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Abstract: This study investigated the anti-caries and anti-inflammatory effects of mouthwash for-
mulations containing Punica granatum (pomegranate) peel extract (PPE), sodium-trimetaphosphate,
and low concentrations of fluoride. PPE was characterized using high-performance liquid chro-
matography (ellagic acid and punicalagin). Total phenolics were quantified among formulations,
and their stability was analyzed for 28 days. The formulation effects were evaluated as follows:
(1) inorganic component concentration and reduced demineralization on bovine enamel blocks sub-
jected to pH cycling; (2) anti-biofilm effect on dual-biofilms of Streptococcus mutans ATCC 25175 and
Candida albicans ATCC 10231 treated for 1 and 10 min, respectively; and (3) cytotoxicity and produc-
tion of inflammatory mediators (interleukin-6 and tumor necrosis factor-alpha). The formulation
containing 3% PPE, 0.3% sodium-trimetaphosphate, and 225 ppm of fluoride resulted in a 34.5%
surface hardness loss; a 13% (treated for 1 min) and 36% (treated for 10 min) biofilm reduction in
S. mutans; a 26% (1 min) and 36% (10 min) biofilm reduction in C. albicans; absence of cytotoxicity; and
anti-inflammatory activity confirmed by decreased interleukin-6 production in mouse macrophages.
Thus, our results provide a promising prospect for the development of an alcohol-free commercial
dental product with the health benefits of P. granatum that have been recognized for a millennium.

Keywords: Punica granatum; polyphosphates; fluoride; dental enamel; antimicrobial; anti-inflammatory

1. Introduction

Dental caries is the most common polymicrobial oral disease worldwide [1], and,
although knowledge of caries has increased, researchers and dentists still struggle to find
better alternatives for the prevention and treatment of this disease [2]. The mouth contains
polymicrobial flora composed of bacteria and yeast that play important roles in fermentation
of sugars in acids, leading to enamel demineralization. The main microorganisms involved
in this process are Streptococcus spp., Staphylococcus spp., Lactobacillus spp., and Candida
spp. [3–6].
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The primary modes of preventing the development and progression of dental caries
are brushing, flossing, and mouthwash use [7–9]. Mouthwashes have advantages, such
as easy application and antimicrobial and anti-inflammatory action, are more available
in less accessible regions than brushes and floss, and are also a topical source of fluoride
(F) [7,10]. Previous studies have proved that addition of sodium-trimetaphosphate (TMP)
can optimize the ability of F to reduce enamel demineralization, and that this action may
be related to the ability of this phosphate to bind the dental surface, thereby changing its
permeability to calcium (Ca) and F ions [10–15].

In this sense, nature provides a plant source with enormous medicinal properties,
Punica granatum. Considered “a pharmacy unto itself,” this fruit features important proper-
ties, such as antimicrobial, anti-inflammatory, astringent, and antioxidant properties, and
has no significant toxicity [16–18]. P. granatum has been proven beneficial for reducing
recurrent aphthous stomatitis pain and complete healing time [19,20] as a preventive and
therapeutic aid in periodontal disease [21–23] and an antifungal agent against Candida
spp. [24,25]. Plants may utilize multiple strategies to deal with microorganisms that have
evolved over time [26]. Therefore, their secondary metabolites represent a large library of
compounds that may potentiate the effects of known antibiotics and be important sources
of new drugs or compounds suitable for further modification [27]. The main chemical
compounds present in P. garantum are eicosanoic, linolenic conjugated, linolenic alpha,
oleic, palmitic, punicic, stearic, citric, and malic acids; phenolic compounds, such as gallic
acid, coumaric acid, catechin, phloridzin, quercetin, and protocatechuic, chlorogenic, cafeic,
and ferulic acids [28,29]. According to Al-obaidi et al., ellagic acid, punicalagin, punicic
acid, flavonoids, anthocyanidins, anthocyanins, estrogenic flavanols, and flavones have
greater therapeutic activity [30].

Although the antimicrobial effects of P. granatum are well described in the literature,
its action on the demineralization dental process when associated with TMP and F is
unknown. Considering the health risks associated with the prolonged use of chemicals
in conventional mouthwashes, the benefits of bioactive compounds present in plants for
preventing oral and dental diseases, as well as the remarkably increased interest in herbal
medicine, we aimed to determine the anti-caries and anti-inflammatory effects of non-
alcoholic mouthwashes produced with P. granatum (pomegranate) peel extract (PPE), TMP,
and low concentrations of F.

2. Results
2.1. Phytochemical profile of PPE

PPE samples were extracted in methanol, and the chemical profiles were defined using
chromatography and compared with commercial chemical standards. The retention times of
the punicalagin isomers (α and β) and ellagic acid were analyzed in PPE (glycolic extract). PPE
presented similar retention times compared with the reference standards (Figure 1). The spectral
profiles of the samples were similar, and the peak purity was found to be close to 1.0000. The
concentrations of pomegranate biomarkers in PPE were: punicalagin α = 2.14 ± 0.006 mg g−1,
punicalagin β = 2.286 ± 0.03 mg g−1, and ellagic acid = 0.458 ± 0.006 mg g−1.

Folin–Denis colorimetric assay revealed that PPE is rich in phenolic compounds.
Table 1 illustrates the mean of the total phenolics expressed as gallic acid (mg mg−1) found
in each formulation containing 3% PPE, as well as in E (formulation containing PPE),
ETF1 (3% PPE + 0.2% TMP + 100 ppm F), and ETF2 (3% PPE + 0.3% TMP + 225 ppm F)
formulations. The total phenolic content (mg g−1) in each formulation containing PPE was
similar (average 11.54 mg g−1), corresponding to 10% of the pomegranate peel extract.

2.2. Anti-Demineralization Effect

The average pH of all mouthwash solutions was adjusted to 7.0. The mean sur-
face hardness of all blocks was 364.6 (standard deviation 9.8; Knoop hardness (KHN);
(p = 0.533)). No significant differences were observed among groups after random alloca-
tion (p = 0.474). The use of formulation F2 (225 ppm of F) resulted in approximately 12%
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surface hardness loss (%SH) compared with that of F1 (100 ppm of F). The demineralization
of the enamel surface was less in samples treated with the ETF2 formulation, resulting
in approximately 37%, 47%, and 49% SH loss compared with that of F2, TF2, and CM
(essential oil commercial mouthwash), respectively (p < 0.001). In addition, the capacity to
reduce the subsurface hardness integrated loss (∆KHN) was higher (approximately 29%)
with ETF2 (p > 0.001) than with TF2 (p < 0.001), followed by ETF1 = F2 = TF1 > CM > E = W
(deionized water) (p < 0.001) (Table 2).
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Figure 1. Punicalagin α (1), Punicalagin β (2), and Ellagic acid (3); (A) reference standards and
(B) pomegranate peel extract fingerprint obtained by high-performance liquid chromatography
according to the conditions presented in the methodology.

Table 1. Mean (standard deviation) of the concentration of phenolic compounds (mg g−1) in samples.

Samples Total Phenols Expressed as Gallic Acid

Pomegranate peel extract 114.98 (3.55)
N 0.49 (0.06)
E 11.56 (0.01)

TF1 0.54 (0.05)
TF2 0.53 (0.07)

ETF1 11.48 (0.22)
ETF2 11.59 (0.55)

N: formulation without fluoride (F),sodium-trimetaphosphate (TMP) and pomegranate peel extract (PPE);
E: formulation with 3% PPE; TF1: formulation with 0.2% TMP + 100 ppm F; TF2: formulation with 0.3%
TMP + 225 ppm F; ETF1: formulation with 3% PPE + 0.2% TMP + 100 ppm F); ETF2: formulation with 3%
PPE + 0.3% TMP + 225 ppm F.

Similar and higher amounts of F were observed with formulations F2, TF2, ETF2,
and CM (p > 0.001). With F2, enamel Ca concentration increased by approximately 40%
compared with that with F1 (p < 0.001). The highest Ca concentration was observed with
ETF2: when compared to CM, there was an increase of 70% (p < 0.001). The phosphorus (P)
concentrations were similar for all formulations, except forW, E, and F1, which showed the
lowest values (p < 0.001) (Table 2).
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Table 2. Mean and standard deviation of variables’ surface hardness loss (%SH), subsurface hardness
integrated loss (∆KHN), fluoride, calcium, and phosphorus analyzed according to mouthwash
formulation treatments.

Formulation %SH
(KHN)

∆KHN
(KHN × µm)

Fluoride
(µg/mm3)

Calcium
(µg/mm3)

Phosphorus
(µg/mm3)

W −87.4 a (3.2) 7249.8 a (782.5) 0.5 a (0.2) 150.7 a (31.0) 158.6 a (28.4)
E −84.9 a (6.1) 6546.7 a (696.6) 0.5 a (0.4) 156.4 a (15.9) 143.5 a (44.0)
F1 −73.4 b (4.5) 4978.5 b (691.8) 0.6 b (0.2) 194.0 b (47.6) 170.0 b (36.0)
F2 −65.0 c (5.0) 3810.1 c (842.2) 1.2 c (0.4) 269.4 c (51.2) 215.0 c (10.9)

TF1 −56.4 d (4.4) 4309.4 c (497.7) 0.7 b (0.2) 212.3 b (85.3) 212.4 c (79.9)
TF2 −55.0 d (4.1) 3597.6 c (652.8) 1.2 c (0.4) 188.2 b (28.4) 196.6 c (35.4)

ETF1 −52.0 d (7.5) 3870.6 c (900.1) 0.8 d (0.2) 218.1 b (65.6) 210.9 c (48.3)
ETF2 −34.5 e (4.4) 2564.1 d (597.7) 1.2 c (0.7) 297.3 d (54.3) 204.4 c (43.8)
CM −67.7 c (6.7) 5292.7 b (756.3) 1.2 c (0.1) 176.6 b (46.8) 210.5 c (32.1)

KHN: Knoop hardness; H: deionized water; E: formulation with 3% pomegranate peel extract (PPE); F1: for-
mulation with 100 ppm fluoride (F); F2: formulation with 225 ppm F; TF1: formulation with 0.2% sodium
trimetaphosphate (TMP) + 100 ppm F; TF2: formulation with 0.3% TMP + 225 ppm F; ETF1: formulation with
3% PPE + 0.2% TMP + 100 ppm F; ETF2: formulation with 3% PPE + 0.3% TMP + 225 ppm F; CM: essential oil
commercial mouthwash. Different superscript letters indicate significant differences among the treatments for
each variable separately. (One-way ANOVA, followed by Student–Newman–Keuls test; p < 0.001).

2.3. Formulation Stability—F Quantification and Determination of Minimal Inhibitory Concentration

The amount of F- in formulations containing sodium-fluoride (TF2 and ETF2) re-
mained stable (225 ± 20 ppm). As expected, the N and TF2 formulations showed no
minimal inhibitory concentration. E and ETF2 maintained the same minimal inhibitory
concentration ranges of 4.022.01 mg mL−1 for S. mutans and 1.05–0.5025 mg mL−1 for C.
albicans throughout the study period (0, 7, 14, 21, and 28 days).

2.4. Anti-Biofilm Effect

PPE associated with TMP and F in mouthwash formulations reduced viable C. albicans
and S. mutans cells in biofilms.

In vitro biofilm assays were performed using important oral pathogens involved in
dental caries as reference strains to verify whether PPE could inhibit C. albicans and S.
mutans proliferation in association with TMP and F. Thus, the biofilms were grown for 24 h
on hydroxyapatite (HA) discs and then exposed to the mouthwash formulations for 1 min
and 10 min. In addition, to elucidate the mouthwash effect in the biofilm environment, we
measured the pH of 24-h biofilms treated for 1 min and 10 min.

As shown in Figure 2, all mouthwash formulations significantly reduced the number
of biofilm cells for both C. albicans and S. mutans. Similarly, the positive control (CM),
formulations E, TF2, and ETF2 produced a significant reduction in C. albicans biofilm cells
compared with that in the negative control group (p < 0.001). Although there was no
significant difference between 1 min and 10 min of treatment with the E, TF2, and ETF2
formulations, the percentage of C. albicans biofilm reduction increased considerably after
10 min of exposure (Table 3). These results also demonstrate that S. mutans biofilm cells
treated for 10 min with the ETF2 and TF2 formulations were significantly more susceptible
than those treated for 1 min (p < 0.001), whereas, for formulation E and the positive control,
treatment time had no significant influence on the reduction in S. mutans cells (p > 0.05).
Among the ETF2, TF2, and E mouthwash formulations, the highest rates of viable cell
reduction were exhibited by the ETF2 formulation after 10 min of treatment regardless
of the microorganism tested (Table 3). As shown in Table 4, the lowest pH was found in
biofilms treated with the TF2 formulation regardless of exposure time.

2.5. Anti-Inflammatory Effect

In order to verify if the formulations also presented an anti-inflammatory effect, we
conducted an experiment using murine bone-marrow-derived macrophages (BMDMs)
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treated or not with lipopolysaccharide (LPS) from Escherichia. coli, which is already known
to stimulate inflammatory cytokines, and checked if any formulation would be able to
decrease the production of the pro-inflammatory cytokines interleukin-6 (IL-6) and tumor
necrosis factor-alpha (TNF-α). The treatment with CM was expressively cytotoxic, show-
ing only ~17% of the viability of BMDMs for both assays with (Figure 3A) and without
(Figure 3B) previous LPS stimulation. Consequently, there was no IL-6 and TNF-α produc-
tion by cells treated with this product (Figure 4). Conversely, formulations E, TF2, and ETF2
did not cause any cytotoxic effects (Figure 3) and showed an immunomodulatory effect for
IL-6 in LPS pre-treated cells (Figure 4A). Besides, TF2 stimulated the highest production of
TNF-α (Figure 4B).
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Figure 2. NC: negative control; E: formulation with 3% pomegranate peel extract; TF2: formulation
with 0.3% sodium-trimetaphosphate + 225 ppm of fluoride; ETF2: formulation with 3% pomegranate
peel extract + 0.3% sodium-trimetaphosphate + 225 ppm of fluoride; CM: essential oil commercial
mouthwash. Means and standard deviations of viable (Log10 cm2) Candida albicans ATCC 10231
(A) and Streptococcus mutans ATCC 25175 cells (B), and biofilms after treatment with each formulation
for 1 min and 10 min. (A): Asterisk indicates p < 0.05 versus negative NC; # indicates p < 0.05 of
ETF2 (after 1 min), TF2 (after 1 min), and E (after 1 min) versus CM (after 1 min) (one-way ANOVA
followed by Holm–Sidak test). (B): Asterisk indicates p < 0.05 versus NC; # indicates p < 0.05 of ETF2,
TF2, and E versus CM; —- indicates p < 0.05 of ETF2 (after 1 min) versus ETF2 (after 10 min), and TF2
(after 1 min) versus TF2 (after 10 min) (one-way ANOVA followed Holm–Sidak post hoc test).
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Table 3. Percentage of reduction in Candida albicans and Streptococcus mutans dual-biofilms formed
for 24 h and treated for 1 or 10 min.

Biofilm-24 h
% Biofilm Reduction

Candida albicans Streptococcus mutans

Groups/Treatment (min) 1 10 1 10

E 20.26 31.74 24.54 27.93
TF2 17.36 32.07 10.55 28.50

ETF2 26.21 36.02 12.91 36.09
CM (positive control) 42.12 97.86 53.29 56.46
NC (negative control) - - - -

E: formulation with 3% pomegranate peel extract; TF2: formulation with 0.3% sodium-trimetaphosphate + 225 ppm
of fluoride; ETF2: formulation with 3% pomegranate peel extract + 0.3% sodium-trimetaphosphate + 225 ppm of
fluoride; CM: essential oil commercial mouthwash.

Table 4. pH values of Candida albicans and Streptococcus mutans dual-biofilms formed for 24 h and
treated for 1 or 10 min.

Biofilm-24 h
pH

Candida albicans + Streptococcus mutans

Groups/Treatment (min) 1 10

E 5.28 5.28
TF2 5.10 5.09

ETF2 5.15 5.20
CM (positive control) 5.67 5.51
NC (negative control) 5.45 5.51

E: formulation with 3% pomegranate peel extract; TF2: formulation with 0.3% sodium-trimetaphosphate + 225 ppm
of fluoride; ETF2: formulation with 3% pomegranate peel extract + 0.3% sodium-trimetaphosphate + 225 ppm of
fluoride; CM: essential oil commercial mouthwash.
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Figure 3. Percentage of cell viability of bone-marrow-derived macrophages (BMDMs) by MTT
assay after treatment with each formulation. (A) BMDMs were not previously stimulated and
(B) BMDMs were stimulated with lipopolysaccharide (LPS, 1µg mL−1) for 4 h and then exposed to
N: formulation without fluoride (F), sodium trimetaphosphate (TMP) and pomegranate peel extract
(PPE); E: formulation with 3% PPE; TF2: formulation with 0.3% TMP + 225 ppmF; ETF2: formulation
with 3% PPE + 0.3% TMP + 225 ppmF; CM: essential oil commercial mouthwash; PC (positive control,
triton) for 2 h.
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Figure 4. Evaluation of pro-inflammatory cytokine production by bone-marrow-derived
macrophages (BMDMs). Expression of interleukin-6 (IL-6) lipopolysaccharide (LPS)-induced
(A) and tumor necrosis factor-alpha (TNF-α) LPS-induced (B) production in BMDMs supernatants
culture after treatment with N: formulation without fluoride (F), sodium trimetaphosphate (TMP)
and pomegranate peel extract (PPE); E: formulation with 3% PPE; TF2: formulation with 0.3%
TMP + 225 ppm F; ETF2: formulation with 3% PPE + 0.3% TMP + 225 ppm F; CM: essential oil
commercial mouthwash for 2 h. “Not treated” denotes cells that were not stimulated with LPS.
(A) IL-6 and (B) TNF-α concentrations in culture supernatants were measured in triplicate using an
ELISA assay. Data were pooled from representative of three independent experiments (mean ± SD).
Asterisks indicate statistical significance regarding cells stimulated only with LPS, (A) p ≤ 0.001 and
(B) p ≤ 0.05 (one-way ANOVA followed by the Tukey multiple comparisons test).

3. Discussion

Here, PPE was characterized in relation to dry matter, total phenolics, ellagic acid,
and punicalagin content. The extract contained high levels of polyphenols, especially
ellagitannins (ellagic acid and punicalagin), which are bioactive compounds responsible
for many pharmacological properties [31]. Concerning the total phenolic content, phenolic
components were only detected in the formulations containing PPE (E, ETF1, and ETF2).

Regarding the potential of enamel demineralization reduction with the proposed
formulations, the main finding of this study was that the association of PPE (3%) with
TMP (0.3%) and F (225 ppm) (ETF2) presented the best results for reduction in mineral
loss from the enamel surface and subsurface and was more effective than formulations
F2, TF2, and ETF1. Although the formulation containing extract (E) alone did not show
a statistically significant difference from the W) in all analyses performed (Table 2), the
association of PPE with TMP and F improved the reduction in mineral loss from the enamel.
CM had similar results to formulations F2 (225 ppm) and F1 (100 ppm) in reducing mineral
loss from the enamel surface and subsurface, respectively, which might be due to the
presence of F at 220 ppm in CM. Other ingredients present in CM, such as eucalyptol,
thymol, and methyl salicylate, do not have any antidemineralizing action: Zero et al.
demonstrated that an essential-oil-based mouthwash (without F) did not promote effective
enamel remineralization in an in situ caries model [32].

The actions of TMP and F in the anti-caries process have already been well estab-
lished [10,33–35]. Studies have shown that TMP can be adsorbed on the enamel surface,
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thereby reducing demineralization because this process can hinder acid diffusion and alter
the affinity between enamel and salivary proteins [36–38]. TMP adsorbs into the enamel,
forming a reticular layer that covers the enamel surface and decreases Ca phosphate ap-
atite precipitation within the enamel pores. Therefore, phosphate diffusion is facilitated,
enabling Ca and F ions to lead to less demineralization in the external and internal parts of
the lesion (Table 2).

However, the association of pomegranate with TMP and F has not yet been inves-
tigated. Although no studies in the literature have evaluated the anti-demineralization
action of P. granatum, this effect has been proven in other plants, such as Galla chinesis,
Acacia, Salvadora persica, and Camellia sinensis [39,40]. The literature clearly shows that
P. granatum is rich in polyphenols (such as punicalin, punicalagin, and gallic and ellagic
acid) [29], as well as Ca, magnesium, P, potassium, and sodium, mostly found in the peel
of this fruit [41]. Zhang et al. evaluated the action of Galla chinensis extract on bovine
enamel matrix subjected to acidic challenges and found that monomeric and polymeric
polyphenols interacted with this organic enamel matrix (through covalent, ionic, and hy-
drogen bonding or hydrophobic processes), leading to a metamorphism of this matrix that
precipitated and decreased ion loss in the enamel structure [42,43]. Another possible action
is the binding of compounds present in the extract to the crystal surface of enamel, thus
preventing its demineralization, in addition to facilitating deposition of more ions on the
surface (through ion carriers) [44,45]. Other studies have shown that gallic acid (present in
P. granatum) can function as a Ca ion transporter, favoring the remineralization process [46].
Thus, this external source of Ca increases the availability of these ions to the TMP-F layer
and diffusion into the lesion (Table 2) and reduces demineralization in the deeper part of
the subsurface lesion. In addition, a more pronounced reduction in the subsurface lesion
(∆KHN) suggests that, under clinical conditions, a subsurface lesion takes more time to
develop when compared with conventional treatments (i.e., F alone). These results can be
considered significant from a clinical point of view, especially when the lesion may take
longer to develop and is associated with other preventive interventions. Therefore, the
mechanism described above explains the superior effects of ETF2. Since the TMP does
not benefit the precipitation of CaF2 in the enamel [47,48], this effect should reduce the
obstruction of the pores of the enamel surface facilitating the diffusion of ions in the enamel.
The association of the active agents 3% PPE + 0.3% TMP + 225 ppm F led to better results
in reducing demineralization on the surface (%SH), in depth (∆KHN), in addition to the
higher formation of Ca ions in the enamel, which leads to the hypothesis that TMP binds
to Ca2+, CaF+, and PPE ions, forming a complex with greater potential in reducing caries
lesions, providing an additional benefit.

Although the beneficial effects of P. granatum in the process of tooth enamel deminer-
alization and remineralization have not been evaluated in previous studies, many studies
have proven its anti-inflammatory, antioxidant, and antimicrobial activities [18,49], which
are compatible with our results. The antimicrobial effect of the dual-biofilm formulations
of C. albicans and S. mutans formed after 24 h and treated for 1 min and 10 min showed
that, although there was no statistically significant difference between the ETF2, TF2, and
E formulations, they all significantly reduced the number of viable cells. Moreover, for-
mulation ETF2 was superior to the others, except for reduction in S. mutans after 1 min of
treatment. The mechanism of action of the compounds present in the formulations and the
specific characteristics of the microorganisms tested (bacteria and fungi) may have directly
influenced these results. In a study by de Oliveira et al., P. granatum extract promoted S.
mutans inhibition, whereas C. albicans showed low sensitivity [50].

S. mutans is a facultative anaerobic Gram-positive bacterium present in dental biofilms
and is one of the numerous etiological factors for dental caries [51]. The virulence factors of
this microorganism are acidogenic (mainly production of lactic acid) and aciduric properties.
In addition, S. mutans uses sucrose from the diet to synthesize large amounts of extracellular
polysaccharides, mostly glucans, synthesized by glucosyltransferases [38,51,52]. C. albicans,
in contrast, is an opportunistic pathogenic fungus [51,53], and its virulence is related to
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the transition from its yeast form to hyphae [54]. This fungus is known to colonize caries
lesions [52] and has the ability to produce acids and extracellular polysaccharides [51]. The
symbiotic relationship between S. mutans and C. albicans contributes to increased biofilm
virulence [55].

The phenolic compounds present in the extracts are responsible for their antimicrobial
activity [56]. In general, the antimicrobial activity of PPE may be due to the presence of
substantial quantities of phytocompounds, such as flavonoids (quercetin, rutin, naringenin,
luteolin, pelargonidin, prodelphinidin, and kaempferol) and hydrolyzable tannins (includ-
ing methyl gallate, peduncalagin, punicalin, punicalagin, gallic, and ellagic acid) [57]. These
phytocompounds act on cell walls and membranes of microorganisms by precipitating
proteins, in addition to inhibiting enzymes, such as glycosyltransferase, making it difficult
to adhere to microorganisms [58].

Scalbert showed that tannins have antimicrobial activity against fungi and bacteria [59].
Koo et al. observed that cranberry juice inhibited the activity of glycosyltransferase in S.
mutans biofilms [60]. Brighenti et al. observed through proteomic studies that Psidium
cattleianum extract inhibited proteins responsible for RNA synthesis, and, in S. mutans,
the reduction in seven important proteins in carbohydrate metabolism and lactic acid
production was observed, which is directly linked to development of dental caries [56].

Vasconcelos et al., who tested a gel formulated with Punica granatum in Candida albicans
and Streptococcus mutans (isolated and combined), observed significant action against
Candida albicans, although not as much as the commercial antifungal miconazole [61].
Endo et al. also demonstrated the strong activity of Punica granatum crude extract against
C. albicans, showing morphological changes in the cells through transmission electron
microscopy, such as irregular budding patterns and pseudohyphae, thickening of the
cell wall, changes in the space between the cell wall and plasma membrane, as well as a
reduction in cytoplasmic content [62]. Gulube and Patel showed that P. granatum extract
affected acid and extracellular polysaccharides production in a biofilm of S. mutans, which
did not harm the oral microbiota balance [63].

The association of TMP and F with the extract may have contributed to its antimicrobial
action. Cavazzana et al. showed that TMP and F reduced the number of viable S. mutans
cells, and TMP (0.25% without F) decreased the total biomass and extracellular matrix
components of C. albicans and S. mutans biofilms [38]. Another interesting finding in our
study is that the biofilm pH after treatment for 1 min and 10 min was acidic, mainly for
biofilms treated with formulations ETF2 and TF2, and, even with these values, we observed
reductions between 1 and 2 logs for the C. albicans and S. mutans biofilms when treated
with the developed formulations. These pH values were also reported by other authors
when biofilms were treated with extracts and F [64,65].

Surprisingly, although CM tested is without alcohol and it has shown the highest
antimicrobial capacity among the tested groups, this mouthwash produced the highest
cytotoxicity against BMDMs. These results corroborate those of previous studies on the
cytotoxicity of CM, which demonstrated its toxicity in human keratinocyte epithelial [66]
and mouse calvarial preosteoblast cells [67]. In contrast, our proposed mouthwash formu-
lations without alcohol (N, E, TF2, and ETF2) demonstrated approximately 80% viability of
BMDMs cells after 2 h of treatment.

It has already been established that LPS induces the secretion of pro-inflammatory
cytokines, such as TNF-α and IL-6, in macrophages. These pro-inflammatory cytokines
are multifunctional mediators involved in regulation of immune response and inflamma-
tion [68]. Our results showed that the E and ETF2 formulations suppressed IL-6 production
in LPS-induced BMDMs. Elevated IL-6 levels are associated with periodontal tissue degra-
dation [69], chronic apical periodontitis [70], and early childhood caries [71]. The IL-6
content in saliva is reportedly higher in patients with periodontitis than in healthy pa-
tients [72] and is positively correlated with periodontal lesion severity [73]. In addition, a
recent study reported increased IL-6 levels in overweight/obese children with cavitated
caries lesion [74].
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In contrast, in the BMDMs cells pre-stimulated with LPS, TNF-α pro-inflammatory
cytokine production was not reduced, differing from the results previously reported using
the P. granatum extract [75–77]. In our study, pomegranate peel extract was inserted into a
formulation with several ingredients. The formulation base (N), without the presence of
actives, stimulated the production of TNF-α compared with the formulations containing
PPE (E and ETF2). However, these formulations maintained the level of TNF-α compared
with that in the group stimulated with LPS; that is, there was no increase in cytokine
production. This may be beneficial as TNF-α has an essential physiological role in the
immunomodulatory process in infections, and it has been proven that TNF-α-deficient
mice had greater susceptibility to infectious agents [78,79].

In conclusion, the addition of PPE (3%) to mouthwash formulations containing TMP
(0.3) and F (225 ppm) promoted considerably decreased mineral loss of dental enamel and
substantially reduced the cariogenic biofilm formed by S. mutans and C. albicans. In addition,
these formulations were not toxic to BMDMs cells downregulating pro-inflammatory
cytokine IL-6. These findings, along with those of further clinical studies, may lead to
the development of an alcohol-free commercial dental product with the health benefits of
pomegranate that have been recognized for a millennium, and anti-caries properties of
TMP and F may become feasible.

4. Materials and Methods
4.1. Plant Material and Extraction Procedure

Punica granatum (pomegranate) peel (dehydrated, crushed, and sterilized) was ob-
tained from a single allotment from the Santos Flora Company (Santosflora Comércio de Ervas
Ltd., Mairiporã, SP—Brazil). The product is certified by Food and Drug Administration, in
addition to pharmacopeial and microbiological analyses. PPE was obtained by maceration
(24 h), followed by a percolation process using ethanol (70◦ GL) as the extraction solvent
until drug exhaustion. The obtained extract was concentrated in a vacuum evaporator until
residue (solvent evaporated) and subsequently diluted in propylene glycol to reach 30%
w/v of pomegranate dry matter (measured by evaporation of the solvent in the oven at
100–105 ◦C until constant weight).

Chemical Analysis of PPE by High-Performance Liquid Chromatography

Chromatographic quantification of the pomegranate compounds was performed by
high-performance liquid chromatography using a Shimadzu system (Shimadzu Corpo-
ration, Kyoto, Japan) consisting of a pump (LC-20AT), diode array detector (SPD-M20A),
system controller (CBM-20A), autoinjector (SIL-20A), LC-20AT quaternary pump, and
Shimadzu LC solution software. The chromatographic separation and the ellagic acid and
punicalagin determination were performed using a reverse-phase Shimadzu Shim-Pack
GIST analytical column C18 (100 mm × 4.6 mm × 3µm) at 30 ◦C, as described by Santiago
et. al, with some modifications [80]. The mobile phase consisted of acetonitrile (phase B)
and water containing 5% formic acid (v/v) (phase A) using the following gradient program:
0–5 min, 97–95% A; 5–10 min, 95–85% A; 10-16 min, 85-70% A; 16–18 min, 70–97% A;
18–25 min, 97% A. The flow rate was 0.8 mL min−1. Peaks were determined by comparison
with an authenticated ellagic acid (Sigma-Aldrich, St. Louis, MO, USA) and punicalagin
α/β (Sigma-Aldrich) standard. PPE samples were diluted in methanol, homogenized in an
ultrasonic bath for 30 min, and then filtered (0.45 µL). The injection volume was 5 µL, and
we used a wavelength of 260 nm. All samples were prepared in triplicate.

4.2. Preparing the Mouthwash Formulations

The formulations were standardized according to their active principle in 3% PPE,
0.2 or 0.3% TMP, and 100 or 225 ppm of F. The formulations also contained stabilizers,
microbiological preservatives, chelators, sweeteners, humectants, and water. The pH of all
formulations was adjusted to 7.0 (Table 5). The PPE concentration (3%) was determined
according to microbiological assays [81] (Supplementary Material—Table S1), and the TMP
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(0.2 or 0.3) and F (100 or 225 ppm) concentrations were based on previous studies {Favretto,
2013 #523}.

Table 5. Groups of mouthwash formulations designed according to their constituents (g).

Constituent
Mouthwash Formulation

N E F1 F2 TF1 TF2 ETF1 ETF2

Pomegranate Peel Extract - 10.40 - - - - 10.40 10.40
Stabilizers 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
Microbiological Conserver 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
Chelating 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Sodium-Fluoride - - 0.02 0.05 0.02 0.05 0.02 0.05
Sodium-
Trimetaphosphate - - - - 0.20 0.30 0.20 0.30

Sweetener I 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50
Humectant 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
Purified water q.s. 100 100 100 100 100 100 100 100

N: formulation without fluoride (F); sodium-trimetaphosphate (TMP) and pomegranate peel extract (PPE);
E: formulation with 3% PPE; F1: formulation with 100 ppm F; F2: formulation with 225 ppm F; TF1: formulation
with 0.2% TMP + 100 ppm F; TF2: formulation with 0.3% TMP + 225 ppm F; ETF1: formulation with 3%
PPE + 0.2% TMP + 100 ppm F; ETF2: formulation with 3% PPE + 0.3% TMP + 225 ppm F.

Formulations N (formulation without F/TMP/PPE), E (formulation containing PPE), F1
(100 ppm of F), F2 (225 ppm of F), TF1 (0.2% TMP + 100 ppm of F), TF2 (0.3% TMP + 225 ppm
of F), ETF1 (3% PPE + 0.2% TMP + 100 ppm of F), ETF2 (3% PPE + 0.3% TMP + 225 ppm
of F), and CM (220 ppm of F, essential oil anticaries alcohol-free commercial mouthwash,
Johnson & Johnson© from Brazil—Supplementary Material) were subjected to a pH cycling
test. The formulations with the best performance were subsequently tested in dual-biofilm
models of C. albicans and S. mutans reference strains, and their anti-inflammatory capacity
was determined.

Quantification of Total Phenolics

To verify the total phenolics present in the formulations, an analytical curve of gal-
lic acid was constructed as detailed in a previous study [82,83]. Briefly, the formula-
tions and a standard solution of gallic acid were solubilized in water. The formulations
were maintained in an ultrasonic bath for 30 min. A 0.5 mL aliquot was transferred to a
50 mL flask to which 2.5 mL of Folin–Denis reagent (Qhemis-High Purity, Hexis, São Paulo,
Brazil) and 5.0 mL of 29% sodium carbonate (Cinética, São Paulo, Brazil) were added. The
solutions were incubated in the dark, and the readings were recorded after 30 min using
a UVmini-1240 spectrophotometer (Shimadzu Corporation) at 760 nm. All samples were
prepared in triplicate.

4.3. Experimental Design pH Cycling

Enamel blocks (4 × 4 mm, n = 84) of bovine incisors were stored in a 2% formaldehyde
solution (pH 7.0) for 30 days at room temperature. The enamel surfaces of the blocks
were sequentially polished and selected by an initial surface hardness (SHi, KHN) test of
the total blocks and trust interval, and then randomized (SHi: 320.0 to 380.0 KHN) into
7 groups (n = 12 per group): formulation N, F1, F2, TF1, TF2, ETF1, and ETF2 (Table 5).
The enamel blocks were subjected to pH cycling (demineralization solution (DE) for
6 h (Ca and P 2.0 mmol L−1 in acetate buffer 0.075 mol L−1, 0.04 µg F/mL at
pH 4.7–2.2 mL/mm2) and then in a remineralizing solution (RE) for 18 h (Ca 1.5 mmol L−1,
P 0.9 mmol L−1, 0.15 mol L−1 KCl in 0.02 mol L−1 sodium cacodylate buffer, 0.05 µg
F/mL at pH 7.0–1.1 mL/mm2) for five days and treated with each formulation twice a day
(1 min). Deionized water rinses were performed between each step, and the blocks were
placed in a fresh remineralizing solution for the final 2 days [84]. Subsequently, the blocks
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were assessed for final surface hardness (SHf), %SH, subsurface hardness integrated loss
(∆KHN), and F, Ca, and P concentration in the enamel [35].

4.3.1. Determination of Fluoride in Solutions

The F concentration in the solution was determined using a specific electrode for
the F ion (9609 BN; Orion Research Inc., Beverly, MA, USA) attached to an ion analyzer
(Orion 720 Aplus; Orion Research Inc.) and calibrated with standards containing 0.25 to
4.00 ppm of F. Primarily, 1.0 mL of each product was dissolved in deionized water and
transferred to a volumetric flask. The volume was adjusted to 100 mL using deionized
water. Three dilutions were prepared for each product. Subsequently, two 1 mL samples
were buffered with total ionic strength adjustment buffer (TISAB II, Sigma aldrich) [85].
The pH of the solutions was determined using a pH electrode (2A09E, Analyzer, São Paulo,
Brazil) calibrated with standard pH levels of 7.0 and 4.0 [36].

4.3.2. Experimental Solutions and Treatment with Formulations

The blocks from each group were subjected to five pH cycles at 37 ◦C during a
procedure that lasted for seven days [84]. The blocks were immersed in a demineralizing
(DE) solution (2.0 mmol L−1 Ca and phosphate in 75 mmol L−1 acetate buffer, pH 4.7;
0.04 µg F mL−1; 2.2 mL mm−2). After 6 h, the blocks were transferred to a remineralizing
(RE) solution (RE: 1.5 mmol L−1 Ca, 0.9 mmol L−1 phosphate, and 150 mmol L−1 potassium
chloride in 0.1 mol L−1 cacodylic buffer, pH 7.0; 0.05 mg F mL−1; 1.1 mL mm−1) for
18 h. Deionized water rinses were performed between each step. The treatment regimen
consisted of a 60-s soak in 1 mL/block of solution under agitation on a rotatory shaker
before the solution was changed from DE to RE and from RE to DE (twice a day). Deionized
water rinses were performed between each step. In the final two days, the blocks were
stored in an RE solution.

4.3.3. Hardness Measurements

The hardness of the enamel surface was determined using a microhardness tester
(HMV-2000e, Shimadzu Corporation) and a Knoop diamond under a 25 g-load for
10 s. Five indentations spaced 100 µm apart were made at the center of the SHi. Af-
ter pH cycling, the SHf was calculated by producing five other indentations (100 µm
from the baseline indentations). The %SH was calculated using the following formula:
%SH = ([SHf − Shi]/SHi]) × 100. For the analysis of longitudinal hardness, each block
was divided in half and one half was embedded in acrylic and polished resin. We used
a Micromet 5114 microdurometer (Buehler, Lake Bluff, IL, USA) and Omni Met software
(Buehler) with a loading of 5 g for 10 s. A sequence of 14 impressions at distances of 5,
10, 15, 20, 25, 30, 40, 50, 70, 90, 110, 130, 220, and 330 µm from the outer surface of the
enamel was made in the central area of the blocks [86]. The integrated hardness area
(KHN × µm) from the lesion to the hard enamel was calculated using the trapezoidal rule
(GraphPad Prism, version 3.02; GraphPad Software, San Diego, CA, USA) and subtracted
from the hard enamel hardness-integrated area to obtain the integrated loss of subsurface
hardness (∆KHN).

4.3.4. Analysis of F, Ca, and P Concentration in the Enamel

Blocks (n = 12/per group, 2 mm × 2 mm) were obtained from the halves of the original
4 mm × 4 mm specimens that were not embedded and fixed with adhesive glue on a
mandrel for straightening. Self-adhesive polishing discs (diameter, 13 mm) and 400-grit
silicon carbide (Buehler) were fixed to the bottom of the polystyrene crystal tubes (J-10;
Injeplast, Sao Paulo, SP, Brazil). One layer 50.0 ± 0.03 µm thick was removed from each
enamel block. After the addition of 0.5 mL hydrogen chloride 1.0 mol L−1, it was constantly
stirred for 1 h [87], modifying the procedure described by Alves et al. [88]. For the F
analysis, a specific electrode 9409BN (Thermo Fisher Scientific, Waltham, MA, USA) and
microelectrode reference (Analyser, São Paulo, Brazil) coupled to an ion analyzer (Orion
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720A+, Thermo Fisher Scientific) were used. The electrodes were calibrated with standards
containing 0.25 to 4.00 µg F mL−1 (100 ppm of F, Orion 940907) under the same conditions
as the samples. The readings were conducted using 0.25 mL of biopsy solution buffered
with the same volume of TISAB II modified with 1.0 mol L−1 sodium hydroxide [89].
The results are expressed in µg/mm3. Ca analysis was performed using the Arsenazo III
colorimetric method [90]. Absorbance readings were recorded at 650 nm using a plate
reader (PowerWave 340, Agilent Technologies, Winooski, VT, USA). P was measured as
described by Fiske et al., and absorbance readings were recorded at 660 nm [91]. The results
are expressed in µg/mm−3.

4.4. Stability Test of Mouthwash Formulations

ETF2 was selected to be subjected to the stability test based on the National Health
Surveillance Agency protocols (Cosmetics Stability Guide, ISBN 85-88233-15-0; Copyright©

ANVISA, 2005) and the Guide to Stability Studies (Ordinance No. 593 of 25 August 2000),
with controlled temperature and time conditions. TF2, E, and N formulations were also
tested as controls. Briefly, samples of each formulation were subjected to alternating cycles
of temperature daily, ranging from 40 to −5 ◦C, for 28 days. After 0, 7, 14, 21, and 28 days,
F quantification (described in Section 4.3.1.) and MIC (based on Clinical and Laboratory
Standards Institute Documents M27-A2 and M07-A9, with some modifications) against
Candida albicans American Type Culture Collection (ATCC) 10231 and Streptococcus mutans
ATCC 25175 were determined.

4.5. Anti-Biofilm Activity
4.5.1. Artificial Saliva, Microorganism Strains, and Growth Conditions

The artificial saliva used in this experiment was based on the protocol described by
Lamfon et al. [92] (Supplementary Material). Two reference strains from the ATCC were
used in this study: C. albicans ATCC 10231 and S. mutans ATCC 25175. The strains were
grown as previously described by Arias et al. C. albicans cell quantities were adjusted using
a Neubauer chamber and resuspended in saliva at 1 × 107 cells mL−1, and S. mutans was
adjusted by spectroscopy, optical density640 nm = 1.6 (EONC Spectrophotometer, Agilent
Technologies) at 1 × 108 cells [93].

4.5.2. Biofilm Assay

According to Pandit et al., the HA discs were positioned vertically on supports made
of orthodontic wires in 24-well plates (Costar, Corning Inc., Corning, NY, USA) (Supple-
mentary Material) [64]. Before contact with a mixed biofilm of C. albicans and S. mutans, the
discs were conditioned in 2 mL of artificial saliva for 1 h incubated at 37 ◦C in 5% carbon
dioxide (CO2). Then, the saliva was removed, and 2 mL of the E, TF2, ETF2 formulations,
and CM (positive control) were added and kept in contact with the discs for 1 min. The
discs were washed in saline solution, and 2 mL of the dual-inoculum (C. albicans and S.
mutans) was added to the wells containing HA discs that were previously conditioned with
each mouthwash. Next, the 24-well plates were incubated (37 ◦C, 5% CO2) for 24 h and
treated for 1 min and 10 min with mouthwash.

4.5.3. Number of Cultivable Cells

Colony-forming units (CFUs) from dual-biofilms formed on the HA discs and treated with
each formulation were quantified. HA discs were added into Falcon tubes containing 3 mL
of saline solution, subjected to an ultrasonic bath (Elmasonic p 30 H, Elma Schmidbauer
GmbH, Baden-Württemberg, Germany) for 10 min, and vortexed for 30 s. Serial decimal
dilutions (saline solution) were plated on CHROMagar Candida (Becton, Dickinson and
Company, Difco, Franklin Lakes, NJ, USA) and brain heart infusion agar (Difco) supple-
mented with amphotericin B (Sigma-Aldrich) at 7 µg mL−1 to count the colonies of C.
albicans and S. mutans, respectively. After 24 and 48 h of incubation, the number of viable
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cells was quantified, expressed in log10, and standardized per unit area (Log10 CFU cm−2)
of HA discs.

4.5.4. Biofilm pH Assessment

The biofilms treated with the E, TF2, ETF2 formulations, and CM were transferred
to new sterile Falcon tubes and centrifuged for 5 min at 8000 rpm (Combi-514, Hanil
Scientific Inc., Gyeonggi-do, Korea). The supernatant was filtered through a 0.22-µm mem-
brane filter (Corning Inc.) and the biofilm pH was subsequently measured (pH electrode,
2A09E, Analyser).

4.6. Measurement of Inflammatory Cytokines TNF-α and IL-6

BMDMs were obtained as previously described [94,95], with some modifications.
Briefly, bone marrow suspensions from femurs of 6-week-old C57BL/6 mice were grown in
Roswell Park Memorial Institute 1640 medium (RPMI, Sigma-Aldrich) supplemented with
30% (v/v) L929-cell conditioned medium, 20% (v/v) fetal bovine serum (Gibco, Carlsbad,
CA, USA), and 1% (v/v) penicillin–streptomycin (Sigma-Aldrich) to obtain BMDMs after
7 days of culture.

BMDMs were conditioned in a 96-well bottom plate (Nunc, Thermo Fisher Scientific)
(2 × 105 cells/well) and stimulated with LPS from E. coli (Sigma-Aldrich) at a concentration
of 500 mg mL−1. After 4 h, the cells were washed with 1x phosphate-buffered saline
and treated with the formulations (N, E, TF2, ETF2, and CM) for 2 h. The supernatant
was collected for cytokine measurement, and the remaining cells were subjected to a cell
viability assay MTT.

To evaluate the toxic effects of the formulations (ETF2, TF2, E, and CM), the BMDMs
were treated for 2 h. Cell viability was determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide colorimetric assay (MTT, Sigma-Aldrich [96]. Absorbances at
570 nm were measured on a microenzyme-linked immunosorbent assay (ELISA) reader
(EL800, Gen5 Data Analysis Software, Agilent Technologies, Santa Clara, CA, USA). Three
different assays were performed in triplicate.

TNF-α and IL-6 levels in the supernatant from the macrophage culture were determined
using mouse TNF-α Quantikine ELISA (R&D Systems, Minneapolis, MN, USA) and IL-6
ELISA Set (BD Biosciences, San Diego, CA, USA) following the manufacturer’s instructions.

4.7. Statistical Analysis

All assays were performed in triplicate on at least three independent days. SigmaPlot
software (version 12.0; Systat Software Inc., San Jose, CA, USA) and GraphPad PRISM
(version 5.0) were used for statistical analyses, with a confidence level of 95%. Further, %SH,
∆KHN, and F, Ca, and N concentration in the enamel were analyzed by one-way analysis
of variance, followed by Student–Newman–Keuls test. Anti-biofilm and inflammatory
mediators’ data were analyzed using one-way analysis of variance, followed by post hoc
tests of Holm–Sidak and Tukey’s multiple comparisons, respectively.

5. Patent

The patent for the mouthwash formulations was granted by Instituto Nacional da
Propriedade Industrial (INPI, Brasília, Brazil) on 19 December 2019, with the process number
of BR 10 2019 027251 1.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/antibiotics11111477/s1, Figure S1: Scanning electron microscopy
images analysis of enamel after treatment with ETF2 x5000 (A), ×10,000 (B), and ×20,000 (C);
Table S1: Means (SD) of C. albicans and S. mutans cells at different times (T0-T10) after being treated
with pomegranate peel extract diluted in propylene glycol at different concentrations (1, 3, and 6%).

https://www.mdpi.com/article/10.3390/antibiotics11111477/s1
https://www.mdpi.com/article/10.3390/antibiotics11111477/s1
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