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ABSTRACT OF THE DISSERTATION

Control of a Dynamic Torque Controlled Humanoid For Soccer

by

Colin Travis Togashi

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2024

Professor Dennis W. Hong, Chair

Robots have become more ubiquitous in daily life than ever before. Package delivery, factory

automation, and transportation are just a few of the areas that have started to see robots

take defining roles. Despite this, robotics still has a long way to before realizing the end goal

of living and working amongst humans. The real world presents many challenges including

dynamic obstacles, uneven contact surfaces, and changing operating conditions that require

robots to quickly adapt on the fly in order to be successful. While current state of the art

robots have become quite useful as single task platforms, there is still a need for a more

generalizeable solution in order to meet the challenging needs of real world tasks. In order

to truly adapt to an environment made for a human, robots must now take on the same

humanoid form.

To this end, a bipedal locomotion control stack was developed for the torque controlled

humanoid Artemis. A model based hierarchical stack using a linear inverted pendulum

inspired footstep planner, polynomial swing leg trajectories, and an implicitly weighted hi-

erarchical whole body controller were tested to yield stable walking at a maximum walking

speed of 1.2 m/s. In addition, to verify the effectiveness of the platform and its underly-
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ing software under real world conditions, an autonmous soccer playing software stack was

implemented to compete in Robocup 2024. The stack includes a vision model capable of

detecting balls and field landmarks, a localization algorithm to estimate the game state,

a behavior tree to make real time soccer decisions, and a path planner to avoid obstacles

through gameplay. Furtheremore, a soccer kick was developed that was capable of kicking

the soccer over half of the miniturized field in a single kick. These advancements resulted in

a first place finish at Robocup 2024.
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CHAPTER 1

Introduction

1.1 Motivation

Over the past few years, large advances in robotics have pushed platforms out of laboratories

and into the the real world. From vacuum cleaners to autonmous cars, package delivery and

even healthcare, robots have started to interact with humans more than ever and help them in

their daily lives. Despite these developments, however, most robots still tend to be relatively

slow and targeted at solving single tasks. Multiple robotic systems are often required to

coordinate in sequence to solve a problem that a single human could manage in a fraction of

the time. Even where robots have excelled, a human is still often required to bridge the gap

between single task systems to complete any given objective. To this end, there is a growing

need to find a more generalized and multipurpose platform.

A simple approach for the design of such a generalized robotic system is to copy the

form of the entity already performing the task: humanoids. The humanoid design offers

several advantages. For one, it has a much smaller spatial footprint compared to wheeled or

multi-legged robots. While humanoids may sacrifice some payload capacity in comparison to

wheeled platforms, they are capable of navigating human environments, such as stairs, drops,

and uneven surfaces, much more effectively. Their arms provide high dexterity, enabling them

to manipulate a wide range of objects. Additionally, most dual-arm robotic research follows

the humanoid form, which allows for leveraging a diverse and mature set of research. By

adopting a human-like design, the robot can even operate within the same environments
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without requiring major modifications. This reduces the amount of auxilary work when

applying the platform to a new location. Finally, humanoid robots allow designers to easily

define tasks based on their own personal experiences and intuitions. This may be the most

crucial as roboticists can more effectively create trajectories from what they know.

The humanoid form does have a few disadvantages as well. Relative to wheeled platforms,

humanoids can only carry relatively smaller payloads and have a lower cost of transport [1].

Humanoids are also much more complex in terms of both hardware and software components.

Whereas most wheeled platforms are inherently stable across flat ground, humanoids require

complex control even to take a single step safely. The cost of manufactuing the platforms also

differs quite greatly which limits the number of applications that humanoids are economically

feasible to serve in. Despite these drawbacks, for a truly generalized platform that can go

where humans go, it should be of similar form and function.

1.2 Background

Humanoid development has rapidly advanced throughout the last 50 years. Starting with

WABOT-1 developed by Waseda University was the world’s first humanoid [2]. This marked

the first conceptual demonstration of a full sized humanoid that could interact with its

surroundings and even communicate with humans. A few years later and the Honda P-

Series of robots including the famous Asimo robot really demonstrated fast, stable walking

at the full size scale [3]. This really showed that humanoid bipedal locomotion was a feasible

solution. The HRP series of robots including HRP-4 demnostrated even further advancement

with walking up stairs and single leg balancing [4]. One of the largest platform advances

was Boston Dynamics Atlas which at the time was one of the most advanced and capable

humanoids at the DARPA Robotics Challenge [5] [6]. It was by far the most commonly

used platform on which teams built their stacks and competed. Atlas was improved and

was seen as the most dynamically capable robots up until the 2020s. Nowadays, a number
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Figure 1.1: Traditionally, most robots have been controlled using high gear ratio servos. Only

until recently has there been a shift to compliant actuation. Compliance can be implemented

in a number of different ways including series elatics, proprioceptive, or hydrualic

of commerically available platforms including the Unitree H1, Figure AI Figure 02, Tesla

Optimus, and the Apptronik Apollo [7] [8] [9] [10]. All of these platforms have demonstrated

not only stable walking, but manipulation to some extent.

In order to make robots safer around humans and handle unexpected interactions with

the environment, a general trend in robotics has been the notion of adding more compliance

to robotic systems. Since using rigid body makes it easier for dynamics calculations, most

have resorted to compliance at the actuation level although some still use mechanical springs

[11] [12] [13]. Actuator compliance can be done in a number of ways as shown in Figure 1.1.

Some robots have developed a physical spring between the output shaft of the motor and the

link to have a spring in series or a Series Elasttic Actuator (SEA) [14]. Others have favored

the use of hydraulics wherein fluids are used to generate motion and the compressibility of

the fluid acts as a cushion against impacts [15]. By far, the most popular method nowadays is
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by using lower gear ratio motors named Quasi Direct Drive (QDD) or proprioceptive motors

[16] [17] [18] [19] [20] [21] [22]. By using a current measurement as a proxy for torque, a lower

level torque control algorithm at the joint level can, on the fly, change dynamic properties

like stiffness and damping in software. This opens the door to a number of possibilities as a

much wider range of operating modes can be programmed into the actuator. They are also

much cheaper to manufacture and maintain relative while still remaining as generalizable

as possible by allowing faster development without being constrained to a single set of

mechanical springs.

Meanwhile, control algorithms for humanoids have split mainly into two separate ap-

proaches: model-based or those that use explicitly defined mathematical descriptions of the

physics and dynamics to control motion and model-free, more frequently associated with

AI, that chooses to allow an algorithm to learn the underlying system and determine the

necessary control purely through data. Often times, there is cross pollination between the

two theories to form some combination, however, this isn’t quite commonplace yet. The

current state of the art model-free approaches leverage neural networks through transformer

architectures to develop control at each state. The challenge for most model-free systems

historically has been the simulation to real world gap wherein a controller trained purely

on simulation data yielded drastically poorer performance in the real world [23]. Recently,

however, there have been large gains both to algorithms and to the ability to parallelize

learning sessions in large worlds that have managed to bridge the gap [24]. Due to the lower

cost and higher availability of actuators and platforms, it is now also feasible to run more

training in the real world [25] [26]. Model-free approaches, however, tend to be harder to

debug as the controller is encoded into a non-human interpretable set of weights trained off

data.

Despite this, model based approaches have still proven to be quite capable, especially

for those without the required tools to gather all the data. Since the approach is based on

mathematical models, locomotion can be inutitively described and inform hardware decisions

4



Figure 1.2: A higher level controller will require a simplified model and longer time horizon

while lower level controllers need to be more accurate

[27]. Succesful implementations include the following across multiple robots [28] [29] [30] [31]

[32]. Since any model based controller requires explicit definition of models, this approach

often requires large amounts of hand tuning. Often times, this results in the need for highly

trained experts in order for the controller to work. Nonetheless, this work will focus on

model based control.

The current state of the art seeks to encapsulate a hierarchical approach wherein lower

level models are used at the bottom and higher level models are used at the top as shown in

Figure 1.2 [33]. The lower level controllers tend to run at faster frequencies, but shorter time

horizons while higher level algorithms run at slower frequencies and longer time horizons.

This is due to the fact that the lower level is designed to react and track commands given

higher up. As long as the higher level provides commands, the lower system will track them as

best as possible. Even more so, for a successful hierarchical stack implementation, the lower

level is responsible for matching as close as possible the simplified model that is being used

at the next level above. The reason being is that for most high level control algorithms, the
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models have been simplified to the point where the control is an exact solution. That is given

the model, the solution is not simply optimal, but rather the only solution to the problem.

As a result, the better the lower level can maintain those assumptions and thus match the

model, the better the control will be tracked, the better performance that controller will

have. Problems arise when the lower level cannot compensate for the model and what is

being controlled is drastically different from expectations.

In order to push the capabilities of humanoids to move faster, make correct decisions in

a changing environment, and push the boundaries of how capable a platform can be in the

real world, ARTEMIS was entered into Robocup, an autonomous soccer competition [34].

While soccer may not be an end goal in itself, it still demonstrates many capabilities that

are required other more useful tasks. Walking on grassy, not flat, squishy surfaces improves

locomotion standards, especially when subjected to multiple adversarial disturbances in the

form of the soccer ball and other robot feet. Other robots and humans present dynamic and

even adversarial obstacles that the robot must contend with. As a reult, performing well at

soccer will lead to a better platform overall.

1.3 Contributions

The following work aims to contribute novel research in the following ways:

• Modularization of a humanoid locomotion stack

• Development of a dynamic soccer kick

• Application of higher level soccer behavior stack to win Robocup 2024 in Eindhoven,

Netherlands

6



1.4 Organization

The remainder of the manuscript serves to outline improvements made to a locomotion stack

on the torque controlled humanoid ARTEMIS. Chapter 2 discusses the main theory behind

locomotion including development of the gait, swing leg trajectories, and whole body control.

Chapter 3 discusses implementation details as well as the ARTEMIS platform. Chapter 4

provides an overview of the stack used to compete in Robocup 2024 including the behavior

tree, localization, path planning, and vision model. Lastly, Chapter 5 offers concluding

thoughts and future works that can be foreseen.
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CHAPTER 2

Theory

2.1 Overview

To effectively control a humanoid robot, a hierarchical, model-based control stack was de-

veloped. Figure 2.1 shows a functional overview of all the components involved. Starting

from the base, an esimator reports the state of the robot including its world frame position,

the joint states, and contact state for the other controllers to act on. From these states, the

control stack starts with a gait that syncs all temporal timings and ensures that the feet

and body remain coordinated with each other. A footstep planner, working off of a Linear

Inverted Pendulum (LIP) model, then plans for the next footstep position to stabilize the

robot. Next up, swing leg planners ensure that the task space specifications for the feet can

reliably reach desired touchdown location. A center of mass (CoM) planner then develops

CoM task space trajectories to track while a whole body controller ensures that higher level

objectives are tracked by joint level torque commands. Finally, commands at the motor level

are tracked using joint level PD control and feedforward torque control.

As was discussed in Section 1.2, the stack heavily relies on the hierarchical nature of

control wherein the higher level controllers use simplified models to make task level decisions

such as the timings of the contacts and the placement of the feet. The main high level

model that will be used and reinforced throughout the development of the stack is the

Linear Inverted Pendulum (LIP) model. It is crucial that lower level controllers attempt

to maintain all the assumptions set out by this high level model in order for the developed
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control strategies to work effectively. Meanwhile, to ensure that joint level commands can

be accurately tracked based on the current state of the robot, a rigid body dynamics model

is used at the lower level whole body controller. This ensures that simple yet effective

trajectories can be developed over longer time horizons while still being correctly tracked by

the robot.

Figure 2.1: Conceptual overview of the proposed humanoid stack. Starting from the robot

hardware on the left, joint and sensor information is acquired from actuators and the IMU.

It is then processed through an estimator and filtered to generate a generalized state mea-

surement. Meanwhile, planners for the arms, footsteps, and CoM compute trajectories with

inputs from higher level commands, either from users or other components. At the lowest

level, a whole body control tries to track all the task objectives and provides the final control

outputs qdes, q̇des, and udes. These values can be used for joint level torque control to control

the robot.
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Figure 2.2: Motivation for contact debouncing. Without a proper contact debouncer on

the left, the contact signal fluctuates rapidly on contact transitions. In order to fix this, a

debouncer was introduced to hold the signal until enough consecutive samples changed the

state as shown on the right

2.2 Estimation

The estimator used in this stack is a modified version of the Contact-aided Invariant Ex-

tended Kalman Filter [35]. Using an on board IMU to propagate a floating base model, it

uses contact locations as measurement updates to correct the global frame position, orien-

tation, and velocity. The main output of the estimator is the current generalized state, qg,

and generalized velocity, q̇g, of the robot. In this work, the overall implementation did not

differ greatly from previous works and thus it will not be discussed further.

One of the main requirements for a functioning locomotion stack is to accurately deter-

mine the contact state of the robot at any given time. In this work, the robot is assumed to

have contact two sensors, one at the toe and one at the heel to measure the contact forces

in the z direction. A foot is labeled as in contact if either of the force sensors exceeds a

threshold.

The contact sensor signal may be noisy which may induce flickering when near the thresh-

old as evidenced by Figure 2.2. When this occurs, the contact state will oscillate and cause
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Algorithm 1 Contact Debouncing Algorithm

1: Input: δt, c, Tdebounce, tin contact, tno contact

2: Output: ĉ

3: Initialize: ĉ := False,

4: if c then

5: tin contact += δt

6: else

7: tno contact += δt

8: end if

9: if tin contact ≥ Tdebounce then

10: ĉ := True

11: if c then

12: tno contact := 0

13: end if

14: end if

15: if tno contact ≥ Tdebounce then

16: ĉ := False

17: if ! c then

18: tin contact := 0

19: end if

20: end if

false detection of liftoff or touchdown events, ruining the timing of the walking gait. As

such, it is necessary to add a signal debouncer to hold the signal at its current state until

the noisy signal has spent enough consecutive time above the threshold.

For any given contact sensor, the thresholded contact measurement, c is put through the

debouncing algorithm shown in Algorithm 1 to produce an estimated contact signal, ĉ. The

algorithm works by incrementing the consecutive amounts of time spent in either contact or

11



Figure 2.3: Conceptual overview of the gait. Since most locomotion attributes are cyclical,

each gait can be represented by a circle with portions of the circle dedicated as subphases.

In the case of legs, there are only two subphase: stance and swing

not in contact denoted by tin contact and tno contact, respectively. These valeus are then checked

against a minimum time threshold, Tdebounce, to compare whether or not the signal has spent

enough consecutive time in a given state. Once that has been acheived, the debouccned

measurement can be reliably set. If the state has been confirmed through this thresholding,

it is important to reset the opposing consecutive to show that the signal must spend at least

Tdebounce seconds in the other state to once again change. Tdebounce was set to about 50 ms.

As shown by Figure 2.2, the signal is much cleaner and can be used to estimate the contact

state.

2.3 Gait

Most forms of locomotion are cyclical processes wherein a set of contact timings is repeated

over and over [36]. During walking over flat terrain, a single leg will transition from stance

to swing and back to stance in a predictable, repeated manner. Mathematically, this can be
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Figure 2.4: The gait can be graphically presented by monotonically increasing from 0 to 1

before being reset back to 0 upon completion. The subcycles immediate switch to the next

subcycle upon completion as well.

acheived with the following formula describing the phase:

ϕ =
t− t0
Tgait

(2.1)

where ϕ ∈ [0, 1] is the gait phase variable, t0 is the starting time of the current gait

cycle and Tgait is the gait period. The phase variable, ϕ increases monotonically from 0 to 1.

When the variable reaches 1, t0 is modified to start another gait back at ϕ = 0. The phase is

a dimensionless quantity that can be interpreted as the percentage completion of the cycle.

Each gait can be split into subcycles each with their own subphases. The gait will

sequentially cycle through each subcycle before restarting at the first subcycle. In the case

of a single leg, the two subcycles are stance and swing. Each variable can be specified as

follows:

ϕstance =
t− t0
Tswing

ϕswing =
t− t0
Tstance

(2.2)

where ϕstance is the stance phase variable, Tstance is the stance time period, ϕswing is

13



Figure 2.5: With symmetric walking, the goal is to always have the robot supported by a

single leg. Each leg has its own gait cycle phase shifted exactly half a gait cycle apart. Thus,

when one leg is in contact, the other is travelling through the air to the next touchdown

point.

the swing phase variable, and Tswing is the swing time period. Once the gait of a single

leg completes the stance phase, it immediately transitions to swing phase and vice versa.

Thus, an open loop gait schedule can be constucted with desired locomotion timings. This

quantity can be used to also measure how much time remaining in any given subcycle.

Typical progression of the variables can be seen in Figure 2.4 where a single leg experience

stance then swing. While the overall phase continues to progress, the subcycles shift to the

next subcycle upon completion at ϕstance = 1 or ϕswing = 1.

In order to facilitate symmetric walking, two gaits, one for the left leg and one for the

right leg are developed. The main goal is for the robot to always be supported by a single

leg. This results in offsetting the gaits exactly half a gait phase apart such that when the

left leg is in contact, the right leg is in swing and vice versa. As a consequence, the timing

parameters, Tswing and Tstance are the same for both legs and Tswing = Tstance. This concept

is demonstrated in Figure 2.5. In this manner, while one leg is maintaining contact forces to

support the body, the other leg is free to move to the next stabilizing footstep placement.

While an open loop gait cycle, theoretically, is enough for walking, real world events often

leads to undesired behavior if left uncorrected. One such case is when one foot contacts the
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Figure 2.6: An early contact if left unhandled can cause the foot to remain in swing and

further push exert an uncessary z force. This will propagate to the next gait cycle and

compound the effect, ruining the Linear Inverted Pendulum model assumption. Instead,

the gait should be adjusted by resyncing the entire gait to transitino to stance on an early

touchdown event.

ground before it is predicted in an event known as ”early touchdown.” If left unchecked, the

foot, still believing it is in swing, continues to drive into the ground and imparts uncessary

contact forces on to the system. For example, if the right foot experiences an unknown early

touchdown, then it will try still move to its desired next footstep location. As a result, the

righ foot will drive into the ground causing a positive z force at the contact location on to the

robotic system. The robot will then gain angular momentum to start leaning toward the left

side. Since no timing corrections are made, the left foot will now experience an even earlier

touchdown event causing even more of a disturbance. This effect is an unstable system that

exponentially spirals out of control.

To solve the problem, when a swing foot experiences early touchdown, the corresponding

gait must be fastforwarded immediately transition into stance. On the other foot, the stance
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Figure 2.7: On the detection of an early touchdown in the gait on top in blue, the swing

leg must immediately transition to stance while the stance leg in the bottom plot in red is

commanded to liftoff. This prevents timing errors from propagating in the future.

foot must be commanded to liftoff in order to maintain single support consistency. Figure

2.6 shows an example of a single early touchdown on a single leg and how if left uncorrected,

how successive early touchdown events could make problems even worse. Ideally, the early

contact events are not of large scale so that the overall gait is predicted with relative accuracy

and preempted motions have enough time to fully take place. But with enough care, both

legs can be resynced with little effort as shown Figure 2.7.
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Figure 2.8: The linear inverted pendulum model has a constant height and is a simplified

model that approximates walking dynamics well

2.4 Footstep Planning

The main goal of the foostep planning algorithm is to determine where to place the next

footstep in order to stabilize the robot. The planner will utilize the linear inverted pendulum

model and solely focus on where to place the foothold and assume that the footholds are

always reached instantaneously. The problem of how to get each foot to the next location is

left to the swing leg planners.

Before discussing the footstep planner, it is first necessary to introduce the linear inverted

pendulum (LIP) model which will serve as the basis for the control. The model has served

as the backbone for many walking approaches since it approximates human walking well [37]

[38]. The main assumptions for the model are to lump all the masses of the robot into a

single point mass connected by a rigid link to a point of rotation centered about a single
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contact point. By consequence, it assumes that the robot has massless legs and that the

contact point does not slip. Also, the model assumes that there is an instantaneous change

in contact point when transitioning from one foothold to the next. To reduce the complexity

of the math, a linearization technique can be used if the height of the pendulum remains

fixed. The equation of motion is as follows:

ẍ =
g

h
x = ω2x ω =

√
g/h (2.3)

ẋ
ẍ

 =

 0 1

g/h 0

x
ẋ

 (2.4)

where x is the position of CoM relative to the contact point, ẋ is the velocity of CoM,

ẍ is the accelertation of CoM, g is the gravitational constant, h is the height of pendulum,

and ω is the natural frequency of the pendulum.

While most algorithms choose to develop foot positions in response to the CoM linear

momentum, it has been shown recently that stabilizing relative to the angular momentum

about the contact point is a much better proxy for CoM control [30]. As such, the first

goal is transform the equations of motion into a form with the angular momentum using the

following:

L = mhẋ L̇ = mhẍ = mgx (2.5)

ẋ
L̇

 =

 0 1

mg 0

x
L

 (2.6)
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where L is the angular momentum of the CoM about the contact point and L̇ is the time

derivative of the CoM angular momentum.

The analytic solution for this system is as follows:

x(T )
L(T )

 =

 cosh(ω(T − t)) 1/mh sinh(ω(T − t))

mhω sinh(ω(T − t)) cosh(ω(T − t))

x(t)
L(t)

 (2.7)

where t is the current time, and T is the swing time period. Since the ultimate goal of

the foostep planner is to find the desired contact position relative to the CoM for the next

step to acheive the desired velocity, the second equation is further examined:

L(T ) = mhω sinh(ω(T − t))x(t) + cosh(ω(T − t))L(t) (2.8)

Remember that x(t) is the CoM position relative to the contact point while a footstep

position is the contact point realtive to the CoM. Since they are realtive just by a simple

transformation, x(t) should be solved for. Upon examination of the resulting equation, only

has L(t) and L(T ) are left as unknown. Fortunately, L(t) is a measureable quantity based

on the current system state. Only L(T ) must be caluclated as a desired value.

For the longitduinal direction, the desired angular momentum is just a function of the

desired linear velcoity in the forward direction:

Lx,des = mhvx,des (2.9)

Meanwhile for the lateral direction, it can be shown that an oscillation around the center

point must acheived by reaching the same CoM position in two footsteps [30]. Thus, the

desired angular momentum is as follows:

Ly,des = mhvy,des ±mhW
ω sinh(ωTswing)

1 + cosh(ωTswing)
(2.10)
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where W is the desired step width and Tswing is the swing period.

With a chagne of variable of x(t) = p(t) for clarity, the equation for each footstep is as

follows:

p(t) =
Ldes(Tswing)− cosh(ω(Tswing − t))L(t)

mhω sinh(ω(Tswing − t))
(2.11)

In order to develop an appropriate CoM trajectory, the system dynamics in Equation 2.3

are simply integrated.

2.5 Swing Leg Trajectories

In the previous section, the LIP model only worried about where to position the next foot-

step, not the problem how to get there. During walking in the physical world, however, each

contact point cannot instantaneously travel from point to point to establish a new contact.

Instead, the foot must be lifted from the current contact frame to the next using a trajec-

tory. The trajectory must be smooth and low enough acceleration such that the working

assumption can be maintained, yet aggressive enough to correctly track desired footstep

commands for the next touchdown location. An added constraint must be that they should

be computationally inexpensive as this must be computed online for each timestep that the

leg must travel through.

As such, polynomial trajectories have been simple, yet effetive tools for swing leg tra-

jectory generation [39] [40]. When they are formed as boundary problems with initial and

final conditions, they offer smooth and computationally efficient trajectories for spatial swing

leg quantities (x, y, z). To simplify the effects of different timesteps on the trajectory, the

polynomials are normalized with respect to the dt. A unittless phase value τ ∈ [0, 1) is

then used as the input for each trajectory. This simplifies the specification as any timestep

and swing period can be attained by post mulitplication and scaling without changing the

problem formulation. As a side effect, the phase variable ϕswing developed in Section 2.3 can
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be directly used.

2.5.1 Cubic Polynomial (x,y)

The cubic polynomial is the simplest swing leg trajectory that can be implemented while

satisfying initial and final position and velocity constraints. This allows the swing leg to start

at the current foot location travel to the final footstep location with zero velocity conditions.

This is mainly used for the (x,y) position as further constraints cannot be imposed. For the

z direction, two cubic splines have been used where one is the lift portion of the step and the

other is downswing of the leg. However, for this work, a higher order polynomial simplified

the process with only slight increase in computation. The cubic polynomial for position with

its derivatives for velocity and acceleraton are as follows:

p(τ) = c3τ
3 + c2τ

2 + c1τ + c0 (2.12)

v(τ) = 3c3τ
2 + 2c2τ + c1 (2.13)

a(τ) = 6c3τ + 2c2 (2.14)

The boundary conditions are to start at the current foot position p0 and end at the

desired final foot position pf with zero takeoff and touchdown velocity. For generalization,

the boundary conditions for an intial velocity v0 and final velocity vf are shown:

p(0) = p0 p(1) = pf (2.15)

v(0) = v0 v(1) = vf (2.16)

Based on the transformation into the unitless τ variable, the matrix relating any new

updated values for either starting or ending foot position is a constant matrix. Thus, the

inverse of this matrix can be computed apriori and each subsequent call is very inexpensive.
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c0 = p0 c1 = 0 (2.17)1 1

3 2

c3
c2

 =

pf − p0 − v0

vf − v0

 (2.18)

c0 = p0 c1 = 0 (2.19)c3
c2

 =

−2 1

3 −1

pf − p0 − v0

vf − v0

 (2.20)

After solving for the coefficients, they can be used in Equation 2.14 to calculate the

position and velocity of the swing leg foot position given the current swing phase variable

ϕswing.

2.5.2 Fifth Order Polynomial (x,y)

While a cubic polynomial can be used, upon exmaniation of the curve it generates in Figure

2.9, it is still changes quite aggressive near the takeoff (beginning) and touchdown (end)

events. In order to reduce the amount of impact forces imparted, particularly on early

touchdown events, a smoother, higher order function should be used. In a very similar

manner to to the cubic polynimal, a quintic spline boundary problem can also be specified.

Due to the higher order terms, the boundary problem also now includes specifications for

the initial acceleration a0 and the final acceleartion af which are set to 0.

p(τ) = c5τ
5 + c4τ

4 + c3τ
3 + c2τ

2 + c1τ + c0 (2.21)

v(τ) = 5c5τ
4 + 4c4τ

3 + 3c3τ
2 + 2c2τ + c1 (2.22)

a(τ) = 20c5τ
3 + 12c4τ

2 + 6c3τ + 2c2 (2.23)
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Figure 2.9: Sample swing leg trajectories for cubic (blue) and quintic (red) polynomials

p(0) = p0 p(1) = pf (2.24)

v(0) = v0 v(1) = vf (2.25)

a(0) = a0 a(1) = af (2.26)

Similar to before, the matrix inversion to solve the linear system of equations can be

precomputed ahead of execution time to becom more computationally efficient.

c0 = p0 c1 = v0 c2 =
1

2
a0 (2.27)

1 1 1

5 4 3

20 12 6



c5

c4

c3

 =


pf − p0 − v0 − 1

2
a0

vf − v0 − a0

af − a0

 (2.28)
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c0 = p0 c1 = v0 c2 =
1

2
a0 (2.29)

c5

c4

c3

 =


6 −3 0.5

−15 7 −1

10 −4 0.5



pf − p0 − v0 − 1

2
a0

vf − v0 − a0

af − a0

 (2.30)

Upon comparison in Figure 2.9, the fifth order spline is much less aggressive at the

boudnaries and is a more suitable swing trajectory to use.

2.5.3 Sixth Order Polynomial (x,y,z)

The main constraint on constructing a z swing leg trajectory is that the foot usually must

rise above a specified height, the step height, in order to break friction contacts, but also to

avoid smaller obstacles on the floor. Thus, to construct a suitable trajectory, an interpolation

is required to have an added constraint wherein at some point in the trajectory, a specific

value must be met. To simplify calculations the midpoint at τ = 0.5 was chosen. Since

another constraint is added, a sixth order polynomial was chosen. In this way, the path is

constrained to a midpoint value, or p(0.5) = pmid. A similar process can be used to develop

the coefficients neecssary to implemnt the polynomial:

p(τ) = c6τ
6 + c5τ

5 + c4τ
4 + c3τ

3 + c2τ
2 + c1τ + c0 (2.31)

v(τ) = 6c6τ
5 + 5c5τ

4 + 4c4τ
3 + 3c3τ

2 + 2c2τ + c1 (2.32)

a(τ) = 30c6τ
4 + 20c5τ

3 + 12c4τ
2 + 6c3τ + 2c2 (2.33)

p(0) = p0 p(0.5) = pmid p(1) = pf (2.34)

v(0) = v0 v(1) = v0 (2.35)

a(0) = a0 a(1) = af (2.36)
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Figure 2.10: A sample sixth order trajectory for the z component of the swing leg trajectory

c0 = p0 c1 = v0 c2 =
1

2
a0 (2.37)

1 1 1 1

1
2

6 1
2

5 1
2

4 1
2

3

6 5 4 3

30 20 12 6




c6

c5

c4

c3

 =


pf − p0 − v0 − 1

2
a0

pmid − p0 − 1
2
v0 − 1

2

3
a0

vf − v0 − a0

af − a0

 (2.38)

c0 = p0 c1 = v0 c2 =
1

2
a0 (2.39)

c6

c5

c4

c3

 =


32 −64 −10 1

−90 192 27 −2.5

81 −192 −23 2

−22 64 6 −0.5




pf − p0 − v0 − 1

2
a0

pmid − p0 − 1
2
v0 − 1

2

3
a0

vf − v0 − a0

af − a0

 (2.40)

As Figure 2.10 shows, the trajectory is able to reach a certain midpoint value before

returning to the desired end location. This can be seen as a foot stepping over obstacles on
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each swing leg. In the future, this can also be used if the foot is desried to reach a point in

either x or y direction as well, as is the case for a kick.

2.6 Whole Body Control

The whole body control problem is a popular scheme to control humanoids at the lowest level

to generate output joint accelerations and then converting to joint torques use an inverse

dynamics model [41] [42] [43] [44] [45] [46]. The main concept behind whole body control is

to use a task to describe a space of objectives to track. This task can be any space as long as

a Jacobian and Jacobian time derivative exist. Starting from the definition of the Jacobian

and applying a time derivative:

ẋ = Jq̇ (2.41)

ẍ = J̇ q̇ + Jq̈ (2.42)

where ẋ is the task space velocity, ẍ is the task space acceleration, q̇ is the generalized

velocity of the robot, q̈ is the generalized acceleration of the robot, J is the task space

Jacobian, and J̇ is the time derivative of the task space Jacobian. Using this form, task space

accelerations can be tracked if a desired value is known. For most cases, a PD controller

around the desired task space position and velocity works well:

ẍdes = Kp(xdes − x) +Kd(ẋdes − ẋ) (2.43)

where ẍdes is the desired task space acceleration, Kp is the proportional error gain, xdes

is the desired task space position, x is the current task space position, Kd is the damping

velocity gain, ẋdes is the desired task space velocity, and ẋ is the current task velocity. Thus,

an error to be minimized can be developed:
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error = ∥Jq̈ + J̇ q̇ − ẍdes∥2W (2.44)

Before showing the whole body problem, first, the full rigid body dynamics model must

be introduced. Rigid body dynamcis only assume that robot links be rigid and that the

actuated torque is the actual output torque at the joint. To describe the system using this

form, a generalized state q and generalized velocity q̇ must first be defined as in Featherstone

[47].

q =


x

ψ

qj

 q̇ =


v

ω

q̇j

 (2.45)

where x ∈ R3×1 is the world frame position, ψ ∈ R4×1 is the world frame quaternion,

qj ∈ Rnj×1 is the joint positions, v ∈ R3×1 is the world frame velocity, ω ∈ R3×1 is the world

frame angular velocity, q̇j ∈ Rnj×1 is the joint velocities. The standardized robotics rigid

body equation of motion (EoM) for a robot with nq number of generalized states, nv number

of generalized velocities, and nc number of contacts with the environment is defined as:

M(q)q̈ + cg(q, q̇) = τ + JT
c (q)fc (2.46)

where q ∈ Rnq×1 is the generalized state vector, q̇ ∈ Rnv×1 is the generalized state vector,

M(q) ∈ Rnq×nq is the inertia matrix, q̈ ∈ Rnq×1 is the joint accelerations, Cg(q, q̇) ∈ Rnq×1

is the nonlinear vector due to gravity and coriolis effects, τ ∈ Rnq×1 is the vector of joint

torques, Jc(g) ∈ Rnc×nq is the contact jacobian, and Fc ∈ Rnc×1 is the contact forces. This

model is the best approximation of the robot dynamics and is slightly expensive to calculate.

However, since whole body control is the lowest level before joint level tracking, it must be

as accurate as possible to correctly track task quantities.

Since there are often more desired degree of freedoms across all tasks than there are

degrees of freedom in the robot, a compromise must be struck to complete a solution. This
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can either be solved using a null space projection of the Jacobian on each set of successive

tasks or through a weighted optimization to try to satisfy desired values implicitly [41]. In

this work, the implicitly weighted version is used as shown below:

min
q̈,fc

N∑
i=1

∥Jiq̈ + J̇iq̇ − ẍi,des∥2Wi
+ ∥q̈∥2Rq̈

+ ∥fc∥2Rf
(2.47)

s.t. Sf

(
Mq̈ + Cg − JT

c fc
)
= 0 (2.48)

Gffc ≤ 0 (2.49)

τmin ≤ u ≤ τmax (2.50)

q̇min ≤ q ≤ q̇max (2.51)

qmin ≤ q̇ ≤ qmax (2.52)

where the optimization problem seeks to solve for the desired joint accelerations q̈ and

desired contact forces fc. The cost function is comprised of weighted task space acceleration

error norms to ensure that tasks are tracked relative to the importance given by their asso-

ciated weight Wi. Meanwhile, regularization terms on the optimization variables are placed

to ensure that only the minimal amount of input is required to find a solution.

The constraints meanwhile are given as the previously discussed rigid body dynamics to

create dynamically consistent solutions. A friction cone constraint matrix Gf ensures that

all forces applied are realistically bounded by the amount that friction would allow. Finally,

limits are placed on the joint torques u, the joint positions q, and the joint velocites q̇ to

ensure that any solutions are physcially possible to acheived on the robot. An expanded

look at the matrices that comprise the constraints in a convex form is show below:
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−SfCg

τmin − SaCg

lfc

q̇min − q̇m

qmin − (qm + q̇m∆t)


≤



SfM −SfJ
T
c

SaM −SaJ
T
c

0 Cfc

∆tI 0

1
2
∆t2I 0


 q̈
fc

 ≤



−SfCg

τmax − SaCg

ufc

q̇max − q̇m

qmax − (qm + q̇m∆t)


(2.53)

After the solution has been found, joint torque commands τ can be found using inverse

dynamics [48]:

τ =M(q)q̈ + cg(q, q̇)− JT
c (q)fc (2.54)

In addition to torque commands, position and velocity joint commands must also be

generated to enable better tracking. For position commands, the most commonly used

approach is inverse kinematics (IK). Since joint chains with more than 4 degrees of freedom

becoming increasingly hard to develop analytic solutions, nuemrical solutions have been

developed to solve them. In this work, the Weighted Damped Least Squares method [49] is

used to solve for joint position give the end effector positions of each of the limbs (left foot,

right foot). These joint positions are then fed to the lower level controller. The main update

equation of the numerically IK has been written below:

∆θ = J̃T (J̃ J̃T + λ2I)−1e, J̃ = WJ (2.55)

For velocity commands, the psuedo Jacobian method [50] is used as platforms are not

guaranteed to have invertible Jacobians. If a 6 DoF arm was used with an invertible Jacobian,

the inverse could easily be calculated. Most of the time this is not the case as even with the

correct amount of degrees of freedom, usually there exist singularities which cause inverse
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calculations to become numerically unstable. The output joint velocities are checked to be

within some limit in order to avoid these instabilities.

θ̇des = J†ẋ = JT (JJT )−1ẋdes (2.56)

2.7 Joint Level Control

Proprioceptive acuators are the paradigm of motor chosen to the run the stack [16]. As such

the lower level joint control utilizes joint position, joint velocity, and joint torque commands

sent from higher level planners and calculations. A low level torque controller runs on the

platforms in this thesis which uses the current as a proxy for the torque to specify motor

control:

udes = Kp(θdes − θ) +Kd(θ̇des − θ̇) + τ (2.57)
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CHAPTER 3

Artemis Platform

3.1 Platform Overview

Figure 3.1: ARTEMIS or the Advanced Research Platform with Enhanced Mobility and

Improved Stability is a highly capable 20 DoF proprioceptively actuated humanoid

In order to verify the proposed locomotion stack, The Advanced Robotic Technology with

Enhanced Mobility and Improved Stability, or ARTEMIS (Artemis), as shown in Figure 3.1,

was used. Artemis is a 20 degree of freedom humanoid robot with custom quasi-direct drive
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Figure 3.2: Joint configuration for Artemis. The platform has two 5 DoF legs, two 4 DoF

arms, and one 2 DoF neck for a total of 20 joints

actuators fully developed at RoMeLa. The main design philosophy behind Artemis was to

create a highly dynamic platfrom capable of performing explosive and dynamic movements

unseen in previous humanoids. This is achieved by minimizing weight and inertia, especially

any distal quantities away from the body, in order to maximize dynamic capability [51]. Large

amounts of weight were saved by making the output shaft of each actuator the actuator

housing of the next joint at the hip. This provides a highly compact package where the

motor housings are the sole structural components of the platform. By also using custom
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Figure 3.3: Artemis was designed to have a large range of motion, almost comparable to

that of an actual human

Back-drivable Electromagnetic Actuators for Robots, or BEAR actuators, Artemis is able

to withstand high impact forces while providing clear torque fidelity on actuation output.

Artemis has two 5 degree of freedom (DoF) legs, two 4 degree of freedom arms, and 2

degrees of freedom in the neck (yaw, pitch) as shown in Figure 3.2. Having only 5 degrees

of freedom in the legs differs from the standard of humanoid platforms as it is missing the

pitch roll actuator. This was done on purpose to reduce distal mass as dynamic fast paced

movements were prioritized. While this does save a considerable amount of inertia at the

ankle, this prevents ARtemis from fully controlling the the CoM state when one leg is contact.

Another major design consideration was to allow Artemis to exhibit a much larger range

of motion in its legs compared to traditionally designed humanoids. As can be seen by Figure
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Figure 3.4: Artemis has flexure based contact sensors that allow accurate, timely detection

of touchdown events. The flexures also bottoms out to prevent damage from larger impact

forces

3.3, Artemis has quite a large workspace for its legs and can reach very similar poses to that

of an actual human being. This allows for more intuitive task specification as human poses

can be more easily translated to commands on the platform.

Meanwhile, the platform is equipped with a sensor suite containing the StereoLabs Zed

2i RGB-D stereo camera, the Lord Microstrain 3DM-CV7 IMU, and custom flexure based

contact sensors. Each contact sensor, one at the toe and another at the heel, measures

the deflection of an aluminum member that can be converted through calibration into a

force as shown in Figure 3.4. The contact sensors have a hard stop where the deflection

leads to compression against a structure to prevent plastic deformation from occurring. This

provides very reliable and timely contact information about the robot that is robust to

weaknesses of other methods such as errant forces during swing or breaking under large

impact forces. Additionally, Artemis can be equipped with forward and rear facing depth

cameras for further environmental awareness, although these are absent during the Robocup

competition to follow regulations.
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Figure 3.5: Since Artemis only has a 5 DoF leg (no ankle roll), the platform behaves very

similarly to the LIP model in real life due to the lower distal leg inertia and the ankle

naturally rolling about the contact point

All these design considerations were conducted in an effort to also match the LIP model as

shown by Figure 3.5. By more closely designing hardware to match the underlying template

models, the control approach that uses that model will be more effective.
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Figure 3.6: Overall diagram for the implementation of the Artemis locomotion stack

3.2 Artemis Implementation Details

The software stack that depicted in Figure 3.6 was implemented on Artemis to make the

robot walk and kick. Due to the simplication of the techniques outlined, threads were able

to run quickly at 500Hz - 1kHz. Each individual block listed constituted a separate thread

that was run in parallel with the rest of the stack.

To facilitate communication across all threads, a custom shared memory library built off

of POSIX interfaces found in Boost C++ libaries [52]. While it is only explicitly shown as

a bridge between the whole body controller and the motor threads, each interface between
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any given threads used shared memory. By having each component separated by shared

memory, modules can be designed, implemented, and tested relatively in a decoupled manner.

In addition, components can be reused across different robots given the same underlying

interfaces do not change.

In order to facilitate communication with other higher level libraries, each thread was

wrapped in a ROS 2 node [53] with topics exposed to report the state of the robot and to

offer interfaces for higher level commands like desired velocity. Due to the sensitive timings

that torque control require, it was a decision design to disallow external ROS 2 topics from

directly specifying joint comands to the motors directly. The amount of error handling

necessary to ensure that two controllers were not commanding to the motors at the same

time was deemed too costly to implement during this work.

The BEAR actuators are controlled using the CBEAR SDK from Westwood Robotics

[54]. This is a C++ library that facilitates serial communication over the RS485 devices to

read/write joint position, velocities, torques among other registers. A motor thread runs at

1kHz and follows direct force commands as tracking can be improved when using joint level

feedback with target trajectories [55].

All kinematics and dyanmics measurements are computed using the Pinocchio C++

library [56]. This library offers very efficient computation of most dynamic quanities relevant

to the control of a humanoid including the centroidal momentum matrix [57]. For the convex

optimization of the whole body controller, the ProxQP C++ library was used for its ease of

use and speed [58].

The most difficult part about the locomotion stack is tuning the whole body controller as

often times it is difficult to determine exactly which task needs to be prioritized in relation

to the other tasks. Table 3.1 shows the gains found to stablize the stack both in double

support or balancing and when the robot was walking in continuous single support. During

balancing, the parameters were relatively straightforward as there are a more than enough

degrees of freedom between the two legs to satisfy any CoM commands required to prevent

37



Task Double Support (Balancing) Single Support (Walking)

CoM Linear Momentum

(10, 10, 100) (1, 1, 100)

(30, 40, 100) (0, 0, 100)

(25, 10, 15) (10, 10, 15)

CoM Angular Momentum

(10, 10, 1) (20, 20, 20)

(0, 0, 0) (0, 0, 0)

(10, 10, 1) (10, 10, 10)

Body Orientation

(80, 80, 80) (20, 20, 40)

(300, 300, 200) (150, 150, 100)

(40, 50, 20) (30, 30, 10)

Swing Foot Position

(0, 0, 0) (80, 80, 80)

(0, 0, 0) (1500, 1500, 1000)

(0, 0, 0) (5, 5, 20)

Swing Foot Orientation

(0, 0, 0) (1, 10, 10)

(0, 0, 0) (0, 500, 500)

(0, 0, 0) (0, 25, 25)

Contact Position

(1000, 1000, 1000) (1000, 1000, 1000)

(0, 0, 0) (0, 0, 0)

(0, 0, 0) (0, 0, 0)

Arm Joint Positions

(10, 10, 10, 10) (10, 10, 10, 10)

(100, 100, 100, 100) (100, 100, 100, 100)

(20, 20, 20, 20) (20, 20, 20, 20)

Head Joint Positions

(10, 10) (10, 10)

(100, 100) (100, 100)

(20, 20) (20, 20)

Table 3.1: Weights and gains used for the whole body controller
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(a) (b)

(c) (d)

Figure 3.7: Artemis walking in the lab with minimal intervention from a human bystander

the robot from falling.

While walking, however, multiple tasks need to be tracked using only a single 5 DoF

leg providing contact forces as control inputs. The main starting point was that it is well

known that the CoM angular momentum should be minimized during walking [59]. Through

multiple experiments, it was found that the prioritizing tracking the CoM z height and the
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footstep swing location were the most crucial in stabilizing the platform. Since Artemis is

always at an unstable equilibrium without the ability to resist roll motion about the ankle,

it is imperative that the touchdown location be as close as possible to the desired location as

calculated by the footstep planner. As a consequence, in order to make the footstep planner

as effective as possible, the CoM z height must be kept as close as possible to a constant to

match the assumptions of the underlying LIP model.

3.3 Walking

With the software stack thus outlined, Artemis performed stable walking with a human only

standing by for safety of the robot as shown in Figure 3.7a-3.7d. Artemis was able to walk

stably for a recorded 20 minutes before it needed to be stopped to recharge batteries. Even

through small disturbances applied to the chest and the legs, the platform did not fall over.

As was mentioned during tuning of the whole body, the quantities that mattered the most

(a) (b)

Figure 3.8: The whole body controller tracked CoM quantities well. Data is shown over

10 seconds of walking. (a) T z com height in particular was tracked within a 1cm of noise

as shown by the actual CoM height in red near the commanded height in black. (b) The

angular momentum, on the other hand, oscillated around zero and was minimized
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Figure 3.9: Meanwhile footstep comamnds were tracked well throughout walking to ensure

the platform stabilized through proper footstep placement. The data is conducted over 10

seconds with the black lines denoting commanded values, the blue line representing the left

foot x direction and the red line representing the left foot y direction. The data was similar

for the right foot

to enable the stabilizing through footstep calculation were to track the CoM z height and

the footstep (x,y) position while minimizing the CoM angular momentum. Figure 3.8a-3.8b

shows tracking of the related CoM quantities by the whole body controller over 10 seconds

of walking. The CoM z height was maintained with a 1cm of the desired value while the

CoM angular momentum was minimized to a maximum value of 1.3 kg ·m2/s. Meanwhile,

Figure 3.9 shows the tracking of the left foot by the whole body controller. Throughout the

sampled time, the tracking follows very closely and only deviates 2-3cm from the desired

values. The values for the right foot looked very similar and were left out for brevity. This

ensures that the feet consistently reached the desired footstep locations and maintained the

assumptions for the footstep planner to remain valid.

A point that was stressed during the discussion of the gait in Section 2.3 was the fact that
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Figure 3.10: Artemis was able to readjust the gait timings in order to resync on each early

touchdown event. As can be seen, the gait cycle never reaches completion by meeting a

phi = 1 value.

the gait needed to be able to handle early touchdowns in order prevent escalating desyncing

of the gait. Figure 3.10 shows the result of the gait handling the early touchdown event.

Walking was performed without this contact feedback initially and would never stabilize as

Artemis still believed the newly contact support was still in the air. This would cause the leg

to drive further into the ground, leading to large z forces on the platform. Each step would

exacerbate the problem as the timing continued to get further and further mismatched.

3.4 Kicking

Kicking was implemented in order to satisfy later goals of competing in automous soccer.

By using the same tools that have already been discussed, a simple, yet effective kick can

be developed. The sixth order polynomial that was discussed in Section 2.5 mainly used for

the z height swing leg trajectory can also specified to extend the foot out in the x (forward)

direction to make contact with a ball. If the ball position is known, the midpoint can be

adjusted to match as close to that position as possible only limited by kinematics. Ball

positions outside of this range require the robot to walk closer in order to properly kick.

Kick power and how hard the ball is contacted is also tunable solely through the spec-

ification of the midpoint. By kicking ”through the ball” to a point past the surface of the

42



Figure 3.11: A strong kick was implemented for Artemis using seventh order polynomial

splines to detemine how far to extend the foot in the x (forward) direction based on the ball

position.

ball as demonstrated in Figure 3.11, the foot carries more velocity and ends up with a more

powerful kick. This is a relatively crude, but effective method in order to increase power.

Unfortunately, the distance travelled by the kick does not correlate linearly with the amount

of specified depth due to the noise of the ball position measurement, the esimated state of

the robot, and tracking of the swing leg on impact with the ball. Since this prove too difficult

to properly calibrate, two sets of kicks were specified: a weak kick, with a depth of 5cm past

the ball surface, used to relocate the ball and a strong kick, with a depth of 10cm past the

ball surface, to strongly kick the ball forward.

Kicking was successfully performed both in a controlled lab environment and at the later

competiton as shown in Figure 3.12a-3.12d. During testing, the strong kick ended up being

able to travel nearly three quaters of the field without intervention. This distance, however,

varied greatly based on the thickness of the grass playing field, how centered on the ball

the kick contact point was, and the type of ball used. Holding all those variables constant,

however, produced a reliable and repeatable strong kick.
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(a) (b)

(c) (d)

Figure 3.12: Artemis kicked a ball on a test field to verify the behavior. (a) Artemis wakling

up to the ball, (b) Artemis preparing to kick, (c) the swing foot extends through the ball

position, and (d) returning back down at the footstep location
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CHAPTER 4

Robocup 2024 Eindhoven

4.1 Overview

One of the major ways to prove the capability of a robotic platform is to apply it to a real

world, high pressure environment. Competitions like the DARPA Robotics Challenge (DRC)

and Robocup are proving grounds to ensure that algorithms not only work, but that they are

reliable under harsh conditions where real world variables come to play. Additional levels of

reliability and robustness are required from both hardware and software in order to succeed.

Figure 4.1: Robocup pits two teams of autonomous robots to face off in full games of soccer.

The only allowed humand intervention is to pick robots off the field after failures to be reset

on the sidelines.
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Figure 4.2: An automous soccer stack to compete in Robocup. The stack is fully capable of

playing an autonomous game of soccer with little intervention from humans

Robocup is an annual competition wherein teams of autonomous robots must play a

full game of soccer on simulated turf without human intervention. From detecting the

ball to deciding where to move next, the robots act on their own with the only allowed

communication to an electronic scoreboard. Humans standby only in case of failure and to

prevent damage to the robot.

This section outlines the software stack that the Robotics and Mechanisms Laboratory

(RoMeLa) participated with during Robocup 2024 held in Eindhoven. As can be seen from

Figure 4.2, a similar hierarchical controller approach was used wherein higher level controllers

pass task objectives to lower level controllers to accomplish.

At the bottom of the stack, the vision algorithm is responsible for detecting key landmarks

including the ball in order to inform any upstream controller decisions. This information is

passed to the localization algorithm which informs the rest of the controllers about the state
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of play. In order to better inform the vision and localization algorithms, a neck manager

alternates between focusing on the ball and scanning the field based on the current desired

actions. A high level behavior tree then determines the appropriate soccer actions to execute

from moving to the ball, kicking, and even stopping an opponent from scoring. From those

soccer decisions, a path planner always tries to reach the specified goal position by developing

x, y, and yaw velocity commands assuming motion on a plane. Finally, the commands are

sent to the locomotion stack outlined in 2.

4.2 Vision

(a)

(b)

Figure 4.3: (a) The Stereolabs Zed 2i RGB-D stereo camera was used on Artemis with (b)

a custom trained detection model based on Yolov8

Camera frames containing red, green, blue, and depth (RGB-D) signals were sampled

at 60 Hz from the Stereolabs Zed 2i stereo camera as shown in Figure 4.3a using the man-

ufacturer supplied Zed SDK [60]. The RGB portion of the images are then fed through a

perception model based on the Yolov8 architecture [61] similar to Figure 4.3b trained on a

custom dataset gathered over practice sessions and the actual competition. The one shot

detection algorithm outputs detections for the ball, field markers, and other robots in pixel

coordinates with depth measurements relative to the camera frame. These raw measure-
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Figure 4.4: Robocup vision detecting landmarks, the ball, and other robots

ments are then converted into robot frame measurements based on the camera mounting

geometry and the current neck joint angles. In order to improve the robustness of the detec-

tion algorithm, filters to check whether the ball was on green turf or within the bounds of

play were performed to reduce the number of false positives. These filtered landmark data

are then passed to the localization algorithm for determining the world frame game state.

An example of the output of the detection model can be seen in Figure 4.4. Each color

represents a unique type of landmark with multiple instances of each type being detected

at the same time. Each detection contains an (X,Y) pixel location as well as a Z depth

measurement from the front of the camera face plane.

4.3 Localization

In order to effectively determine the state of the game, the localization algorithm relies on a

multi-step approach outlined in Figure 4.5. First, a geometric based algorithm triangulates
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Figure 4.5: Localization used to determine where the robot is on the field

the closest best estimate of the robot in the world frame based on landmark data from vi-

sion and the predicted set of landmark positions given the current state estimate. As seen

from Figure 4.6, depending on the view of the camera, the number and types of landmarks

currently seen by the robot can vary greatly. Since there are no unique landmarks bordering

the field, multiple spots on the field can yield the same measuremenmts. This results in a

mirroring effect where any triangulation attempt has many solutions. Furthermore, land-

marks measurements tend to be noisy or even occluded by obstacles such as other robots

and humans. A sample of landmark data was measured to be off by as much as 0.3 meters

when measured 1 meter away from the robot, with further measuremeents experiencing even

larger noise. As a result, measurements that are either too far away from the robot or are

estimated to be outside of the field of play are thrown out as outliers.

To combat this, for each pair of landmarks detected, an estimate of the true location of

the robot on the field is found. Then, a clustering algorithm determines the most likely state

of the robot from the collection of these estimates. For robustness and to prevent converging

to a mirrored location, a global clustering algorithm is run at a slower rate on the past inertial

data from the IMU to ensure that the estimate remains consistent. If these estimates differ

too greatly, it signals that the geometric approach has converged on a location different to

the actual state and must be reset. The estimate is then run through a particle filter with

the IMU estimate in order to smooth out any discontinuities in the reported state.
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Figure 4.6: All possible landmarks on the field that localization needs to match to. The

yellow region shows the field of the view of the robot and the predicted landmarks that

should be within the camera frame

A test of the localization algorithm can be seen in Figure 4.7 where the black line is the

solely the IMU estimate and the proposed algorithm is labeled in blue. The test ran a single

continuous rectangular path from one goal box to across the field at the other goal box and

back over multiple trips. The IMU estimate predictably experiences drift and a rotated shift

in the estimated path due to the unobservability of the robot yaw. Meanwhile, the proposed

algorithm, while slightly noisy, converges around the true rectangular path. This ensures

that higher level decision making and path planning can reliably rely on an accurate game

state. Further details can be found in the paper dedicated to localization [62].
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Figure 4.7: The robot was run from one goal box to the other in a rectangle path to test the

accuracy and robustness of the algorithm.

4.4 Behavior Tree

From the current game state, a behavior tree was implemented using PyTrees [63] to make

key soccer decisions such where to go next, when to kick the ball, and how to respond to the

electronic scoreboard, the GameController [64]. Behavior trees are powerful decision making

tools that have been implemented to handle decision making including play soccer [65] [66]

[67] [68]. At first, both robots are assigned either the position of the goalie or the striker

to simply behavior. The goalie is mainly configured to prevent opponents from scoring by

defending a half and waiting for the ball to enter a specified scoring area. Once in that area,

the goalie pursues the ball. If the opponent is near the ball, the goalie will try to as quickly

as possible, kick it away from its own goal as there is high likelihood of the opponent scoring.

Meawhile, if an opponent is further away, the goalie can take its time to kick the ball down

field to an awaiting striker to score. Once the ball has been cleared, the goalie will return to
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Figure 4.8: Behavior tree used to determine soccer decisions during a game

its defending spot.

Meanwhile, the striker’s only objective is to score the ball. Once the ball has entered a

specified area of the field, the striker will pursue the ball with desired end orientation facing

the goal. If an opponent is deemed to be blocking the kick path of the ball, then the striker

will try to kick around the opponent in order to set up for a clearer, higher probability shot

on goal. As best as possible, the striker tries to push the ball down the field toward the

opponents’ goal to eventually score.

Outside of the general soccer playing behavior, behavior for game stoppages must be

also put in place for when the ball goes out of play or when a goal is scored and a kickoff

is required. These events are signaled from the GameController and are simply handled by

prescribing desired goal positions to wait for play to resume. For example, if a corner kick is

to be performed, the goalie will try to line up facing the appropriate corner on the goal box

line. Similarly, the striker will choose a position closer to the defending goal, but near the

corner to act as a first line of defense when play resumes. After which, the path planner and

game playing behavior will take over on continuation of play. A paper with the specifics of

the behavior tree is currently being produced.
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4.5 Neck Manager

A key subsection of the behavior tree to point out is the need to tackle where to face the

camera during the game of soccer. A naive approach would be to always either search for the

ball or if the ball is found, track the ball. This leads to a player whose head is mostly aimed

toward the floor. Since it is not guaranteed that suitable landmarks can be found near the

ball, the localization of the game state suffers greatly as landmarks are key to understanding

the state of the robot on the field.

In order to fix this, the robot was tasked to look up and scan the field at intervals in order

to capture the required landmark data before resuming tracking the ball. This allows the

localization algorithm to continuously maintain an accurate estimate while still satisfying

the need to locate the ball. The ball only becomes a priority when the robot needs to get

close in an effort to kick. At this point, the scanning behavior is disabled until the ball is

either deemed far enough away or is lost by vision.

4.6 Path Planning

After receiving both end goal states from the behavior tree and the current game state

from localziation, the path planner develops a path and velocity commands in order to avod

obstacles on the way to the desired state. To speed up computation, a multistep approach,

as shown in Figure 4.9, is used wherein a obstacle free, shortest path is first computed,

smoothed using an interpolation function, and finally passed through an MPC to develop

velocity commands.

Based on each of the opponent positions and the current robot state, a simple graph can

be constructed using the vertices of polygons around each obstacle as shown in Figure 4.10.

The objective is to find the shortest path that connects the start and end points using the

vertices of the polygons. Since graph search algorithms such as Dijkstra’s or A* are realtively
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Figure 4.9: Midlevel ensuring obstacle avoidance on the way to the goal

mature and efficient [69], this allows for an obstacle free path to be developed at a relatively

low computational cost.

After the segmented path has be found, it is interpolated using a continuous spline to

allow for smooth resampling. The resampled path is then fed into a collision free nonlinear

MPC that using a planar model [70] to ensure the developed path can be accurately tracked

using velocity commands. Constraints are placed in the MPC in order limit linear velocity,

turning speed, acceleration and to ensure that the robot remains in the field of play at all

times.

While many steps were taken to prevent collision with obstacles in the formulation of the

approach, due to delays and noise in the game state estimate, obstacles could actually be too

close for the MPC respond quickly enough given the acceleration limits. As a result a further
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Figure 4.10: Polygons are centered around each obstacle with the goal of finding a the

shortest path from start to finish by passing through the vertices

limiter is applied on the calculated velocities that limits the speed as inverse function relative

to the distance to the nearest obstacle in the field of view of the robot. This speed limit

varies, but is capped to a maximum of 0.2 m/s at the closest threshold in order to prevent

the robot from unintentionally careening into an opponent and incurring a foul. Additional

precautions then had to be taken in order to allow the robot to overtake an opponent by

altering the path and avoid being completely stranded by the speed limiter.

An example of the resulting path and velocity trajectories from the approach can be seen

in Figure 4.11. As can be seen, the path smoothly avoids all obstacles to reach the desired

goal. This path can be applied in multiple situations whether they be to move toward the

ball to kick, reposition to a more defensible position, or even take kickoff or corner kicks.

Further details can be found in a detailed path planner paper [71].
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Figure 4.11: Midlevel ensuring obstacle avoidance on the way to the goal

4.7 Results

Using the stack outlined, Team RoMeLa at Robocup 2024 was able to win first place with

a score of 45 goals over 6 matches without a single loss in competitive play. Artemis was

by far the fastest robot in terms of linear speed, reaching up to 1.2 m/s during competitive

play. Even when walking near opponents, Artemis was able to navigate safely to the ball

while incurring minimal penalties.

There were quite a few problems that were required to be adjusted on the fly during the

competition. To start, new training datasets had to adjust to harsh floodlights on the field

and to capture soccer balls that were previously unlisted as potential ball candidates. The

vision model, however, was robust enough to handle these new conditions with relatively few

changes. Meanwhile, the field was constructed using wooden plywood sheets supported by

wooden slats which caused a considerable amount of bounciness to the floor plane, especially

in the spaces between supports. While other robots struggled to walk correctly with these
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(a) (b)

(c) (d)

Figure 4.12: During the semi-final match, Artemis demonstrated an accurate long kick nearly

half the field length. The shot progression of (a) lining up for the shot, (b) executing the

kick, (c) ball travelling, and (d) a goal scored all happened in about 3 seconds

new floor conditions, Artemis was still able to maintain fast locomotion speeds across the

field. Finally, multiple fields were set up side by side which drastically increased the number

of incorrect landmarks being detected. For example, when looking towards the goal to score,

the robot could see not only the correct goal and field markings, but at least two other

goals and their entire field of landmarks. Due to the robustness considerations taken in the

localization algorithm, however, Artemis rarely was confused during the game of play and

managed to correcly position itself in the desired locations.

One of the major advantages was the strength of the kick which, as shown by Figure 4.12a-

4.12d, was able to consistenly score from long distances. Artemis recorded the longest kick

of the tournament from nearly the half field mark. This provided a considerable advantage

relative to other teams who were limited in kicking strength.

One of the more exciting moments during the competition occurred when the goalie
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was able to pass ahead from one end of the field to an open area on the other end for the

striker to successfully score a goal. This sequence happened relatively continuously and was

one of the goals that most similarly reflected realistic play in a game of soccer. While this

behavior wasn’t explicitly programmed in for the two robots to cooperate, it demonstrates

the potential capability to run in game set plays in order to take advantage of weaknesses in

the defensive coverage.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4.13: The two Artemis platforms on the field at the same time were able to perform

a coordinated attack by having the goalie pass ahead to an open area on the field and have

the striker pursue the ball for a goal. The play progression was (a) goalie passes the ball,

(b) ball is en route and the striker is headed toward the predicted direction, (c) (d) (e), the

striker sees the ball and plans a path to attack the goal, (f) the striker arrives and kicks the

ball, and (g) a goal is scored
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CHAPTER 5

Conclusion and Future Works

Humanoid locomotion and soccer behavior has advanced far past the days of old. With the

introduction of the work presented in this thesis, a more dynamic platform has acheived

competitive play at a level previously unseen. Many researchers from Robocup 2024 voiced

that this past year’s competition drew far more crowds and excitement than any of the

previous years. In large part, by increasing the speed of play from platform capability to

the execution time of the stack to make decisions, robot soccer has become far more alluring

for the innocent bystander. This, however, it just the start of what can truly be acheived at

this level.

Despite these advancements, robots are still a long way off from being able to compete

with humans on an even playing field. Toward the end of the Robocup 2024 competition, a

friendly match was played between a team of various robots and a team of the conference

organizers as shown in Figure ??. The robots still lacked the same level of locomotion speed,

ball handling dexterity, quickness of decision making, and prediction of events that were

more likely to happen next. As a result, the robots often seemed like they were lagging

behind what the human players were doing, always moving to spots of where the ball had

been as opposed to trying to meet the ball where it was going to end up. A large portion

of this has to do with the fact that ball prediction and future state of play has not been

implemented at the AdultSize humanoid level as of yet. Other leagues are have tried to

adopt strategies to do this [72], but it is still an area of development untouched at the full

humanoid size level.
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Figure 5.1: Toward the end of the competition, robots faced off against humans in a match.

The humans were still far ahead of the robots in terms of speed, dexterity, and decision

making

Arguably, the most exciting part of the past competitions has been the increased speed

of play whether due to faster locomotion, quicker reactions, or stronger kicks. All these areas

are ripe for improvements. On the side of locomotion, the work presented here, while stable

and fast, could be greatly improved through multiple methods. Firstly, gait modifications

to include more complex adjustments in timing would offer the most initial improvement.

Currently, with the fixed swing leg timings, the only way for the robot to stabilize is by

placing the feet in accordance to the LIP model. While this works, it constrains how much

disturbance rejection the robot can handle. Meanwhile, if a variable timing scheme were

implemented [73], the robot would be able to walk more stably at faster speeds.

Currently, the Artemis platform speed is limited due to kinematics. Since the robot

always tries to take off and land with feet parallel to the ground, this causes Artemis to hit

joint limits at the knee or at the hip depending on the height of the platform and the desired

stride length to reach a desired velocity. A sample of the robot nearing its kinematics during
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Figure 5.2: During longer strides, Artemis become kinematically limited. To reach faster

speeds, either shorter timings, non parallel foot landing sequences, or running must be

performed.

walking can be seen in Figure 5.2. A naive approach was to have the gait frequency be

faster to decrease the stride length for a given velocity. This, however, works up to a limit

as the natural pendulum of the system becomes disrupted. The body height can also be

lowered to give a larger kinematic workspace for the legs to operate, but is not a viable long

term solution as the body height affects all other areas of the stack. Consequently, attempts

should be made to either include constructing liftoff and touchdown trajectories that allow

for toe-heel transitions or to have a more stable form of running in which the robot no longer

has to maintain single support at all times. Through running, the support leg no longer has

to maintain an kinematically unfavorably positions.

Another area of improvement would to use the CoM in a more complex way than simply

following the LIP model. This would require a full rework of the CoM and footstep planners,

however, multiple approaches have proved successful on other robots. Divergent Component
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of Motion (DCM) has been a popularized method to control only the asymptotically unstable

portion of the dynamics [74]. Using the centroidal momentum matrix [75] has also been a

key aspect in humanoid control and could lead to some benefit particular when airborne [22].

Futhermore, using an Model Predictive Controller with particular attention to propagating

known forces and moments of limbs could help stabilize such a large disturbance that is due

to moving their own limb [76]. Even though including more complex models might reduce

the solve frequency, it could prove valuable in helping to produce more expressive behavior

that soccer requires.

On the autonomous soccer side of things, the advancement of gameplay should be focused

on increasing the speed of play. This can be done with the addition of more teamplay. This

year’s stack utilized a set play which involved both robots and coordinating a single pass

at kick off to gain an advantage. Most of the time though, both robots are confined to

their own portions of the field in order to prevent robots from interfering or even damaging a

teammate. This is the first step that should be take in order to have faster games. Teammate

recognition and prediction of where motion will occur is a must. This can be expanded even

further into an adversarial context in which prediction can then be used on opponent players.

This can help players make more informed long term decisions particularly when weighing

to go on the attack or to sit back and defend. More complex coordination behavior will be

possible once this is in place. Instead, on every kickoff, teams should ideally recognize when

there is only one opponent robot on the field or if there is an open goal with no opponents.

In either of those cases, it is beneficial to leave the goal and coordinate on the attack as the

likelihood far outweighs the risk that they cannot be beat back on the defense.

A stronger step in kick would make the largest gains in terms of gameplay. Right now, the

speed a robot moves almost solely determines the winrate of the robot. Faster robots almost

exclusively have an advantage because they are first to arrive and can pratically run circles

around opponents. This will only violated if a strong kick capable of scoring at any point on

the field is implemented. Then, the faster robots must weigh longer term decisions as even if
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they are first to move, they could be moving away from a critical defensive position. Thus,

a dynamic in step kick would make the most sense for improving the game. The control

strategy is something like what is listed above as an improvement and will most likley stem

from predicting the forces and moments imparting not only of limbs moving at high speeds,

but on predicting the contact forces relative to impact with the ball on kick. Because of the

small inertias at the extremities, the ball had a very large part in terms of walking stability

after a kick was made. To this end, an estimator of how much reaction force contact with

the ball makes will prove vital towards getting this idea off the ground.

Meanwhile, the proximity of slowing down to avoid collisions with other robots on the

field, while rudimentary worked very well. Unfortunately, there are still collisions particularly

with the arms and hands of other robost. An arm stuck between the legs of another robot will

constitute a foul against the robot with the legs. In order to avoid this, a collision avoidance

planner needs to take into account more than simply that the robot has a convex cylinder to

avoid, but further on a body postural command in order to avoid specific limbs of opponents.

This can be coupled with the more complex locomotion planning models mentioned before.

Another large improvement that might not be very hard to implement would be to either

decrease the time to boot during the competition or figure a way to have automated stand up

without the handler. By far, the most costly penalties throughout the competition was the

use of picking up the robot. On each time, the robot not only had to dragged off the field,

but required a 30 second penalty under which it was not allowed to enter. While one robot

down may be tough, both robots completely sidelined for 30 seconds is nearly disasterous.

To mitigate this, the boot sequence should be decreased as it currently takes about a full

minute from pick up to get an Artemis back on the field, inclusive of the 30 second penalty.

Meanwhile, if it can be avoided entirely by having the robot stand up on its own, that would

be the most optimal outcome.
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