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Modeling trial by trial and block feedback in perceptual learning

Jiajuan Liu1, Barbara Dosher1, and Zhong-Lin Lu2

1Department of Cognitive Sciences, University of California, Irvine, CA 92697 USA

2Department of Psychology, The Ohio State University, Columbus, OH 43210 USA

Abstract

Feedback has been shown to play a complex role in visual perceptual learning. It is necessary for

performance improvement in some conditions while not others. Different forms of feedback, such

as trial-by-trial feedback or block feedback, may both facilitate learning, but with different

mechanisms. False feedback can abolish learning. We account for all these results with the

Augmented Hebbian Reweight Model (AHRM). Specifically, three major factors in the model

advance performance improvement: the external trial-by-trial feedback when available, the self-

generated output as an internal feedback when no external feedback is available, and the adaptive

criterion control based on the block feedback. Through simulating a comprehensive feedback

study (Herzog & Fahle 1997, Vision Research, 37 (15), 2133–2141), we show that the model

predictions account for the pattern of learning in seven major feedback conditions. The AHRM

can fully explain the complex empirical results on the role of feedback in visual perceptual

learning.

Introduction

Perceptual learning – performance improvements through training or practice – has been

demonstrated in a wide range of perceptual tasks in the adult population (Fahle & Poggio,

2002; Lu & Dosher, 2012; Lu, Hua, Huang, Zhou & Dosher, 2011). One important factor in

perceptual learning is the availability of feedback. The availability of feedback on

performance accuracy can be consequential in determining how quickly or whether learning

occurs and in what task circumstances (Herzog & Fahle 1997; Petrov et al 2006; Liu, Lu &

Dosher, 2010, 2012). Understanding how perceptual learning is achieved in the adult

perceptual system may both reveal the nature of brain plasticity and suggest more effective

training paradigms for treating diseases such as amblyopia (Huang, Lu & Zhou, 2008; Levi

& Li, 2009; Polat, Sagi & Norcia, 1997). In this study, we considered the complex effect of

feedback in perceptual learning and simulated a comprehensive feedback study (Herzog &

Fahle, 1997) using the augmented Hebbian reweighting model (AHRM, Petrov, Dosher, &

Lu, 2005, 2006). In doing so, we aim to gain a more systematic understanding of the role of
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feedback in perceptual learning and shed light on how different feedback can be used to

promote perceptual learning in practice.

Feedback plays an interesting role in perceptual learning (see Dosher & Lu, 2009 for a

review). Two main types of feedback have been used in perceptual learning studies: trial-by-

trial feedback when a correct/incorrect signal was provided after each trial and block

feedback when only a single proportion correct was provided after a whole block (often

contains dozens of trials). Or, alternatively, feedback may not be provided in some tasks.

Although trial-by-trial feedback is used in most perceptual learning experiments and is

associated with performance improvement, significant perceptual learning has also been

observed using tasks without any external feedback (Ball & Sekuler, 1987; Crist, Kapadia,

Westheimer & Gilbert, 1997; Fahle & Edelman, 1993; Karni & Sagi, 1991; McKee &

Westheimer, 1978; Shiu & Pashler, 1992; Petrov, Dosher & Lu, 2006), with just block

feedback (Herzog & Fahle, 1997; Shiu & Pashler, 1992; Shibata, Yamagishi, Ishii &

Kawato, 2009), or with temporally coincident feedback from an unrelated task (Seitz &

Watanabe, 2003; Watanabe, Nanez & Sasaki, 2001; Watanabe, Nanez, Koyama, Mukai,

Liederman & Sasaki, 2002; Seitz, Nanez, Holloway, Tsushima & Watanabe, 2006). Two

studies found that, after achieving asymptotic performance through training without

feedback, the addition of external feedback had little effect (Herzog & Fahle, 1997; McKee

& Westheimer, 1978). On the other hand, in other cases it has been documented that

feedback improved the rate or extent of learning (Ball & Sekuler, 1987; Fahle & Edelman,

1993; Vallabha & McClelland, 2007), and was necessary for perceptual learning, especially

for difficult stimuli (Herzog & Fahle, 1997; Shiu & Pashler, 1992; Seitz et al., 2006).

Perceptual learning was found to be absent with false feedback, but performance rebound

occurred with subsequent correct feedback (Herzog & Fahle, 1997). Or performance may be

affected by details of misleading block feedback (Shibata, Yamagi, Ishii & Kawato, 2009).

We also documented that feedback is necessary for perceptual learning when the training

accuracy is low, and that its presence is not important when training accuracy is high (Liu,

Lu & Dosher, 2010). Furthermore, when trials of high and low training accuracy are mixed,

feedback is no longer necessary for the performance improvement in low training accuracy

trials (Liu, Lu & Dosher 2012).

The complex pattern of empirical results for feedback in perceptual learning creates a

challenge for models of learning and of feedback (Dosher & Lu, 2009). The ability to learn

perceptual tasks without feedback in some circumstances and the relevance of feedback in

others rules out both a pure supervised model (Hertz, Krogh & Palmer, 1991) and a pure

unsupervised model of learning (Polat & Sagi, 1994; Vaina, Sundareswaran & Harris, 1995,

Weiss; Edelman & Fahle, 1993), and inspired the development of a hybrid model – the

augmented Hebbian reweighting model (AHRM) of perceptual learning (Petrov et al 2005,

2006). In this model, when feedback is absent, it is similar to an unsupervised Hebbian

learning system; when feedback is present, the feedback acts as another input to the system,

and helps to shift weights in the correct direction. This model naturally predicts and explains

several results regarding the effect of trial-by-trial feedback in perceptual learning: if

present, the trial-by-trial feedback shifts the post-synaptic activation in the correct direction

and in turn fosters appropriate weight changes, hence its beneficial effect. On the other hand,

when there is no feedback but the task is relatively easy, the weights still move in the correct
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direction on average because the activation of the decision unit strongly correlates with the

correct stimulus classification. However, when the task is very difficult, such correlation is

weak, and so the update of the weights may be very slow or even erroneous and learning is

not manifest. In this paper, we examine the ability of this model to quantitatively predict

several variants of trial-by-trial feedback.

Even if the AHRM explains the effect of trial-by-trial feedback well, the effects of block

feedback on perceptual learning may still pose a challenge. Providing only a proportion

correct as feedback after a whole block, trial-by-trial feedback is no longer available; hence

the system learns as an unsupervised Hebbian system within a block. How a single

proportion correct input at the end of each block facilitates learning is worth further

investigation. Two studies provide insights related to this question. Firstly, in a study about

perceptual learning in a non-stationary learning environment in which the characteristics of

a misleading external noise background switched back and forth every several sessions,

Petrov et al. (2005, 2006) found a smaller response bias toward the orientation of the

background noise with feedback. Although discrimination improved at approximately the

same rate with and without feedback, the presence of feedback allows observers to achieve a

more balanced response profile and improves learning in a changing stimulus environment.

Secondly, Herzog & Fahle (1997) showed that when there is no feedback, the performance

of individual subjects is highly varied: some improved as much as subjects with trial-by-trial

feedback, some zigzagged and showed no overall learning, while others deteriorated

significantly. Feedback seems to reduce variation in the learning over subjects. Given these

results, we hypothesized that block feedback, though having no information about the

correctness of every single trial, may help reduce response bias and/or performance variance

and in turn enhance perceptual learning. In contrast, Herzog and Fahle (1998) have proposed

a model in which block feedback affects the rate of perceptual learning. Though we focus on

the bias correction mechanism of block feedback in this study, possible similarities and

differences between these two models are also discussed.

To test the potential role of response bias, and to develop and test the theoretical framework,

we used the AHRM to simulate all main results in Herzog and Fahle (1997), a

comprehensive study about the effect of different trial-by-trial (complete, partial,

uncorrelated and reversed) and block (true and manipulated) feedback in a two-alternative

forced choice vernier task. The goal is to see whether the AHRM accounts for the role of

feedback in perceptual learning with an internally consistent set of mechanisms and

parameters. We select the Herzog and Fahle (1997) paper because it is both representative

and inclusive of most results about feedback in the literature: In the Herzog and Fahle data,

significant performance improvement was shown with complete and partial trial-by-trial

feedback and block feedback, but not with other feedback conditions. The no feedback

group showed great variance in performance. By following the exact stimulus and training

procedure in their experiments, we were able to test the ability of the AHRM model

framework to account for all the main results in the study. We were also able to reproduce

the varied individual learning process in the group with no feedback. This new application

of the AHRM extended our previous studies of the model on various tasks of identifying

Gabor stimuli with different contrast and/or orientation, furthered our understanding of
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feedback and may point to new experimental directions concerning the mode of perceptual

learning.

Simulating the Effects of Feedback with the AHRM

The AHRM model for perceptual learning consists of a representation subsystem, or visual

front end, and a learning module that uses augmented Hebbian reweighting. It augments

learning by using feedback, when present, and information from a criterion-control unit as

inputs. Figure 1 shows a schematic diagram of the AHRM (Petrov, Dosher, & Lu, 2005).

Model simulations replicate the stimulus and test sequences of the target experiments in

generating the behavioral predictions of the AHRM model. First we briefly describe all the

subsystems of the AHRM along with the experimental stimuli and procedure in Herzog &

Fahle (1997). A detailed description of the model can be found in previous studies (Petrov et

al 2005, 2006; Lu et al 2010; Liu et al 2010, 2012). We provide a mathematical description

of the model in Appendix A. A related theoretical framework, the integrated reweighting

theory (IRT, Dosher, Jeter, Liu & Lu., 2013) extends the reweighting model to learning and

transfer over retinal locations.

Representation Subsystem

Herzog and Fahle (1997) reported a series of experiments using a vernier task in which

observers discriminated “left” and “right” displacement between an upper and lower line

segment (Figure 2). The model front-end computes the activation profile of the vernier

stimuli with different displacements. In the modeling study, the size of the displacement is

taken from the data reported for each experiment in Herzog and Fahle (1997), which is a

threshold obtained using PEST. Following prior observations of the similarity between

vernier and orientation judgments (Saarinen & Levi, 1995), the model makes the vernier

judgments based on activations of representational units tuned to different orientations. The

front-end uses activation channels that are spatial frequency and orientation selective,

spanning 5 spatial frequencies and 7 orientations. Each unit incorporates standard

normalization processing and stochastic internal noise in the response. This front-end is the

same as that used in prior AHRM simulations (Petrov et al., 2005, 2006; Liu et al., 2010,

2012; Lu et al., 2011). The representation system is summarized in the Appendix. The

activations in different orientation and frequency bands reflect the processing of the input

image through the respective filters; activations on different trials differ due to the

incorporation of internal noises.

In the Herzog and Fahle (1997) experiments, the appropriate displacement size for each

observer was determined by an adaptive procedure (PEST) in a pretest phase. Then in the

main experiment the vernier stimulus was rotated by 90 degree to avoid possible training

effects from this pre-testing. In simulation, we first selected model parameters to achieve the

initial performance level in Herzog and Fahle (1997), and then simulated only the training

part of the study. Simulations on both vertical and horizontal vernier stimuli are essentially

the same; we report the results from a vertical simulation.
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Decision Subsystem

The decision subsystem of the AHRM takes the weighted sum of activation outputs from the

representation subsystem on each trial, adding the bias term and the decision noise to

classify a specific stimulus:

(1)

The Appendix includes additional details about the decision subsystem.

Adaptive Criterion Subsystem

A top-down bias control system is also employed to balance the response frequency and

augment learning. The bias correction term (“b” in eq.1) is the recency-weighted aggregate

response bias (left as −1, right as +1) of the simulated observer. It is computed from a

history of approximately the last 50 trials with the early trials exponentially discounted, and

reflects deviations from the expected proportion of left and right responses in the sequence

of trial decisions. The bias correction term shifts the response criterion to counterbalance the

bias effect. For example, when b is negative, which means the observer has produced more

“left” responses, the decision unit is shifted upward by −wbb, a positive term which makes a

“right” response more likely. This is equivalent to shifting the criterion downward by the

same amount. Bias correction reduces future bias and stabilizes the system. The higher the

bias weight (wb), the stronger is the correction effect and the smaller the bias. Figure 3

shows this relationship for some standard model parameters. The appendix provides

additional details about the bias control system.

In the current implementation of the AHRM, we introduce a relationship between the

accuracy in the last block of trials—either provided in block feedback conditions or

estimated in trial feedback conditions—and the bias weight (wb in eq.1). If the block

feedback indicates high discrimination accuracy, then the system has more confidence in the

bias information and sets a high bias weight. If the block feedback indicates low accuracy

then there is less confidence in bias information and the system sets a low bias weight. With

high bias weights, the response frequency tends to be closer to a balanced “50-50” in these

experiments where left and right test instances are balanced. In the implementation of the

AHRM, the bias weight only changes after every block in the block feedback conditions.

We selected a linear relationship between the bias weight for the upcoming block and the

accuracy indicated by block feedback for the prior block. The minimum and maximum of

the bias weight is at 0 and 1 for performance accuracies (proportion correct or pc) between

chance at 0.50 and perfect performance at 1.0:

(2)

Slightly different monotonic functions relating the bias weight to performance accuracy

account for the empirical data similarly well. Performance accuracy and so block feedback

in the Herzog and Fahle data tend to range between 0.65 and 0.85, and so do not constrain
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the bottom or top of this function, so we cannot rule out a function relating wb to proportion

correct with a minimum above zero or a maximum less than one from these data. If

proportion correct is very near chance it is not clear that introducing high bias weight would

improve optimal weight discovery.

Augmented Hebbian Learning

Following the response of the decision system, the trial-by-trial feedback, if present, is sent

as a top-down input to the decision unit. It forms a late input together with the early input (u

in eq. 1) and drives learning. If there is no trial-by-trial feedback, only the early input u is

used to drive Hebbian learning. See the appendix for a description of the Hebbian learning

mechanism and the related equations.

Simulation methods

The AHRM was implemented in a MATLAB program. The program takes grayscale images

as inputs, produces binary (“left”/”right”) responses as outputs, and learns on a trial-by-trial

basis by adjusting weights on the activations in different representation units. Varying

parameters of the model fit the improvements in performance with simulated training with

different forms of feedback. Just as in the experiment, there are seven feedback conditions:

trial-by-trial feedback, block feedback, partial (50%) trial-by-trial feedback, no feedback,

manipulated feedback (where a fake block feedback of 65±3% is provided regardless of

observers’ actual performance), uncorrelated feedback (a random trial-by-trial feedback) and

reversed trial-by-trial feedback.

The Augmented Hebbian Reweighting Model (AHRM) of learning was fit to the behavioral

data in different feedback conditions reported in Herzog and Fahle (1997) using modified

grid search methods. The parameters that control the front end were set a-priori as in Petrov

et al. (2005, 2006), or were fixed based on model fits to experimental data in a number of

other applications (Dosher et al., 2013; Lu et al 2010; Liu et al 2010, 2012) (see the

Appendix for a discussion). Similarly, the initial weights before learning were set in

proportion to the preferred orientation of the units: wi = (θi/30)winit, reflecting general prior

knowledge about orientation given initial task instructions in the target experiments. Five

basic parameters were varied to optimize the fits of the model to the data: internal

multiplicative noise σm, internal additive decision noise σd, scaling factor a, the weight on

feedback wf, and learning rate η. Four of the five parameters—all but a —were constrained

to be equal in all seven learning conditions, although wf is operational only in the five trial-

by-trial feedback conditions. The seven scaling factors, a, one for each group, accommodate

small random differences in performance level for these randomly assigned groups. This led

to a total of 11 free parameters to fit all 55 data points in the model over 7 different

conditions.

The adjustment of parameters to best fit the model to the data was based on Least Squared

error:

(3)
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where  and  represent measured and model-generated proportion correct,

and Σ represents summation over all data points across all seven experimental conditions.

Optimization of the model fits were carried out in two stages: In the first step, the internal

noises and scaling factors were adjusted so that the model performance approximately

matched the initial performance levels of the groups of human observers in the beginning of

the experiment before learning. In the second step, we evaluate the differential effects of

learning under different feedback conditions by simulating the human experiment in the

model on a trial-by-trial basis. The weights from the stimulus representations to the task

decision unit changed dynamically throughout the learning phase, corresponding to learning

on each trial of the simulated experiment with the Hebbian mechanism. The output of the

decision unit and/or the external feedback was used to update the weights depending on the

specific feedback condition. The model performance was then compared to that of the

human observers using Least Squared error defined in Eq. 3. The two steps were repeated

until the model predictions were reasonably matched to the data using elaborated grid search

methods.

For every experimental condition, the model, just as the human observers, ran 7~8 blocks

with 80 trials/block. Each simulated experiment was repeated 1000 times. A bootstrap

procedure was used to generate confidence intervals on model performance. In each

bootstrap step, we sampled performance curves from the same number of simulations as the

number of real observers in the experiment to generate the average performance curve. This

was repeated 1000 times. Following standard bootstrap procedures, we computed the mean

and standard deviations of the proportion correct of the learning curves of the model from

the 1000 learning curves. Analysis of variance on model performance was also performed

based on the mean and standard deviations of the model curves.

Results

Herzog and Fahle’s study aimed to compare the rate of learning in seven feedback

conditions: trial-by-trial feedback, partial (50%) trial-by-trial feedback, no feedback, block

feedback, manipulated block feedback (always 65%±3%), uncorrelated feedback, and

reversed feedback. We simulate all these conditions, with the parameters summarized in

Table 1.

Critically, a single learning rate was used to model the learning curves in all different

feedback conditions, and the predicted differences between conditions entirely reflect

differential effectiveness of Hebbian learning and feedback in these conditions1. The

internal multiplicative noise, decision noise, and feedback weights are also constant in all

feedback conditions. The augmented Hebbian learning model (AHRM) makes

straightforward predictions for different variants of trial-by-trial feedback. Block feedback

effects, as described earlier, are implemented by incorporating different weights on the bias

term in learning. This weighted bias term reflects the observer’s sensitivity to changes in the

balance of the two responses in the trial history, a property of the AHRM that can lead to

1The initial performance level in a group of observers also may in some cases contribute to the level of learning, see Liu et al. (2010).
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improved performance. In order to model the effect of block feedback, we assume that the

higher the feedback-based proportion correct – whether this is accurate or not – the higher

the weight on the bias unit. The bias weight is updated after every block when block

feedback is provided. For consistency, we also updated the bias weight in trial-by-trial

feedback conditions, reflecting an approximate impression about performance from trial-by-

trial feedback. In practice, however, changes in the bias weight were relatively unimportant

in conditions with trial-by-trial feedback, and so the trial-by-trial fits can also default to

unchanging bias weights. Our previous fits of the model to data focused on conditions with

consistent trial-to-trial feedback, either on every trial (Liu, Lu, & Dosher, 2010, 2012), or on

errors only or no feedback (Petrov, Dosher, & Lu, 2005, 2006). This test extends results to

partial trial-by-trial feedback, and forms of block feedback. Also, this is the first time the

AHRM has been applied to vernier task learning for any feedback condition.

For purposes of discussion, we divided the seven conditions into three categories: trial-by-

trial “real” feedback, block feedback, and trial-by-trial “irrelevant” feedback. The first

category includes the first three conditions of the experiment: trial-by-trial, partial trial-by-

trial, and no feedback groups. In these groups, the trial-by-trial feedback, if present, is real

and correct. The second category includes the block feedback and manipulated block

feedback groups, in which only block feedback was provided. The third category includes

the uncorrelated feedback and reversed feedback groups, in which the trial-by-trial feedback

is totally irrelevant or wrong.

Trial-by-trial feedback, partial trial-by-trial feedback, and no feedback

In the experiment, when the trial-by-trial feedback is present, even only half of the time,

observers improved over blocks of practice. The data and the fits of the AHRM model to

these three conditions are shown in Figure 4. The model captures this pattern as shown by

the red lines and shaded areas. In the no feedback condition, on average the observers did

not show significant learning, and this again was consistent with the results simulated by the

model. The amount of performance improvement for both the experiment and model is

summarized in Table 2. The quality of the fits of the model to the data was excellent. The

scaling factors (a) in the model were used to adjust for apparent slight level differences

between the groups at the beginning of training; other model parameters set the level and

general speed of perceptual learning. Group differences in learning were solely a

consequence of the different feedback protocols. The findings of little learning in the

absence of feedback with about 70% correct staircases2 are generally consistent with prior

reports and the predictions of the Hebbian model that feedback (supervised learning) is

necessary for perceptual learning when training tracks lower accuracies (Liu, Lu, & Dosher,

2010). In that experiment, learning at 85% correct performance levels did not depend upon

the availability of feedback, while learning at 65% correct did. The no-feedback data of

Herzog and Fahle (1997) started with slightly higher initial performance than the feedback

conditions. A higher starting level would be expected to make learning more possible not

less possible; consistent with this, a simulation of the no-feedback condition with starting

2The slight uptrend and final downtrend in the model for no-feedback data were the result of variability in performance over time;
continuing training the model led to what are essentially stochastic fluctuations in performance.
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level equated to the trial-by-trial condition also generated no perceptible learning (2.6±1.8%

and 1.1±1.7% improvement for starting level of complete and partial trial-by-trial feedback

respectively; compare with AHRM values in Table 2). So the model predictions are

consistent with no perceptible learning in the no-feedback condition under a range of initial

levels. The AHRM predicts that learning should be possible even in the absence of feedback

if the initial performance level is high enough.

Block feedback and manipulated block feedback

In Herzog and Fahle (1997), when (accurate) block feedback was available, observers did

almost as well as when trial-by-trial feedback was available. On the other hand, misleading

or fake block feedback prevented learning when block feedback was set at 65±3%.

However, the AHRM with the same parameters predicts that if the misleading or fake block

feedback is set at 85±3%, learning can be reinstated at these higher levels. Herzog & Fahle

(1997) did not test this specific condition, but a related experiment by Shibata et al. (2009)

shows exactly such results (see discussion for more details). In this simulation, the AHRM

was extended to account for block feedback by introducing a relationship between the level

of block feedback and the weight placed on bias control; the higher the block feedback, the

higher the weight on the bias unit and hence the smaller the response bias. In turn, this

improves the opportunity to learn the correct weights. The AHRM model predictions and

data for these conditions are shown in Figure 5.

In contrast, Herzog and Fahle (1998) suggested that the increase or decrease in block

feedback from one block to the next directly alters the learning rate. In particular, the

learning rate for the next block is increased when the estimated accuracy of the previous

block times the magnitude of the internal decision signal was an improvement over the one

before and decreased if it is less than the one before. We carried out a supplementary model

fit that held bias weight constant and instead varied learning rate in the block feedback

condition. In the context of the AHRM, performance sensitive modification of learning rate

without altering the criterion control did not fit the data as well. Learning rate changes

underperformed the learning in the data (or in the AHRM model) (learning slope is

0.77±0.31; learning amount is 5.4±2.2%; compare to AHRM model values in Table 2). This

resulted in moderately large instability in learning rates from one block to the next, and

consequently increased the variability in the learning as well. And, in the context of trail-by-

trial feedback, the feedback dominated learning.

Uncorrelated feedback and reversed feedback

With totally random feedback, Herzog and Fahle’s observers did not improve significantly

over time. This is captured by the AHRM as well. For the condition with uncorrelated

feedback, the model predicts that the performance would approach chance level (50%). For

the condition with reversed feedback, the model predicts that the performance would

generally decrease toward 0% if given enough time. Herzog and Fahle (1997) report the data

from a single observer in the reversed feedback condition that has quite a bit of variability

from block to block and may not be very informative. The model predicts reduction in

performance from the reversed feedback. However, it may also be that observers recognize

that the feedback is not veridical and choose to ignore it. However, the current model
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implementation did not require an explicit discounting system but instead naturally

incorporates relative values of the internal response and the external feedback at the learning

stage. The internal response and the weighted feedback jointly determine the direction and

extent of response used during the learning phase based on their relative values; opposition

of the two reduces or may eliminate learning.

In Table 2, we summarize both the slope and net extent of performance improvements from

the model simulation, and compared them to those from the original experiment. Consistent

with Figures 4–6, the trial-by-trial, block and partial trial-by-trial feedback groups showed

significant learning while other groups did not. This is true in the experiment and in the

simulation. There is no significant difference between the experimental and simulation

results. In the groups with significant performance improvement (true and partial trial-by-

trial feedback, and block feedback), the model accounts for 88.2% variance of the

experimental results. In the groups with no significant improvement, the model generally

shows no learning effect (a flat line) and hence explains little variance of the behavioural

results (35.8%). In the absence of learning, the mean of a condition is the best prediction; the

model does slightly better as a result of the scaling factors a and may also capture small but

non-significant learning (the r2 is benchmarked to the global mean over different groups as

the predictor, which by definition would lead to 0% variance over the grand mean). The

learning slopes and learning amounts in the experiments are remarkably consistent with the

learning slopes and learning amounts generated by model-simulated learning.

Dynamics of learning: The change of weights

How was learning achieved through the AHRM? A look at the change of weights from the

representation units to the decision unit revealed possible dynamics of perceptual learning in

these conditions. Figure 7 shows how practice in the model alters the weights on different

orientation sensitive channels in the representation on average, while figure 8 shows the

weight change of a single trace of simulation as an example. Here only orientation channels

of one spatial frequency (1.41 c/d) are shown, since channels of other spatial frequencies

show a similar pattern. As seen in figure 7, most groups except the uncorrelated and

reversed feedback groups show a pattern of weight change in the same direction as the best

trial-by-trial feedback condition – the absolute values of the weights of the most relevant

channels increased over the process of training, which should support better discrimination

between “left” and “right” stimuli. This is puzzling because the proportion correct

performance did not follow the same pattern – only the first three groups, the trial-by-trial,

block and partial trial-by-trial feedback groups, improved vernier judgment accuracy. The

single trace weight dynamics (figure 8) shed light on why the accuracy predictions of the

model differ between these conditions.

Similar to figure 7, in the conditions with significant learning (top panels), the absolute

values of the weights for the most relevant channels (at ±15 deg) increased with practice,

while the weights on the irrelevant channels stayed about the same or decreased slightly. For

the “no feedback” and “manipulated feedback” group, however, although the weights on the

most relevant channels did differentiate to some degree, response bias developed and moved

the weights in one direction or another. Behaviorally, bias refers to a departure from
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balanced Left and Right responses over sets of trials; the correspondence to this in the

weight traces occurs when the weights become asymmetric in favor of either left or right (as

can be seen for example in the drifts of the turquoise line above or below the zero baseline).

For different traces of the simulation, developing bias could be either negative or positive or

negligible; or, sometimes bias changed direction in the middle of training. Even if the

weights on the most informative inputs improve, the aggregate variability and bias in the

remaining weights dominate the process and result in no performance improvements. The

traces of individual simulation learning histories may show significant learning, while others

show none, or even reductions in performance. However, the overall effect of bias and

variability from many trials can render the predicted learning insignificant.

To better understand the effects of bias on weight variability, we calculated the variability of

the weights in the training course, as shown in figure 9. We selected one representative

channel, orientation of 15° and spatial frequency of 1.4 cycle/deg, the closest channel to the

experimental stimulus, and calculated its standard deviation from all 1000 simulations in the

left panel, and the ratio between the standard deviation and the mean in the right panel. As

shown in figure 9, the no-feedback and manipulated feedback groups showed the biggest

standard deviation, i.e. some traces may improve but others may deteriorate; overall there

was no performance improvement. The block feedback has a slightly bigger standard

deviation than the trial-by-trial feedback groups, but it was not severe enough to prevent

learning. The scalloped structure in the no feedback and manipulated feedback groups,

reflects the fact that the bias from the criterion control unit is set at zero at the beginning of

each block (reflecting the absence of history within the training block, regardless of the bias

weight) and bias correction gradually increases during the block as evidence accumulates.

The partial and complete trial-by-trial feedback groups showed a small standard deviation of

the weights, representing a less variable performance in these groups. Improved weights in

the presence of small variability yields improved predicted performance accuracy.

For the uncorrelated feedback and reversed feedback groups, there are no systematic

improvements of the weights, and hence no learning. Specifically, for the uncorrelated

feedback group, weights generally move toward zero, since the feedback is not informative

at all, and hence there is no performance improvement. For the reversed feedback group,

weights may actually move in the direction that is opposite to the optimal weights, and

theoretically performance could be significantly damaged during training by inducing

observers to learn an opposite response. This did not happen in the experiment.

Discussion

In this study, we reviewed the effect of feedback in visual perceptual learning and simulated

a comprehensive feedback study (Herzog & Fahle, 1997) by extending the augmented

Hebbian reweighting model (AHRM) (Petrov et al., 2005, 2006) to account for the effects of

different forms of trial-by-trial feedback and the facilitatory effects of block feedback. We

successfully modelled all the results in Herzog & Fahle (1997): both true trial-by-trial and

block feedback facilitate learning; false trial-by-trial feedback (uncorrelated and reversed

feedback) abolishes learning; no feedback leads to highly variable performance with no

average learning; manipulated block feedback, when low (65 ± 3%), also rendered learning
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negligible. We also showed that if falsely high (85 ± 3%), a manipulated block feedback in

some circumstances may actually facilitate learning. This particular experiment was not

done in Herzog & Fahle (1997), but the prediction is consistent with results from another

study, Shibata et. al (2009), where exaggerated positive block feedback was shown to

benefit learning.

The positive effect of block feedback has been shown in multiple studies (Herzog & Fahle,

1997; Shiu & Pashler, 1992; Shibata et al, 2009). We simulated this effect by recognizing

that, in comparison with no feedback (which was shown to be far more biased than with

trial-by-trial feedback, Petrov et al., 2006), the response bias and/or performance variance is

smaller with block feedback (Herzog & Fahle, 1997). We predicted the experimental results

for block feedback in Herzog & Fahle (1997) by employing a straightforward relationship

between bias weight and the block feedback: the higher the block feedback, the bigger the

bias weight – hence the smaller the bias.

In a related study about block feedback in perceptual learning, Shibata et al (2009) showed

that false block feedback, if more positive than the actual performance, can facilitate

learning. They also found no effect of false feedback that was more negative than the actual

performance. Shibata et al (2009) developed a computational model in which a performance

gradient together with performance variance alters the learning rate. The AHRM simulation

treatment of the Shibata study, which uses a task with a different two-interval same-different

judgment rule, is considered in a separate development.

Herzog and Fahle (1998, 1999) proposed a model for perceptual learning in vernier

experiments based on task-dependent top-down reduction of the effective connections from

an input layer of a network that represents orientations. In this model, learning rate is altered

by trial feedback and block feedback. Properties of the Herzog and Fahle (1997) data were

cited as inspiration for the model. It is possible that an implemented form of the Herzog and

Fahle model could also provide a competitive quantitative fit to the broad set of feedback

data; however, they did not provide fits of the model to the Herzog and Fahle (1997) data.

Instead, response shifts resulting from asymmetric training of left and right vernier stimuli

were qualitatively predicted and experimentally confirmed in Herzog and Fahle (1998).

These asymmetric training effects were the topic of a series of experiment in Herzog and

Fahle (1999 in Herzog and Fahle (2006), with the same testing stimuli used in Aberg and

Herzog (2012). The asymmetric set included offsets of −15″, −10″, −5″, +10″, and +15″ (arc

s), tested with different probabilities and in some conditions the feedback for −5″ was

replaced on some or all trials with false feedback indicating a “right” stimulus. Quantitative

fitting of the data for the varied training schedules in Herzog and Fahle (1999) and Aberg

and Herzog (2012) by the AHRM would require a very extensive new modeling project.

Additionally, Herzog & Fahle (1999), report performance only for left offset conditions, and

effective model fitting would require more complete data sets. However, without

quantitative fitting, simulations of the currently implemented AHRM using the training

protocols in asymmetric exposure and feedback reversal conditions predict data patterns

(Figure 10) that are qualitatively akin to those shown in Herzog and Fahle (1999)—biased

training with false feedback on the smallest left offset leads to decreases in correct labelling
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of the negative offsets, essentially shifting responses to “right”. The model also appears to

be qualitatively consistent with the results in Aberg and Herzog (2012). In the AHRM, these

response shifts primarily reflect shifts (biases) in learned weights towards “right” and only

secondarily the operation of the bias control unit.

Aberg and Herzog (2012), who also used the asymmetric design, argued that block feedback

left the decision criterion across blocks unaltered in a line vernier task. In our model, block

feedback changes bias weight, and the decision criterion changes slightly on every trial by

the product of bias (recency-weighted aggregate response bias) and bias weight (eq. 1). Our

current results and those of Aberg and Herzog are not necessarily in contradiction. The

decision criterion is changed on each trial by the product of the bias and bias weight. When

bias weight increases, however, average bias in the AHRM model generally decreases (see

figure 3). Therefore, the magnitude of the effect on responses can be small and may not be

detectable. Also, bias may be negative or positive from trial to trial, with no accumulating

effect of criterion change in a specific direction absent an asymmetric or false feedback

design.

The current augmented Hebbian reweighting model (AHRM) naturally makes predictions

about different forms of trial-by-trial feedback in perceptual learning, as well as most effects

of random and false trial-by-trial feedback. It was extended to account for the effects of true

and manipulated block feedback by using adaptive criterion control that depends upon block

feedback or a sense of overall accuracy and its interactions with learning rate. The current

implementation of the AHRM accounted for a wide range of data patterns of feedback in

perceptual learning without the introduction of other more complex functions of feedback

discounting or of complex criterion control. Several reasonable complications seem intuitive

and might be required to account for learning and performance in other paradigms. For

example, it seems likely that observers could note the existence of false feedback when it is

applied to a range of easy stimuli—essentially noting that the internal response and the

feedback are either randomly related or negatively correlated. Feedback monitoring could be

incorporated in the model, and then used to lower or set to zero the weight on feedback in

learning if the observer decides that it is misleading. The current criterion control unit does

not use information from the feedback to weight the inputs in estimating the bias. If

feedback is reliable, it could be integrated to more heavily weight errors in the bias history.

There may be some circumstances in which separate criterion control tracking should apply

to distinct stimulus conditions. These more complex rules for augmentation of the Hebbian

learning via feedback or bias control might assist in predictions in some circumstances.

We conclude that the reweighting model and framework of the AHRM provide a successful

account of the impact of major variants of feedback and their effects on perceptual learning.
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Appendix

The Augmented Hebbian Reweighting Model (AHRM) simulates a multi-channel network

model that takes stimulus images as input, produces a task response, and updates weights

from stimulus information to decision reflecting learned improvement in task performance.

A Hebbian model of learning is augmented by inputs from feedback and from a criterion

control unit. Learning occurs through channel reweighting (Dosher & Lu, 1998, 1999;

Petrov et al., 2005, 2006). This Appendix provides a brief description of the model.

The representation subsystem applied in this paper consists of orientation- and frequency-

selective units. This system has previously been used for tasks based on discrimination of

the orientation of Gabor patches; here the same representations are used to discriminate

vernier lines based on their orientation evidence. The representation units compute the

activation value A(θ, f) of the stimulus image—the normalized spectral energy in each

channel.

Retinotopic phase-sensitive maps S(x, y, θ, f, ϕ) are computed for the input image I(x, y):

(4)

These units at location (x, y) are tuned to spatial frequency f, orientation θ, and spatial phase

ϕ. There were 5 spatial frequencies {1, 1.4, 2, 2.8, 4 c/d}, 7 orientations {0°, ±15°, ±30°,

±45°}, and four spatial phases {0°,90°,180°, 270°}. The bandwidth of spatial frequency

tuning and of orientation tuning were set at hf = 1 octaves and hθ = 30° (half-amplitude full-

bandwidth). These values were based on estimates cellular tuning bandwidths in primary

visual cortex and are the same ones used in other applications of the AHRM (Petrov et al.,

2005, 2006; Liu et al., 2010, 2012; Dosher, Jeter, Liu & Lu, 2013).
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The input image I(x, y) is convolved with each unit filter using fast Fourier transform,

followed by a half-squaring rectification operation, followed by spatial phase pooling and

then inhibitory normalization (Heeger, 1992), respectively:

(5)

and

(6)

The normalization pool Nf is weakly tuned for spatial frequency and independent of

orientation (see Petrov et al., 2005 for discussion). a is a scaling factor; k is a saturation

constant relevant for extremely small contrasts. Spatial phase is pooled in this application

where phase does not distinguish stimuli; but pooling could be omitted for phase-sensitive

tasks or stimuli. The Gaussian kernel of radius Wr determines the spatial pooling for the

region of the stimulus.

There are two internal noises. The internal noise term ε1 has mean 0, standard deviation σ1,

with a Gaussian distribution. Another internal noise ε2 of mean 0 and standard deviation σ2

introduces another source of stochastic variability:

(7)

An activation function with gain parameter γ range-limits the activation of the representation

units:

(8)

The activation pattern over the representation units is combined to yield a decision that

weights these inputs by wi, including a top-down bias factor b with weight

, and includes random decision noise εd (Gaussian with

mean 0 and standard deviation σd). The “early” activation of the decision unit o′ is a sigmoid

function of the weighted activations u with gain γ:

(9)

A negative o′ maps to one response (“left”), while a positive o′ maps to the other response

(“right”).
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The weight structure is learned through updating on every trial. When feedback is available,

the feedback pushes the decision unit to a late level o:

(10)

Learning occurs during this late phase. The late activation will go to its maximum (± Amax =

±1) with feedback (F = ±1) with high feedback weight, while lower feedback weight will

only slightly shift activation in the direction of the correct response. If feedback is not

present, learning operates without benefit of this shift towards a correct response (o = o′).

Except for very low accuracy conditions, the learned weights tend to move towards a more

optimum weight distribution because o′ tends to correlate with the correct response.

Learning occurs by updating the synaptic connection weights from sensory representation

units to the decision unit. The change in each weight, wi, depends on the learning rate, η, the

presynaptic activation A(θ, f), how far the post-synaptic activation is from its long-term

average, (o − ō), and how far the weights are from their saturation values, wmin or wmax.

Weights are learned as:

(11)

where

(12)

and the average of post-synaptic activation is

(13)

The Hebbian learning process is augmented not just by feedback (when it occurs), but also

by a criterion control unit that tracks deviations of the recent response frequencies from 50%

or the instructed presentation probabilities in the experiment. Top-down input b weighted by

wb is input to the decision unit. The bias on each trial is an exponentially weighted average

of the responses with a time constant of 50 trials (ρ = 0.02):

(14)

(15)

Here, R(t) is the response for the current trial (−1 for “Left” and +1 for “Right”), and r(t) is

the response running average which exponentially discounts past trials. Prior studies found

more pervasive response biases, and correspondingly lower weights on adaptive criterion

control, in the absence of feedback (Petrov et al., 2005, 2006). Bias control tracks responses,
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while feedback tracks external teaching signals. Bias control is more important to learning in

the absence of trial-by-trial external feedback (Petrov et al., 2006).
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We model the varied effects of different kinds of feedback on perceptual learning.

We extend an Hebbian reweighting model to consider different kinds of feedback.

The model fits seven conditions of feedback in the data of Herzog and Fahle 1997.

Block feedback is modeled through adaptive criterion setting.

The study provides an integrated account of a full range of feedback phenomena.
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Figure 1.
An illustration of the AHRM model framework. The model takes gray-scale image as the

input, encodes the stimulus as an activation pattern through representation units, calculates

weighted sum of the representation together with the bias control and makes a decision

about the stimulus. The feedback, if present, shifts the output of the decision unit for

learning (reweighting of the wi in the figure). This figure is modified from figure 4 of

Petrov, Dosher, & Lu (2006).
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Figure 2.
The line vernier stimuli used in Herzog & Fahle (1997).
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Figure 3.
The mean of absolute value of bias from the whole experiment as a function of the bias

weight. Since the bias can be either positive or negative, a direct mean may not indicate the

amplitude of bias correctly. An absolute value is taken for bias from each trial and then

averaged over all the trials. As the bias weight (wb) increases, the overall bias is reduced.
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Figure 4.
Data and model fits for the three trial-by-trial “real” feedback conditions. Just as shown in

Herzog & Fahle (1997), correct trial-by-trial feedback, even present only half of the time,

facilitated learning; while on average no significant performance improvement was shown in

the no-feedback group.
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Figure 5.
Model fits to the data in the block feedback conditions. Significant performance

improvement was present in the block feedback condition, but not in the pre-set low block

feedback (65±3%) group, just as shown in Herzog & Fahle (1997). The right panel shows

that the AHRM predicts significant learning with a hypothetical high block feedback

(85±3%).
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Figure 6.
Model fits in the uncorrelated feedback and reversed feedback conditions. The AHRM

predicts slow performance deterioration over time and is in agreement with no performance

improvement with the amount of training.
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Figure 7.
ARHM channel weights over the training period, averaged over 1000 simulations. Most

except the last two groups showed similar patterns: the absolute values of the weights of

most relevant channels increased over training.
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Figure 8.
ARHM channel weights over the training period from a single trace of simulation. For the

groups with performance improvements (top panels), the single-trace weights changed in the

same way as the averaged weights (Figure 7). For the no-feedback and manipulated

feedback groups, the weights changed somewhat irregularly and became biased.
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Figure 9.
The standard deviation of weights from the most relevant channel (15°, 1.4 c/deg). The no-

feedback and manipulated feedback groups have larger standard deviations than block

feedback groups, corresponding with variable performance. The partial and complete trial-

by-trial feedback groups had small standard deviations, representing a less variable

performance and improvement in accuracy with training. The uncorrelated and reversed

feedback groups had small standard deviation, but also had small amplitudes of the weights

(fig 7 and 8).
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Figure 10.
The simulated results of a veriner task with biased feedback (exp.2 from Herzog &

Fahle(1999); see fig. 7 & 8 in their paper). With the reversed feedback for the smallest “left”

offset, performance of all left offsets dropped (left panel) while performance of right offsets

increased (right panel). After the introduction of correct feedback (black line after 7th block),

performance of left offsets rebounded (left panel) while performance of right offsets

dropped (right panel). Simulation of other experiments in the study (exp1 through exp5)

show a similar pattern.
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Table 2

The summary of learning slope and amount from both experiment and model. The experimental results came

from Herzog & Fahle (1997). All numbers are regression-based.

Feedback condition Learning slope Learning amount

Experiment Model Experiment model

trial-by-trial* 2.13 ± 0.38 2.61 ± 0.31 14.7% 15.7 ± 1.8%

Block* 2.38 ± 0.4 1.74 ± 0.35 16.5% 12.2 ± 2.4%

Partial* 1.1 ± 0.32 0.88 ± 0.35 10.5% 6.2 ± 2.4%

no 0.23 ± 0.39 0.38 ± 0.54 2.9% 2.7 ± 3.8%

manipulated block −0.1 ± 0.22 0.36 ± 0.72 4.3% 2.5 ± 5.0%

uncorrelated 0.02 ± 0.82 −0.82 ± 0.43 2.8% −5.7 ± 3.0%

reversed Not reported −0.55 ± 0.86 Not reported −3.8 ± 6.0%
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