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Large scale validation 
of an early‑age eye‑tracking 
biomarker of an autism spectrum 
disorder subtype
Teresa H. Wen1*, Amanda Cheng1, Charlene Andreason1, Javad Zahiri1, Yaqiong Xiao1, 
Ronghui Xu3, Bokan Bao1,2, Eric Courchesne1, Cynthia Carter Barnes1, Steven J. Arias1 & 
Karen Pierce1*

Few clinically validated biomarkers of ASD exist which can rapidly, accurately, and objectively identify 
autism during the first years of life and be used to support optimized treatment outcomes and 
advances in precision medicine. As such, the goal of the present study was to leverage both simple 
and computationally‑advanced approaches to validate an eye‑tracking measure of social attention 
preference, the GeoPref Test, among 1,863 ASD, delayed, or typical toddlers (12–48 months) referred 
from the community or general population via a primary care universal screening program. Toddlers 
participated in diagnostic and psychometric evaluations and the GeoPref Test: a 1‑min movie 
containing side‑by‑side dynamic social and geometric images. Following testing, diagnosis was 
denoted as ASD, ASD features, LD, GDD, Other, typical sibling of ASD proband, or typical. Relative 
to other diagnostic groups, ASD toddlers exhibited the highest levels of visual attention towards 
geometric images and those with especially high fixation levels exhibited poor clinical profiles. Using 
the 69% fixation threshold, the GeoPref Test had 98% specificity, 17% sensitivity, 81% PPV, and 65% 
NPV. Sensitivity increased to 33% when saccades were included, with comparable validity across sex, 
ethnicity, or race. The GeoPref Test was also highly reliable up to 24 months following the initial test. 
Finally, fixation levels among twins concordant for ASD were significantly correlated, indicating that 
GeoPref Test performance may be genetically driven. As the GeoPref Test yields few false positives 
(~ 2%) and is equally valid across demographic categories, the current findings highlight the ability 
of the GeoPref Test to rapidly and accurately detect autism before the 2nd birthday in a subset of 
children and serve as a biomarker for a unique ASD subtype in clinical trials.

Autism spectrum disorder (ASD) begins during prenatal  life1,2, yet most children do not receive a diagnosis 
and start treatment until 3–4 years  later3,4. Although genetic, neural, metabolomic, and molecular systems are 
adversely impacted in  ASD2,5,6, it is nevertheless detected and diagnosed using clinical judgement.

There has been a recent surge in research designed to discover biologically-based markers of ASD which 
can increase the pace of diagnosis, remove the requirement for highly-trained professionals, provide prognostic 
information, guide treatment plans, or be used as outcome measures in clinical  trials7. Currently, only two ASD 
biomarkers are being considered for the FDA Biomarker Qualification  Program8,9. However, they were established 
at “late” ages in children and therefore may not be generalizable to toddlers and infants, for whom biomarkers are 
of greatest utility. Moreover, these biomarkers only identify a subset of ASD children, indicating that additional 
biomarkers for other ASD subtypes are needed.

Dramatically reduced attention to social information is a key feature of ASD noted since its discovery in 
 194310. Unsurprisingly, considerable effort has been leveraged to understand and quantify social visual attention 
abnormalities, most recently using eye-tracking11–29. Despite varying stimuli and participant age, a meta-analysis 
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of 38 published eye-tracking studies indicated that subjects with ASD attend definitively less to social stimuli 
compared to typically developing  individuals30.

Our previous eye-tracking work using a novel preferential looking paradigm known as the ‘GeoPref Test’ iden-
tified a subgroup of ASD toddlers with heightened visual attention towards geometric relative to social  images16,25. 
The effect was robust with > 85% test–retest reliability, 86–100% positive predictive value (PPV), and 98% speci-
ficity, although sensitivity was consistently lower at ~ 20%16,25. ASD toddlers with a strong non-social preference 
also had higher symptom severity, worse language and cognitive  ability16, weak functional connectivity between 
social-visual brain  networks31, and worse school-age outcomes compared to social-preferring  toddlers20. Because 
this work was conducted within the context of population-based  screening32,33, one strength was the inclusion of 
non-ASD contrast groups which mimic the natural constituency found during routine pediatric practice. This is 
of considerable importance for the development of biomarkers with real-world utility. Weaknesses of the initial 
studies, however, include small sample sizes (i.e., 110 and 333), and a lack of rigorous methodology to examine 
predictive validity. We also failed to combine metrics to improve predictive accuracy, focusing instead on fixation 
levels alone. While other groups have utilized similar  paradigms13–15,26,27,34–36 or a near identical version of the 
GeoPref  Test25 and report similar  results19,37–48, validation statistics are often unreported.

In addition to validation, establishing impactful biomarkers requires understanding for whom, and at what 
ages, the marker best applies. In fields outside of autism it is well known that biomarker efficacy differs by race, 
ethnicity, age, and  sex49,50. With minor exception, eye-tracking studies within the autism field often have rela-
tively few  subjects11,22,29,51, yet sample sizes in the thousands are necessary for resolving demographic effects and 
establishing medical  biomarkers52–54. Moreover, there is a need to examine associations between biomarkers and 
clinical profiles as a pathway towards individualized medicine. Finally, ASD biomarkers which are tuned for 
high specificity/low false positive rate are necessary for circumventing the financial burden and familial stress 
associated with false positive results.

There is also evidence for a genetic component of visual social  preference55–58, but few studies have explored 
this using eye-tracking. We addressed this previously by comparing GeoPref Test performance in sibling pairs and 
found that among sibling pairs concordant for ASD, fixation to geometric images was strongly  correlated16. In a 
different study, the time non-ASD monozygotic twins spent looking at eyes or mouth in an eye-tracking task was 
highly  intercorrelated59. Such findings underscore the potential genetic basis of social visual attention patterns.

Given the necessity for well-developed, clinically relevant ASD biomarkers both for diagnostic purposes and 
use in clinical trials, the goal of the present study was to comprehensively validate an eye-tracking based bio-
marker in a large, diverse group of toddlers, producing the largest eye-tracking study of ASD and other delays to 
date. Here, we report ASD classification accuracy using both a simple, scalable approach associated with a single 
metric—percent fixation—that can be easily leveraged by non-researchers, as well as a more complex approach 
which utilizes machine learning algorithms to conduct tenfold validation and an independent replication set 
based on multiple eye-tracking metrics.

Methods
Participants. Subjects were referred through the community or via a population-based screening method 
known as Get SET Early32,33. Following screening at well baby check-ups using the CSBS IT-Checklist60, tod-
dlers were referred to the University of California, San Diego Autism Center of Excellence for in-depth diag-
nostic evaluations and eye-tracking, and invited for repeat testing every ~ 12 months until age 3. Toddlers were 
assessed by licensed Ph.D.-level clinical psychologists blind to eye-tracking results using the Mullen Scales of 
Early  Learning61, the Autism Diagnostic Observation  Schedule62, and the Vineland Adaptive Behavior  Scales63. 
Parents were given diagnostic feedback and toddlers referred for treatment as appropriate.

Of the 1,685 toddlers enrolled in the study, 266 (15.8%) were excluded largely due to compliance (See Sup-
plemental Methods eFigure 1). The remaining 1,419 toddlers (mean age: 24.37 months, range: 12.00–49.11) 
were separated into diagnostic groups based on most recent diagnoses including ASD, ASD features (ASD-Feat), 
global developmental delay (GDD), language delay (LD), typically developing (TD), typical toddlers with an ASD 
sibling (TypSibASD), and Other (Table 1 and Supplemental Methods). This final sample is independent from our 
previous  work16,25. To validate the GeoPref Test on the largest sample possible, secondary analyses included 444 
toddlers from our previous work resulting in a cumulative sample of 1,863 toddlers. Among this sample are 11 
monozygotic twins, 27 dizygotic twins, and 109 sibling pairs. Given the goal of early biomarker discovery, the 
first (i.e., youngest age) eye-tracking data collection was used in analyses.

Eye‑tracking apparatus, stimuli, and procedures. Eye-gaze data was collected using the Tobii T120 
(Tobii, Stockholm, Sweden; www. tobii. com; 60 Hz sampling rate; 1280 × 1024) while toddlers watched ‘The Geo-
Pref Test’ (62.22 s), which consisted of two rectangular areas of interest (AOIs, 525 × 363 pixels) each containing 
dynamic geometric (DGI) or social images (DSI; social images used with permission from Gaiam Americas 
Inc., Copyright 2003, Gaiam Americas, Inc.), identical to stimuli used in our previous  work16,17,25 (Fig. 1A; Sup-
plemental Methods eFigure 2). To control for biases due to spatial location, side of stimulus presentation varied 
across subjects.

To ensure that only the toddler’s gaze was tracked and free from parent influence, standardized instructions 
were read to parents. A five-point calibration was then performed using animated cartoon ducks with sounds, 
and data was only used if calibration results, determined via graphical output and verified via screenshots, fell 
within manufacturer-reported parameters (accuracy, 0.5  degrees64). For a subset of toddlers, a flashing star with 
chime appeared for 6.23 s prior to the start of the experiment to ensure toddlers fixated to the screen.

Data was processed using Tobii Studio (Tobii Fixation Filter, velocity threshold: 35 ms/window). Total fixation 
duration, fixation count within each AOI, and fixation duration within each AOI were exported and analyzed 

http://www.tobii.com
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offline. Percent fixation duration/AOI was computed by dividing the total fixation duration within an AOI by 
the fixation duration across the entire video. N-1 total fixations/total fixation duration was used to calculate 
saccades/sec within each AOI.

Defining ASD subgroups. For comparability with our earlier work and to tune the test towards a low false 
positive rate, 69% fixation to either DGI or DSI was used to distinguish between ASD toddlers who strongly 
preferred to visually fixate on geometric images  (ASDGeo) or social images  (ASDSoc)16,25. Given that experience-
dependent mechanisms may differentially impact toddlers with distinct attention patterns, stratifying ASD tod-
dlers in this way may have relevance for understanding long term outcomes among subtypes identified through 
eye-tracking. ASD toddlers who lacked a strong preference for either stimulus (i.e. they fixated on DGI for 
32–68% of the time) were categorized as ASD Middle responders  (ASDMid).

Table 1.  Summary of clinical characteristics for 1,863 toddlers who completed The GeoPref Test. Values 
are presented as means (standard deviations are noted in parentheses unless otherwise noted, and age 
range provided in brackets). ASD: Autism Spectrum Disorders, ASD-Feat: ASD Features, GDD: Global 
Developmental Delay, LD: Language Delay, TD: Typically Developing, TypSibASD: Typical Sibling of subject 
with ASD; ADOS: Autism Diagnostic Observation Scale, SA/CoSo Score: Social Affect/Communication Social 
Score, RRB Score: Restricted and Repetitive Behavior Score.

Mean (SD)

ASD
(N = 725)

ASD-Feat
(N = 103)

GDD
(N = 128)

LD
(N = 198)

Other
(N = 162)

TD
(N = 487)

TypSibASD
(N = 60)

M/F 563/162 85/18 98/30 149/49 113/49 295/192 28/32

Age, months 26.40 (8.25) 23.84 (9.17) 26.38 (9.81) 20.78 (7.44) 23.15 (9.31) 23.32 (9.17) 21.86 (8.79)

Range [12–49] [11–44] [12–46] [10–48] [11–48] [11–48] [12–44]

Ethnicity (%)

Hispanic or Latino 32.69% 29.13% 51.56% 42.93% 23.46% 19.71% 23.33%

Non-Hispanic or 
Latino 56.00% 63.11% 42.97% 50.00% 69.14% 71.25% 65.00%

Unknown/not reported 11.31% 7.77% 5.47% 7.07% 7.41% 9.03% 11.67%

Race (%)

Caucasian 52.14% 66.99% 54.69% 53.03% 65.43% 67.15% 66.67%

American Indian/
Alaska Native 0.83% 0.97% 0.78% 1.52% 1.23% 0.41% 0.00%

Asian 13.10% 5.83% 3.91% 8.08% 4.94% 8.01% 3.33%

Black/African Ameri-
can 2.48% 1.94% 1.56% 3.54% 1.85% 2.46% 3.33%

Pacific Islander/Native 
Hawaiian 0.83% 2.91% 2.34% 1.01% 1.23% 0.82% 1.67%

More than one race 9.79% 8.74% 10.94% 5.56% 13.58% 8.83% 8.33%

Not reported/
unknown/other 20.83% 12.62% 25.78% 27.27% 11.73% 12.32% 16.67%

Mullen (t score)

Visual reception 38.00 (13.04) 49.17 (12.31) 37.31 (11.82) 49.01 (10.13) 52.35 (11.87) 56.16 (9.68) 57.34 (9.34)

Fine motor 37.59 (16.23) 47.62 (12.05) 37.68 (12.39) 49.50 (10.31) 49.85 (11.84) 54.21 (9.14) 54.71 (8.86)

Receptive language 28.47 (12.78) 44.09 (13.06) 34.60 (10.79) 39.78 (11.86) 48.08 (13.15) 52.12 (10.78) 51.68 (10.42)

Expressive language 27.80 (13.03) 40.97 (12.17) 29.35 (11.23) 32.79 (9.59) 44.67 (12.04) 48.93 (10.72) 52.68 (10.44)

Early learning com-
posite 69.01 (19.39) 91.66 (18.37) 71.19 (18.05) 86.20 (14.65) 96.83 (20.22) 105.83 (13.73) 108.63 (13.46)

Vineland (standard score)

Communication 77.20 (13.90) 91.33 (12.41) 81.62 (13.32) 86.45 (9.66) 94.23 (12.98) 99.56 (11.38) 98.60 (15.28)

Daily living 84.65 (12.61) 92.38 (11.53) 87.59 (14.63) 95.27 (10.54) 95.23 (13.02) 99.67 (11.21) 100.67 (10.00)

Socialization 84.23 (11.97) 95.16 (9.72) 90.57 (12.92) 96.12 (10.89) 98.15 (11.73) 102.62 (9.44) 103.48 (8.82)

Motor skills 90.76 (10.67) 97.40 (10.63) 86.75 (16.67) 96.49 (8.81) 96.62 (11.95) 99.26 (9.63) 100.57 (8.80)

Adaptive behavior 
composite 81.08 (11.12) 92.50 (10.40) 84.50 (12.94) 91.37 (10.56) 95.07 (11.79) 99.99 (9.86) 101.10 (8.97)

ADOS (module T or 1)

ADOS RRB score 4.36 (2.16) 2.22 (1.71) 1.39 (1.51) 0.96 (1.20) 1.13 (1.35) 0.52 (0.92) 0.57 (1.01)

ADOS Sa/CoSo tot 
score 13.24 (4.78) 6.94 (4.73) 4.72 (3.65) 3.82 (2.86) 4.06 (3.57) 2.87 (2.59) 2.05 (1.87)

ADOS total score 17.60 (5.87) 9.16 (5.37) 6.10 (4.20) 4.77 (3.18) 5.20 (4.16) 3.39 (2.96) 2.62 (2.24)
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Statistical analyses. All analyses were conducted using R and relevant packages (e.g., pROC,  ROCR65–74). 
Results are reported using associated 95% confidence intervals (CI) and effect sizes as appropriate.

Visual attention preference stratified by diagnosis and correlation with clinical meas‑
ures. One-way ANOVA was performed to compare percent fixation towards DGI across diagnostic groups. 
Follow-up pairwise comparisons of group means were conducted using Tukey’s HSD.

Figure 1.  Validation of visual attention patterns among a combined sample of 1,863 toddlers of varying 
developmental types. (a) Sample images from the GeoPref eye-tracking test across the first 12 s. Social images 
courtesy of Gaiam Americas Inc., Copyright 2003, Gaiam Americas, Inc. To standardize initial fixations across 
toddlers, testing was preceded by a fixation star which flashed for 6.23 s. The entire length of the test was 62.23 s. 
(b) In the current study, 444 toddlers from a previous  analysis16  were combined with a new, independent 
sample of 1,419 toddlers in order to increase power and provide the largest dataset possible for subsequent 
analyses. As such, scatterplot demonstrates percent fixation to dynamic geometric images (DGI) or dynamic 
social images (DSI) for the combined sample of 1,863 toddlers. Percent fixation was defined as fixation duration 
within geometric or social areas of interest divided by total fixation duration to the entire video. Dashed lines 
depict threshold for 69% fixation. Green triangles indicate average percent fixation. Notched boxplots show 
median, range, and first/third quartiles. Notch ranges indicate 95% confidence intervals around the median. TP: 
true positive, FP: false positive. F statistic pictured was obtained from a one-way ANOVA conducted to compare 
percent DGI fixation across diagnostic groups. (c) Effect size matrix of pairwise comparisons of average percent 
fixation to DGI for toddlers of varying developmental types. Warmer colors indicate larger effect sizes and 
cooler colors indicate smaller effect sizes. (d) Validation statistics for classification of toddlers as ASD vs. non-
ASD using a 69% fixation threshold after grouping toddlers into 4-month age bins. Toddlers > 40 months were 
binned together given the small sample size of toddlers beyond this age. (e) ROC curves showing classification 
performance (ASD vs. non-ASD) among 20% of toddlers which make up an independent, hold-out test using 
left, percent DGI fixation alone (threshold: 61.3%), or right, multiple eye-tracking metrics (percent fixation, 
threshold: 61.3% and saccades/second, threshold: 2.29 saccades/second). ASD: Autism Spectrum Disorders, 
ASD-Feat: ASD Features, GDD: Global Developmental Delay, LD: Language Delay, TD: Typically Developing, 
TypSibASD: Typical Sibling of subject with ASD, AUC: Area under the curve, Neg. Pred. Val.: Negative 
Predictive Value, Pos. Pred. Val.: Positive Predictive Value.
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Linear regression with percent DGI fixation as the outcome variable and sex, age, and diagnosis as predictor 
variables was used to examine associations between demographics and DGI fixation levels. Pearson’s correla-
tions were conducted to examine relationships between DGI fixation and performance on clinical measures.

Across ASD subgroups, performance on clinical measures and associated subscales was assessed via one-way 
ANCOVA with age and sex as covariates. Subgroup-level differences were assessed using Tukey’s HSD.

Classification accuracy: traditional approaches. To determine whether validation statistics for the 
current sample were comparable to those observed in our previous  work16,25, and to tune the test in favor of a 
low false-positive rate, the same 69% fixation threshold was applied here to the full cohort to compute Receiver 
Operating Characteristic (ROC) curves, an Area Under the Curve (AUC) statistic, sensitivity, specificity, positive 
predictive value (PPV), and negative predictive value (NPV).

Validation statistics were also computed after stratifying toddlers based on age bins (4-months), ethnicity, 
race, and sex.

Saccade profiles within ASD. Our previous work indicated that  ASDGeo toddlers exhibited significantly 
fewer saccades when viewing DGI and significantly more when viewing DSI relative to other ASD  toddlers16,17,25. 
To determine whether these patterns were also present in this larger sample, a one-way ANCOVA with age and 
sex as covariates and a follow up Tukey’s HSD test was used.

Classification accuracy: cross validation with independent hold out set. Rigor, generalizability, 
and diagnostic accuracy of the GeoPref Test were examined using a tenfold cross-validation approach conducted 
on 80% of the cohort who were randomly selected to be included in the analysis. Ten-fold cross-validation is 
a widely used method for parameter tuning and threshold selection in statistical learning and classification 
 problems75. Average performance statistics for all 10 validations were averaged and reported, and then used 
to classify the remaining 20% of toddlers which made up an independent, hold-out test set. See Supplemental 
Methods.

Classification sensitivity enhancement was also examined using tenfold cross-validation following the inclu-
sion of both percent fixation and a second eye-tracking metric, number of saccades per second within DSI, as 
variables of interest.

Test–retest reliability. Additional eye-tracking sessions (not used in aforementioned analyses) occurred in 
535 toddlers (mean age: 19.48 ± 6.18 months) within 1 to 25 + months of their first eye-tracking test. After group-
ing toddlers based on interval length (immediate: 0–1 month, n = 39; short term: 2–6 months, n = 100; interme-
diate term: 7–12 months, n = 211; long term: 13–24 months, n = 163; and very long term: > 25 months, n = 22), 
intraclass correlations and paired t-tests were used to examine differences in percent DGI fixation between tests.

Development of visual social attention preference across the first years of life. To better under-
stand the trajectory of typical versus atypical visual attention patterns, Pearson’s correlations comparing age and 
percent DSI/DGI fixation were conducted for all diagnostic groups. The impact of age on eye-tracking perfor-
mance was further examined using linear regression with percent fixation on DSI as the dependent variable, and 
diagnosis, age, and diagnosis x age as predictor variables.

Examination of genetic underpinnings of visual social attention. Intraclass correlations were used 
to determine the concordance among social visual attention patterns between siblings, twin pairs and a random 
pairing of 850 unrelated subjects.

Ethical approval statement. This study was approved by the Institutional Review Board at the University 
of California, San Diego (IRB #181,652, #172,066, #081,722, #041,715, #140,673, #130,352, #110,049, #070,229) 
and performed in accordance with the UCSD Human Research Protections Program guidelines. Prior to data 
collection, informed consent was obtained from all subjects and/or their legal guardians for study participation. 
GeoPref Test social images are copyrighted by Gaiam Americas Inc. and were used with permission.

Results
Visual attention preference stratified by diagnosis and correlation with clinical meas‑
ures. Similar to our previous  study25, results from the independent sample of 1,419 toddlers indicated sig-
nificant differences in the amount of time a toddler fixated on DGI based on diagnostic group membership 
(F(6,1,412) = 43.74, p < 0.0001). There were no differences in terms of data distribution (Kolmogorov–Smirnov 
Z Test, D = 0.042, p = n.s.) or effect sizes between the new independent sample and our prior smaller sam-
ple of  44425 toddlers, and thus both were combined to increase power and provide the largest dataset possi-
ble for subsequent analyses (N = 1,863). See Supplemental Results and eFigure 3 for the independent sample 
data. Within the combined sample of 1,863, toddlers with ASD exhibited the highest percent fixation to DGI 
compared to all other toddler types (ASD 95% CI [40.67, 44.30] vs. ASD-Feat 95% CI [26.88, 35.03], mean 
difference: 11.53 ± 4.03, p < 0.0001, d = 0.47 95% CI [0.26, 0.68]; ASD vs. GDD 95% CI [24.86, 32.35], mean 
difference: 13.88 ± 3.46, p < 0.0001, d = 0.57 95% CI [0.38, 0.76]; ASD vs. LD 95% CI [20.30, 25.19], mean differ-
ence: 19.74 ± 7.44, p < 0.0001, d = 0.84 95% CI [0.68, 1.00]; ASD vs. Other 95% CI [21.70, 27.51], mean differ-
ence: 17.88 ± 6.15, p < 0.0001, d = 0.75 95% CI [0.57, 0.92]; ASD vs. TD 95% CI [22.03, 25.12], mean difference: 
18.91 ± 7.54, p < 0.0001, d = 0.85 95% CI [0.73, 0.97]; ASD vs. TypSibASD 95% CI [17.50, 25.04], mean difference: 
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21.21 ± 10.29, p < 0.0001, d = 0.87 95% CI [0.61, 1.14]). Preference for DGI was also high for the ASD-Feat group 
(ASD-Feat vs. TD mean difference: 7.38 ± 3.51, p < 0.05, d = 0.41 95% CI [0.20, 0.62]; ASD-Feat vs. LD mean dif-
ference: 8.21 ± 3.41, p < 0.05, d = 0.44 95% CI [0.20, 0.68]). TD, LD, GDD, TypSibASD, and toddlers categorized 
as Other exhibited a stronger preference for DSI, and preference strength was comparable between groups. See 
Fig. 1. There were no differences in percent fixation levels when data was stratified by sex, although small differ-
ences were associated with ethnicity and race. See Supplemental Results eFigure 4–6.

Since diagnosis and age were significant predictors of DGI fixation (overall  R2 = 0.21, F(7,1855) = 72.27, 
p < 0.0001), correlation coefficients were computed for each diagnostic group separately to determine relation-
ships between DGI fixation and clinical symptoms. For toddlers with ASD, percent DGI fixation was significantly 
correlated with all clinical measures and all associated subscales. In contrast, apart from the visuospatial subscale 
on the Mullen, there were no significant relationships found between DGI fixation and clinical profiles within 
the TD or TypSibASD toddlers. See Supplemental Results eTable 1.

Among the 3 ASD subtypes (see Methods), significant differences in symptom severity (ADOS total score 
F(2,707) = 37.21, p < 0.0001), cognitive ability (Mullen Early Learning Composite F(2,692) = 21.04, p < 0.0001), 
and adaptive behavior (Vineland Adaptive Behavior Composite (F(2,707) = 20.84, p < 0.0001) were observed, 
suggesting the possibility of unique underlying biological profiles. The largest differences were between toddlers 
who strongly preferred geometric  (ASDGeo) and those that strongly preferred social  (ASDSocial) images. See Fig. 2a.

Classification accuracy: traditional approaches. ROC curves leveraging the full dataset yielded 98% 
specificity, 17% sensitivity, 81% PPV, and 65% NPV when the 69% fixation threshold was used. See Supplemental 
Results eTable 2. These values are nearly identical to validation statistics computed in previous work using the 
same fixation  threshold16. These results indicate that even among a large population of toddlers of various devel-
opmental types, the GeoPref Test accurately distinguishes ASD from non-ASD toddlers, with relatively few false 
positives (i.e., 2%), which is a key criterion for biomarker  tests76.

Age-binned data show that while specificity remains high throughout development (> 90%), sensitivity is 
consistently low. Negative predictive value is highest at 12 months and lowest by 32 months, while peak positive 
predictive value is achieved by 24 months. See Fig. 1d.

We additionally examined classification statistics after stratification using demographic factors and found 
that the GeoPref Test performs similarly across sex, ethnic and racial groups. See Supplemental Results eTable 3.

Saccade profiles within ASD. In our previous work, we demonstrated that  ASDGeo toddlers exhibited 
significantly fewer saccades/second when viewing DGI, but greater saccade rates when viewing non-preferred 
social images, in contrast to  ASDSoc toddlers who had near-typical saccade  patterns16. This was replicated in 
the current large sample when saccades/second was examined within DGI (F(8,1847) = 9.65, p < 0.0001) or DSI 
(F(8,1847) = 33.24, p < 0.0001) images. All planned comparisons between  ASDGeo and other diagnostic groups 
were significant, with the largest effect sizes found between  ASDGeo and TD toddlers. See Fig. 2b-e.

Classification accuracy: cross validation with independent hold out set. To enhance the rigor of 
the GeoPref Test, we next performed tenfold cross validation to determine appropriate DGI fixation thresholds 
for computing validation statistics. Using this method, the ideal fixation threshold was 61.3%, which yields 95% 
specificity, 23% sensitivity, 76% PPV, 66% NPV, and 67% accuracy. When this same threshold was applied to an 
independent, hold-out test set, the GeoPref Test had 96% specificity, 33% sensitivity, 84% PPV, 69% NPV, and 
71% accuracy.

Despite high specificity using the 69% fixation  threshold16,25 or the 61% fixation threshold obtained from 
tenfold cross validation, sensitivity remained low. However, combining eye-tracking measures, including saccades 
per second within DSI (optimal threshold from tenfold cross validation was 2.29 saccades/sec), and percent DGI 
fixation (61.3% fixation threshold), enhanced GeoPref Test sensitivity to 33.3%, with little impact on specificity 
(95.2%), PPV (81.4%) or NPV (71.2%) for the independent, hold-out test set. See Fig. 1e.

Test–retest reliability. A key component of biomarker validation research is characterizing the stability 
of test performance across repeated measurements. Five hundred and thirty-five toddlers participated in repeat 
eye tracking. High levels of reliability were observed for more immediate, 0–1 month retests (intraclass correla-
tion coefficient = 0.76, p < 0.0001; paired samples t-test t(75.32) = -0.72, p > 0.05). Longer interval retests were still 
reliable, although correlation strength was reduced. This result is expected as the GeoPref Test was created for 
assessing ASD during the toddler period, during which age-related visual attention changes are expected. See 
Supplemental Results eTable 4.

Developmental trajectory of visual social attention preference across the first years of 
life. Examination of the correlation between social and non-social fixation levels and age across all diagnostic 
groups and ASD subtypes revealed an interesting trend: both ASD toddlers with the social profile  (ASDSoc) and 
other non-ASD toddlers significantly decreased their interest in social images with age, alongside a concomitant 
increase in interest in non-social images. In contrast, toddlers with the geometric profile  (ASDGeo) as well as those 
that fell into the middle category  (ASDMid) showed no age-related changes. See Fig. 3. Follow-up linear regres-
sion analyses and pairwise comparisons of beta coefficients confirm this result (overall fit: F(17,1845) = 151.5, 
 R2 = 0.58;  ASDGeo vs. TD p < 0.001,  ASDGeo vs. TypSibASD p < 0.05,  ASDGeo vs. GDD p < 0.0001,  ASDGeo vs. LD 
p < 0.001,  ASDGeo vs. Other p < 0.01,  ASDGeo vs. ASD-Feat p < 0.001).
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Sibling and twin correlations highlight the genetic underpinnings of visual social attention 
in ASD. The current sample size allows us to compare DGI fixation among a larger group of siblings than 
our previous  work16. ASD Concordant pairs of siblings or twins exhibited the highest ICC values compared to 
ASD NonConcordant pairs, NonASD Concordant pairs, NonASD NonConcordant pairs, and randomly paired 
subjects (Fig. 4). These findings highlight the sensitivity of the GeoPref Test for detecting a genetically driven 
subtype of ASD.

Figure 2.  Differences in clinical and saccade profiles across ASD subgroups. (a) Bar graphs (mean ± SD) 
demonstrating clinical scores obtained from ASD toddlers with varying levels of preference for dynamic 
geometric images (DGI). ASD toddlers with a strong preference for DGI (≥ 69% fixation to DGI) were 
designated as  ASDGeo. ASD toddlers with a strong preference for dynamic social images (DSI) (≥ 69% fixation 
to DSI) were designated as  ASDSoc. Toddlers who lacked a strong preference for either stimulus were designated 
as  ASDMid toddlers. (b) Scatterplot showing average saccades/sec across diagnostic groups (mean ± SEM) 
to dynamic geometric images (DGI, y-axis) or dynamic social images (DSI, x-axis). (c) Scatterplot showing 
saccades/sec to DGI (y-axis) or DSI (x-axis) for all ASD subgroups. Density plots demonstrate distribution of 
individual saccade patterns to DGI or DSI. (d,e) Cohen’s d effect sizes associated with pairwise comparisons of 
average saccades/sec to DGI or DSI. ASD: Autism Spectrum Disorders, ASD-Feat: ASD Features, GDD: Global 
Developmental Delay, LD: Language Delay, TD: Typically Developing; TypSibASD: Typical Sibling of subject 
with ASD.
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Discussion
ASD begins during  pregnancy2,77–80, and thus it is not surprising that parents become aware of developmental 
delays within the first months of their child’s life. Despite this, age at first diagnosis has remained stable at 
around ~ 52 months across the past  decade3,4,81. To the degree that early identification and interventions are 
beneficial, alternatives to the long diagnostic journey are needed. Biomarkers offer one such alternative.

Using the largest eye-tracking sample to date with 1,863 toddlers who received both eye-tracking and a 
diagnostic evaluation by licensed psychologists, here we present comprehensive validation of an eye-tracking 
biomarker of an autism spectrum disorder subtype that quantifies a toddler’s attention to non-social images that 
is highly replicable and reliable. Importantly, participating toddlers were largely first identified through univer-
sal screening, underscoring the notion that eye-tracking may be an excellent  2nd tier screen or diagnostic tool.

The GeoPref Test was examined in multiple ways. First, as a simple tool by examining only percent fixation 
on geometric images, which requires little to no computational sophistication, supporting use by clinicians and 
researchers alike. Moreover, the user can determine the specificity rate they prefer, as illustrated in the ROC table 
(See Supplemental Results eTable 2), and select the associated fixation cut off level. For example, in our study, 
69% fixation was selected, which results in a 2% false positive rate. Tuning biomarker tests towards a very low 
false positive rate may be particularly important for disorders of infancy to avoid unnecessary parental stress 
associated with false positive results. Second, using a more rigorous machine learning, tenfold cross-validation 
approach with potentially more generalizable results than standard approaches, the present study found 95% 
specificity and 23% sensitivity. Incorporating an additional measure, saccades per second while viewing social 
images, increased the sensitivity to 33% while maintaining levels of specificity at 95%. This supports the notion 
that combining eye-tracking paradigms and/or metrics can bolster classification  accuracy34,82.

Although the GeoPref Test has a low false positive rate and exceptional specificity, sensitivity was modest. 
Given the considerable heterogeneity inherent in  ASD31,83–86, and the fact that several studies highlight the 
likelihood of specific subtypes in ASD, this is not  surprising87,88. Toddlers who demonstrate reduced levels of 
social visual attention as measured by the GeoPref Test may indeed represent a unique biological subtype. In 
comparison to toddlers who strongly preferred social stimuli, average symptom severity among  ASDGeo toddlers 
as indexed by the ADOS was 5.6 points higher, while levels of cognition and adaptive behavior were 15.8 and 9.0 
points lower, respectively. A unique imaging study of toddlers who received both eye-tracking and brain imaging 

Figure 3.  Developmental trajectories of social and non-social (geometric) attention distinguish ASD toddlers 
from toddlers of other developmental types. Best fit lines depicting developmental trajectories of percent 
fixation to social images (blue) or non-social images (red) for toddlers of different developmental types and 
associated Pearson’s r and p-values. ASD toddlers were again split into the three ASD subgroups based on visual 
attention preference for social  (ASDSoc) or non-social stimuli  (ASDGeo).  ASDMid toddlers did not exhibit a strong 
preference for social or non-social stimuli. ASD: Autism Spectrum Disorders, ASD-Feat: ASD Features, GDD: 
Global Developmental Delay, LD: Language Delay, TD: Typically Developing, TypSibASD: Typical Sibling of 
subject with ASD.
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revealed that  ASDGeo toddlers exhibited unusually low levels of connectivity between areas classically associated 
with the ‘social brain’ (e.g., cingulate) and visual  cortex31, and a separate study found strong correlations between 
social visual attention levels and language/visual cortex connectivity in this  subgroup89. Collectively, these studies 
suggest that  ASDGeo toddlers are more symptomatic with a unique genetic profile that drives abnormal neu-
ral development, particularly as it relates to connectivity with visual cortex. Future studies which incorporate 
additional eye-tracking paradigms tailored to quantify other features and/or  subtypes12,13,82,90–92 in conjunction 
with the GeoPref Test will likely capture more of the variance associated with ASD and improve test sensitivity.

Although there is extensive evidence supporting the notion of reduced social attention in  ASD30, it is not 
possible to definitively conclude whether the present findings reflect a failure of social attention, or a difference in 
visual preference driven by sensory issues common in  ASD93,94. For instance, the geometric patterns are per pixel 
more dynamic than the social videos and involve more color change. The geometric patterns may also be more 
unpredictable than the social scene. There is evidence that altered sensory processing may be a direct or indirect 
driver of social attention and/or orienting and higher order social ability among ASD  toddlers95–97, indicating 
that the GeoPref Test may be a correlative measure of ability in either or both domains. Future characterization 
of sensory profiles across groups may help to deepen our understanding of drivers of visual attention patterns 
in ASD in general, and the  ASDGeo subtype more specifically.

Although our test was specifically tuned for the 12–48-month age range, an important consideration is 
whether biomarkers have comparable efficacy across target ages. Here we found good psychometric properties 
between 12 and 39 months, with decline in accuracy starting around 40 months, which may be attributed to 
age-related changes in social preference in typically developing  infants98–104. This process, likely driven by frontal 
cortex synapse proliferation followed by selective pruning across the first years of  life105, affords the child greater 
curiosity, control, and preference for novelty as they  age106,107. Indeed, TD and non-ASD delayed toddlers dem-
onstrated a simultaneous reduction in social preference and increase in geometric preference (i.e., “novelty”) 
across age. While  ASDSoc toddlers showed a profile almost identical to typically developing toddlers,  ASDGeo 
toddlers did not. To the degree that eye tracking performance has external validity and can serve as a proxy for 
real-world social engagement, results from the GeoPref Test may be useful as a prognostic metric. Indeed, one 
study noted that toddlers with ASD who preferred social images had better symptom profiles at school age than 
those that preferred geometric  images20.

The psychometric properties of the GeoPref Test were also comparable across demographic categories, which 
may have been bolstered by the fact that it is a visual-only (i.e., no sound) test, potentially circumventing biases 
associated with language or  culture108–111. Although the gap between first age of diagnosis and treatment access is 
narrowing between Caucasian and non-Caucasian  children3, racial and ethnic inequities  persist3,112. Females are 
also more likely to be diagnosed at older  ages108,109,113. Such findings underscore the need for the development and 
implementation of culture-free, objective tools which support equal access to early diagnosis and  treatment114.

Figure 4.  Eye-tracking among siblings and monozygotic and dizygotic twins highlights the genetic basis 
of the GeoPref Test. Scatterplots comparing percent fixation to dynamic geometric images (DGI) among 
(a) non-sibling/randomly paired toddlers, (b) sibling/non-twin toddler pairs, and (c) twin toddler pairs. 
Intraclass correlation coefficients are also shown in (a) or plotted, along with the 95% confidence intervals, 
based on concordance for ASD (b,c, bottom). ASD Concordant: both siblings/twins received a diagnosis of 
ASD. ASD NonConcordant: One sibling/twin received an ASD diagnosis while the other received a non-ASD 
diagnosis. NonASD Concordant: both siblings/twins received the same diagnosis but were non-ASD. NonASD 
NonConcordant: Each sibling/twin had a different, non-ASD diagnosis.
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The high intercorrelation of geometric fixation levels between ASD siblings and twins in our study suggests 
that eye-tracking biomarkers may be essential for early identification of genetic forms of ASD. A recent study 
noted a high intercorrelation in visual social attention towards the mouth and eyes among non-ASD twins, but 
not in unrelated  children59. These results suggest that eye-tracking measures of social visual attention can be 
driven by ASD-related genetic variance or by genes which drive social attention. These genes may not be mutually 
exclusive. For instance, infants homozygous for the CD38 risk allele exhibited less gaze to happy eyes compared 
to infants heterozygous or homozygous for the non-risk  allele56. Relatedly, CD38 risk allele expression is associ-
ated with higher ASD symptom  severity115. Future work examining genetic profiles which drive ASD subtypes 
will help clarify the impact of ASD and other genetic factors on eye-tracking performance.

The large sample size in the current study, and the strong psychometric properties across age, sex, race and 
ethnic groups generates confidence that the GeoPref eye-tracking Test has value as both a clinical and research 
tool. Moreover, our sample included multiple non-ASD contrast groups (e.g., LD, GDD) which mimics natural 
pediatric practice. Importantly, performance on clinical measures in the current study correlated with geometric 
fixation levels, suggesting that the GeoPref Test can directly index a core ASD phenotype, which is relevant for 
measuring clinical improvements in clinical trials. Eye-tracking metrics outlined in the current study and oth-
ers like it may be key in ensuring that severely impacted toddlers receive early diagnosis and treatment access, 
and promote biotherapeutic and behavioral treatment development, which can contribute to better outcomes 
and quality of life.

Data availability
The datasets generated and analyzed during this study are available from the corresponding author on reason-
able request.
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