopolist’s indifference, which is imposed by the zero-sum virtual values on the

signal support, which puts a lower bound on the sum of signals. The monopolist is

indifferent across any mechanism that does not sell the public good if the sum of

reported signal is less than the lower bound, and sells the public good if all agents

report the highest signal 1. Second, the maximin solution is characterized by the
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profit-minimizer’s indifference, which is imposed by a mechanism whose total trans-

fer is equal to the supporting hyperplane when the total transfer is positive. Here,

the supporting hyperplane is characterized by two parameters, the slope3 and in-

tercept, whose ratio determines a lower bound on the total signals where a positive

amount of the public good is provided. Since the profit-minimizer cannot change the

expectation of each signal, she is indifferent across any signal distribution that is

supported on signal profiles whose sum is bounded below.

Next, we characterize a saddle point of the minimax and maximin problems.

We show that both minimax and maximin indifference conditions have a unique,

well-defined solution, given the same set of parameters which define the supporting

hyperplane in the maximin indifference and the lower bound on the sum of signals

in the minimax indifference. We then pin down the parameters from the mutual

best-response requirement in the zero-sum game. The maximin allocation rule must

sell the full amount at the highest signal profile and the minimax signal distribution

must satisfy the expectation constraints. Thus, the maximin and minimax solutions

are mutual best-response to each other.

Then, we show that the minimax solution solves the regulator’s problem since

the minimax indifference condition implies that there is an optimal mechanism that

always sells the public good in the minimax distribution. We then study how the reg-

ulator’s solution achieves this indifference property. There are two channels: First,

it puts a negative correlation between the signal of a single buyer and the sum of

other buyers’ signal. When one agent observes a high signal, the monopolist becomes

pessimistic about signals of other agents, thereby weakening his incentive to discrim-

3Since the agents are symmetric, the hyperplane has the same slope in each signal.
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inate across signal profiles. The optimality of negative correlation contrasts the usual

exhibition of positive correlation in the context of correlated valuations, which arises

often when studying allocation problems of common-valued assets. However, a posi-

tive correlation induces the monopolist to withhold the supply at lower signal profiles

because he would be more pessimistic regarding a valuation of an agent if he knows

that other agents have received lower signals. The regulator’s solution thus illustrates

that the buyers should learn about the value in a way that would induce different

opinions among them. Second, it ensures that the total signal is bounded below at

some threshold, which limits the impact of free-riding among the agents. Under the

regulator’s solution, there are always some agents who observe a high signal. Since

both the monopolist and the regulator are concerned with the total value of trade,

the regulator puts a lower bound on the sum of signals in her optimal solution so

that any trade whose value is above the threshold is realized.

Though the regulator’s solution induces the monopolist to always sell the public

good, the optimal always-sell mechanism has an unappealing feature: It promises to

sell the public good at the cheapest price when it is most highly valued since agents

pay their pivot value, which decreases in signals of others. This feature makes the

always-sell mechanism vulnerable to collusion among the agents and an imperfect

commitment of the monopolist. However, the two issues are resolved if the monop-

olist posts a fixed price to each agent, so that the total transfer does not decrease.

In addition, the monopolist could indirectly implement such a mechanism, without

knowing the actual valuation of each buyer. We solve the regulator’s problem when

the monopolist is limited to choose such mechanisms, yielding the posted-price distri-

bution, which is characterized by indifference among posted prices. The monopolist

optimally posts the lowest price in the posted-price distribution. In addition, the
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lowest posted price is an optimal mechanism for the monopolist without the restric-

tion to posted-price mechanisms. However, the posted-price distribution achieves its

properties through distinct channels: First, in the posted-price distribution, indi-

vidual signals are bounded below, while in the regulator’s solution, the total signal

is bounded below. Second, a signal is positively correlated with the sum of others’

signals.

The regulator’s solution limits the monopolist’s market power in the large econ-

omy limit. The optimal always-sell mechanism may generate an infinite profit because

the size of the ex-ante surplus is infinite with infinitely many agents. However, both

under the regulator’s solution and the posted-price distribution, the monopolist’s

market power is quickly dissipated when more consumers are introduced into the

market due to the negative correlation. Under the posted-price distribution, the mo-

nopolist optimally charges the lowest price s
¯
to each agent, yielding the profit of Ns

¯
.

Alternatively, it is also optimal to charge 1 to each agent, earning the same expected

profit Ns
¯
, where s

¯
is the probability of the highest signal profile (1, · · · , 1) in the

posted-price distribution. It is easier to have at least one agent observe a signal less

than 1 when there are more agents. That is, the monopolist’s share from the whole

ex-ante surplus converges to zero, and the amount each buyer pays converges to zero

as the number of agents grows to infinity. Since the posted-price distribution is not an

optimal solution of the regulator’s problem, we immediately see that the regulator’s

problem has the same large market properties.

Lastly, while the regulator’s problem is the main focus of this paper, as an in-

termediate step toward solving the problem, we analyzed a zero-sum game between

the monopolist and the profit-minimizing information designer. We call the resulting

mechanism from the game as the maximin mechanism, a sales mechanism that solves
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the maximin problem where the monopolist maximizes its worst-cast expected profit

through a sales mechanism. The maximin mechanism is valuable in other contexts as

well, especially when the monopolist does not know the exact learning process of the

buyers. It guarantees the monopolist to earn the worst-case expected profit, regard-

less of the actual information structure as long as the monopolist’s partial knowledge

of the information structure is correct. The maximin mechanism coincides with scor-

ing mechanisms if there are two agents but if there are three or more, it qualitatively

differs from the scoring mechanisms.

1.1.1 Literature Review

It is well known that inefficient outcomes are prevalent in the public good provision

problems where the agents’ private information is independently distributed as shown

in Güth and Hellwig (1986), Rob (1989) and Mailath and Postlewaite (1990). In any

mechanism, agents compare the probability of losing the public good against the

gains from under-stating their value. When more agents are introduced into the

game, it is less likely for each agent to be pivotal, and it becomes more difficult to

induce truth-telling. Detragiache and Garella (1996) and Chillemi and Gui (1997)

apply such insights to model debt restructuring of a financially troubled firm and

human capital in teams. Since then, economists have sought for alternative setups

where an efficient equilibrium exists as a reaction to the strong inefficiency result on

the public good problems under the standard framework. We can broadly classify

such responses into the following three categories.

First, property rights of individual agents can be compromised. Neeman (1999)

and Schmitz (2002) show that efficiency can be achieved by “intermediate” prop-
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erty rights, giving the rights to the mechanism designer to build some amount of a

public good or bad without the consent from the agents. In a similar line, Fryxell

(2019) considers the “no-extortion constraint,” which allows the designer to impose

a negative payoff to each agent, yielding efficient outcomes in equilibrium.

Second, private information can be weakened. Pesendorfer (1998) studies the im-

plications of a positively correlated signal distribution under limited liability con-

straint.4 With many agents, the mechanism designer infers individual signals from

the reports, which decreases the information rent of each agent. Li and Zhang (2021)

considers a mechanism designer who is partially informed about the agents’ private

information, where the designer uses the information to limit the information rent

of the agents.

Third, a law-of-large-number argument can be applied so that efficient outcomes

arise asymptotically in equilibrium. Xi and Xie (2021) studies a mechanism that

provides the public good if the reported total value exceeds the ex-ante surplus plus

a wedge in the canonical IPV framework. Kocherlakota and Song (2019) considers

ambiguity-averse agents, which could make the agents believe that they are a pivot

agent, with sufficiently many agents. Bierbrauer and Winkelmann (2020) argues that

bundling multiple public goods resolves inefficiency.

This paper provides an efficiency result from a different perspective from the three

categories discussed above. Compared to the previous results, under the regulator’s

solution, there is no violation of the property rights of the agents since the monopolist

is subject to a dominant strategy equilibrium. Interestingly, though correlation in

the regulator’s solution allows the monopolist to infer an individual signal, it only

4He excludes the use of Crémer and McLean (1988) style side-bet mechanism.
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strengthens the bargaining position of the agents. That is, the regulator’s solution

weakens his incentive to withhold the supply of public good to raise the expected

profit, which is an opposite implication from Pesendorfer (1998) that considers a

positively correlated signal distribution. Finally, the efficiency result from this paper

holds with any number of agents.

This paper is related to the information design literature. The influential work

of Roesler and Szentes (2017) studies the buyer-optimal information in monopolist

markets with one agent. Condorelli et al. (2020), and Armstrong and Zhou (2020)

extends the basic model towards oligopoly markets. On the other hand, this paper

extends Roesler and Szentes (2017) to a different direction: Here, we model a mo-

nopolist who supplies public good for many agents. Gentzkow and Kamenica (2016),

Kolotilin (2018) and Dworczak and Martini (2019) consider the information design

problem where the sender’s preferences depend only on the expectation of the state

of nature. All of the three papers, without loss of generality, consider a reduced-form

information structure, which is the distribution of the expected state.

Finally, this paper is related to the literature on robust mechanism design prob-

lems. Robust mechanism design problems look for an optimal or efficient mechanism

when the mechanism designer has limited knowledge of the true information struc-

ture. Carrasco et al. (2018) studies the maximin problem with one agent if the mech-

anism designer only knows up to the N -th moment of the state distribution. Brooks

and Du (2019) shows that the “proportional auction” is a maximin mechanism in

the common value auction problem when the agents play a Bayesian equilibrium.

Che (2019), Suzdaltsev (2020) and Zhang (2021) are closely related to the maximin

problem in this paper. They study the maximin problems in the auction context and

in the bilateral trade context when the agents observe their valuation and are subject

10



to the ex-post constraints.

Roadmap: In section 2, we introduce the model of the public good provision prob-

lem. In section 3, we discuss a simple example to illustrate the main results. In section

4, we characterize the regulator’s solution via its conditional equivalence with the

minimax solution. In section 5, we present the regulator’s solution and discuss its

economic properties. In section 6, we present the posted-price distribution and dis-

cuss its properties. In section 7, we present the maximin mechanism for the cases

with two and three agents.

1.2 Model

In this section, we set up a model of public good provision with private information

and specify who the players are as well as what actions they take around the provision

problem.

1.2.1 Primitives

There are N agents, the potential buyers of the public good, indexed by i = 1, · · · , N .

Denote each agent i’s valuation of the public good as si ∈ [0, 1]. The signal profile

s = (s1, · · · , sN) is drawn from a commonly known joint probability distribution

G on the signal space [0, 1]N . In addition, we assume that the expectation of si is

equal to µ for each agent i. Agent i’s preferences are represented by the standard

quasi-linear utility function of siq − ti, where q ∈ [0, 1] is the amount of the public

good supplied to the agents, and ti is the amount of money transfer paid by agent i

to the monopolistic public good provider.
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Then we have a monopolistic seller who produces the public good at a zero

marginal cost. He chooses a sales mechanism (q, t) that receives messages from the

agents and maps them to allocation and payments accordingly. The monopolist’s

preferences are represented by
∑N

i=1 ti.

Lastly, we have a regulator who cannot directly control the monopolist and the

agents but can choose an information structure to influence the outcomes or the other

players’ choices. The information structure π that she chooses determines learning

process of the agents. The regulator’s preferences are represented by
∑N

i=1(qsi − ti),

which is tantamount of the sum of the agents’ surplus.

1.2.2 Mechanism

Due to the revelation principle, it is without loss to consider direct mechanisms. A

direct mechanism (M, q, t) consists of a message space Mi = Si = [0, 1], an allocation

rule q : M → [0, 1] and a transfer rule t : M → R
N . We assume that the agents

play a dominant strategy equilibrium in the public good provision game defined by

a mechanism and an information structure.

Definition 1.2.1. A direct mechanism (q, t) is dominant strategy incentive compat-

ible (DSIC) if for each i ∈ N , (si, s−i) ∈ M and (s′i, s−i) ∈ M ,

siq(si, s−i)− ti(si, s−i) ≥ siq(s
′
i, s−i)− ti(s

′
i, s−i).

A mechanism (q, t) is ex-post individually rational (EPIR) if for each i ∈ N and

s ∈ M

siq(si, s−i)− ti(si, s−i) ≥ 0.
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We state the characterization of DSIC mechanisms for completeness.

Proposition 1.2.1. A mechanism (M, q, t) is DSIC if and only if q is weakly in-

creasing in each si and the revenue equivalence formula holds at almost all s ∈ M .

ti(s) = siq(si, s−i)−
∫ si

0

q(ν, s−i)dν − Ui(0, s−i), (Revenue Equivalence)

where Ui(s) is the equilibrium utility function of agent i at a signal profile (si, s−i)

which is defined by

Ui(si, s−i) = max
s′i

[siq(s
′
i, s−i)− ti(s

′
i, s−i)] .

In addition, a DSIC mechanism (M, q, t) is EPIR if and only if Ui(0, s−i) ≥ 0 for

each i and s−i ∈ [0, 1]N−1.

Proof of Proposition 1.2.1. This is a standard result in mechanism design. See the

textbook treatment of Börgers and Krahmer (2015) for proof.

1.2.3 The Regulator’s Problem

Here, we introduce the regulator’s information design problem. The regulator gov-

erns the learning process of the agents before the monopolist moves, and she chooses

a signal distribution G to maximize the agents’ payoff against the monopolist. Ob-

serving the chosen signal distribution, the monopolist then chooses an optimal sales

mechanism (q, t). This in turn defines a sequential game of complete information

between the regulator and the monopolist.

Toward describing the regulator’s problem, we do backward induction by first
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The regulator
chooses
G ∈ G(µ)

The
monopolist
chooses (q, t)

The agents
play

the public good
provision game

Figure 1.1: Timing of actions

discussing the monopolist’s problem given some signal distribution chosen by the

regulator. The monopolist chooses an optimal mechanism (q, t) subject to the DSIC

and EPIR constraints to maximize the expected profit with respect to G. Since

Proposition 1.2.1 finds the transfer rule that implements any monotone allocation

rule, the problem reduces to choosing an allocation rule q ∈ Q, where Q is the set

of monotone allocation rules:

max
q∈Q

∫
s

N∑
i=1

(
siq(s)−

∫ si

0

q(τ, s−i)dτ

)
dG(ds). (Monopolist’s Problem)

When stating the monopolist’s problem, we take into account of the fact that an agent

who observed a zero signal earns a zero payoff in equilibrium, i.e. Ui(0, s−i) = 0.

Anticipating that the monopolist would best-respond to her choice of signal dis-

tribution G, the regulator maximizes the sum of the agents’ expected payoff under an

optimal sales mechanism. Each agent i’s expected payoff from an optimal mechanism

is determined from the revenue equivalence formula from Proposition 1.2.1, which is

∫
S

Ui(s)dG(s) =

∫
S

(siq(s)− ti(s))dG(s) =

∫
S

∫ si

0

q(ν, s−i)dν.

So the regulator chooses a feasible signal distribution G ∈ G(µ) to maximize the sum
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of the agents’ payoffs by solving

max
G∈G(µ)

∫
S

(
N∑
i=1

∫ si

0

q(ν, s−i)dν

)
dG(s)

s.t. q solves the monopolist’s problem given G.

(Regulator’s Problem)

If the monopolist is indifferent between multiple allocation rules, we assume that he

chooses an optimal mechanism that maximizes the regulator’s payoff, or equivalently

the largest allocation rule among optimal allocation rules. It is a standard assumption

in the information design literature to break ties in the favor of the information

designer5.

1.3 A Binary Example

To fix ideas, we solve the regulator’s problem with two agents under a simplifying

restriction: only binary signal distributions are available to the regulator. Each agent

observes either sL or sH , where 0 ≤ sL ≤ µ ≤ sH ≤ 1 in a binary signal distribution

G ∈ GB(µ), where GB(µ) denotes the set of feasible binary signal distributions.

Given a binary signal distribution, an optimal mechanism is either of the following

three: (1) charging sL to each agent, (2) charging sH to each agent, (3) charging sL

to one agent if the other agent reported sH and charging sH to one agent if the other

5For example, Kamenica and Gentzkow (2011) considers ‘Sender-preferred subgame perfect equi-
librium’, where the receiver takes the sender’s preferred action when indifferent among multiple
actions.
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agent reported sL. In terms of a direct mechanism, they are expressed as below.

(q(sL, sL), q(sH , sL), q(sL, sH), q(sH , sH)) =


(1, 1, 1, 1),

(0, 1, 1, 1),

(0, 0, 0, 1).

The implementing transfer rule is identified by the revenue equivalence formula.

ti(s
L, sL) = sLq(sL, sL),

ti(s
L, sH) = sLq(sL, sH),

ti(s
H , sL) = sHq(sH , sL)− (sH − sL)q(sL, sL),

ti(s
H , sH) = sHq(sH , sH)− (sH − sL)q(sL, sH),

where the first argument represents agent i’s signal and the second argument repre-

sents the other agent’s signal. The revenue equivalence formula then determines the

ex-post equilibrium payoff of each agent. At each signal profile s, agent i earns Ui(s)

defined by

Ui(s
L, sL) = 0,

Ui(s
L, sH) = 0,

Ui(s
H , sL) = (sH − sL)q(sL, sL),

Ui(s
H , sH) = (sH − sL)q(sL, sH).

Agents with the low signal sL earn zero payoffs in equilibrium since an optimal

mechanism charges at least sL. On the other hand, agents with the high signal sH

earn some positive payoff as long as the monopolist charges sL, selling the public

good for the low signal agents. Thus, the regulator should induce the monopolist to
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sell if there is a low signal agent.

Now we solve the binary regulator’s problem. First, we solve the regulator’s prob-

lem with a restriction that s1 and s2 are perfectly correlated. This restriction essen-

tially takes the problem back to the one-agent case, as studied by Roesler and Szentes

(2017) and provides a benchmark that highlights the new channel that the regulator

could use in the public good provision problem with multiple agents. In a perfectly

correlated signal distribution G ∈ GB(µ), an optimal mechanism either charges sL or

sH to both agents. The regulator earns a positive payoff only if there is an optimal

mechanism that charges sL to both agents. Thus, we state the binary regulator’s

problem with the perfect correlation restriction as below.

max
G∈GB(µ)

2(µ− sL),

s.t. (sH + sH)g(sH , sH) ≤ sL + sL,

g(sH , sL) = 0, g(sL, sH) = 0.

The regulator maximizes 2(µ − sL), the total expected payoff of the two agents in

the mechanism that charges sL to each agent and she is subject to the constraint

that the inclusion constraint, which ensures the monopolist optimally charge sL to

both agents and the perfect correlation constraint, which requires that s1 = s2 with

probability 1. Equivalently, the regulator minimizes sL while inducing the monopolist

to charge the low price sL.

It is easy to see that in an optimal solution of the regulator, the monopolist must

be indifferent between charging the high price and the low price. Otherwise, the

regulator could lower sL without losing the sale. sL is constrained by the expectation

constraint and the upper bound on sH , making the optimal solution of the regulator

17



has sH = 1. Thus, the optimal solution has sL = g(sH , sH), and sL is pinned down

from the expectation constraint. Observation 1.3.1 summarizes the binary regulator’s

solution with perfect correlation.

Observation 1.3.1. The binary signal distribution GC ∈ GB(µ) defined by

sL =1−
√

1− µ,

sH =1,

gC(sL, sL) =
√
1− µ,

gC(sH , sH) =1−
√

1− µ.

solves the regulator’s problem with the perfect correlation restriction.

Next, we lift the perfect correlation restriction and show that the regulator could

improve her payoff using the environment, where a public good is sold to a group

of agents. As it will be shown below, the regulator chooses a weaker correlation

between signals while keeping the monopolist to sell the public good when there is

a low signal agent. We describe how an optimal mechanism is chosen given a binary

signal distribution to find the generalization of the inclusion constraint. The expected

profit of an allocation rule is expressed in terms of the marginal revenue of each agent,

which is also referred as the virtual value φi(s) at each signal profile s.

R(q,G) =
∑
s

q(s)
2∑

i=1

φi(s)g(s),

where the virtual value φi(s) is defined by

φi(s
L, sj) =sL − (sH − sL)

g(sH , sj)

g(sL, sj)
= sL − (sH − sL)

g(sH |sj)
g(sL|sj)

,

φi(s
H , sj) =sH .
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At each signal profile s, an optimal mechanism sells the public good if and only if

the marginal revenue is positive, or the virtual values have a non-negative sum.

The regulator must induce the monopolist to sell the public good at signal profiles

other than (sH , sH) to ensure some payoff to the agents. The inclusion constraint

must induce trade at (sL, sH) and (sH , sL) so that the regulator earns some payoffs.

However, it is not obvious if the regulator must induce sales at (sL, sL). Thus, we

consider both cases to solve the binary regulator’s problem.

First, suppose that the regulator induces the trade at (sL, sL). The total expected

payoff of the agents is then equal to 2µ− sL − sL since the sale always realizes and

each agent pays sL. Then the regulator’s problem is expressed as

max
G∈GB(µ)

2(µ− sL),

s.t.
2∑

i=1

φi(s
L, sL) ≥ 0,

2∑
i=1

φi(s
L, sH) ≥ 0,

2∑
i=1

φi(s
H , sL) ≥ 0.

The inclusion constraint induces the monopolist to charge sL to both agents, sell-

ing at the lowest signal profile (sL, sL). The monopolist is made indifferent between

selling and withholding the public good when he sells by the same reasoning. Oth-

erwise, the regulator could lower the total virtual value without losing the sale. On

top of the binding inclusion constraints, the regulator minimizes sL, or equivalently,

g(sH , sH). Observation 1.3.2 summarizes the regulator’s solution where the monop-

olist optimally charge sL to both agents.
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Observation 1.3.2. The binary signal distribution G∗ ∈ GB(µ) defined by

sL =
1

2

(
3− µ−

√
9− 10µ+ µ2

)
,

sH =1,

g∗(sL, sL) =1− µ,

g∗(sH , sL) =
1

4

(
−3 +

√
9− 10µ+ µ2 + 3µ

)
,

g∗(sL, sH) =
1

4

(
−3 +

√
9− 10µ+ µ2 + 3µ

)
,

g∗(sH , sH) =
1

2

(
3−

√
9− 10µ+ µ2 − µ

)
.

solves the binary regulator’s problem.

Compared with GC , the regulator’s solution with the perfect correlation, the

regulator’s solution G∗ puts a weaker correlation between s1 and s2 by having

g∗(sL, sH) > 0. In addition, the regulator makes the monopolist indifferent at (sL, sH)

and (sH , sL) by making it hard to induce truth-telling from the low signal agent. The

high signal agent has the virtual value of 1, while the low signal agent has the virtual

value of −1 at (sL, sH) and (sH , sL).

Next, suppose that the regulator does not induce the trade at (sL, sL). The total

expected payoff of the agents is then equal to 2(sH−sL)g(sH , sH) because each agent

earns a positive payoff only at (sH , sH). Then the regulator solves

max
G∈GB(µ)

2(sH − sL)g(sH , sH),

s.t.
2∑

i=1

φi(s
L, sL) ≤ 0,

2∑
i=1

φi(s
L, sH) ≥ 0,

2∑
i=1

φi(s
H , sL) ≥ 0.

If µ is small, then the regulator earns less payoff by giving up trade at (sL, sL).

On the other hand, if µ is sufficiently high, the regulator could choose an even

weaker correlation, or a higher probability of drawing disagreeing signals (sL, sH)
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and (sH , sL). Observation 1.3.3 summarizes the solution where the public good is

not sold at (sL, sL), for high µ.

Observation 1.3.3. The binary signal distribution G∗∗ ∈ GB(µ) defined by

sL =
1

2

(
1 + µ−

√
9− 10µ+ µ2

)
,

sH =1,

g∗∗(sL, sL) =0,

g∗∗(sH , sL) =
1

4

(
−1 +

√
9− 10µ+ µ2 + µ

)
,

g∗∗(sL, sH) =
1

4

(
−1 +

√
9− 10µ+ µ2 + µ

)
,

g∗∗(sH , sH) =
1

2

(
3−

√
9− 10µ+ µ2 − µ

)
.

solves the binary regulator’s problem for µ ≥ 2
3
.

In this solution G∗∗, the regulator does not put any probability on (sL, sL) where

there is no trade, which creates an weaker correlation than G∗ does, as g∗∗(sH , sL) >

g∗(sH , sL).

From the binary regulator’s problem, we saw that a weaker correlation plays

an important role in the regulator’s problem. The regulator takes advantage of the

setup—a public good is sold to a group of buyers— by choosing an appropriate

correlation between the signals. As Observation 1.3.3 illustrates, the regulator may

choose not to draw some signal profiles to impose a stronger negative correlation.

We then solve the regulator’s problem without the binary signal restriction and

investigate how the findings from the binary problem generalize.
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1.4 The Regulator’s Solution

We characterize the regulator’s solution and discuss its properties in this section.

As illustrated from the binary example, the inclusion constraint, which ensures that

there is an optimal mechanism that sells the public good at a signal profile, plays

an important role in the regulator’s problem. The regulator maximizes the agents’

payoff by minimizing the monopolist’s profit while keeping him supplying the public

good so that the agents can enjoy the public good at the smallest cost. Thus, the

inclusion constraint binds on signal profiles that arise with a positive probability at

the optimal solution, as illustrated from Observation 1.3.2 and 1.3.3. In other words,

the monopolist is made indifferent at each signal profile on the signal support of the

regulator’s solution.

We define the binding inclusion constraint, or the monopolist’s indifference con-

dition in the general case. It is helpful to consider regular signal distributions so that

an optimal mechanism is fully characterized by the sum of the virtual values, which

is defined by6

φi(si|s−i) = si −
1−G(si|s−i)

g(si|s−i)
.

In a regular signal distribution G, an optimal mechanism conditions the supply on

the sign of the sum of the virtual values, selling the public good if the sum of the

virtual values is strictly positive, while withholding the public good if it is strictly

negative. The monopolist is indifferent between any quantity if the sum of the virtual

values is exactly zero.

It remains to determine the signal support where the binding inclusion constraint

6We omit the details of the monopolist’s problem in a regular signal distribution because it is a
standard exercise. See Börgers and Krahmer (2015) for a textbook treatment.
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is imposed. We saw from the binary example that the regulator may drop a low signal

profile in an optimal solution, if the expectation µ is high enough, which is a new

feature available only in the public good problem. In general, without the binary

support restriction, the regulator does not have choose a “square” signal support.

Intuitively, the regulator would like to realize trades with higher values, or trades

when the total signal is higher, while expanding the signal support while respecting

the monopolist’s indifference condition, so that the agents could pay a lower price.

Thus, the signal support should be determined by the total value of the public good.

We then formally define the monopolist’s indifference condition below.

Definition 1.4.1. A signal distribution G∗ satisfies the monopolist’s indifference

condition if for each s ∈ S such that
∑N

i=1 si ≥
X
A

and s ̸= (1, · · · , 1),

0 =
N∑
i=1

φ∗
i (si|s−i) =

N∑
i=1

(
si −

1−G∗(si|s−i)

g∗(si|s−i)

)
, (Monopolist Indifference)

for some X
A
> 0 and Supp(G∗) = {s ∈ S|

∑N
i=1 si ≥

X
A
}.

A signal distribution is said to be the indifference distribution if it satisfies the mo-

nopolist’s indifference condition.

In the indifference distribution G∗, the monopolist has many optimal mechanisms:

any allocation rule q such that q(1, · · · , 1) = 1 and q(s) = 0 for s such that
∑N

i=1 si <

X
A
. That is, any allocation rule that sells the public good at the highest signal profile

(1, · · · , 1) and that does not sell the public good if the sum of signals is less than X
A
.

We present the first main result of this paper, a characterization of the regulator’s

solution.
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Theorem 1.4.1. The indifference distribution G∗ ∈ G(µ) solves the regulator’s prob-

lem.

The indifference distribution, which is characterized by the monopolist’s indiffer-

ence or the binding inclusion constraint, minimizes the monopolist’s profit without

losing sale at any signal profile on the support. We prove Theorem 1.4.1 in Section

1.7 by exploiting a conditional equivalence between the regulator’s solution G∗ and

the minimax solution, which is a signal distribution that minimizes the expected

profit of an optimal mechanism.

1.4.1 Construction of the Regulator’s Solution

Here we study the Monopolist Indifference condition to construct for the regulator’s

solution G∗. Since we cover technical steps here and will cover economic properties

of the regulator’s solution in the next subsection, readers may skip this subsection

without loss.

First, we visually inspect the expression for the indifference condition to figure

out technical properties of the indifference distribution. Then using the properties,

we obtain a partial differential equation for the joint density function from the mo-

nopolist’s indifference condition for the indifference distribution G∗. From the visual

inspection of the monopolist’s indifference condition, we can first observe that, under

the indifference distribution G∗, the virtual value of each agent must be well-defined

for si < 1. That is, for each i, G∗(si|s−i) must have a well-defined conditional den-

sity g∗(·|s−i) for si < 1. However, the condition may allow for a signal distribution

that has a discrete mass on si = 1, which makes the distribution to be discontin-

uous. Thus, the monopolist’s indifference distribution may be a mixed probability
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distribution.

Figure 1.2: Illustration of the partition {S(H)|H ∈ {∅, {1}, {2}, {1, 2}}} with two
agents

To illustrate, we consider the case with two agents as in Figure 1.2. The monop-

olist’s indifference condition requires that the indifference distribution is continuous

on S(∅), where no agents observe the highest signal si = 1. The monopolist’s indiffer-

ence condition also requires that g∗(s1|1) and g∗(s2|1) to be well-defined along S({2})

and S({1}) respectively. Across the subsets S(∅), S({1}), S({2}) and S({1, 2}), the

indifference distribution may be discontinuous.

In general, we can partition the signal space S with respect to the set of agents

who observed the highest signal 1. Let H ∈ 2N be a generic subset of agents. Define

S(H) to be the subset of the signal space where si = 1 for i ∈ H. Define a partition

on the signal space by the set of agents H who observed the highest signal.

S =
⋃

H∈2N
S(H) =

⋃
H∈2N

{s ∈ S|si = 1 for each i ∈ H}. (1.1)

For the virtual values to be well-defined, while it may not be continuous across
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different partition elements, the indifference distribution G∗ needs to admit a well-

defined density g∗ on each partition element S(H). For each measurable A ⊂ S,

define G∗(A) as the probability of observing the event A under G∗ by

G∗(A) =
∑
H∈2N

∫
s∈S(H)∩A

g∗(s)ds. (1.2)

The minimax indifference condition then defines a partial differential equation for g∗

since it is continuous on each partition element S(H). For each s ∈ S(H) such that∑N
i=1 si ≥

X
A

and s ̸= (1, · · · , 1),

0 =
N∑
i=1

φ∗
i (si|s−i) =

N∑
i=1

(
si −

∫ 1

si
g∗(t, s−i)dt+ g∗(1, s−i)

g∗(s)

)
, (1.3)

where we express the minimax indifference condition in terms of the joint density

g∗ instead of the conditional distributions on the right-hand side. We separately add

the density g∗ at si = 1 since this signal profile (1, s−i) does not belong to S(H),

and G∗ is not continuous across different partition elements. We solve the differential

equation (1.3) to obtain the joint density g∗ for each partition element S(H).

Proposition 1.4.1. For each partition element S(H) and signal profile s ∈ S(H)

such that
∑N

i=1 si ≥
X
A
, the joint density g∗ defined by (1.17) satisfies the minimax

indifference condition (1.3).

g∗(s) =
c∗(X

A
)(∑

j∈N−H sj +H
)N−H+1

N + 1∏H
h=0(N − h+ 1)

, (1.4)

for some constant c∗(X
A
) and threshold X

A
.
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We complete the construction of the indifference distribution G∗ by finding the

constant of integration c(X
A
). For each X

A
> 0, c(X

A
) is pinned down by the constraint

that G∗ is a probability distribution,

1 =

∫
dG∗(s). (1.5)

The profit-minimizer must choose the threshold
(
X
A

)∗
of the indifference distri-

bution G∗ to satisfy the expectation constraint. We prove in Lemma 1.4.1 that there

exists a well-defined c(X
A
) and

(
X
A

)∗
so that the indifference distribution G∗ is a

well-defined probability distribution.

Lemma 1.4.1. For each µ ∈ (0, 1), there exists a unique
(
X
A

)∗ ∈ (0, N) that satisfies

(1.6),

µ =

∫
sidG

∗(s). (1.6)

The indifference distribution G∗ is fully described once we evaluate the integrals

(1.5) and (1.6) to find an explicit solution for c∗
(
X
A

)
and

(
X
A

)∗
. However, it is not

easy to calculate the integrals with an arbitrary number of agents. There are N

cases to consider with N agents. The integration region is the intersection of the

N−dimensional unit cube and the hyperplane {s ∈ S|
∑N

i=1 si ≥
(
X
A

)∗}, which is

affected by the size of the threshold
(
X
A

)∗
. Thus, we find c∗

(
X
A

)
and

(
X
A

)∗
for two,

three and four agents in the appendix instead of developing a general formula.

1.4.2 Properties of the Regulator’s Solution

We discuss properties of the regulator’s solution G∗ previously constructed. Directly

from its defining condition—the monopolist’s indifference condition—the regulator’s
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solution makes the monopolist indifferent across all mechanisms except for those

that are clearly not optimal. For example, a mechanism that never sells the public

good. Among the mechanisms that the monopolist becomes indifferent, we have the

always-sell mechanism, a mechanism that sells the public good with probability 1 in

G∗. We explain how the regulator’s solution G∗ achieves the indifference property by

examining the individual virtual values φi and the conditional signal distributions of

G∗. Lastly, we discuss how the signal support of G∗ is determined to limit the impact

of free-riding and to minimize the monopolist’s profit.

First, we begin by examining the individual virtual value φ∗
i (si|s−i) of each agent

i at each signal profile s. We obtain the individual virtual values using the joint

density g∗ defined by (1.17).

Corollary 1.4.1. For each signal profile s ∈ S(H) such that
∑N

i=1 si ≥ d∗, the

regulator’s solution G∗ induces the individual virtual value of agent i as follows.

φ∗
i (si|s−i) =


si −

∑N
i=1 si

N −H
si < 1

1. si = 1

In the regulator’s solution G∗, the virtual value of each agent is equal to the

deviation from an adjusted mean signals, which is the total signal is divided by

N − H, which is the number of agents whose signal is less than 1. The regulator’s

solution G∗ diversifies the agents in terms of the virtual values around the adjusted

mean signals so that at any signal profile, some agents have a positive virtual value

while there are others who have a negative virtual value. When some agents observe

the highest signal, there could be no information rent for them. In that case, the

remaining agents are given more information rent to keep the indifference property.
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The diversification of the virtual values imposes indifference on the monopolist on

any signal profile, except for s = (1, · · · , 1).7 Compared with the regulator’s solution

with a single agent studied in Roesler and Szentes (2017), diversification is a new

feature that the regulator can use when faced with multiple agents who are trying

to purchase a public good from a monopolist.

Next, we inspect the conditional signal distribution G∗(·|s−i) to study the shape

of the information rent
∑N

i=1 si
N−H

.

Corollary 1.4.2. The conditional distribution of si given s−i is found from the

regulator’s solution G∗.

G∗(si|s−i) =


1−

(
d∗∑N
i=1 si

)N−H

, si ≥
(
d∗ −

∑
j ̸=i sj

)+
1, si = 1 ≥

(
d∗ −

∑
j ̸=i sj

)+
where s ∈ S(H).

On each partition element S(H), the conditional distribution G∗(·|s−i) uniformly

decreases in
∑

j ̸=i sj. Equivalently, G
∗(·|s−i) is ordered in the sense of first-order

stochastic dominance on each partition element S(H) of the signal space by the sum

of signals of other agents. The monopolist becomes pessimistic about si as other

agents report higher signals.

We illustrate the negative correlation with two agents in Figure 1.3. It plots the

conditional cumulative distribution G∗(·|s2) across s2 from 0 to 1. Yellower curves

correspond to lower s2, while redder curves correspond to higher s2. Note that the

7The information rent of an agent at a signal profile corresponds to the amount of discounts
that must be given to higher signals to maintain a truth-telling equilibrium.
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Figure 1.3: The conditional cumulative distribution G∗(·|s2) with Two Agents

uniform ordering does not apply across different partition elements. In this case when

s2 = 1.

On top of the indifference property that ensures an optimal always-sell mech-

anism, the regulator’s solution induces a signal support that bolsters the agents’

payoffs. It requires that the sum of signals are bounded below by d∗. The lower

bound on d∗ limits the impact of free-riding behavior because, with probability one,

the total value of trade is sufficiently high.

1.5 The Posted-price Distribution

This section presents the posted-price distribution GP , which solves the regulator’s

problem if the monopolist is restricted to charges a fixed price to each agent. The mo-

nopolist is confined to post a fixed price if he is under additional strategic constraints,

such as an imperfect commitment power and agents’ collusion. The posted-price dis-

tribution is equivalently characterized by the zero-sum virtual value condition, but

on a signal support where individual signals are bounded below. Thus, the posted-

price distribution has similar features as the regulator’s problem, exhibiting a similar
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negative correlation among signals. Moreover, we obtain the welfare properties of the

regulator’s solution in the large economy limit using the posted-price distribution.

1.5.1 Strategic Fragility of the Regulator’s Solution

While the regulator’s solution G∗ maximizes the agents’ payoff and realizes the trade

with probability 1, it gives strategic strains on the monopolist and the agents. The

total transfer is given by the sum of the pivot value of each agent, given the report

from the other agent.

N∑
i=1

tAS
i (s) = qAS(s)

N∑
i=1

(
d∗ −

∑
j ̸=i

sj

)+

where (·)+ := max{0, ·}. The total transfer decreases in each si since one agent’s pivot

value decreases as other agents report a higher signal. By choosing the always-sell

mechanism, the monopolist promises to sell the public good at cheaper price as the

agents value the public good highly. This feature of the always-sell mechanism implies

two problems. First, it requires a strong commitment power of the monopolist.8 Once

a high signal profile realizes, the monopolist would be tempted to renege from the

announced mechanism. Second, it is not robust to collusive behavior.9 The agents

could simply promise with each other to report si = 1 to pay less. The collusion is

8The second price auction has the same commitment power issue, but in the auction problem, the
designer may use the clock implementation to resolve the problem. See, for example, Akbarpour and
Li (2020). On the other hand, there is no alternative implementation for the public good problem
that eases the designer’s commitment burden to the best of my knowledge.

9In the auction problem, collusion between the bidders is constrained by mutual private informa-
tion between the collusive bidders. Moreover, the timing of collusion and feasibility of side-payments
also constrain the efficacy of collusion.
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not constrained by private information nor by availability of side payments. Thus,

the mechanism designer cannot easily make a quick adjustment to the always-sell

mechanism to limit the impact of collusion.

Both strategic concerns related to the always-sell mechanism in G∗, which is a

pivot mechanism, are resolved if the monopolist posts a fixed price to each agent,

or if the monopolist chooses a posted-price mechanism. The commitment problem

is resolved since posted-price mechanisms are indirectly implemented, where each

agent is given the price, and they report whether they accept the price, keeping the

monopolist ignorant of the exact signal of each agent, which prevents the monopolist

from deviating from the chosen mechanism. The collusion problem is also resolved

since the agents cannot alter the price anyone pays. In the public good provision

problem, Proposition 1 of Bierbrauer and Hellwig (2016) shows that the monopolist

cannot condition the payment of an agent on reports from others if he is subject

to the ex-post coalition-proofness constraint. Thus, we solve the regulator’s problem

with a restriction on the monopolist that he must choose an optimal posted-price

mechanism.

1.5.2 The Regulator’s problem with a Posted-price Mechanism

Given a signal distribution G, suppose that the monopolist chooses an optimal

posted-price pi for each agent i. That is, the monopolist solves the following problem

to maximize the expected profit of a posted-price mechanism, which charges a fixed

price to each agent.

max
(p1,··· ,pN )∈[0,1]N

Ḡ(p)
N∑
i=1

pi,

where Ḡ is the joint survival function of a signal distribution G.
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Anticipating that the monopolist chooses an optimal posted-price mechanism, the

regulator chooses a signal distribution to maximize the agents’ payoff in an optimal

posted-price mechanism.

max
G∈G(µ)

∫ 1

p1

· · ·
∫ 1

pN

N∑
i=1

(si − pi) dG(s)

s.t. (p1, · · · , pN) is an optimal posted-price in G.

1.5.3 The Posted-Price Distribution

We construct the posted-price distribution GP using a generalization of the unit-

elastic demand condition of Roesler and Szentes (2017). Just as the monopolist is

made indifferent across any price in the one-agent regulator’s solution, the monopolist

is made indifferent across any profile of posted prices on [s
¯
, 1]N in the posted-price

distribution GP . We define the posted-price distribution as below.

Definition 1.5.1. A signal distribution GP is said to be the posted-price distribution

if it satisfies (1.7)

ḠP (s)
N∑
i=1

si = Ns
¯
for each s ∈ [s

¯
, 1]N , (1.7)

for some s
¯
> 0, where ḠP is the probability of sale of a posted price s.

The definition of the posted-price distribution imposes indifference between any

posted-price mechanism on the monopolist, which plays the same role as the monop-

olist’s indifference condition, which characterizes the regulator’s solution. Indeed, the

posted-price distribution solves the monopolist’s problem if he is restricted to choose

such mechanisms.
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Proposition 1.5.1. The posted-price distribution GP ∈ G(µ) solves the regulator’s

problem when the monopolist chooses an optimal posted-price mechanism.

Using (1.7), we can easily recover the posted-price distribution GP , which is a

mixed probability distribution on the signal space. The signal space here is parti-

tioned in the same way as the regulator’s solution did, by the set of agents whose

observed the highest signal 1. The posted-price distribution is continuous on each

partition element but discrete across partition elements. We can fix a partition ele-

ment S(H) ⊂ S and partially differentiate ḠP with respect to signal indices in N−H

to obtain the density gP on S(H).

gP (s) = (N −H)!
Ns
¯(∑

i∈N−H si +H
)N−H+1

The probability of any measurable A ⊂ S is then given as follows.

GP (A) =
∑
H∈2N

∫
s∈S(H)∩[s

¯
,1]N

gP (s)ds

There exists a unique s
¯
> 0 that satisfies the expectation constraint. We obtain

GP
1 , the marginal distribution of s1 from (1.7) by taking s2 = · · · = sN = s

¯
.

GP
1 (s1) = 1− Ns

¯
s1 + (N − 1)s

¯

The marginal distribution follows the Pareto distribution that is censored at 1. Then

it is easy to find the expectation of s1, which is

µ =

∫
s1dG

P
1 (s1) = s

¯
+Ns

¯
log

(
1 + (N − 1)s

¯
Ns
¯

)
(1.8)

34



The expectation is increasing in s
¯
. It is equal to one if s

¯
= 1 and converges to zero

as s
¯
goes to zero. Thus, for each µ ∈ (0, 1], there is a unique s

¯
that satisfies the

expectation constraint.

The posted-price distribution makes the monopolist indifferent across mechanisms

that charge each agent a fixed price. It is not obvious if the monopolist would continue

to choose the lowest posted price if he could choose any mechanism that conditions

one agent’s transfer on reports from others. However, it turns out that the posted-

price distribution GP implies the zero-sum virtual values so that the lowest posted

price is an optimal mechanism among any DSIC and EPIR mechanisms in the posted-

price mechanism. Proposition 1.5.2 shows that the virtual values sum up to zero in

GP .

Proposition 1.5.2. The virtual value φP
i of the posted-price distribution GP sums

up to zero at any signal profile s ̸= (1, · · · , 1).

Proof of Proposition 1.5.2. The virtual value of agent i is equivalently written in

terms of the joint distribution. Consider a signal profile s ∈ S(H) and an agent i

such that si < 1.

φP
i (s) =si −

1−GP (si|s−i)

gP (si|s−i)

=si −
∫ 1

si
gP (t, s−i)dt+ gP (1, s−i)

gP (s)

=si −
1

N −H

(
N∑
i=1

si

)

The virtual values of individual agents sum up to zero, except at the highest signal

profile s = (1, · · · , 1).
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Proposition 1.5.2 implies that the posted-price distribution GP is analogous to

the regulator’s solution G∗ in that they both make the monopolist indifferent on each

signal profile on the support. We construct the conditional cumulative distribution

GP (·|s−i) of the signals.

GP (si|s−i) = 1−

(
s
¯
+
∑

j ̸=i sj∑N
i=1 si

)N−H

for each signal profile s ∈ S(H) and for each partition element.

However, the posted-price distribution exhibits a positive correlation among sig-

nals since GP (·|s−i) uniformly increases in s−i. Figure 1.4 illustrates GP (·|s−i) with

two agents. The conditional cumulative distribution GP (·|s2) increases in s2. Yellower

curves correspond to lower s2, while redder curves correspond to higher s2.

Figure 1.4: The conditional cumulative distribution GP (·|s2) with two agents

In addition, the posted-price distribution differs from the regulator’s solution in

the shape of the signal support. While the regulator’s solution puts a lower bound on

the sum of signals to ensure the total valuation of the public good is high enough, the

posted-price distribution puts a lower bound on individual signals. With the bound

on individual signals, the posted-price distribution implements trades when the total
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value of trade is lower at the cost of giving up trades when the total value of trade is

higher. Figure 1.5 illustrates the supports of G∗ and GP with two agents. The orange

region illustrates the support of GP , while the blue region illustrates the support

of G∗. In the posted-price distribution, the agents buy the public good when the

total value is less than the lower bound d∗ in the regulator’s solution, while signal

profiles on the left and lower region, where one agent’s signal is less than s
¯
is not

drawn in the posted-price distribution, while the total value of trade is high. Thus,

the posted-price distribution is not optimal in the regulator’s problem without the

restriction on the monopolist.

Figure 1.5: Comparison of the signal support of G∗ and GP

1.5.4 Welfare in the Large Economy

We now study the welfare properties of the regulator’s solution G∗ in the large

economy limit. Since it is hard to compute the constant of integration c∗(d) and the
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threshold d∗ to fully describe the regulator’s solution in general, we use the posted-

price distribution GP to obtain an upper bound on the monopolist’s profit with any

number of agents. The expected profit under the posted-price distribution is bounded

in the large economy limit as illustrated in Figure 1.6. That is, the monopolist gets

a negligible fraction of the total ex-ante surplus when there are many agents, i.e.

the monopolist’s market power gets dissipated as the number of agents increases.

Proposition 1.5.3 formally proves the observation that the expected profit is bounded.

Figure 1.6: Expected profit under the posted-price distribution

Proposition 1.5.3. Suppose that there are N symmetric agents with expected value

µ ∈ [0, 1). Under the posted-price distribution GP ∈ G(µ), the monopolist’s expected

profit is bounded in N .

The expected profit of an optimal mechanism in the posted-price distribution GP

is Ns
¯
, which is the expected profit of charging the lowest price s

¯
on the support,

selling the public good with probability 1. Since in the posted-price distribution

GP , the monopolist is indifferent between any posted prices, the same expected

profit could be obtained by charging 1 to each agent, selling the public good with

probability of gP (1, · · · , 1) = s
¯
. It is easier to have at least one agent observe a signal
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less than 1 and have a lower s
¯
with more agents. The proof of Proposition 1.5.3 shows

that s
¯
is indeed proportional to 1

N
.

Proposition 1.5.3 provides a lower bound on the agents’ payoff under the regula-

tor’s solution G∗ as the posted-price distribution GP is sub-optimal for the regulator’s

problem, and both the regulator’s solution and the posted-price distribution ensure

the always-sell mechanism to be optimal with any number of agents. The bounded

expected profit in the large market then implies that, either under the posted-price

distribution or the regulator’s solution, each agent pays zero in the limit.

Corollary 1.5.1. Under both the regulator’s solution G∗ and the posted-price distri-

bution GP , each agent takes the entire ex-ante surplus µ as N increases to infinity.

It is intuitive that each agent pays a vanishing amount as the number of agents

increases because the monopolist is selling a public good. On the other hand, the

bounded profit in the large market in the regulator’s solution contrasts with the

large market results in the independent private value framework. For example, Güth

and Hellwig (1986) shows that each agent pays a vanishing amount as the number

of agents increases, assuming a symmetric regular signal distribution. However, they

also find that the monopolist’s profit is proportional to
√
N as the number of agents

increases.10 In other words, the monopolist earns still an infinite amount of expected

profit with many agents in the independent private value framework. Thus, the mo-

nopolist enjoys a substantial degree of market power with many agents, while the

market power disappears under the regulator’s solution.

Figure 1.7 illustrates the monopolist’s expected profit (left) and expected profit

per agent (right). The monopolist earns more expected profit with more agents or

10Proposition 4.5 of Güth and Hellwig (1986)
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a higher expected value µ. However, the expected profit per agent decreases as the

number of agents increase because the regulator is more flexible to choose a sig-

nal distribution with more agents. We provide explicit solutions to the regulator’s

problem only with a small number of agents, Corollary 1.5.1 finds the monopolist’s

expected profit in the large market limit to be flat at zero for µ < 1.

Figure 1.7: The monopolist’s profit (left) / per-agent profit (right) under G∗

Figure 1.8 juxtaposes the regulator’s payoff (left) and each agent’s payoff (right).

The regulator earns zero payoff at µ = 1, where there is no uncertainty. Also, she also

earns zero payoff at µ = 0, where there is no value of trade. There is a trade-off for

the regulator when µ increases because the increase in µ increases the total ex-ante

value of trade while decreasing the regulator’s ability to choose a signal distribution.

The regulator’s payoff is unbounded in the number of agents, while each agent pays

zero in the large economy limit. Corollary 1.5.1 finds the agent’s payoff in the limit

to be a straight line for µ < 1.

1.6 The Welfare Triangle

In this subsection, we show that the regulator may implement a different division

of surplus between the monopolist and the agents from the regulator’s solution G∗
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Figure 1.8: The regulator’s payoff (left) / an agent’s payoff (right) G∗ and (qAS, tAS)

Figure 1.9: Outcome Triangle

without losing efficiency. Figure 1.9 describes the set of feasible welfare divisions

between the monopolist and the agents. The regulator’s solution G∗ maximizes the

expected payoff of the agents with the always-sell mechanism. The monopolist’s

earns the expected profit of Ng∗(1, · · · , 1) = c∗(d∗)
N !

which is the expected profit

of an optimal mechanism that sells the public good only if s = (1, · · · , 1). The

opposite extreme D(egenerate distribution) maximizes the expected profit of the

monopolist without losing efficiency by giving no information to the agents. That is,
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the monopolist takes the whole ex-ante value of trade Nµ. Other than G∗ and D,

any intermediate division of surplus between the monopolist and the agents can be

implemented without losing efficiency.

Proposition 1.6.1. For each π ∈
[
c∗(d∗)
N !

, Nµ
]
, there exists a signal distribution Ĝ

where there is an optimal always-sell mechanism in Ĝ that earns π for the monopolist.

Any such divisions are implemented using a signal distribution that satisfies the

indifference condition on the monopolist, and it does so on a narrow range of signals

so that the always-sell mechanism could earn more profit. In this sense, the regula-

tor’s solution G∗ puts the smallest lower bound on the sum of signals to make the

monopolist to earn the smallest expected profit while always selling the public good.

1.7 Proof of Theorem 1.4.1

In this section, we characterize the regulator’s solution using an indirect approach.

We find the minimax solution, which is a signal distribution that minimizes the

monopolist’s expected profit. We say that the minimax solution solves the regulator’s

problem if there is an optimal mechanism that always sells the public good under the

minimax solution. In such an optimal mechanism, the sum of the monopolist’s profit

and the agents’s payoffs is equal to the ex-ante expected surplus. So minimizing the

monopolist’s profit is equivalent to maximizing the agents’ payoffs since there is a

fixed sum. We summarize this reasoning in Observation 1.7.1.

Observation 1.7.1. The minimax solution G∗ solves the regulator’s problem if there

is an optimal mechanism (qAS, tAS) with respect to G∗ that sells the public good with

probability 1 given G∗.
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Then, to finish solving the regulator’s problem, we need to solve the minimax

problem and verify the existence of an optimal mechanism that always sells the

public good.

1.7.1 The Minimax and Maximin Problem

Taking advantage of Observation 1.7.1, we solve the minimax problem by consid-

ering a zero-sum game between the monopolist and the profit-minimizing informa-

tion designer (the profit-minimizer). The profit-minimizer’s objective is to mini-

mize the expected profit of the profit-maximizing monopolist, which is different from

the regulator’s objective we discussed earlier. In this zero-sum game, the profit-

minimizer chooses a feasible signal distribution G ∈ G(µ) and the monopolist chooses

a DSIC/EPIR direct mechanism (q, t) at the same time. In this zero-sum game, the

profit-minimizer solves the minimax problem, while the monopolist solves the max-

imin problem to obtain their optimal choices.

inf
G∈G(µ)

sup
q∈Q

∫
s∈[0,1]N

N∑
i=1

(
siq(s)−

∫ si

0

q(ν, s−i)dν

)
dG(s), (Minimax Problem)

sup
p∈Q

inf
H∈G(µ)

∫
s∈[0,1]N

N∑
i=1

(
sip(s)−

∫ si

0

p(ν, s−i)dν

)
dH(s). (Maximin Problem)

A signal distribution is said to be the minimax solution if it solves the minimax

problem, and an allocation rule is said to be the maximin solution if it solves the

maximin problem.

The minimax solution G∗ and the maximin solution p∗ constitutes a Nash equi-

librium, or a saddle point in this zero-sum game. Let R(p,G) denote the expected

profit of an allocation rule p in a signal distribution G. A pair of an allocation rule
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and a signal distribution (p∗, G∗) constitutes a saddle point if

R(p∗, G) ≥ R(p∗, G∗) ≥ R(p,G∗),

for any p ∈ Q and G ∈ G(µ). The definition of a saddle point requires (p∗, G∗) to be

a mutual best response. The first inequality requires that G∗ must be a worst-case

signal distribution for p∗, which is the profit-minimizer’s best response to p∗, while

the second inequality requires that p∗ is an optimal allocation rule in G∗, which is

the monopolist’s best response to G∗.

We solve the minimax problem to obtain the regulator’s solution and the maximin

problem is jointly solved with the minimax problem as an intermediate step. However,

the maximin problem has a separate economic interest. The maximin mechanism

earns at least the worst-case expected profit as long as the actual signal distribution is

drawn from G(µ). In this way, the maximin solution robustly maximizes the expected

profit of the monopolist given limited knowledge about the information structure.

1.7.2 The Indifference Conditions

Now we introduce the indifference conditions we impose on the the minimax and

maximin problems. Under these conditions, the profit-minimizer and the monopolist

make each other indifferent across all mechanisms and signal distributions, except

for the ones that can never be optimal. Then we use these conditions to characterize

the minimax and maximin solutions.

In an equilibrium of the zero-sum game, players make it harder for the opponent
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to best-respond by giving them a number of optimal choices.11 Borrowing this in-

tuition from the zero-sum game equilibrium, the profit-minimizer ensures that the

monopolist has many optimal mechanisms that he is indifferent, while the monopo-

list ensures that the profit-minimizer has many worst-case signal distributions that

she is indifferent in equilibrium.

The profit-minimizer imposes indifference on the monopolist by choosing the

indifference distribution G∗, where any mechanism such that q(1, · · · , 1) = 1 and

q(s) = 0 for signal profiles whose sum is less than X
A
.

It takes some work to figure out how the monopolist could impose indifference on

the profit-minimizer. Then we consider the maximin problem, where the monopolist

first chooses an allocation rule and is followed by the profit-minimizer who chooses

a worst-case signal distribution. To implement the indifference intuition, we need to

know properties of a worst-case distribution to make the profit-minimizer indifferent

across many signal distributions. Thus, we consider the profit-minimizer’s problem

of finding a worst-case distribution G ∈ G(µ) given a mechanism.

min
G

∫ ∑
i

ti(s)dG(s) (Profit-Minimizer)

s.t.

∫
v∈[0,1]N

sidG(s) = µ for each i = 1, · · · , N (PM-1)∫
s∈[0,1]N

dG(s) = 1 (PM-2)

G(A) ≥ 0 for each measurable subset A ⊂ [0, 1]N (PM-3)

11For example, the rock-scissor-paper game has a mixed strategy equilibrium where players are
indifferent between rock, scissor and paper.
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The profit-minimizer’s problem is a linear programming problem. PM-1 requires

that the expectation of each si must be µ. PM-2 and PM-3 requires G to be a

probability distribution. Thus, its dual program and the complementary slackness

condition characterize the solutions. The dual of the profit minimizer’s problem is to

find two real numbers A and X.

max
ϕ,λ

−X +NAµ (Dual Profit-minimizer)

s.t.
∑
i

ti(s) ≥ −X +
N∑
i=1

Asi for each s ∈ [0, 1]N (D-PM-1)

The dual variables A andX are multipliers of PM-1 and PM-2. Lemma 1.7.1 provides

a sufficient optimality condition for Profit-Minimizer and Dual Profit-minimizer.

Lemma 1.7.1. There is no duality gap between the profit-minimizer’s problem and

its dual problem. Moreover, an optimal solution of the profit-minimizer’s problem and

its dual problem is characterized by the complementary slackness condition.

∫ ( N∑
i=1

ti(s) +X −
N∑
i=1

Asi

)
dG(s) = 0 (C)

The complementary slackness (C) characterizes worst-case signal distributions

given a mechanism, which requires that a worst-case distribution must be supported

on signal profiles where the total transfer of the given mechanism coincides with the

supporting hyperplane A
∑

si −X. Then, the monopolist could impose indifference

on the profit-minimizer by choosing a mechanism whose total transfer coincides with

its supporting hyperplane. We formally define the maximin indifference below.
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Definition 1.7.1. An allocation rule p∗ satisfies the maximin indifference condition

if for each s,

(
A

N∑
i=1

si −X

)+

=
N∑
i=1

(
sip

∗(s)−
∫ si

(X/A−
∑

j ̸=i sj)
+

p∗(ν, s−i)dν

)
,

(Maximin Indifference)

for some A > 0 and X > 0. An allocation rule that satisfies the maximin indifference

condition is said to be the indifference allocation rule.

The indifference allocation rule p∗ implements the indifference intuition by making

the profit-minimizer indifferent across any signal distribution G that is supported on

signal profiles whose sum exceeds the threshold X
A
. The indifference condition implies

that
∑N

i=1 ti(s) = 0 and p∗(s) = 0 for signal profile s whose sum is less than X
A
. Then,

the complementary slackness condition implies that any signal distribution whose

support is not a subset of {s|
∑N

i=1 si ≥
X
A
} cannot be a worst-case distribution since

the total transfer is strictly larger than the supporting hyperplane at signal profiles

whose sum is less than X
A
.

1.7.3 The Indifference Allocation Rule

The Maximin Indifference condition defines a partial integral equation for an alloca-

tion rule. We expect to see a piecewise-defined solution from the maximin indifference

condition because the lower bound of the integration interval is truncated at 0. With

an arbitrary number of agents, it is generally difficult to explicitly solve for the in-

difference allocation rule as there are rapidly increasing number of cases we need

to consider. Still, we show that the maximin indifference condition implies a well-

defined allocation rule and explicitly construct the indifference allocation rule with
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two and three agents.

Proposition 1.7.1. Given A > 0 and X > 0, there exists the indifference allocation

rule p∗. In addition, p∗ is non-negative and strictly increasing in s.

We present a constructive proof for Proposition 1.7.1 at the appendix, devising

a procedure that solves the maximin indifference condition for the indifference allo-

cation rule. Namely, the procedure differentiates the indifference condition equation,

which is a partial integral equation, with respect to the signals. It then yields an

ordinary integral equation of a cross-partial derivative of the allocation rule that we

can easily solve. Finally, We integrate the cross-partial derivatives up to recover the

allocation rule. Applying such procedure to the case with two or three agents, we

fully solve for the indifference allocation rule to understand the economics behind

Proposition 1.7.1.

We apply the procedure developed in Proposition 1.7.1 to solve Maximin Indiffer-

ence for the maximin allocation rule p∗ with two and three agents to study properties

of the maximin mechanism. It is qualitatively different when there are two agents and

when there are three or more agents. With two agents, the maximin mechanism uses

a scoring rule to determine supply. On the other hand, with three or more agents,

the allocation rule is not a scoring rule.

First, suppose that there are two agents. We obtain the maximin allocation rule

in Corollary 1.7.1.
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Corollary 1.7.1.

p∗(s) =



0 s1 + s2 <
X
A

A2

X
(s1 + s2)− A s1 + s2 ≥ X

A
s1 <

X
A

s2 <
X
A

A log
(
A
X
s1
)
+ A2

X
s2 s1 + s2 ≥ X

A
s1 >

X
A

s2 <
X
A

A log
(
A
X
s1
)
+ A log

(
A
X
s2
)
+ A s1 + s2 ≥ X

A
s1 >

X
A

s2 >
X
A

(1.9)

With two agents, the maximin allocation rule allows a simple interpretation since

it transforms reports of each agent into ϕ, a scoring rule, which is defined as below.

ϕ∗(s) =


A2

X
s− A

2
s < X

A

A log
(
A
X
s
)
+ A

2
. s ≥ X

A

The scoring rule depends on the size of signal, which is linear when the report is

small while being a log function when the report is large.

p∗(s) = max{0, ϕ∗(s1) + ϕ∗(s2)}

The allocation rule p∗ is then the total score if it is non-negative. The maximin

allocation rule provides incentive to agents with low signals by allowing them to

make a negative contribution to the supply. Reports from one agent determines the

level of public good supply and money transfer from the other agents, but they are

independent on the margin.

Then we consider the three agents case. Again, we obtain the maximin allocation

rule by solving the maximin indifference condition. However, with three agents, it
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takes too much space to fully describe the allocation rule. Thus, we relegate the

complete description of the maximin allocation rule to the appendix and proceed

with the marginal allocation rule p∗1(s), which is the partial derivative of p∗ with

respect to s1 in Corollary 1.7.2.

Corollary 1.7.2.

p∗1(s) :=
∂p∗

∂s1
(s) =


A3

X2

(
s1 +min{s2, XA − s1}+min{s3, XA − s1}

)
s1 <

X
A

A
s1

s1 ≥ X
A

(1.10)

The maximin allocation is qualitatively different with three agents from the two

agents case. Notably, the maximin allocation rule is no longer a scoring rule because

p∗ is not additively separable in signals. Figure 1.10 illustrates the marginal allocation

rule q1, assuming without loss of generality that s2 < s3. When s1 is small, the agents

complement each other in the mechanism on the margin. That is, increasing s1 allows

the mechanism to sell the public good at lower signals of other agents. On the other

hand, as s1 increases, the marginal allocation plateaus and then decreases because

the agents are no longer complements on the margin.

Figure 1.10: q1 with three agents
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1.7.4 Characterization of A Saddle Point

So far, we constructed the indifference distribution G∗ and verified that the maximin

indifference condition implies a well-defined allocation rule p∗ for some parameter A

and X. Now, we have all the ingredients to construct a saddle point in the zero-sum

game between the monopolist and the profit-minimizer.

Proposition 1.7.2. The pair of the indifference allocation rule p∗ and the indiffer-

ence distribution G∗ with parameters A∗ and X∗ that satisfy

µ =

∫
S

sidG
∗(s), (1.11)

1 =p∗(1, · · · , 1) (1.12)

is a saddle point.

Proof of Proposition 1.7.2. We first argue that there exists a unique A∗ and X∗ that

satisfy (1.11) and (1.12). First, Lemma 1.4.1 shows that there exists a unique ratio

between A∗ and X∗ so that G∗ is a feasible signal distribution since the indifference

distribution is fully determined by the ratio X∗

A∗ . The parameters A∗ and X∗ are

individually pinned down by (1.12), which requires that the indifference allocation

sells the full amount at the highest signal profile.

Then we show that the indifference allocation and distribution constitute a saddle

point, by proving that they mutually best-response to each other. We first show that

p∗ is an optimal mechanism in the indifference distribution G∗. From the minimax

indifference condition, we know that an optimal mechanism in G∗ must sell the full

amount of the public good at s = (1, · · · , 1), while it sells no public good if the
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sum of reported signals is less than X∗

A∗ . (1.12) requires the first requirement for

optimality, and the maximin indifference implies p∗(s) = 0 for signal profiles where∑N
i=1 si ≤

X∗

A∗ . Thus, the indifference allocation p∗ is an optimal mechanism in the

indifference distribution G∗.

Next, we show that the indifference distribution G∗ is the worst-case signal dis-

tribution for the indifference allocation p∗. We use Lemma 1.7.1, which characterizes

worst-case signal distributions given any mechanism to prove the point. Given the

indifference allocation p∗, the complementary slackness (C) requires that a worst-case

distribution to be supported on signal profiles such that
∑

si ≥ X∗

A∗ , which coincides

with the support of the indifference distribution G∗.

Thus, we verified that the pair of the indifference allocation p∗ and the indifference

distributionG∗ constitutes a saddle point, when the parameters A∗ andX∗ are chosen

by (1.11) and (1.12).

Proposition 1.7.2 jointly characterizes both the minimax and maximin solution.

However, for the purpose of solving the regulator’s problem, we only need the mini-

max solution. It is characterized independently from the maximin solution, only by

the minimax indifference and the expectation constraint since G∗ depends on the

ratio between A∗ and X∗, which is pinned down by the expectation constraint.

Corollary 1.7.3. The minimax distribution G∗ is characterized by the Monopolist

Indifference condition and the expectation constraint (1.11).
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1.7.5 Characterization of the Regulator’s Solution

Cororllary 1.7.3 above shows that the minimax solution G∗ is characterized by the

Monopolist Indifference and the expectation constriant only. The minimax indiffer-

ence implies that the always-sell mechanism (qAS, tAS), which sells the public good

at any signal profile that realizes under G∗, is an optimal mechanism in G∗.

qAS(s) =1

{
N∑
i=1

si ≥
(
X

A

)∗
}
.

tAS
i (s) =qAS(s)min

{
ŝi|ŝi +

∑
j ̸=i

sj ≥
(
X

A

)∗

, ŝi ≥ 0

}
,

=qAS(s)

((
X

A

)∗

−
∑
j ̸=i

sj

)+

.

(1.13)

Then we leverage on Observation 1.7.1 to prove that the minimax solution G∗ also

solves the regulator’s problem.

Corollary 1.7.4. The minimax solution G∗ ∈ G(µ) solves the Regulator’s Problem.

1.8 Discussion and Concluding Remarks

1.8.1 Discussion

We would like to discuss and interpret the assumptions on the regulator’s problem

relative to the standard approach in the information design literature. The regulator

is restricted by the expectation of each signal and the range of signal to be between

[0, 1] for each coordinate. This modeling approach contrasts with the standard in-

formation design literature, where there is a state of nature, and an information
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structure is formally defined as a joint distribution over signals and the state of na-

ture. In our context, the true valuation of the public good is the state of nature, and

the agents are the receivers.

Recent papers such as Gentzkow and Kamenica (2016), Roesler and Szentes

(2017) and Dworczak and Martini (2019) consider signal distributions instead of full

information structures because sender and receiver have preferences that only depend

on the expectation of the state. They identify the set of feasible signal distributions,

which could arise from some full information structure to solve the information de-

sign problem. Feasibility requires that the signal distribution is a mean-preserving

contraction of the distribution of the state. The three-way characterization of the

mean-preserving spread from Rothschild and Stiglitz (1971) plays an important role

in characterizing the set of such signal distributions, especially for the comparison

between the integrated cumulative distribution functions.

However, in our case with multi-dimensional state of nature, there is no simple

characterization of the mean-preserving contraction relationship as we cannot employ

the comparison of integrated cumulative distribution functions anymore. However,

the modeling approach we take here does not give an excessive power to the regulator

relative to the standard assumptions because, even with the standard assumptions,

the regulator’s solution is characterized by the minimax and maximin indifference

conditions as before. The regulator’s solution will still be characterized by the zero-

sum virtual values condition, but on a narrower signal support under the standard

assumptions.
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1.8.2 Concluding Remarks

In this paper, we studied a problem of signal distribution choice that would max-

imize the buyers’ payoffs in an optimal public good sales mechanism. The optimal

signal distribution must tame the monopolist’s market power and the agents’ free-

riding incentives at the same time so that the agents could buy the public good at

the cheapest price possible. We characterized the regulator’s solution and the signal

support. The solution achieves the goal through the indifference condition on the

monopolist so that he always sells the public good under the chosen signal distribu-

tion. The signal support exhibits the property that the total signal is bounded below

and in turn limits the impact of free-riding of the agents.

We solved the regulator’s problem using the conditional equivalence with the min-

imax solution, which is the signal distribution that minimizes the expected profit of

an optimal mechanism. Toward solving the minimax problem, we solved the maximin

problem where the monopolist chooses a mechanism that maximizes the worst-case

expected profit. The maximin mechanism depends on the number of agents, which is

a scoring mechanism with two agents, while it becomes qualitatively different from

scoring mechanism with three or more agents.

1.9 Appendix

Proof of Proposition 1.4.1. We first show that G∗ is well-defined. The constant of

integration c(d) is given by

c(d) =
1∑

H∈2N
∫
S∈S(H),

∑N
i=1 si≥d

1

(
∑

j∈N−H sj+H)
N−H+1

N+1∏H
h=0(N−h+1)

ds
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ensures that G∗ is a probability distribution. c(d) increases in d since the integral on

the denominator decreases in d. In addition, c converges to 0 as d goes to 0 since the

integral on the denominator diverges and c(N) = N ∗N !.

The expectation of si increases in d, for each i since an increase in d drops lower

si from the expectation and increases the weight c(d) on higher si.

∫
sidG

∗(s) =
∑
H∈2N

∫
S∈S(H),

∑N
i=1 si≥d

si
c(d)(∑

j∈N−H sj +H
)N−H+1

N + 1∏H
h=0(N − h+ 1)

ds

Suppose that d = N , then G∗ is degenerate at s = (1, · · · , 1) and the expectation of

each si is 1. Next, suppose that d approaches to 0 from above. Then the expectation

of si converges to 0 as c(d) vanishes as d gets smaller. Thus, there exists a unique d∗

that satisfies the expectation constraint by the intermediate value theorem.

We next show that the density g∗ satisfies the minimax indifference condition on

each partition element S(H), for each H ∈ 2N . Fix a partition element S(H). For

each s such that
∑N

i=1 si ≥ d∗ and si < 1, the density g∗ implies the following.

1−G∗(si|s−i)

g∗(si|s−i)
=

∫ 1

si
g∗(t, s−i)dt+ g∗(1, s−i)

g∗(s)
=

1

N −H

( ∑
j∈N−H

sj +H

)

Then we obtain the individual virtual value for agent i. For each signal profile

s ∈ S(H) such that
∑N

i=1 si ≥ d,

φ∗
i (si|s−i) =


si − 1

N−H

(∑
j∈N−H sj +H

)
i ∈ N −H

1 i ∈ H

It is clear that if there is a joint density g∗ that induces the virtual value as above,
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it must satisfy the minimax indifference condition.

c∗(d) and d∗ for Two, Three and Four Agents

• Two agents

c∗(d) =


d 0 < d ≤ 1

d2 1 < d ≤ 2

µ =


1
4
d∗(3− 2 log d∗) 0 < d∗ ≤ 1

d∗ − 1
4
(d∗)2 1 < d∗ ≤ 2

• Three agents

c∗(d) =


2d 0 < d ≤ 1

2d3

2d−1
1 < d ≤ 2

2d3

3
2 < d ≤ 3

µ =


1
18
d∗
(
11 + 6 log

(
1
d∗

))
0 < d∗ ≤ 1

−4(d∗)3+24(d∗)2−9d∗

36d∗−18
1 < d∗ ≤ 2

d∗

2
− (d∗)3

54
2 < d∗ ≤ 3

• Four agents

c∗(d) =



6d 0 < d ≤ 1

6d4

3d2−3d+1
1 < d ≤ 2

6d4

9d−11
2 < d ≤ 3

3d4

8
3 < d ≤ 4

µ =



25d∗

48
− 1

4
d∗ log(d∗) 0 < d∗ ≤ 1

d∗(16−9d∗((d∗−8)d∗+6))
48(3(d∗−1)d∗+1)

1 < d∗ ≤ 2

d∗(−3(d∗)3+162d∗−176)
48(9d∗−11)

2 < d∗ ≤ 3

1
768

(d∗)4
(

256
(d∗)3

− 1
)

3 < d∗ ≤ 4

Proof of Proposition 1.5.1. We first show that for any symmetric signal distribution

G ∈ G(µ), there exists another symmetric signal distribution GPP where the monop-

olist earns the same expected profit and the sale realizes with probability 1.
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Fix a symmetric G ∈ G(µ) and let p∗ denote an optimal price in G∗, which

satisfies

π∗ = Ḡ(p∗)
N∑
i=1

p∗i ≥ Ḡ(p)
N∑
i=1

pi,

for each (p1, · · · , pN) ∈ [0, 1]N . Equivalently,

π∗∑N
i=1 pi

≥ Ḡ(p), (1.14)

for each (p1, · · · , pN) ∈ [0, 1]N .

Define a joint survival function ḠPP by

ḠPP (s) =
π∗∑N
i=1 si

,

for si ∈ [π∗/N, 1] for each i.

(1.14) implies that ḠPP is larger than Ḡ in the upper orthant order, which implies

that the expected signal in ḠPP is larger than in Ḡ by Theorem 6.G.1. of Shaked

and Shanthikumar (2007),

∫ 1

π∗/N

· · ·
∫ 1

π∗/N

sidG
PP (s) ≥ µ =

∫ 1

0

· · ·
∫ 1

0

sidG(s) ≥ π∗/N,

for each i.

For each i, define the function fi(s̄) by

fi(s̄) =

∫ s̄

π∗/N

· · ·
∫ s̄

π∗/N

sidG
PP (s)− µ

Each fi is continuous, fi(π
∗/N) < 0 and fi(1) > 0. Thus, by the intermediate value
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theorem, there exists s̄∗ ∈ [π∗/N, 1] where fi(s̄
∗) = 0 for each i and GPP ∈ G(µ).

It is optimal for the monopolist to charge π∗/N to each agent in GPP , which earns

the expected profit π∗ and sells the public good with probability 1. It is without loss

to consider GPP with s̄ ≤ 1 to solve the regulator’s problem when the monopolist

chooses an optimal posted-price. Thus, the posted-price distribution GP solves the

regulator’s problem when the monopolist chooses an optimal posted-price.

Proof of Proposition 1.6.1. We consider a variant of the indifference distribution,

where signal profiles are drawn from a smaller range, where each signal is at most

m ≤ 1, for each agent. The signal space is partitioned by the set of agents who

observed a signal higher than m. Define Ŝ(H) to be the subset of the signal space

where H ∈ 2N , a subset of agents observed a signal higher than m. Define a partition

on the signal space by the set of agents H who observed a signal higher than m.

S = ∪H∈2N Ŝ(H) = ∪H∈2N{s ∈ S|si ≥ m for each i ∈ H}. (1.15)

For each measurable A ⊂ S, define Ĝ(A), the probability of observing the event A

under Ĝ by

Ĝ(A) =
∑
H∈2N

∫
s∈Ŝ(H)∩A

ĝ(s)ds. (1.16)

The joint density ĝ is chosen so that the always-sell mechanism is optimal under Ĝ.

For s ∈ Ŝ(H) such that
∑N

i=1 si ≥ d and si ≤ m for each i,

ĝ(s) =
ĉ(d)(∑N

i=1 si

)N−H+1

N + 1∏H
h=0(N − h+ 1)

, (1.17)
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for some constant ĉ(d) and the threshold d which ensures that Ĝ is a probability

distribution and satisfies the expectation constraint.

The signal distribution Ĝ coincides with the regulator’s solution if m = 1.

Proof of Proposition 1.5.3. With N symmetric agents, the lowest signal s
¯
is chosen

so that the expected signal is equal to µ.

µ = s
¯
+Ns

¯
log

(
1 + (N − 1)s

¯
Ns
¯

)

An optimal mechanism earns π(N) = Ns
¯
under the posted-price distribution. Rear-

range the expectation constraint to obtain a sequence of implicit functions of π(N).

Φ(π(N), N) = π(N)

[
1

N
+ log

(
1

π(N)
+

N − 1

N

)]

For each N , Φ(π(N), N) is continuous and increasing in π(N) for π(N) < N . More-

over, Φ(N,N) = 1 and limπ→0Φ(π,N) = 0 for each N . Thus, there exists a unique

π(N) ∈ [0, N ] for each N .

Denote the limit expected profit by π(∞) = limN→∞ π(N). Take the limit on Φ

to obtain the limit expected profit.

µ = lim
N→∞

Φ(π(N), N) = π(∞) log

(
1

π(∞)
+ 1

)

The right hand side is 0 if π(∞) = 0, is 1 if π(∞) = ∞ and is increasing in π(∞).

Thus, for each µ ∈ [0, 1), there exists a finite π(∞) that satisfies the expectation

constraint.

Proof of Lemma 1.7.1. The value of the profit-minimizer’s problem is bounded above
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by Nµ. The degenerate distribution at the value v = µ is an interior point of the set

of feasible primal variables. Thus, there is no duality gap between the primal and

dual profit-minimzier’s problem by Theorem 3.12 of Anderson and Nash (1987)

Next, we show that the complementary slackness condition characterizes an op-

timal solution. Suppose that G and (A,X) are feasible for the primal and the dual,

respectively and they satisfy the complementary slackness condition. From the com-

plementary slackness condition,

∫ N∑
i=1

ti(s)dG(s) = −X +NAµ

The integrals on the right hand side were simplified using the primal constraints.

Next, we show that G is an optimal solution. Consider a feasible primal variable G̃.

Integrate the dual constraint with respect to G̃ to obtain

∫ N∑
i=1

ti(s)dG̃(s) ≥ −X +NAµ

Again, we simplified the integrals on the right hand side using the primal constraints.

Therefore, for any feasible G̃, G is an optimal solution for the primal problem. Using

a mirror argument, (A,X) is an optimal solution for the dual problem given the

assumptions.

Next, suppose that A,X and G are optimal solutions to the dual and primal

problem. Integrating the dual constraint yields

∫ ∑
i

ti(s)dG ≥ −X +NAµ
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The left-hand side is the primal value and the right-hand side is the dual value, which

are equal. Thus, we obtain the complementary slackness condition.

Proof of Proposition 1.7.1. We apply the same strategy to solve Maximin Indiffer-

ence with any number of agents. Suppose that the monopolist has N symmetric

agents. We start from finding the marginal allocation rule p1(s) :=
∂p
∂s1

(s) for special

cases. Differentiate Maximin Indifference with respect to s1. For each s such that

A
∑N

i=1 si −X ≥ 0,

A =
N∑
i=1

sip1(s)−
N∑
i=2

∫ si

(X/A−
∑

j ̸=i sj)
+

p1(t, s−i)dt (1.18)

where we used p(X/A −
∑

j ̸=1 sj, s−1) = 0 since the signal sums up to X/A. p∗1 is

again found for some special cases, exploiting symmetry.

p∗1(s) =


AN

XN−1

(∑N
i=1 si

)N−2

s1 <
X
A
,
∑

j ̸=i sj ≥
X
A

for each i ̸= 1,

A
s1

s1 ≥ X
A

(1.19)

We solve for the rest of p∗1 using the same strategy. Let p∗12(s) :=
∂2p∗

∂s1∂s2
(s) denote

the cross-marginal allocation rule with respect to s1 and s2. Differentiate (1.18) with

respect to s2 yields an integral equation for p∗12.

N∑
i=3

1

{
X

A
−
∑
j ̸=i

sj ≥ 0

}
p∗1

(
X

A
−
∑
j ̸=i

sj, s−j

)
=

N∑
i=1

sip
∗
12(s)−

N∑
i=3

∫ si

(X/A−
∑

j ̸=i sj)
+

p∗12(τ, s−j)dτ

(1.20)

The left-hand side of (1.20) is either 0 or a positive constant. For each i such that

X/A−
∑

j ̸=i sj ≥ 0, p∗1(X/A−
∑

j ̸=i sj, s−j) =
A2

X
from (1.19) since the signal sums
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up to X
A
. Thus, the left-hand side of the above equation is a non-negative constant.

N∑
i=3

1

{
X

A
−
∑
j ̸=i

sj ≥ 0

}
p∗1

(
X

A
−
∑
j ̸=i

sj, s−j

)
=

N∑
i=3

1

{
X

A
−
∑
j ̸=i

sj ≥ 0

}
A2

X

Each differentiation of (1.18) yields the cross partial derivative of p∗ evaluated at

(X/A −
∑

j ̸=i sj, s−j) if X/A −
∑

j ̸=i sj ≥ 0. Since the signal sums up to X
A
, we see

that the cross partial derivatives are all constant from (1.19). Thus, the constant

term disappears after another differentiation.

After differentiating the equation with respect to s1, · · · , sN−1, we obtain an or-

dinary differential equation for p∗−N := ∂N−1

∂s1···∂sN−1
p∗. Again, the left-hand side is a

constant.

1

{
X

A
−
∑
j ̸=N

sj ≥ 0

}
AN−1

XN−2

1

(N − 2)!
=

N∑
i=1

sip
∗
−N(s)−

∫ sN

(X/A−
∑

j ̸=N sj)+
p∗−N(τ, s−j)dτ

Thus, p∗−N is a non-negative constant. Then the allocation rule is recovered from

integrating the cross partial derivatives over signals.

During the procedure, we found that any cross partial derivative of p∗ is non-

negative at any signal profile. Thus, we have found the maximin allocation rule p∗

must be monotone in signals. Summarizing the discussion above, we obtain Propo-

sition 1.7.1.

Proof of Corollary 1.7.1. Suppose that the monopolist has two symmetric agents.

We solve Maximin Indifference by finding the marginal allocation rule p1 :=
∂p
∂s1

and

then integrating it to recover the allocation rule. Differentiate Maximin Indifference
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with respect to s1 to yield an ordinary integral equation.

A = (s1 + s2)p1(s)−
∫ s2

(X/A−s1)+
p1(s1, τ)dτ (1.21)

The condition that p∗(s1, X/A−s1) = 0 was used to simplify the expression. Consider

(1.21) as an ordinary integral equation for p∗1(s1, ·), holding s1 fixed to obtain p∗1.

p∗1(s) =


A2

X
s1 <

X
A

A
s1

s1 ≥ X
A

It remains to integrate p∗1 to recover the allocation rule p∗. First, suppose that

s1 < X/A and s2 < X/A. Then Maximin Indifference implies p∗(X/A − s2, s2) = 0.

Next, suppose that s1 > X/A. Then the boundary condition needs p∗(X/A, s2),

which is recovered from the first case. Next, suppose that s1 < X/A and s2 ≥ X/A.

The boundary condition p∗(0, s2) is recovered from the second case by permuting

the agents. Thus, we obtain the allocation rule as below. Consider s1 ≥ s2 since the

agents are symmetric.

Proof of Corollary 1.7.2. Next, suppose that there are three agents. We take the

same approach by differentiating Maximin Indifference to simplify the partial integral

equation into an ordinary integral equation. Differentiate Maximin Indifference with

respect to s1 to obtain the equation below.

A =
3∑

i=1

sip1(s)−
3∑

i=2

∫ si

(X/A−
∑

j ̸=i sj)
+

p1(t, s−i)dt (1.22)

Though (1.22) is a partial integral equation, p∗1 could be found on some special cases
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where it has a symmetric shape.

p∗1(s) =


A3

X2

∑3
i=1 si

∑3
i=1 si ≥

X
A
, X
A
−
∑

j ̸=2 sj > 0, X
A
−
∑

j ̸=3 sj > 0

A
s1

s1 ≥ X
A

(1.23)

We recover the rest of p∗1 from finding p∗12 :=
∂2p∗

∂s1∂s2
, differentiate (1.22) with respect

to s2 to obtain an ordinary integral equation for p∗12.

p∗1

(
s1, s2,

X

A
−
∑
j ̸=3

sj

)
1

{
X

A
−
∑
j ̸=3

sj > 0

}
=

3∑
i=1

sip
∗
12(s)−

∫ s3

(X
A
−s1−s2)+

p∗12(t, s−3)dt

(1.24)

From (1.23), we see that the left-hand side of (1.24) is either 0 or a positive

constant. Suppose X/A − s1 − s2 > 0, then p∗1(s1, s2, X/A − s1 − s2) = A3/X2.

Otherwise, the left-hand side is zero. Thus, we obtain an ordinary integral equation

for p∗12(s).

p∗12(s) =


0 X/A− s1 − s2 < 0

A3

X2 X/A− s1 − s2 ≥ 0

Following similar steps, p∗13 is also identified. Then, p∗1 is found from integrating p∗12

and p∗13 along s2 and s3.

We state the maximin allocation rule with three agents. Integrate (1.10) with

respect to s1 to obtain p∗. Without loss of generality, we consider signal profiles

where s1 ≤ s2 ≤ s3.

1. s1 ≤ s2 ≤ s3 ≤ X/A
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(a) X/A− s1 − s2 > 0, X/A− s1 − s3 > 0, X/A− s2 − s3 > 0

p∗(s) =
A3s21
2X2

+
A3s1s2
X2

+
A3s1s3
X2

+
A3s22
2X2

+
A3s2s3
X2

+
A3s23
2X2

− A

2
(1.25)

(b) X/A− s1 − s2 > 0, X/A− s1 − s3 > 0, X/A− s2 − s3 < 0

p∗(s) =
A3s21
2X2

+
A3s1s2
X2

+
A3s1s3
X2

+
A2s2
X

+
A2s3
X

− A (1.26)

(c) X/A− s1 − s2 > 0, X/A− s1 − s3 < 0, X/A− s2 − s3 < 0

p∗(s) =
A3s1s2
X2

− A3s23
2X2

+
A2s1
X

+
A2s2
X

+
2A2s3
X

− 3A

2
(1.27)

(d) X/A− s1 − s2 < 0, X/A− s1 − s3 < 0, X/A− s2 − s3 < 0

p∗(s) = −A3s21
2X2

− A3s22
2X2

− A3s23
2X2

+
2A2s1
X

+
2A2s2
X

+
2A2s3
X

− 2A (1.28)

2. s1 ≤ s2 ≤ X/A ≤ s3

(a) X/A− s1 − s2 > 0, X/A− s1 − s3 < 0, X/A− s2 − s3 < 0

p∗(s) =
A3s1s2
X2

+
A2s1
X

+
A2s2
X

+ A log

(
As3
X

)
(1.29)

(b) X/A− s1 − s2 < 0, X/A− s1 − s3 < 0, X/A− s2 − s3 < 0

p∗(s) = −A3s21
2X2

− A3s22
2X2

+
2A2s1
X

+
2A2s2
X

+ A log

(
As3
X

)
− A

2
(1.30)

3. s1 ≤ X/A ≤ s2 ≤ s3
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(a) X/A− s1 − s2 < 0, X/A− s1 − s3 < 0, X/A− s2 − s3 < 0

p∗(s) = −A3s21
2X2

+
2A2s1
X

+ A log

(
As2
X

)
+ A log

(
As3
X

)
+ A (1.31)

4. X/A ≤ s1 ≤ s2 ≤ s3

(a) X/A− s1 − s2 < 0, X/A− s1 − s3 < 0, X/A− s2 − s3 < 0

p∗(s) = A log

(
As1
X

)
+ A log

(
As2
X

)
+ A log

(
As3
X

)
+

5A

2
(1.32)
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CHAPTER 2

Informationally Robust Public Good Provision

2.1 Introduction

How should a monopolist sell a pure public good, which is non-excludable and non-

rivalrous to a group of buyers once it is produced? One may resort to the classical

Bayesian optimal mechanism as in Güth and Hellwig (1986), where the monopolist

seller maximizes the expected profit from the sale. However, the Bayesian approach

requires the seller to know the details of the buyers’ information structure to optimize.

Otherwise, the Bayesian recipe is not very useful from the seller’s perspective. For

example, consider a seller of an innovation.1 He may only have a proposal of the

final product to show at the time of sale, which makes it hard for him to have

detailed information about its appeal to the buyers. Even if the seller has a complete

product, he does not want to let the buyers examine the product before purchase,

which may leak the knowledge and eliminate the seller’s bargaining position. For

another example, consider a seller who needs a boilerplate contract for public good

sales for repeated use. It is desirable for the template to depend on a few parameters

and perform reasonably well across various information structures.

1Though the patent system helps innovators to keep their works exclusive, its coverage is far
from perfect. Patent laws require innovations to satisfy several properties to be patentable.
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Then, how should the monopolist sell a public good when he does not have a

clear belief on the buyers’ information structure? This paper considers a minimalist

approach, constructing a strong maximin solution due to Brooks and Du (2020) when

the monopolist knows N , the number of buyers and µ, the expected value each buyer

puts on the public good and the range of valuations, but any other details of the

true information structure is not available to him.

This paper explicitly constructs a robustly optimal mechanism of public good sale

that does not require detailed knowledge about the true information structure and

is simple enough to be practical. It maximizes the profit guarantee, the worst-case

expected profit from sales across any information structure that is consistent with

the monopolist’s knowledge and equilibrium played in the mechanism.

In the optimal mechanism, each buyer reports her quantity demanded to the

monopolist, which is aggregated into the amount of the public good provided. The

optimal allocation rule qualitatively depends on the two parameters, N and µ, which

represents the intensity of free-riding and the monopolist’s confidence in his product,

respectively. First, if the monopolist is sufficiently confident, (µ is sufficiently high

given N) the monopolist fully shuts down the possibility to free-ride by having the

smallest demand determine the supply of public good. In other words, each buyer

cannot consume more than she demands for herself. Second, if the monopolist is not

sufficiently confident, (µ is not sufficiently high given N) then he must condone the

possibility of free-riding since there might be one buyer whose demand is lower than

that of others. Each buyer is allowed to demand a fraction of the full amount, and the

public good is provided by the total demand reports. In both cases, the maximin allo-

cation rule is implemented via a transfer rule that satisfies an indifference condition,

which gives a number of worst-case information structures to the profit-minimizing
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information designer. The condition admits a number of different transfer rules.

This paper considers the standard public good provision setup where buyers have

private information about their willingness to pay for the public good. They have

quasi-linear preferences for the public good and a numeraire. The buyers observe

a private signal about the value of the public good according to an information

structure consistent with the monopolist’s knowledge. Compared with the setup of

Chapter 1, we allow value interdependence, on which buyers learn from signals of

other buyers, in Chapter 2. The monopolist chooses a sales mechanism to maximize

profit, but has limited knowledge about the buyers’ information structure. He only

knows that each buyer’s expected valuation of the public good is µ and the actual

valuation is between 0 and 1. The monopolist evaluates a mechanism by its worst-

case expected profit, across any information structure that is consistent with his

knowledge and the Bayes-Nash equilibrium played in the public good provision game

defined by the mechanism and the worst-case information structure.

This paper solves the max2min problem of public good provision, where the

monopolist evaluates a mechanism by its profit guarantee, the worst-case expected

profit across any information structure that is consistent with his knowledge and any

Bayes-Nash equilibrium played on the public good provision game defined by the

pair of a mechanism and an information structure. Following Brooks and Du (2020),

we leverage on the restricted max2min and min2max problems to obtain a necessary

condition for a strong maximin solution. The restricted problems are obtained by

relaxing the second mover’s problem in the max2min and the min2max problems.

Thus, the restricted problems provide an upper and a lower bound for the max2min

and the min2max problems. They provide a necessary condition for a strong maximin

solution, but it is hard to explicitly find an intuitive solution.
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We consider an equivalent representation of the restricted minimax problem,

which is conducive to discovery of essential features of the maximin allocation rule.

The restricted minimax problem finds an information structure, which is a joint

distribution over signals and values, that minimizes expected profit of an optimal

Bayesian mechanism. Since the choice of an information structure is only subject to

the monopolist’s knowledge about the true information structure, which is concerned

with the expected value of each buyer, it is equivalent to choosing an interim value

function, which is the buyer’s expected valuation of the public good given a signal

profile, where the ex-ante expectation coincides with the given expected value µ and

the interim values are between 0 and 1 at any signal profile.

The restricted min2max problem of choosing an interim value yields its dual

problem, where an allocation rule and the shadow value on the constraint that the

interim value is at most 1. We show that this dual problem implies the max2min

allocation rule to be either the veto or the capped proportional rule. In addition,

the equivalent dual problem is reducible to choosing a couple of parameters. The

complementary slackness condition ensures that the min2max interim value function

exists and is pinned down by the same set of parameters. Thus, we do not need

to explicitly find the min2max information structure to certify optimality of the

maximin mechanism.

This paper is closely related to a recent literature on the strong maximin mecha-

nisms, pioneered by Brooks and Du (2020). They show that the proportional auction

is a maximin mechanism for common-value private good sales, in which each bidder

submits quantity demanded and wins the good proportional to own demand report

relative to the total reports. A follow up paper Brooks and Du (2021a) studies a

general structure of the strong maximin problem using an approximation argument.
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It also suggests the restricted problems, which this paper exploits to obtain its main

results. Next, Brooks and Du (2021b) shows that the proportional auction continues

to be a strong maximin solution if the auctioneer only knows the expected valuation

of each bidder.

This paper contributes to this series of papers by providing a set of strong max-

imin solutions in the public good provision situation, providing intuitive solutions.

Unlike the strong maximin solution for private good sales, we find that the maximin

mechanism qualitatively depends on the common expected value. In our setup, the

proportional mechanism is no longer optimal, instead it must put a cap on individ-

ual demand to curb free-riding. The veto mechanism provides a novel way of selling

public goods when sellers are confident about quality. Additionally, this paper con-

siders the equivalent representation of the restricted min2max problem, deducing the

max2min allocation rule. This consideration may help the search of a strong maximin

solution in other problems.

The rest of this paper consists of the following sections. We first introduce the

setup where there is a monopolist seller of a public good and a number of buyers.

We then discuss the construction of the restricted maximin problem and a character-

ization of its solutions. Then we use the characterization for the restricted maximin

solution to obtain a strong maximin solution.

2.2 Model

Consider the sale of a public good by a profit-maximizing monopolist seller, who

designs a sales mechanism. The public good is divisible and could be produced up

to one unit at no cost. There are N buyers who could non-exclusively and non-
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rivalrously enjoy the public good. Each buyer either finds the public good useful,

vi = 1 or useless, vi = 0. Let V = {0, 1}N denote the valuation space. The designer

knows that each buyer’s value of the public good is in expectation E[vi] is µ ∈

(0, 1), but other details of the true information structure are not available to the

designer. The buyers have preferences over the amount of public good provided q and

money transfer ti. Their preferences are quasi-linear with respect to money transfer,

represented by a utility function viq− ti. The designer wants to maximize profit from

trade. His preferences is represented by
∑N

i=1 ti.

An information structure I = (S,w, g) describes the distribution of buyers’ sig-

nals and values, where S =
∏N

i=1 Si is a measurable signal space, w : S → [0, 1]N

is an interim expected value of agents, which determines the buyers’ expected val-

uation of the public good given a profile of signals and G is the signal distribution.

We assume that the information structure must be consistent with the designer’s

knowledge. That is, for each agent i,

∫
S

wi(s)G(ds) = µ

Equivalently, an information structure could be defined by a tuple (S, π), where

π ∈ ∆(V × S) whose marginal over S is G and

∫
s∈B

∑
v

viπ(ds, v) = µ

for any measurable subset B of S and each agent i. Denote the set of information

structures which are consistent with the designer’s knowledge by I

The mechanism designer chooses a mechanism M = (
∏N

i=1 Mi, q, t), where Mi
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is a measurable message space, q :
∏N

i=1 Mi → [0, 1] is an allocation rule, and t :∏N
i=1Mi → R

N is a transfer rule. Assume that the allocation and transfer rule are

measurable functions. In addition, the mechanism must have an opt-out message

m0
i for each agent i where ti(m

0
i ,m−i) = 0 for any m−i. Denote the set of feasible

mechanisms by M

A pair of an information structure and a mechanism (M, I) defines a game of

incomplete information. Agent i’s strategy is a measurable function βi : Si → ∆(Mi).

A profile of strategies β is a function β : S → ∆(M), where β(s) is the product

measure
∏N

i=1 βi(si). Let Ui(β) denote agent i’s expected payoff under the strategy

profile β, where

Ui(β) =

∫
s∈S

∫
m∈M

(wi(s)q(s)− ti(s)) β(dm|s)G(ds).

A strategy profile β is a Bayes-Nash equilibrium if Ui(β) ≥ Ui(β
′
i, β−i) for any other

strategy β′
i and for any agent i. Denote the set of BNEs by B(M, I).

Let Π(M, I, β) denote the expected profit of a mechanism M under an informa-

tion structure I and a strategy profile β,

Π(M, I, β) =
∫
s∈S

∫
m∈M

N∑
i=1

ti(m)β(dm|s)G(ds).

Following Brooks and Du (2020), we construct a strong maximin solution to iden-

tify a robustly profit-maximizing mechanism for the mechanism designer. A strong

maximin solution consists of a mechanism, an information structure and an equilib-

rium (M∗, I∗, β∗) that satisfies the following three conditions.
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1. For all M′ ∈ M and β′ ∈ B(M′, I∗), Π(M∗, I∗, β∗) ≥ Π(M′, I∗, β′),

2. For all I ′ ∈ I and β′ ∈ B(M∗, I ′), Π(M∗, I∗, β∗) ≤ Π(M∗, I ′, β′),

3. β ∈ B(M∗, I∗).

Condition 1 requires that the minimax information structure I∗ limits expected

profit of the designer across any choice of mechanism M′ ∈ M and any Bayes-

Nash equilibrium β′ ∈ B(M′, I∗). Equivalently, the maximin mechanism M∗ is an

expected-profit maximizing mechanism under the minimax information structure I∗.

On the other hand, Condition 2 requires that the maximin mechanism M∗ earns at

least expected profit Π(M∗, I∗, β∗) across any information structure I ′ ∈ I and any

Bayes-Nash equilibrium β′ ∈ B(M∗, I ′). Likewise, the minimax information structure

I∗ is the expected-profit minimizing information structure given the maximin mech-

anism M∗. Finally, it requires that the game of the maximin mechanism M∗ and the

minimax information structure I∗ has a Bayes-Nash equilibrium β∗ ∈ B(M∗, I∗).

If (M∗, I∗, β∗) is a strong maximin solution, the maximin mechanism M∗ solves

the following max2min problem,

sup
M∈M

inf
I∈I

inf
β∈B(M,I)

Π(M, I, β). (max2min)

The minimax information structure I∗ solves the following min2max problem,

inf
I∈I

sup
M∈M

sup
β∈B(M,I)

Π(M, I, β). (min2max)

In addition, the max2min and min2max problems have the same value if there is a

strong maximin solution.
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2.3 Restricted Maximin Problem

This section studies the restricted problems, where we obtain an educated guess for

a strong maximin solution. Since the max2min problem is a complicated non-linear

optimization problem, we consider the restricted max2min and min2max problems,

where the second mover is subject to a weaker set of constraints, providing an upper

and lower bound on the value of max2min and min2max problems. In addition,

the restricted problems are a linear programming problem, which is easier to solve.

Brooks and Du (2020) showed that the restricted problems are ‘almost’ dual to each

other, yielding a necessary condition for a strong maximin solution. However, the

necessary condition itself does not provide detailed information about the solution.

Thus, we consider an equivalent representation of the restricted minimax problem, of

which dual problem is conducive to more information about the maximin allocation

rule and the minimax interim value. Namely, it implies a specific form for the maximin

allocation and characterizes the minimax interim value up to a few parameters.

The double revelation principle (Brooks and Du (2021b)) provides a convenient

normalization on the message and signal space to characterize a strong maximin

solution. It consists of the following three parts.

1. The maximin mechanism is a direct mechanism on the minimax information

structure.

2. The minimax information structure is a direct recommendation information

structure on the maximin mechanism.

3. Buyers play a truth-telling equilibrium in the game of incomplete information

defined by the maximin mechanism and the minimax information structure.
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This allows us to use the same message and signal space. Furthermore, we suppose

that each buyer i observes and reports a signal si ∈ [0,∞). That is, Mi = Si =

R+ = [0,∞) for each buyer i and assume that the signal follows the independent

unitary exponential distribution. Buyer i’s signal si is drawn from the cumulative

distribution function G(si) = 1− e−si .

Even after the normalization on the message and signal spaces, it is hard to

directly solve the max2min problem since the max2min is a non-linear optimization

problem. Instead, as Brooks and Du (2020) suggested, we consider the restricted

maximin and minimax problem to obtain an educated guess for a strong maximin

solution, which is later evaluated against the three requirements. In the restricted

problems, the second mover is subject to a smaller set of constraints. Simply put,

all non-local constraints of the second mover are dropped in the restricted problems,

providing an upper and lower bound for the max2min and min2max values.

We proceed with a discrete setup without dealing with mathematical subtleties of

infinite dimensional optimization problems.2 Later, the discreteness restriction will

be relaxed. For each natural number k, define the signal and message space to be

Xi(k), which is defined as below.

Xi(k) =

{
l

k
| 0 ≤ l ≤ k2, l ∈ Z

}
,

where Z is the set of integers, and let X(k) =
∏N

i=1Xi(k).

Let (q, t) denote a mechanism whose message space is X(k), where each buyer

reports a message xi ∈ Xi(k). q : X(k) → R+ is an allocation rule and t : X(k) → R

2We follow the notations and definitions from Brooks and Du (2020).
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is a transfer rule. Let π ∈ ∆(X(k)×V ) denote an information structure, where buyer

i observes a signal xi ∈ Xi(k).

Given a function f : X(k) → R
N , let the discrete upward partial derivative

∇+
i f(x) defined by

∇+
i f(x) = 1xi<k2(k − 1)(f(xi + 1/k, x−i)− f(x))

Let ∇+f(x) denote the discrete upward gradient of f , (∇+
1 f(x), · · · ,∇+

Nf(x)). The

discrete upward divergence is denoted by ∇+ · f(x) =
∑N

i=1∇
+
i f(x). Also, let

gi(xi) =

(
1− 1

k

)kxi 1

k
1xi<k2

denote the censored geometric distribution on Xi(k) with arrival rate 1
k
and let g(x)

denote the joint distribution on X(k).

First, we describe Π
¯
Max−2Min(k), the restricted maximin problem. Given a mech-

anism (q, t), the second mover’s problem finds an expected profit minimizing Bayes

correlated equilibrium (BCE), where an information structure π is chosen subject to

the consistency and obedience constraint. The consistency constraint dictates that

information structures must be consistent with the monopolist’s knowledge, inducing

the expected valuation of µ for each buyer. The obedience constraint requires that

it is each buyer’s best interest to obey the signal they observed. In the restricted

problem, we keep only locally upward obedience constraints and drop every others.

Since the BCE problem is a linear programming, it is then jointly solved with its

dual problem, where the dual variables are the shadow values for the consistency and

obedience constraint of the primal problem. In addition, we restrict the dual variable
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on the local obedience constraint to be 1. Then the restriction yields a maximization

problem where a mechanism and a dual variable for the consistency constraints are

chosen, subject to the dual constraint of the dual BCE problem. We obtain the

restricted max2min problem below.

Π
¯
Max−2Min(k) = max

q,t,λ(1),λ(0)

N∑
i=1

(λ(1)µ+ λ(0)(1− µ))

s.t. q(m) ≤ 1

ti(0,m−i) = 0

N∑
i=1

λ(vi) ≤
∑

t(x) + v · ∇+q(x)−∇+ · t(x)

(2.1)

Second, we describe Π̄Min−2Max(k), the restricted minimax problem. Given an

information structure σ, the second mover’s problem finds a Bayesian optimal mech-

anism. The revelation principle ensures that it is without loss to choose an optimal

direct mechanism, subject to the incentive compatibility and individual rationality

constraints. In the restricted problem, we keep only locally downward incentive com-

patibility constraints and the individual rationality constraints of the buyers with

the smallest signal. Again, the Bayesian mechanism design problem is a linear pro-

gramming, which is jointly solved with the dual problem. We normalize the shadow

value on the incentive constraints to be 1 to obtain the restricted min2max problem

79



below.

Π̄Min−2Max(k) = min
γ,σ,w

∑
x∈X(k)

γ(x)

s.t. µ =
∑

x∈X(k),v−i

σ((1, v−i), x)

g(x) =
∑
v

σ(v, x)

wi(x) =
1

g(x)

∑
v

viσ(v, x)

γ(x) ≥ g(x)
N∑
i=1

(
wi(x)−∇+

i wi(x)
)

γ(x) ≥ 0 σ(v, x) ≥ 0

Theorem 13 of Brooks and Du (2020) shows that the restricted min2max and

max2min problems are ‘almost dual’ to each other, in the sense that they have the

same value as k grows to infinity and weak duality holds for any k.

Π̄Min−2Max(k) ≥ Π
¯
Max−2Min(k)

lim
k→∞

Π
¯
Max−2Min(k) = lim

k→∞
Π̄Min−2Max(k) = Π∗

In addition, the theorem proves that Π∗ is equal to the value of the unrestricted

max2min and min2max problems.

The following complementary slackness condition characterizes solutions of the

restricted max2min and min2max problems in the limit, which provides us with an

3They consider the single unit auction setup, but only slight modification takes the theorem to
the current setup.
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educated guess for a strong maximin solution. Both restricted problems consider local

obedience and incentive compatibility constraints on the opposite direction, which

becomes immaterial in the limit as k grows.

0 = q(m)

(
γ(m)− g(m)

N∑
i=1

(
wi(m)− ∂wi

∂mi

(m)

))
0 = γ(m)(1− q(m))

0 =

∫
M

σ(v,m)

[∑
i

(
∂ti
∂mi

(m)− ti(m)

)
+
∑
i

λi(vi)−
N∑
i=1

vi
∂q

∂mi

(m)

]
dm

(2.2)

The complementary slackness condition could be understood through the indifference

intuition from zero-sum games. Namely, the first mover in the restricted max2min

and min2max problems make the second mover indifferent across their choice. In

the restricted minimax problem, the information designer gives a number of optimal

mechanisms to the mechanism designer, which is illutrated by the first and second

line of (2.2). On the other hand, in the restricted maximin problem, the mechanism

designer, who is the first mover, gives a number of worst-case information structure

to the information designer by choosing a mechanism that satisfies the second and

third line of (2.2).

However, the complementary slackness condition has multiple solutions, which

means that it is easy to verify whether a mechanism and an information structure

satisfy the condition, but it is hard to deduce a solution from the condition. Instead of

making a guess out of blue, we consider an equivalent representation of the restricted

min2max problem, where the dual program provides more information about the

maximin and minimax solutions.

A consistent information structure σ implies an interim value function w that
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satisfies the expectation constraint and has value between 0 and 1. Given an interim

value function w that satisfies the expectation constraint, one can find a consistent

information structure σ. Thus, we may consider the restricted min2max by choos-

ing an interim value function, instead of an information structure σ. Consider the

equivalent representation of the restricted min2max problem below.

Π̄Min−2max∗(k) = min
γ,w

∑
x∈X(k)

γ(x)

s.t. γ(x) ≥ g(x)
N∑
i=1

[
wi(x)−∇+

i wi(x)
]

(q(x))

1 ≥ wi(x) (τi(x))

µ =
∑
s

wi(x)g(x) (η)

wi(x) ≥ 0

Note that the expectation constraint will still bind if µ ≤
∑

swi(x)g(x) since we

may lower the expected profit by choosing an interim value function with lower

expectations. Thus, we suppose that the dual variable η must be non-negative in

the dual problem. Again, consider the dual of the equivalent representation of the
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restricted min2max problem.

Π̄Min−2max∗
D (k) = max

q,τ,η
Nµη −

N∑
i=1

∑
x∈X(k)

τi(x)g(x)

s.t. 1 ≥ q(x)

∇−
i q(x) ≥ η − τi(x)

∇−
i q(x) =


Kq(x) xi = 0

K(q(x)− q(xi − 1/k, x−i)) 0 < xi < k

q(x)− q(xi − 1/k, x−i) xi = K

q(x) ≥ 0 τi(x) ≥ 0 η ≥ 0

The dual of the equivalent min2max problem Π̄Min−2max∗
D (k) chooses an allocation

rule q, which is the multiplier on the designer’s indifference constraint. Though the

restricted minimax problem is not exactly dual to the restricted maximin problem,

the dual variable q must be a well-defined allocation rule, as found from the dual

problem. The dual problem also chooses τi, which is the multiplier on the upper bound

of the interim value and η, which is the multiplier on the consistency constraint.

As will be shown in Proposition 2.3.1, the dual of the equivalent min2max problem

implies an intuitive allocation rule, which is determined by only two parameters η

and m∗. First, define the veto allocation rule as below.

q(x) = min{1, ηmin{xi,m
∗}}. (2.3)

In this allocation rule, the monopolist fully shuts down any free-riding by supplying

the public good at the smallest demand. Each buyer can enjoy the public good at
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most the amount they demanded themselves. The optimal parameters m∗ and η

maximizes

max
η,m∗

η

Nµ−
N∑
i=1

∑
x−i

(1−G(min{x−i,m
∗}))g(x−i)

 ,

s.t. 1 = m∗η.

(2.4)

Next, define the capped proportional allocation rule as below.

q(x) = min{1, η
N∑
i=1

min{xi,m
∗}}. (2.5)

In the capped proportional allocation rule, buyers can demand up to some portion

m∗ of the public good and the public good is supplied by the total demand. It

balances between free-riding prevention and hedging against a low demanded buyer

from whom the veto allocation rule is substantially affected. The optimal parameters

m∗ and η maximizes

max
η,m∗

η

Nµ−
N∑
i=1

∑
x−i

(1−G(min{m∗, 1/η −
∑
j ̸=i

min{xj,m
∗}}))g(x−i)

 .

(2.6)

We prove that the dual equivalent min2max problem Π̄Min−2max∗
D (k) is solved ei-

ther by the veto allocation rule or the capped proportional allocation rule in Propo-

sition 2.3.1 below.

Proposition 2.3.1. The dual of the equivalent min2max problem Π̄Min−2max∗
D (k) is

solved by either
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1. The veto allocation rule (2.3) with (η,m∗) that solves (2.4) and

τi(x) = η1{xi ≥ min{m∗,minx−i}}

2. The capped proportional allocation rule (2.5) with (η,m∗) that solves (2.6) and

τi(x) = η1

{
xi ≥ min

{
m∗, 1/η −

∑
j ̸=i

min{m∗, xj}

}}

Proof of Proposition 2.3.1. We start with identifying the set of binding inequality

constraints in the dual problem Π̄Min−2max∗
D (k). In an optimal solution, the inequality

constraint

∇iq(x) ≥ η − τi(x)

must bind with an equality for any x ∈ X(k) for each i. Suppose otherwise that the

constraint does not bind at some x′ ∈ X(k) for some i. Then we may lower τi(x)

(if it is positive), increasing the objective function without violating the constraints.

Otherwise, we may raise η and lower ∇iq(x) without violating the supply constraint.

Thus, for each i and x ∈ X(k) the inequality constraint binds at an optimal solution,

∇iq(x) + τi(x) = η.

Since we consider a censored geometric distribution for the signal distribution,

it is less costly to have τi at higher signal profiles than smaller profiles. Moreover,

since it is a linear programming, at an optimal solution a variable is either 0 or at its

maximum level that satisfies the constraints. Thus, for each i, there exists a cutoff

85



f(x−i) that determines an optimal dual solution.

τi(x) = η1{xi > f(x−i)}

∇iq(x) = η1{xi ≤ f(x−i)}

Existence of the cutoff f and piecewise constant slope of q dictate a particular

shape of an optimal allocation rule q. It takes either of the two forms, parameterized

by m∗, which is the highest message that affects the allocation rule.

q(x) =


min{1, ηmin{xi,m

∗}}

min{1, η
∑N

i=1 min{xi,m
∗}}

Thus, the dual equivalent restricted min2max problem implies that the maximin

mechanism must have either the veto allocation rule or the capped proportional allo-

cation rule. Next, strong duality between the equivalent restricted min2max problem

and its dual provides a sharper characterization of the minimax information struc-

ture, as shown in Proposition 2.3.2.

Proposition 2.3.2. The minimax interim value w∗ is parameterized by m∗ and η.

Proof of Proposition 2.3.2. The solution of the equivalent restricted minimax prob-
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lem are characterized by the complementary slackness condition and the constraints.

0 = γ(x)(1− q(x))

0 = wi(x)(∇−
i q(x)− λ+ τi(x))

0 = q(x)(γ(x)− g(x)
N∑
i=1

[
wi(x)−∇+

i wi(x)
]
)

0 = τi(x)(1− wi(x))

µ =
∑

x∈X(k)

wi(x)g(x)

wi(x) ≥ 0, q(x) ≥ 0, γ(x) ≥ 0, τi(x) ≥ 0

Proposition 2.3.1 pins down the primary variables γ and wi as below. Given the veto

allocation rule,

γ(x) = N1{minx ≥ m∗}g(x),

γ(x) = g(x)
N∑
i=1

[
wi(x)−∇+

i wi(x)
]
).

Given the capped proportional allocation rule,

γ(x) = N1

{
η

N∑
i=1

min{m∗, xi} ≥ 1

}
g(x),

γ(x) = g(x)
N∑
i=1

[
wi(x)−∇+

i wi(x)
]
).

Thus, the minimax interim value w∗ is parameterized by m∗ and η.

In the next section, we finish constructing an educated guess for a strong maximin
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solution using the complementary slackness conditions and Proposition 2.3.1 and

2.3.2. We then check if the pair satisfies the three requirements of the strong maximin

solution to finish the characterization of a strong maximin solution.

In the next section, we characterize a strong maximin solution for the public good

provision problem. The maximin mechanism qualitatively depends on the expected

value µ and the number of buyers N , which are related to the mechanism designer’s

confidence on his product and the intensity of free-riding incentives, respectively.

Lemma 2.4.1 shows that there is a threshold µ̄(N) that determines the shape of the

maximin mechanism.

2.4 Veto Mechanism

This subsection presents the veto mechanism and the veto information structure.

Suppose that µ ≥ µ̄(N), where the mechanism designer is sufficiently confident in

the quality of the public good. Knowing this, the designer could fully shut down any

possibility of free-riding by supplying the public good by the buyer with the lowest

demand. In other words, no buyer can enjoy the amount of the public good she did

not demand for herself. This allocation rule is sensitively affected by a buyer with a

low demand. However, the monopolist is willing to take the risk since he is sufficiently

confident with the public good.

2.4.1 Minimax Information Structure

We start with the veto information structure I∗ = (S∗, G∗, w∗). In the veto informa-

tion structure, each buyer privately observes a positive real numbered signal, which
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is independently distributed by the exponential distribution with arrival rate 1. How-

ever, any individual signal above a threshold m∗ does not affect the interim value. It

exhibits an interdependent valuation, where all buyers except for the smallest signal

buyer have the interim valuation of 1 about the public good, but the smallest signal

buyer’s interim valuation is less than 1 and depends on the difference between her

own signal and the minimal signal among others.

S∗
i = [0,∞),

G∗(si) = 1− e−si ,

w∗
i (s) = min{1, 1 +N(esi−min{m∗,minj ̸=i sj} − 1)},

where m∗ is determined by the expectation constraint µ =
∫
S
wi(s)dG(s). In other

words, m∗ must satisfy (2.7).

µ = 1− 1

N
+N(m∗ + 1)e−m∗N − N − 1

N
e−m∗N(1 +N +Nm∗). (2.7)

Under the veto information structure, the mechanism designer has a variety of

Bayesian optimal mechanism since it ensures that its virtual values add up to zero,

at any signal profile except at the highest profile (m∗, · · · ,m∗). Since an optimal

Bayesian mechanism sells the full amount if and only if the total virtual value

is positive, any mechanism (q, t) whose allocation rule q sells the full amount at

(m∗, · · · ,m∗) is optimal, earning Ne−m∗N .

φ∗
i (s) = w∗

i (s)−
1−G∗(si)

g∗(si)

∂w∗
i

∂si
(s) =


−(N − 1), si < minj ̸=i sj

1. si ≥ minj ̸=i sj
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Specifically, all buyer except for the smallest signal buyer has the expected value 1,

which gives them the virtual value of 1. On the other hand, the smallest signal buyer

has the virtual value of −(N − 1), offsetting the total virtual values of everyone else.

Thus, the veto information structure satisfies (2.2), the complementary slackness

condition of the restricted maximin problem.

Note that any signal higher than m∗ obtains the same interim value as m∗ in the

veto information structure. Thus, we obtain an equivalent representation of the veto

information structure where the signal space is a finite closed interval and the signal

distribution follows the exponential distribution censored at m∗ as below.

S∗
i = [0,m∗],

G∗(si) =


1− e−si si < m∗,

1 si = m∗.

Later, we use the second representation as it frees us from the mathematical subtlety

of dealing with an infinite signal space. In the second representation, m∗ determines

the upper end of the signal space.

For the veto information structure to be well-defined, its expected valuation w∗

must be between 0 and 1 at any signal profile on S∗. Lemma 2.4.1 identifies a cutoff

µ̄(N) on the common expected value.

Lemma 2.4.1. For each number of buyers N , the veto information structure is well

defined only if µ ≥ µ̄(N), where the cutoff µ̄(N) is defined by (2.8),

µ̄(N) =
1

N

[
N +

(
N − 1

N

)N (
N log

(
N

N − 1

)
+ 1

)
− 1

]
. (2.8)
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Proof of Lemma 2.4.1. Given µ, the expectation constraint pins down the upper end

of the signal space m∗. At the same time, m∗ must keep the value function wi non-

negative at any signal profile. The value function wi is minimized at a signal profile

si = 0 and minj ̸=i sj = m∗. Thus, we obtain an upper bound on m∗ from such signal

profiles.

wi(0,m
∗, · · · ,m∗) = 1 +N(e−m∗ − 1) ≥ 0 → m∗ ≤ log

(
N

N − 1

)
.

Since the right hand side of the expectation constraint decreases in m∗, the expected

value µ has to be at least µ̄(N) to satisfy the expected value constraint,

µ̄(N) =
1

N

[
N +

(
N

N − 1

)−N (
N log

(
N

N − 1

)
+ 1

)
− 1

]
.

Thus, µ ≥ µ̄(N) ensures a well-defined value function in the veto information struc-

ture.

Figure 2.1 illustrates the cutoff µ̄(N) across N . The cutoff µ̄(N) increases and

converges to 1 as N grows to infinity. In other words, the veto information structure

requires a higher common expected valuation µ with more buyers. To maintain the

designer’s indifference, the smallest signal buyer must have a steep increase in the

interim valuation as her signal increases so that her negative virtual value compen-

sates the total virtual value of others, which is N − 1. Thus, with more buyers, the

veto information structure must have a smaller m∗, which requires a larger µ.

Next, we construct the veto mechanism using the veto information structure and

the complementary slackness conditions.
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Figure 2.1: The cutoff µ̄ from N = 2 to N = 20

2.4.2 Maximin Mechanism

Now we construct the veto mechanism, leveraging on the properties of the veto

information structure and the complementary slackness conditions. Let the message

space M∗
i = S∗

i = [0,m∗] coincide with the signal space S∗
i of the veto information

structure. The mechanism designer is confident in the quality of his product and is

willing to fully shut down room for free-riding behavior, which is implemented by

the allocation rule that supplies the public good by the minimal reported message.

q∗(m) = η∗min
i∈N

{mi},

where η∗m∗ = 1. In this allocation rule, each buyer can enjoy the public good by the

amount she demanded for herself, or equivalently, each buyer essentially refuses to

buy any amount exceeding her own demand.

It remains to construct the veto transfer rule t∗ that satisfies the complementary

slackness condition (2.2). Given the veto allocation rule defined above, the transfer
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rule t∗i must satisfy

∑
i

(
∂t∗i
∂mi

(m)− t∗i (m)

)
= Ξ(m) =


η −Nλ∗(1) minm < m∗

−Nλ∗(1) minm = m∗
, (2.9)

for each m ∈ M∗. (2.9) places an aggregate requirement on the veto transfer rule t∗i .

However, we need to specify how individual excess growth (relative to the exponential

level) of transfer,
∂t∗i
∂mi

(m) − t∗i (m) is distributed at each signal profile m. There are

multiple transfer rules that satisfy the complementary slackness. We discuss two of

such transfer rules below.

We identify an optimal λ∗(1) and λ∗(0) for the restricted maximin problem. At

any message profile m, the primal inequality constraint binds both for vi = 0 and

vi = 1 if buyer i’s message is smallest among all buyers since buyer i’s interim value is

strictly less than 1 in the veto information structure. Thus, we obtain the difference

between λ∗ as

λ∗(0) = λ∗(1)− η∗.

λ∗(1) is found from the strong duality in the dual and primal restricted maximin

problem. Any optimal mechanism to the veto information structure earns Ne−Nm∗

since the virtual value sums up to N only when all buyers observe the highest signal

m∗ and to zero otherwise. Thus,

λ∗(1) = e−Nm∗
+ η∗ − µη∗.

Transfer rule 1: One natural transfer rule would charge only the buyer with the

smallest demand report, whose report determines the amount of the public good
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provided in the veto allocation rule. Let m
¯

= minmi denote the smallest message

of a message profile m and #(m
¯
) denote the number of buyers with the smallest

message, in case there is a tie. Buyer i is charged

t∗i (m) =


1

#(m
¯
)
T (m

¯
) mi = m

¯
,

0 mi > m
¯
,

(2.10)

where T (m
¯
) is defined to be

T (m
¯
) =


(η −Nλ∗(1))(em¯ − 1) m

¯
< m∗,

Nλ∗(1) m
¯
= m∗.

(2.11)

It is easy to verify that the above transfer rule satisfies the complementary slackness

condition with the veto allocation rule.

Transfer Rule 2: The canonical transfer rule due to Brooks and Du (2021a) also

satisfies the complementary slackness condition. Let Z denote the set of permutations

on {1, · · · , N} with a typical element ζ. Denote the subset of agents whose order is

less than k in ζ by

[ζ ≤ k] = {j|ζ(j) ≤ k}.

and analogously define [ζ > k]. Let

τζ,k(m) =

∫
[0,m∗]N−k

Ξ(m[ζ≤k], x[ζ>k])dG(x[ζ>k])

The function τ simplifies under the veto allocation rule. Namely, τζ,k is determined
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whether the smallest signal in minm[ζ≤k] ≥ m∗ or minm[ζ≤k] < m∗.

τζ,k(m) =


η∗ −Nλ∗(1) minm[ζ≤k] < m∗

η∗(1− e−m∗(N−k))−Nλ∗(1) minm[ζ≤k] ≥ m∗

Then define the individual excess growth in transfer ξi(m) as below.

ξi(m) =
1

N !

∑
ζ∈Z

[
τζ,ζ(i)(m)− τζ,ζ(i)−1(m)

]
.

The excess growth ξi only depends on the number of buyers whose demand report

exceeds m∗ since

τζ,ζ(i)(m)−τζ,ζ(i)−1(m) =


0 m[ζ≤ζ(i)−1] < m∗,m[ζ≤ζ(i)] < m∗

e−m∗(N−ζ(i)+1) m[ζ≤ζ(i)−1] ≥ m∗,m[ζ≤ζ(i)] < m∗

ηe−m∗(N−ζ(i))(e−m∗ − 1) m[ζ≤ζ(i)−1] ≥ m∗,m[ζ≤ζ(i)] ≥ m∗

Due to the definition of ξi, the individual excess growth in transfer,

ti(m) = emi

∫ mi

0

ξi(xi,m−i)e
−xidxi.

This transfer rule satisfies the complementary slackness condition.

2.4.3 Strong Maximin Solution

Finally, an equilibrium β∗ ∈ B(M∗, I∗) completes the statement of a strong maximin

solution. On the veto mechanism and the veto information structure, agent i uses a
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truth-telling strategy,

β∗
i (si) = si.

Theorem 2.4.1. Suppose that µ ≥ µ̄(N). The triple (M∗, I∗, β∗) that consists of

the veto mechanism, the veto information structure and the truth-telling equilibrium

is a strong maximin solution. Moreover, the profit guarantee of M∗ is Π∗,

Π∗ = Π(M∗, I∗, β∗) = Ne−Nm∗
,

where m∗ is defined by (2.7).

Proof of Theorem 2.4.1. Theorem 2.4.1 follows from Proposition 2.4.1, 2.4.2 and

2.4.3. Each proposition checks that the triple (M∗, I∗, β∗) satisfies the three re-

quirements of the strong maximin solution.

2.4.4 Proof of Theorem 2.4.1

Proposition 2.4.1. For all M′ and β′ ∈ B(M′, I∗), Π̄ ≥ Π(M′, I∗, β′).

Proof of Proposition 2.4.1. We solve the Bayesian optimal mechanism design prob-

lem under the veto information structure to obtain an upper bound of Π(M′, I∗, β′)

across any mechanism M′ and equilibrium β′ ∈ B(M′, I∗). Since the veto informa-

tion structure is given, the revelation principle allows us to focus on direct mecha-

nisms. Let (q, t) denote a direct mechanism under the veto information structure.

The Bayesian optimal mechanism design problem maximizes expected revenue

∫
S

N∑
i=1

ti(s)dG(s)
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subject to the Bayesian incentive compatibility and individual rationality constraints.

The revenue equivalence formula is applicable under the veto information structure

since the signal distribution is independent and the expected value function wi is

monotone in si.

∫
S−i

ti(si, s−i)dG(s−i) =

∫
S−i

(
wi(si, s−i)q(si, s−i)−

∫ si

0

∂wi

∂si
(ν, s−i)q(ν, s−i)dν

)
dG(s−i)

Following the standard procedure, expected revenue is expressed in terms of an al-

location rule and the virtual value.

∫
S

N∑
i=1

ti(s)dG(s) =

∫
S

N∑
i=1

(
wi(si, s−i)−

∂wi

∂si
(si, s−i)

)
q(s)dG(s)

Under the veto information structure, the virtual value of agents adds up to 0 if

min si < m∗ and N otherwise. Thus, the optimal direct mechanism earns

N

∫
{s∈S|si>m∗,∀i∈N}

dG(s) = Ne−m∗N

which is the revenue guarantee Π(M∗, I∗, β∗) of the veto mechanism.

Proposition 2.4.2. Suppose that µ ≥ µ̄(N). For all I ′ and β′ ∈ B(M∗, I ′), Π̄ ≤

Π(M∗, I ′, β′). That is, the veto mechanism M∗ earns at least Π as its expected profit

across any information structure and equilibrium.

Before proving Proposition 2.4.2, we prove a lemma, which is equivalent to local

optimality of an equilibrium β.

Lemma 2.4.2. Let M∗ be the veto mechanism. Then for any information structure

97



I and an equilibrium β ∈ B(M∗, I),

∫
S

∫
M

N∑
i=1

[
wi(s)

∂q

∂mi

(m)− ∂ti
∂mi

(m)

]
β(dm|s)G(ds) ≤ 0 (2.12)

Proof of Lemma 2.4.2. Fix an information structure I and an equilibrium β ∈ B(M∗, I).

For each ∆ > 0,

∫
S

∫
M

N∑
i=1

[
wi(s)

q(mi +∆,m−i)− q(m)

∆
− ti(mi +∆,m−i)− ti(m)

∆

]
β(dm|s)G(ds) ≤ 0

since β is an equilibrium. Since ∂q
∂mi

and ∂ti
∂mi

are bounded, the integrand is bounded

for any ∆. Take the limit on δ → 0 and invoke the dominated convergence theorem

to obtain the conclusion.

Proof of Proposition 2.4.2. First, we show that

N∑
i=1

λ(vi) ≤
N∑
i=1

vi
∂q

∂mi

(m)− Ξ(m) (2.13)

for each v ∈ {0, 1}N and m ∈ M . From the definition of Ξ, the right-hand side is

equal to
N∑
i=1

(
(vi − 1)

∂q

∂mi

(m) + λ(1)

)
For each i, we have

(vi − 1)
∂q

∂mi

(m) + λ(1) =


λ(1) vi = 1

−η1{mi = minj∈N mj < m∗}+ λ(1) vi = 0
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Thus, (2.13) holds for any v and m as desired.

Now, fix an information structure I ′ and an equilibrium β′ ∈ B(M∗, I ′). By

taking the expectation with respect to v, (2.13) implies

N∑
i=1

(wi(s)λ(1) + (1− wi(s))λ(0)) ≤
N∑
i=1

wi(s)
∂q

∂mi

(m)− Ξ(m)

Moreover, (2.12) also holds. Thus,

∫
S

∫
M

N∑
i=1

ti(m)β(dm|s)G(ds) ≥
∫
S

∫
M

N∑
i=1

(
ti(m) + wi(s)

∂q

∂mi

(m)− ∂ti
∂mi

(m)

)
β(dm|s)G(ds)

=

∫
S

∫
M

N∑
i=1

(
wi(s)

∂q

∂mi

(m)− Ξ(m)

)
β(dm|s)G(ds)

≥
∫
S

∫
M

N∑
i=1

(wi(s)λ(1) + (1− wi(s))λ(0)) β(dm|s)G(ds)

≥
N∑
i=1

(µλ(1) + (1− µ)λ(0))

= Π̄

Thus, the veto mechanism earns at least Π̄.

Proposition 2.4.3. β∗ ∈ B(M∗, I∗). That is, the truth-telling strategy profile β∗ is

an equilibrium of the veto mechanism M∗ and the veto information structure I∗.

Proof of Proposition 2.4.3. We need to show that truth-telling is a best response for

any si, s
′
i ∈ [0,m∗]. Let Ui(si, s

′
i) denote agent i’s expected payoff under the truth-
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telling equilibrium if she observed si and reported s′i.

Ui(si, s
′
i) =

∫
S−i

wi(si, s−i)q(s
′
i, s−i)dG(s−i)−

∫
S−i

ti(s
′
i, s−i)dG(s−i)

Truth-telling is a best response if Ui(si, si) ≥ Ui(si, s
′
i) for any si and s′i. Equivalently,

truth-telling is a best response if

∂Ui

∂s′i
(si, s

′
i)|s′i=si = 0 and

∂2Ui

∂s′2i
(si, s

′
i)|s′i=si ≤ 0

Start from the derivative of the first term.

∂

∂s′i

∫
S−i

wi(si, s−i)q(s
′
i, s−i)dG(s−i)|s′i=si =

∫
S−i

wi(s)η1{si < min{s−i}}dG(s−i)

Since q and wi depends on si and the minimum of s−i,

∂

∂s′i

∫
S−i

wi(si, s−i)q(s
′
i, s−i)dG(s−i)|s′i=si =

∫ m∗

0

wi(si, y)η1{si < y}}dGN−1
min (y)

=

∫ m∗

si

(
1 +N(esi−y − 1)

)
ηdGN−1

min (y)

=η

∫ m∗

si

[
−(N − 1)2e−y(N−1) +N(N − 1)esi−yN

]
dy

+ η(1 +N(esi−m∗ − 1))e−m∗(N−1)

=ηesi−m∗N

(2.14)

where GN−1
min is the distribution of the minimum of N − 1 independent exponential

100



distributions censored at m∗. GN−1
min is defined by

GN−1
min (y) =


1− e−y(N−1) y < m∗

1 y = m∗

Before working on the derivative of the second term, we need to obtain an expression

for the interim transfer ti(si).

ti(s
′
i) =

∫
S−i

ti(s
′
i, s−i)dG(s−i)

= es
′
i

∫ s′i

0

∫
S−i

ξi(x, s−i)e
−xdG(s−i)dx

= es
′
i

∫ s′i

0

∫
S−i

N∑
i=1

ξi(x, s−i)e
−xdG(s−i)dx

= es
′
i

∫ s′i

0

∫
S−i

N∑
i=1

(
∂q

∂mi

(x, s−i)− λ(1)

)
e−xdG(s−i)dx

From the second to the third line, we used the fact that

0 =

∫ m∗

0

ξi(x, s−i)dG(x)

for each j ̸= i. Then,

ti(si) =esi
∫ si

0

∫
S−i

[
η1{x < min{s−i}}+

∑
j ̸=i

η1{sj < min{x, s−{i,j}}}

]
dG(s−i)e

−xdx

−Nλ(1)(esi − 1)
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Now we evaluate the integral on S−i, holding x fixed.

∫
S−i

η1{x < min{s−i}}dG(s−i) =

∫ m∗

0

η1{x < y}}dGN−1
min (y)

= η(1−GN−1
min (x))

= ηe−x(N−1)

For each j ̸= i,

∫
S−i

η1{sj < min{x, s−{i,j}}}dG(s−i) =

∫ x

0

∫ m∗

sj

ηe−sjdGN−2
min (y)dsj

= η

∫ x

0

e−sj(1−GN−2
min (sj))dsj

= η

∫ x

0

e−sj(N−1)dsj

=
η

N − 1
(1− e−x(N−1))

Finally, from the definition of λ(1),

Nλ(1) =

∫
S

N∑
i=1

∂q

∂mi

(s)1mi<m∗dG(s)

= η(1− e−m∗N)

Thus, we obtain an expression for ti(si) as below.

ti(si) = ηesi
∫ si

0

(
e−x(N−1) + (N − 1)

1

N − 1
(1− e−x(N−1))

)
e−xdx− η(1− e−m∗N)(esi − 1)

= η(esi − 1)e−m∗N
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It is easy to find the derivative of ti.

t′i(si) = ηesie−m∗N (2.15)

Then we obtain the first-order condition from (2.14) and (2.15).

∂Ui

∂s′i
(si, s

′
i)|s′i=si = 0

The second order condition follows since ∂2q
∂m2

i
(m) = 0 for any m and t′′i (si) > 0.

Thus, truth-telling is an equilibrium of the veto mechanism and the veto information

structure.

2.5 Capped Proportional Mechanism

Suppose that µ ≤ µ̄(N). The monopolist is no longer confident enough in the public

good’s quality. The veto mechanism then is no longer a strong maximin solution to the

monopolist. Instead, it becomes important to balance between free-riding prevention

and hedging against a low demanded buyer. The capped proportional mechanism,

where the public good is supplied according to the total demand reported from the

buyers, achieves this goal. However, to balance the insurance motive while curbing

the free-riding incentives, each buyer is given a cap on the maximal quantity she can

ask.
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2.5.1 Minimax Information Structure

Proposition 2.3.1 and 2.3.2 ensures that the proportional information structure exists

and is pinned down by the parameters (m∗, η) and the indifference condition on

the message and signal space X(k), for any natural number k. Here, we illustrate

numerical solutions of the restricted minimax problem to probe other properties of

the minimax information structure.

We present a numerical solution of the restricted minimax problem.4 Figure 2.2

illustrates the interim value w∗ from the restricted min2max problem. The interim

value w∗
i is monotone and continuous in own signal. Figure 2.3 illustrates the virtual

value φ∗
i and Figure 2.4 illustrates the total virtual values

∑
φ∗
i induced by the

proportional information structure.

The shape of the numerical solutions suggest that the interim value is character-

ized by three parameters m̂, m∗ and η. Specifically, w∗ behaves similarly with the

veto interim value when either signal is smaller than m̂. Buyers with higher signal

has the interim value and the virtual value at 1 and buyers with lower signal has

the opposite. However, when either signal is higher than m̂, the virtual value strictly

increases in own signal. Visual examination of the numerical solution suggests a

functional form for the interim value. Figure 2.5 illustrates how w∗ is parameterized.

The individual virtual value determines the interim value w∗ on some signal

profiles.

4The solution is obtained with an additional constraint that the individual virtual value is
monotone in own signal, which does not affect the restricted min2max value.
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Figure 2.2: Proportional Interim Value w∗
i

Figure 2.3: Virtual Value φ∗
i

Figure 2.4: Total Virtual Values
∑

φi
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s1

s2

m̂

m̂ m∗

m∗

s1 + s2 =
1
η

Figure 2.5: N = 2 Proportional Information Structure

• sj = m∗

w∗
i (s) =


−1 + esi for si ≤ 1

η
−m∗

1 for si ≥ 1
η
−m∗

• m̂ ≤ sj ≤ m∗

w∗
i (s) =


−1 + esi for si ≤ m̂

ω∗
i (s) for m̂ ≤ si ≤ min{ 1

η
− sj,m

∗}

1 for min{ 1
η
− sj,m

∗} ≤ si

• 0 ≤ sj ≤ m̂

w∗
i (s) =


−1 + 2esi−sj for si ≤ sj

1 for si ≥ sj

where the parameters η, m̂ and m∗ and the function ω∗ are determined so that w∗

is well-defined and induces individual virtual values that add up to zero.
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The aggregate virtual value
∑

φ∗
i (s) of the proportional information structure is

identified as below.

∑
φ∗
i (s) = Ng(s)1{η

∑
i

min{m∗, si} ≥ 1}. (2.16)

As we approximate the discrete spaceX(k) to the real line, the optimal parameter

problem (2.6) converges to the optimization problem below, which finds an optimal

parameter and the minimax value Π∗(N) in the continuous model. The optimal

parameter (η,m∗) solves the following problem. For each µ ≤ µ̄(N),

Π∗(N) = max
η,m∗

ηN

(
µ−

∫
[0,∞)N−1

e−min{m∗, 1
η
−
∑

j ̸=1 min{m∗,sj}}−∑
j ̸=1 sjds−1

)
.

(2.17)

2.5.2 Maximin Mechanism

Proposition 2.3.1 implies that the maximin mechanism must be capped proportional

as the discreteness restriction relaxes. The capped proportional mechanism M∗ =

(M∗, q∗, t∗) is defined by

Mi = [0,m∗], q(m) = min

{
1, η∗

N∑
i=1

mi

}
.

In the capped proportional mechanism, each buyer can demand up to η∗m∗ of the

public good. It is the maximal individual demand, or the individual quota that

the monopolist uses to balance between free-riding prevention and hedging against

low demanded buyers. As the monopolist’s confidence µ increases, he may allow a

smaller quota, closer to 1
N

to curb free-riding. In a similar vein, ηm∗N , which is
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the total quota, measures how much free-riding the monopolist allows. Interestingly,

the monopolist optimally uses a similar level of the total quota when he faces more

buyers. Figure 2.6 illustrates the individual and total quota on intermediate µ with

different number of buyers. Note that the quota is plotted for µ ≤ µ̄(N), where the

cutoff µ̄(N) is defined in (2.8).

Figure 2.6: The individual quota ηm∗ (left) and the total quota ηm∗N (right) of the
optimal capped proportional mechanism

The proportional mechanism must satisfy the complementary slackness (2.2).

Thus, the maximin transfer must satisfy

∑
i

(
∂t∗i
∂mi

(m)− t∗i (m)

)
=
∑
i

η∗1{mi<min{m∗,1/η∗−
∑

j ̸=i mj}} −Nλ∗(1) (2.18)

for each m ∈ M∗.

We identify optimal λ∗(1) and λ∗(0) for the restricted maximin problem, using

the same idea as before.

λ∗(0) = λ∗(1)− η∗.

λ∗(1) is found from the strong duality in the dual and primal restricted maximin

problem. Any optimal mechanism to the proportional information structure earns
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Π∗(N). Since the value of the restricted maximin problem is equal to that of its

dual, we find λ∗ as below.

λ∗(1) =
Π∗(N)

N
+ η∗(1− µ)

To construct a maximin transfer rule, we need to determine the individual
∂t∗i
∂mi

(m)−

t∗i (m) as before. Let Ξ(m) denote the right-hand side of (2.18).

Ξ(m) =
∑
i

η∗1{mi<min{m∗,1/η∗−
∑

j ̸=i mj}} −Nλ∗(1)

and let Z denote the set of permutations on {1, · · · , N} with a typical element ζ.

Denote the subset of agents whose order is less than k in ζ by

[ζ ≤ k] = {j|ζ(j) ≤ k}

and analogously define [ζ > k]. Let

τζ,k(m) =

∫
[0,m∗]N−k

Ξ(m[ζ≤k], x[ζ>k]; q)dG(x[ζ>k])

and

ξi(m) =
1

N !

∑
ζ∈Z

[
τζ,ζ(i)(m)− τζ,ζ(i)−1(m)

]
The proportional transfer rule is obtained from the definition of ξi.

ti(m) = exp(mi)

∫ mi

0

ξi(xi,m−i)exp(−xi)dxi
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2.6 Conclusion

This paper constructed a strong maximin solution in the public good provision setup.

The monopolist seller needs to know a minimal amount of knowledge about the buy-

ers’ information structure to implement the strong maximin mechanism constructed

in this paper. It guarantees some expected profit as long as the buyers’ actual infor-

mation structure is consistent with the monopolist’s knowledge. In addition, it only

asks the buyers to report a quantity demanded, which makes the maximin mechanism

simple and practical.

The maximin mechanism qualitatively depends on the number of buyers N and

the common expected valuation µ. If µ is high relative to N , then the veto mecha-

nism, which fully shuts down free-riding, is robustly optimal. In the veto mechanism,

the buyer with the smallest demand report is charged an exponential price, while

everyone else is charged nothing. On the other hand, if µ is not high enough, the

capped proportional mechanism is robustly optimal, where the public good is sup-

plied by the total demand, but each buyer can only demand some portion of the

public good.
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CHAPTER 3

Optimal Robust Double Clock Auctions

3.1 Introduction

Exchange economies, a fundamental model of microeconomics, well describe a variety

of essential market institutions. For example, consider centralized stock, bond, and

commodity markets. They are populated with traders who submit their demand or

supply to the marketplace. Their after-trade position may be positive or negative

relative to their initial holdings, which is determined by the market price. Owners

of such exchanges may have various objectives, including efficiency and maximizing

profit from market making. Studies of mechanism design prescribe exchange owners

a direct mechanism that maximizes the owners’ objectives.

On the other hand, clock implementations are widely used in practice, where

traders gradually reveal their private information to the exchange and other traders.

In this sense, clock implementations are considered an open format. Most notably,

Ausubel (2004) constructs a clock implementation of the Vickery mechanism with

multiple units of goods, achieving efficient allocation in an open fashion. However, for

two reasons, his clock implementation does not smoothly carry over to the exchange

situation. First, it is confined to the implementation of the Vickery mechanism,

which aims for efficiency. However, the exchange can’t achieve efficient allocation
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without suffering from budget deficits due to two-sided private information. Second,

the exchange cannot ex-ante partition traders into buyers and sellers. The two points

call for a novel clock implementation for the exchange problem.

When values are private, we offer a dynamic (clock) multi-unit double auction

format for homogeneous goods that is robust, meaning that all the incentive and

market clearing constraints are satisfied ex-post, and at the same time achieves a va-

riety of objectives of the auctioneer. Simply put, we extend the Ausubel (2004) clock

auction into two dimensions. First, our clock auction endogenously determines buyers

and sellers. Second, our clock auction achieves goals other than exact efficiency.

At the core of our double auction, are two Ausubel (clinching) auctions run simul-

taneously, one for buyers and one for sellers, such that supply continuously matches

with demand, until the two clocks meet. The payments consist of two parts. The

first part is the standard per-unit payments associated with the quantities clinched

on either side of the market, the second part is a special per-unit tax, that may

also depend on the clock. Our first main result is that this auction has an ex-post

equilibrium, which is also dynamically consistent. Our second main result is that

this auction is capable of implementing a variety of mechanisms, including efficient,

nearly efficient and, most importantly, optimal (profit maximizing) ones.

This paper belongs to the literature on clock auctions. Ausubel (2004) constructs

a clock implementation to sell multiple units of homogeneous goods. The same au-

thor’s follow-up paper Ausubel (2006) extends the clock implementation to sell mul-

tiple units of heterogeneous goods, at the cost of additional complexity. This paper

further extends the clock implementation towards two other direction: two-sided pri-

vate information and various designer objective. Loertscher and Marx (2020a) and
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Loertscher and Mezzetti (2021) constructs a clock implementation where traders are

ex-ante partitioned to be buyers and sellers.

This paper is also related to the study of optimal or efficient mechanism design

problems in exchange settings, where the mechanism designer endogenously deter-

mine whether a trader end up being a buyer or a seller. Lu and Robert (2001) and

Loertscher and Marx (2020b) consider the optimal mechanism design problem where

traders have a constant marginal utility. Loertscher and Marx (2020b) also discusses

a clock implementation of the optimal mechanism, but it is limited to unit supply

and demand. Andreyanov and Sadzik (2021) constructs a robust mechanism that

implements an asymptotically efficient outcome without making a budget deficit,

which converges to full ex-post efficiency as the number of traders grows. Our clock

auction can be used to implement this mechanism in an open fashion.

3.2 Model

The designer, or the owner of a trading platform, wishes to reallocate a single,

homogeneous, and perfectly divisible good among N agents. Each agent i has a

quasi-linear utility function Ui(qi) − ti, where qi,is the quantity of the good the

agent gets. We assume that the asset is not continuously divisible: qi ∈ QK :=

{· · · ,−2/K,−1/K, 0, 1/K, 2/K, · · · } for some positive integer K. ti ∈ QK is the

payment he makes to the trading platform. In particular, the utility does not depend

on the information of other agents (private values). We assume that the marginal util-

ity functions MUi : QK → MK := {1/K, 2/K, · · · , (MK − 1)/K,M} are bounded,

weakly decreasing. The utility function of agent i is then defined by the cumulative
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sum of her marginal utility.

Ui(qi) =



∑
0<x≤qi,x∈QK

MUi(x) qi > 0

0 qi = 0∑
0>x≥qi,x∈QK

MUi(x) qi < 0

Agent i enters the exchange with an initial position where she has no asset.

The environment is an example of the classic exchange economy, with quasi-linear

utilities with respect to an asset and a numeraire. For any weakly increasing menu

of (per-unit) prices p(·) we define a demand correspondence of agent i as

Qi(p) = argmax
q∈QK

{
Ui(q)−

∑
0≤x≤q,x∈QK

p(x)

}
.

The demand correspondence reduces to the textbook Walrasian demand correspon-

dence once we assume that the per-unit price is constant. We consider non-linear

per-unit prices to facilitate the implementation of various designer objectives.

Note that each agent could potentially be either a buyer or a seller, and so the

demand correspondence can take on both positive and negative values. Decreasing

marginal utilities guarantee that the demand correspondences are weakly decreasing

in price menus, and determined by the local conditions. In particular, it implies the

existence of the efficiency benchmark, the Walrasian equilibrium: a constant per-unit

price p∗ together with q∗i ∈ Qi(p
∗), i ≤ N , such that market clears,

∑N
i=1 q

∗
i = 0.

114



3.3 Double-Clock Auctions

In this section we define a double-clock auction with individualized prices. The auc-

tion has three characteristic features, distinguishing it from a classical single-good

clock auction. First, at any time, each player faces separate buyer and seller prices.

Second, prices are not anonymous. At any point during the auction, each agent i

faces individual prices, which may differ across the agents. Third, prices for agent

i depend also on how many units the agent already bought or sold. Effectively, a

player faces two menus of prices, with per-unit prices as a function of quantity. As

we shall see, both features enhance the scope for price discrimination, and at the

same time do not compromise any of the strategic virtues of the auction.

Taxation Functions. An auction is parametrized by a system of taxation functions

(τ1, ..., τN), with τi : MK × QK → MK , for every i ∈ N . The first argument λ of

any τi is interpreted as a clock state of the auction. Its dynamics will be determined

shortly. The second argument q is the quantity that the agent desires to purchase (or

sell, when q < 0). Thus τi(λ, q) is the marginal, or per-unit ‘taxation’ on top of the

base price for the q-th unit for agent i, if the auction is at state λ. Put differently, at

a clock state λ agent i faces a demand-supply schedule, or a menu of per-unit prices

λ+ τi(λ, ·).

We require that i) for each player i, τi(0, ·) = 0 and τi(M, ·) = 0; ii) prices τi(·, q)

are weakly increasing in q, for every λ; iii) prices λ+ τi(λ, q) are weakly increasing in

λ, for every q; iv) at each λ at most one player’s pricing schedule changes by more

than one unit in λ.

Clock Dynamics.An auction is parameterized by two clock processes, (λb(t), λs(t))t≤MK .

The two clocks of the auction are initiated at λb(0) = 0 and λs(0) = M ; λb(t) (weakly)
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increases over time, and λs(t) (weakly) decreases over time, and both functions are

continuous. We also require that there are no “lulls”, with either clock changing at

any time. Thus, the clock auction lasts at most MK periods.

The exact details of how the clocks adjust are open, and are a parameter (along

with the system of prices, and information structure) of an auction, and we propose

several options below in the paper. In particular, the clocks will typically adjust in

response to the submitted demands at both clock states.

Strategies, Clinching, and Unloading. At any point in period t, given the clock

states λb(t) and λs(t), each player i faces two schedules of prices, λb(t) + τi(λ
b(t), ·)

and λs(t) + τi(λ
s(t), ·). In the auction, his strategy is to provide two demands (or

supplies) at any point in period t.

Specifically, consider any specification of private histories—that is, histories of

play prior to period t that are observable to a player i at t, for each t = 1, · · · ,MK

and i ≤ N . There is a leeway in what is observable by the players, such as the history

of prices, or the exact history of submitted demands. We assume that a player at time

t knows, besides own past actions, at least the buyer-clock and seller-clock states λb(t)

and λs(t). A strategy (xb
i(t), x

s
i (t))t≤MK of a player i specifies a submitted demand

and a submitted supply, each in R, for every period t and every private history.1

In the process or running an auction, players secure purchases and sales of the

good; when a player secures a sale we will say that he unloads the good and, following

Ausubel (2004), we say that he clinches it when he secures its purchase. The quantity

1We suppress the dependence of submitted demands and supplies on private histories, as those
play no role in the results. Note also that we define a strategy as a plan of action for a given,
realized utility function. Later on, in the incomplete information setting, we will talk explicitly
about “mappings from utility functions to strategies”, avoiding the term “incomplete information
strategy”, to avoid confusion.
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of the good that player i clinched at time t, Ci(t), and the quantity that he unloaded,

Di, are defined as

Ci(t) = max{0,−
∑
j ̸=i

xb
j(t)},

Di(t) = min{0,−
∑
j ̸=i

xs
j(t)}.

(3.1)

A player starts clinching goods when the total demand from other players—the

residual demand—at the lower, buyer-prices drops below zero. Then, he clinches

additional units when the residual demand drops further. Similarly, he starts un-

loading the good when the total supply from other players—the residual supply—at

the seller-prices reaches above zero, and he unloads more as the residual supply goes

up.

We make the following assumptions on strategies. We require that i) before the

clocks meet, submitted demand on the buyer-clock is greater than that on the seller-

clock, xb
i(t) ≥ xs

i (t), for every t ≥ 0; ii) demand on the buyer-clock xb
i(t) is decreasing

in t and demand on the seller-clock xs
i (t) is increasing in t; and iii) player can’t submit

two different demands at a given price scheme,

x∗
i (t) = x#

i (t
′), if λ∗(t) = λ#(t′), for t′ ≤ t and ∗,# ∈ {b, s}. (3.2)

The last assumption eliminates the “redundancy” of submitting demands twice, at

different points of time, for a given price scheme. It is only needed to guarantee unique

weak rationalizability of sincere bidding below (see Ausubel (2004)). In particular,

it implies that a strategy needs to be defined only until the clocks meet at some

end period T . iv) players must demand at least the amount she clinched/unloaded,
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xb
i(t) ≥ Ci(t) and xs

i (t) ≤ Di(t).

Allocations and Payments. Finally, we define the allocation and the payments

resulting from running an auction. Each agent is allocated the quantity that he

clinched or unloaded by the time respective side of the market clears. The price paid

for each unit clinched (or received for each one unloaded) is the price for that unit

at the clock when it was clinched. This definition of the payments conforms with

the guiding idea behind the standard single-unit English auction, or the dynamic

multi-unit auction in Ausubel (2004).

Let T b be the first time such that in the next period there is excess supply on

the buyer-clock, and T s be the first time such that in the next period there is excess

demand on the seller-clock,

T b = min{τ :
∑
i

xb
i(t) ≤ 0,∀t > τ},

T s = min{τ :
∑
i

xs
i (t) ≥ 0,∀t > τ}.

Both payments and allocations in an auction are determined when T b and T s are

crossed, at which point the auction may end.

The quantity qi allocated to i is defined so that

qi ∈ [xb
i(T

b), xb
i(T

b − 1)], and qi ≥ Ci(T
b − 1), when Di(T

s) = 0,

qi ∈ [xs
i (T

s − 1), xs
i (T

s)], and qi ≤ Di(T
s − 1), when Ci(T

b) = 0,∑
i≤N

qi = 0, (3.3)

when both T b and T s are finite, and otherwise qi = 0.
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When either submitted demands or supplies “jump” discontinuously and at no

time clear the market, the market has to be rationed. Intuitively, each player is

rationed down from what he demands or supplies just before the jump, in a way

that market clears. Some caution is required with how rationing is defined: following

Okamoto (2018), we require that the demands and supplies are executed according to

an exogenous order of players, until the market clears. Importantly, we also require

that the player whose price scheme is discontinuous when market clears is considered

last in the rationing order.

The clock auction also determines a payment rule for the agents. Namely, the

agents are charged the sum of the price clock at which they clinch each unit of the

asset and the additional taxation, which is determined by the price clock and the

cumulative clinches up to that point in the auction. Let ci(t) and di(t) denote the

marginal clinch/unloading at period t, which are defined by

ci(t) =Ci(t)− Ci(t− 1),

di(t) =Di(t)−Di(t− 1).

Agent i clinches ci(t) units at time t and unloads di(t) units at time t. If an agent

ends up being a seller, her payment is similarly determined.

ti =



∑
0≤t≤T b ci(t)(λ

b(t) + τi(λ
b(t), Ci(t))) qi > 0

0 qi = 0∑
0≤t≤T s di(t)(λ

s(t) + τi(λ
s(t), Di(t))) qi < 0
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3.4 Nonparametric Setting

In this section we investigate strategic properties of the double-clock auction con-

structed in the previous section. Namely, we show that it is an ex-post perfect equi-

librium for bidders to play sincerely, as if they were a ‘price-taker’ against the price

path determined in the clock auction.

As a first step, we define a notion of sincere bidding.

Definition 3.4.1. For an arbitrary history of play until round r, r = 1, · · · ,MK,

player i bids sincerely at t if

x∗
i (t) =


minQi(p

∗), if minQi(p
∗) ≥ 0,

maxQi(p
∗), if maxQi(p

∗) ≤ 0,

0, if 0 ∈ Qi(p
∗),

(3.4)

for ∗ ∈ {b, s}, as long as both reports belong to the permissible interval [xs
i (t−1), xb

i(t−

1)], and otherwise x∗
i (t) is the nearer boundary of the interval.

In other words, player i bids sincerely if at any time he reports truthfully his

demands, given the current two clock states, and so the current two menus of prices.

Given that the marginal utilities are decreasing, and the per-unit prices λ∗(t) +

τi(λ
∗(t), ·) are weakly increasing in quantity, at any time, the problem is concave and

each player simply reports a quantity x that is locally optimal—at which his marginal

utility crosses the per-unit price. In case there are several optimal quantities, the

player chooses conservatively the quantity closest to zero.

Such strategy of sincere bidding, if followed from the start, is consistent: submit-
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ted demands xb
i(t) increase over time, xs

i (t) decrease over time, and xs
i (t) ≤ xb

i(t),

for t ≤ MK. However, after an arbitrary, “non-sincere” bidding history, sincere

bidding means bids that are consistent with the history and closest to the optimal

conservative bids.

It follows also from the previous argument that—again, when players bid sincerely—

the allocation in an auction is determined by the system of prices, and in particular

by the range of price clocks at which the total demand
∑

xi is zero. Specifically, it

does not depend on the details of the clock adjustment process. The same is true for

the payments in an auction, under sincere bidding.

This is because the submitted demands and supplies, and so the clinched and

unloaded quantities depend only on the clock state λ and not period t, and so the

per-unit payments in (3.4) depend only on the system of prices.

Given sincere bidding, a system of prices provides a convenient instrument in the

nonparametric setting of double-clock auctions. By determining both allocation as

well as payments, it allows the designer to strike a balance between such objectives as

efficiency, small budget deficit, or expected profit maximization. In the next section,

we will see that, indeed, double-clock auctions with appropriate price schemes may

achieve each of those objectives.

In a similar vein, we shall assume a demanding notion of incentive compatibility

for the players. Evaluating strategic incentives of the players in a Bayesian framework

would require a specification of prior beliefs over the types (utilities) of other players,

as well as details of the games information structure, and so what exactly players learn

in the course of the game; formally, information structure would be reflected in how

histories H t
i evolve over time. Instead, we require that each player’s strategy remains
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optimal ex post, even if the utilities of the opponents were known. This guarantees

optimality given any beliefs about the opponents’ types, and so for any distribution

over the types and information structures (see Ausubel (2004)). Moreover, reflecting

the dynamic nature of the game, we require the strategies to be optimal after any

history of play. Formally,

Definition 3.4.2. A profile (X1, ..., XN) of mappings from utility functions into

strategies, Xi(Ui) = (xb
i(t), x

s
i (t))t≥0, for every i and Ui, is an ex post perfect equi-

librium if for every realized utilities (U1, ..., UN), at every time T , and after every

history the profile of continuation strategies (X1(U1)t≥τ , ..., XN(UN)t≥T ) is a Nash

equilibrium of the game in which the realized utilities are common knowledge.

Besides incentive compatibility, we also require participation in the auction to be

a better alternative than autarky.

Definition 3.4.3. A mapping Xi from utility functions into strategies is dominance

individually rational for player i if for every utility function Ui and any strategies of

other players, participating in the auction with strategy Xi(Ui) results in utilities at

least Ui(0).

Next, we argue that the sincere strategy constitutes an equilibrium in our double

clock auction with individualized price. In addition, it ensures that each agent is not

worse-off from joining the exchange.

Proposition 3.4.1. i) Sincere bidding by every player is an ex post perfect equilib-

rium. ii) Sincere bidding is dominance individually rational for every player.

Proof of Proposition 3.4.1. During the double clock auction, any payoff-relevant event

happens only through clinching and unloading. The definition of clinches and unloads
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(3.1) ensures that agent i’s clinching and unloading happen independent of her own

demand reports xi. In addition, the rationing rule, which uses an exogenous order of

players to assign any excess demand or supply kills the room for strategic behavior

from each agent. Thus, any deviation from the sincere strategy affects agent i’s payoff

if i) changes the final allocation q∗i or ii) affects strategies of other agents.

We argue that the sincere strategy constitutes an ex-post perfect equilibrium

of the clock auction game. Suppose that agents other than i employs the sincere

strategy, so that agent i’s deviation from the sincere strategy does not prompt other

agents to play otherwise. Thus, the deviation has payoff impacts only if it changes

the final allocation.

Consider any history—price states and previous reports—of the double clock

auction. It is a best response for agent i to play sincerely since it maximizes her

payoff given the price and tax path, which is determined by other agents being sincere.

Agent i’s decreasing marginal utility and increasing marginal cost of acquiring an

additional unit of the good ensures that agent i would stick to the sincere strategy

at any history.

There are two key intuitions behind the proof of the incentive compatibility. First,

bidders other than bidder i bid sincerely, they determine a menu of quantities and

nonlinear transfers that bidder i effectively choose from in the course of the dynamic

auction. As a buyer, a unit x becomes available to bidder i at the buyer-state at which

the total demand from others drops below −x. The price for this unit is determined

by bidder i’s menu of prices at that state. The feature of other bidders determining

a menu for bidder i to choose from is shared with the clinching auction in Ausubel

123



(2004). A new feature is that the price for a unit at the moment of clinching is not

common to all players, but determined by a private menu.

However, the second feature of the auction is that, as we argue below, a unit is

clinched only when it is demanded at that moment, and unloaded only when supplied.

Incentive compatibility of sincere bidding then follows because the menu of prices

at any given moment single-crosses from above (or, is flatter than) the menu that

determines the allocation, and the two cross at the clinched (unloaded) unit. This

single-crossing holds as long as the menus are weakly increasing at any state—rather

than just constant, as in Ausubel (2004)—and increasing over time. In a sense, if a

player ends up clinching a unit, he gets an additional discount relative to the schedule

he faced; clinching more units would require paying an additional penalty relative to

the schedule faced.

It follows from the rules of the auction that if a unit is clinched or unloaded strictly

before a clock stops, it must have been demanded (or supplied) at that time. When

strategies are discontinuous and overshoot a market clearing quantity, a player may

also clinch or unload an “atom” of units at the end of the auction, in the process of

rationing. We show in the proof that if price schedule is discontinuous at this moment

(which presumably resulted in a discontinuous sincere bidding), a player also only

clinches units that he demands, and unloads what he supplies. (When price schedule

is continuous, a player clinches at a supremum of prices at which he demanded the

unit.)
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3.5 Direct Mechanisms

In the previous section, we have argued that our dynamic auction possesses a sincere

ex-post perfect equilibrium, like in Ausubel (2004). However, it remains to explore

whether our double clock auction could be considered optimal for the auctioneer in

some sense. We proceed with a parametric approach by modeling a one-dimensional

type, with convex support and a quasi-linear utility with single crossing, which is a

standard approach in mechanism design.

Similarly to the previous section, let us assume that the agents have the quasi-

linear utility that is indexed by a single-dimensional type θi ∈ Θi, where the type

space Θi is a compact interval onR. By the revelation principle (see Myerson (1979)),

we focus on a direct mechanism, which is a collection of allocation and transfer func-

tions qi(θ), ti(θ) or, equivalently, allocation and surplus functions q(θ), s(θ), defined

for every agent i and every realization of θ = (θi, θ−i) in the Cartesian product of

supports of individual types. We will refer to the domains of θi, θ−i and θ as simply

the support, and we will refer to the distribution functions of θi and θ−i as Fi and Fi

correspondingly.

Given a direct mechanism, agent i’s payoff after a type profile θ was reported is

denoted by si(θ), which is defined as

si(θ) = ui(θi, qi(θ))− ti(θ),

where qi ∈ R is the quantity allocated, ti ∈ R are monetary transfers. Throughout

the paper, we will refer to si ∈ R as the surplus, s̃ = s − u(θi, 0) as the net surplus

and ũ = u− u(θi, 0) as the net utility.
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Assumption 3.5.1. i) θi are one-dimensional, independently distributed on a com-

pact interval Θi, ii) ũi are strictly single crossing and strictly concave, for all types

in the support.

Similar to the previous section, we impose two types of ex-post constraints on

our mechanism: incentive compatibility (IC) and individual rationality (IR). Ex-post

means that these constraints are satisfied pointwise, as in Andreyanov and Sadzik

(2021), rather than on average, as in Lu and Robert (2001).

Definition 3.5.1. A robust mechanism satisfies the following ex-post constraints:

IC: si(θ) ⩾ ui(θi, q(θ
′
i, θ−i))− t(θ′i, θ−i)

IR: infθi s̃i(θi, θ−i) ⩾ 0

for all i and all types in the support.

The structure imposed by the robustness requirement is summarized in Lemma 3.5.1.

By the standard envelope argument, the IC constraints tie the slope of net surplus

for agent i to the slopes of his supporting utilities, and the IR constraint normalizes

the intercept. The shape of the net surplus function is therefore described by a simple

integral formula which we refer to as envelope conditions :

s̃i(θi, θ−i) =

∫ θi

θ∗i (θ−i)

∂

∂θ
ũi(x, qi(x, θ−i))dx, (3.5)

Note that in the envelope conditions, the bound of integration θ∗i (θ−i) ∈ Θi has to

be a net surplus minimizer. It is endogenous and depends on the realization of types

of other agents, but it can be associated with types θi such that qi(θ) = 0, in other
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words, types that are excluded from trade. This will be helpful for the characterization

of certain mechanisms, most notably, profit maximizing ones.

For notational simplicity, we denote (mixed) partial derivatives as follows: s̃′θi(θ) =

∂s̃i
∂θi

(θ), mui(θi, qi) =
∂ũi

∂qi
(θi, qi), mvi(θi, qi) =

∂vi
∂qi

(θi, qi), mvi,x(θi, qi) =
∂2vi
∂qi∂x

(θi, qi) for

x = qi or x = θi.

Lemma 3.5.1. Under Assumption 3.5.1, in a robust mechanism, for all i and all

types in the support: i) allocation qi(θ) is weakly increasing in θi, ii) the envelope

conditions (3.5) hold, iii) net surplus s̃i(θ) is weakly convex in θi, and iv) the set of

types excluded from trade is a subset of net surplus minimizers.

Proof of Lemma 3.5.1. The monotonicity of allocation i) is a standard necessary

condition under single crossing, and the envelope conditions ii) can be traced back

to Theorem 2 in Milgrom and Segal (2002). To prove iii) observe that, by the envelope

conditions, net surplus is a.e. differentiable, thus at points of differentiability we can

write:

s̃′θi(θ) = (s(θ)− u(θ, 0))′θ = u′
θ(θ, x)|x=q(θ) − u′

θ(θ, x)|x=0 =

∫ q(θ)

0

u′′
12(θ, x)dx

which, more generally, can be interpreted as a condition on the subgradient s̃′θi . This,

together with the monotonicity of allocation, implies convexity of net surplus.

Finally, to prove iv) observe that if the set of types excluded from trade is empty,

the claim holds trivially. If it is not empty, then the subgradient of s̃ at the type

excluded from trade necessarily contains zero, by the envelope formula. Since s̃ is

convex, this point also has to be one of its minimizers.
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We are interested in robust mechanisms that maximize the following objective:

max
q(θ)

∫ ∫ [∑
i

vi(θi, qi)

]
dF (θi)dF(θ−i), s.t.

∑
qi(θ) = 0 (3.6)

for a collection of functions vi(θi, q), which can be interpreted as individual con-

tributions of each agent to a certain social utility. We will broadly refer to these

mechanisms as optimal robust.

While restrictive, this formulation covers a number of important families of mech-

anisms. In particular, two such families have been studied before. The first family,

studied in Gresik and Satterthwaite (1989), Lu and Robert (2001), can be informally

defined via vi = ui − αsi, and can be thought of as a convex combination of efficient

and profit maximizing mechanisms. The second family, studied in Andreyanov and

Sadzik (2021), is vi = ui − σq2i and can be thought of as a nearly efficient mecha-

nism, capable of balancing the budget ex-post through partial demand reduction. By

coincidence, if the utility is quadratic: ui(θi, q) = θiq − µ
2
q2, the second family also

contains (for σ = µ
n−2

) the uniform-price double auction, studied, among others, in

Kyle (1989) and Rostek and Weretka (2012).

Assuming concavity of the vi functions, we can attempt to solve the problem

using the method of Lagrange multipliers, ignoring the monotonicity constraints.

This gives rise to the following necessary first order conditions:

mvi(θi, qi) = p,
n∑

i=1

qi(θ) = 0. (3.7)

The basic properties of the solution are derived in Lemma 3.5.2. To derive the slopes

of allocation and price in types, linearize (3.7) around the equilibrium point (p, q),
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where p is a market clearing price and q ̸= 0:

mv′i,θi +mv′i,qiq
′
i,θi

= p′θi , mv′j,qjq
′
j,θi

= p′θi , j ̸= i.

We can then solve for the slopes using market clearing:

p′θi =
mv′i,θi
mv′i,qi

(
∑ 1

mv′k,qk
)−1, q′j,θi =

mv′i,θi
mv′j,qj

(
1/mv′j,qj∑
1/mv′k,qk

− I(j = i)

)
. (3.8)

Clearly, under single crossing of the vi functions, the allocation of any given agent

is weakly increasing in own type and weakly decreasing in types of others, but the

market clearing price is weakly increasing in all types.

Assumption 3.5.2. i) vi is continuous in both arguments, ii) strictly concave in q

and iii) strictly single crossing iv) continuously differentiable for all, for all q ̸= 0

and all types in the support.

Lemma 3.5.2. Under Assumptions 3.5.1 and 3.5.2, in an optimal robust mechanism,

i) for any realization of types θ in the support, there exists (p, q) such that (3.7)

holds, and the allocation function qi is ii) weakly decreasing in θ−i and iii) upper

hemi-continuous in both θi and θ−i, iv) for any x ̸= 0, there exists is at most one

solution z = q−1
i (x, θ−i) to the equation qi(z, θ−i) = x.

Proof of Lemma 3.5.2. To prove i), observe that by mere concavity of the vi function

in the neighborhood of q = 0, for any profile of types θ, there exist finite prices p

and p such that p < mvi(θi, 0) < p, for all i. Consequently, for p total demand is

non-positive, while for p total demand is non-negative. Since the demands are also

upper hemi-continuous in p, by Intermediate Value Theorem, there exist a price in

the [p, p] segment, such that the market is cleared.
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To prove ii) observe that by single crossing of vi, from the perspective of player i,

an increase in θi can be interpreted as shift of demand, while an increase in θ−i as a

shift of supply. Moreover, by convexity of vi, all demand functions are non-increasing

and upper hemi-continuous. Consequently, the allocation qi in the intersection of

supply and demand is weakly increasing in θi and weakly decreasing in θ−i.

To prove iii), observe that (3.6) is a continuous and convex optimization problem,

since the monotonicity constraint is not binding. Thus, by Maximum Theorem, the

solution is upper hemi-continuous in all parameters.

Before we proceed to the first main result of this section, there is one technical,

yet important assumption that we need to make, for the mechanism to be tractable.

This assumption is related to the interiority of the net surplus minimizer, often

referred to as the ”worst-off type”, see Lu and Robert (2001), and requires either a

full symmetry of the model, or a full range of certain marginal values, or full support

and stronger versions of concavity and single crossing of v functions.

Assumption 3.5.3. The type distribution Fi has a density function fi that is strictly

positive on any θi ∈ Θi and mvi,θi ,mvi,qi are bounded away from zero.

Lemma 3.5.3. Under Assumptions 3.5.1 to 3.5.3, for any fixed θ−i in the support:

i) the allocation qi(z, θ−i) attains zero for some z in the support, and ii) the transfers

can be written as:

ti(q) =

∫ q

0

mui(q
−1
i (x, θ−i), x)dx. (3.9)

Proof of Lemma 3.5.3. Pick a trader i, and fix a profile of types θ−i. Next, con-

sider the economy without trader i, that is, solve a system of first order conditions
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mvj(θj, q̃j) = p̃ for all j ̸= i, and
∑

j ̸=i q̃j = 0. This solution exists by Lemma 3.5.2

for some p̃. Then there has to be a type z in the support, such that p̃ = mvi(z, 0),

which means that trader i is excluded from trade in the original economy with the

profile of types (z, θ−i).

To prove ii) recall the envelope formula:

t(θ) = ũ(θi, q(θ))−
∫ θi

θ∗

∂

∂θ
ũ(x, q(x, θ−i))dx =

=

∫ θi

θ∗

d

dx
ũ(x, q(x, θ−i))dx−

∫ θi

θ∗

∂

∂θ
ũ(x, q(x, θ−i))dx =

=

∫ θi

θ∗

∂

∂q
ũ(x, q(x, θ−i))dq(x) =

∫ θi

θ∗

∂

∂q
u(x, q(x, θ−i))dq(x)

Finally, since for any θ−i there exist a type excluded from trade by i), and since it

has to be one of net surplus minimizers by Lemma 3.5.1, we get the formula below:

t(θ) =

∫ q

0

mu(q−1(x, θ−1), x)dx.

We are now ready to derive the taxation scheme τ(p, q) that would implement

the optimal robust mechanism via our auction design. Define the boundary condition

for the taxes as τi(p, 0) = 0 and the law of motion via any of the fixed points θ̂i(q, p)

such that the system of equations below holds:

mτi(p, qi) = mui(θ̂i, q)− p = mui(θ̂i, qi)−mvi(θ̂i, qi). (3.10)

Intuitively, this means that when the first order condition (3.7) holds, marginal costs
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of acquiring an additional unit will be matched to marginal benefits, for each trader,

so that they will be incentivized to convey their demands truthfully throughout the

auction. Put differently, the cumulative tax function is exactly equal to:

τ(p, q) =

∫ q

0

[mui(θ̂(x, p), x)− p]dx. (3.11)

However, what the player would pay under sincere bidding is the following quantity:

ti(q) =

∫ q

0

(mτ(p−i(x), x) + p−i(x)) dx =

∫ q

0

mui(θ̂(x, p−i(x)), x)dx, (3.12)

where p−i(x) is the residual supply curve, formed by the demands of all other agents.

Finally, note that for any z ∈ q−1(x, θ−i), the first order condition p ∈ mvi(z, x)

holds, from which it follows that z is one of the possible fixed points θ̂(x, p), and the

converse is also true. In other words, the range of θ̂(x, p−i(x)) spanned by all possible

fixed points, coincides with the range of q−1
i (x, θ−i) from the Taxation Principle,

spanned by all possible selections.

This means that the transfers under sincere bidding in the auction coincide with

that of the mechanism at points where it is differentiable and, consequently at all

points, since they are a.e. continuous in q. It then immediately follows that the sincere

equilibrium of our clock auction where the individual price is given by p + τi(p, q)

implements this mechanism, as long as the activity rules are not binding.

The construction of the fixed point θ̂i(p, q) is formally treated in Proposition 3.5.1,

but the slopes can be heuristically derived, by linearizing (3.10):

θ̂′p =
1

mvi,θ
⩾ 0, θ̂′q = −mvi,q

mv′i,θ
⩾ 0, mτ ′i,p = mu′

i,θθ̂
′
p − 1, mτ ′i,q = mu′

i,θθ̂
′
q +mui,q.
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Interestingly the slope of demand is proportional to the curvature of the v function:

θ∗(p, q) = θ ⇒ dq

dp
=

1

mvi,q

Proposition 3.5.1. Under Assumptions 3.5.1 to 3.5.3, there exist a continuous and

a.e. differentiable in q taxation function τ(p, q), such that the optimal mechanism is

implemented by the clock implementation.

Proof of Proposition 3.5.1. Define the boundary condition for the taxes as τi(p, 0) =

0 and the law of motion via fixed point:

mτi(p, qi) := mui(θ̂i, q)− p = mui(θ̂i, qi)−mvi(θ̂i, qi). (3.13)

From eq. (3.13), one can see that there exists a unique θ̂i given p and qi since the

net utility function ũ is strictly single crossing. Thus, eq. (3.13) defines an ordinary

differential equation for the tax function along with the boundary condition above.

Since the sincere equilibrium of the auction game is ex-post IC, by the envelope

conditions, the transfers ti are uniquely defined for any allocation function, up to a

constant. However, τ(p, 0) = 0 guarantees that, in this equilibrium, the net surplus

s̃ attains minimum at q = 0. In other words, the aforementioned constant is set to

satisfy the IR constraint. Thus, if we prove that the allocation function in the auction

coincides with that of the v-optimal mechanism, the equivalence of transfers would

automatically follow.

To see the equivalence of allocations, note first that by ex post IC, for any po-

tential stop-off price p, the marginal utility at the final allocation is equal to the

stop-off price plus the marginal tax, which is captured by the first order condition
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mτi(p, qi) = mui(q) − p. Second, by definition of taxes, this implies p = mvi(qi)

for all agents, which is exactly the first order condition for the v-optimality of the

allocation.

It only remains to show that the sincere demands satisfy the activity rules. Note

first, that while the vi functions are formally non-differentiable in the neighborhood of

qi = 0, we can still use standard theorems to characterize their behavior separately

for qi > 0 and qi < 0, and then extend it to the full support. By applying the

Inverse Function Theorem to the first order condition mvi(θi, q) = p, we get that

dp
dq

= v′′qq < ε ⩽ 0, thus the sincere demand is continuous and strictly monotone.

3.6 Expected Profit Maximizing Mechanisms

Proposition 3.5.1 shows that the mechanism designer may implement objectives other

than full efficiency. In this section, we show that expected profit-maximization could

be an instance of such objectives that our clock auction implements. There are a

couple of additional assumptions that we have to make. One is related to the inte-

grability2 of net surplus, which is necessary for a proper integration by parts, and

requires either a compact support or a finite expected net surplus in the economy.

Assumption 3.6.1. Either the support is compact, or

∑
ũi(θi, q) ⩽ C(θi) (3.14)

for any q :
∑

qi = 0 and some function C(x), such that
∫
C(x)dFi(x) < ∞.

2Riemann if dF is continuous

134



The other is related to the sign of higher order derivative of the net utility function

that ensures the local incentive compatibility implies global ones. This is a standard

assumption.

Assumption 3.6.2. The higher order derivatives of the net utility function ũ satis-

fies the following properties.

∂3ũi

∂θ2i ∂qi
(θi, qi)


> 0 qi > 0

< 0 qi < 0

(3.15)

∂3ũi

∂θi∂q2i
(θi, qi)


> 0 qi > 0

< 0 qi < 0

(3.16)

With these two additional assumptions on the net utility function, we are ready

to state the main point of this section that our double clock auction implements an

expected profit maximizing mechanism.

Proposition 3.6.1. Under Assumptions 3.5.1, 3.5.3, 3.6.1 and 3.6.2 the robust

profit maximizing mechanism is optimal with:

vi(θi, q) = u(θi, q)−
I(qi > 0)− F (θi)

f(θi)

∂

∂θ
[u(θi, q)− u(θi, 0)].

Proof of Proposition 3.6.1. We start by reminding ourselves that, by definition, a

transfer can be rewritten as ti = ui − si = ũi − s̃i, therefore in a profit-maximizing
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mechanism, the allocation maximizes the following objective:

∫
Θ−i

∫
Θi

ũi(θi, qi)− s̃i(θi, θ−i)dFi(θi)dF−i(θ−i)

subject to the ex-post IC, IR and the MC constraints. Note first that the net surplus

function is integrable with respect to dFi, which means that we can separate it from

the net utility. Using the ex-post envelope conditions eq. (3.5), we shall now replace

the inner integral over net surplus with something that does not involve transfers,

thus effectively eliminating the IC constraints from the analysis. The procedure is

fairly similar to the application of integration by parts in mechanism design prob-

lems, but adapted to the two-sided setting with the ex-post, rather than Bayesian

constraints. Assume, for simplicity, the full support case.

First, split the integral at one of the net surplus minimizers θ∗(θ−i), which exists

by Lemma 3.5.3, and plug in the envelope condition:

∫
Θi

s̃(θi, θ−i)dF (θi) = lim
N→∞

∫ θ∗

−N

s̃(θi, θ−i)dF (θi) + lim
N→∞

∫ N

θ∗
s̃(θi, θ−i)d(F (θi)− 1)∫

Θi

s̃(θi, θ−i)dF (θi) = lim
N→∞

∫ θ∗

−N

∫ θi

θ∗
ũ′
1(x, q(x, θ−i))dxdF (θi) + lim

N→∞

∫ N

θ∗

∫ θi

θ∗
ũ′
1(x, q(x, θ−i))dxd(F (θi)− 1)

Second, observe that we have two terms of the form
∫
adb, where a is absolutely

continuous by the Envelope Theorem, and db is a density function, thus Lebesgue

integrable. This means, that integration by parts can be applied, under the sign of
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the limit.

−
∫
Θi

s̃(θi, θ−i)dF (θi) = lim
N→∞

∫ θ∗

−N

ũ′
1(θi, q(θi, θ−i))F (θi)dθi

+ lim
N→∞

∫ N

θ∗
ũ′
1(θi, q(θi, θ−i))(F (θi)− 1)dθi ++ lim

N→∞
AN(θ−i)− lim

N→∞
BN(θ−i)

where AN(θ−i) = s̃(−N, θ−i)F (−N) and BN(θ−i) = s̃(N, θ−i)(1− F (N)).

Third, because s̃i convex, we can majorize both AN and BN like this:

s̃(N, θ−i)(1−F (N)) ⩽
∫ ∞

N

s̃dF ⩽
∑∫ ∞

N

s̃idF ⩽
∑∫ ∞

N

ũi(q)dF ⩽
∫ ∞

N

C(θi)dF (θi)

with the latter converging to zero, by absolute continuity of a finite Lebesque integral.

What we get is:

vi(θi, θ−i) = u(θi, q)− u(θi, 0)−
I(θi > θ∗(θ−i))− F (θi)

f(θi)

∂

∂θ
[u(θi, q)− u(θi, 0)].

Note that this is not the final formula yet. Observe that the first appearance

(but not the second) of the u(θi, 0) term integrates to a constant in the original

problem, thus can be dropped. The final ingredient is the claim that we made in

Lemma 1 v). Because the set of types excluded from trade, is a subset of surplus

minimizers, we can replace the indicator with I(q > 0), without loss of generality.

It only remains to verify that this function satisfies Assumption 3.6.1, so that the

premise of Proposition 3.5.1 is satisfied.

Note first, that, after the substitution of the indicator, the vi function is clearly

continuous in q. To see this, observe that while I(qi > 0)/f(θi) creates a downwards

jump at q = 0, the ∂
∂θi

ũ term is equal to zero at that point. Consequently, the vi
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function experiences a concave kink, rather than a downwards jump.

The resulting function is single crossing and concave due to Assumption 3.6.2.

3.7 Conclusion

This paper constructed a clock implementation of direct mechanisms of exchange

economies whose objective is not limited to the exact efficiency. At the core of our

auction design, there are two concurrent price clocks that run on both—buying and

selling—side of the market, which gradually reveals the market price over the course

of the implementation and endogenously sorts the traders into their after-trade posi-

tions. In addition, we employ individualized price clocks so that the auctioneer may

pursue other objectives, such as profit maximization from marketmaking.
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