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1. ABSTRACT 

This thesis investigates the applications of non-parametric approaches for 

probabilistic demand forecasting in power distribution systems. This thesis 

develops two probabilistic short-term load forecasting models. We implement and 

evaluate two type of probabilistic forecasting methods namely: kernel density 

estimation and mixture density networks. In particular we are interested in the 

study of the features and (any) advantages of using machine learning approaches 

over the more traditional approaches in probabilistic demand forecasting.  

This thesis gives a short-term load forecast of the residential demand with respect 

to the outside temperature using the probabilistic forecasting methods. The factors 

impacting the performance and accuracy of the forecasts are evaluated. The 

historical data for energy consumption generally has multiple seasonality’s 

associated with it. For more accurate demand forecasting, it is critical to take into 

account the different seasonality’s in the data and the effect of exogenous 

variables (temperature) while developing different models. Both the models are 

trained separately for yearly and seasonal datasets to study the effect of 

seasonality on forecasting.  

Various tests are performed on the models to assess their statistical significance 

when compared to one another. The comparative assessment between Mixture 

Density Networks and Kernel Density Estimation also advances the knowledge of 

applying these techniques to STLF. The proposed approaches are compared with 
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other benchmark models like ARIMA (1,0,0) model and a neural network which are 

also trained separately for yearly and seasonal datasets.  
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2. INTRODUCTION 

The problem of electric demand forecasting, also known as load forecasting has 

long been of interest and investigation by power system operators and utilities. The 

forecast of the peak demand over various spatiotemporal resolution/ aggregative 

levels and forecast of demand variations over different horizons from diurnal to 

seasonal, are examples of the load forecast that has been in use for long in 

standard operation and planning of the grid.  

However, with the growth of renewable resources and a more diversified and 

complex environment for providing energy services the problem has now faced 

new dimensions and challenges.  The permanence constraints are tighter, and 

applications are wider, requiring specific set of features. The forecast approaches 

do not cover all the desired needs, rather the practice is to develop and use tailored 

forecast methods for different purposes.  

The short-term probabilistic forecast of the demand is a prime example of 

specialized approaches, where there is a growing need, interest, and applications 

in energy systems operations, particularly in the area of energy resource 

management.  In probabilistic load forecasting, more information on the future load 

is given, such as possible deviation of the forecast from the expected value, the 

confidence in a particular forecast. This is in contrast to the conventional point 

forecasting where a single value (scalar or vector) is predicted at each given 

instance of the forecast.  
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Although point forecasting has the advantage of simplicity, both in development 

and use, it ignores the additional information that could give a clear picture of the 

demand. In contrast, probabilistic load forecasting presents more information on 

volatility of the demand. With the increasing uncertainties from both of power 

supply and demand sides, probabilistic load forecasts, in the form of density 

functions, have attracted increased attentions, due to their ability to provide more 

comprehensive information about the future than what point forecasts can do. 

Recently due to uncertainties in load and generation, stochastic optimization 

algorithms have been used significantly for solving power system scheduling 

problem. 

The Probabilistic short-term forecasting of residential customers of course faces a 

great number of challenges as many factors are involved and impact the variability 

of demand. The demand is dependent on various external factors such as number 

of people present, different time of the day, temperature outside etc. If historical 

data is used, there are generally multiple seasonality’s attached to it. Nevertheless, 

it is common to consider and/or model only a few (dominant) factors in producing 

forecasts, e.g. based on measurement availability, and treat the impact of other 

contributing factors in the forecast error.   

In the probabilistic approaches for load forecasting, it is common to assume a 

particular parametric distribution on the available data to produce the forecast, 

however, such approaches will not only lead to more errors in a particular 
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application and removing part of the data information, but also are limited in validity 

and applicability. 

Accordingly, this thesis aims at study of the application and permanence of non-

parametric approaches for Short Term Load Forecasting problem   We implement 

and evaluate two types of probabilistic non-parametric models which will forecast 

the customer demand. The two models implemented in this study are: kernel 

density estimation and mixture density networks. These two models are separately 

implemented and tested by using yearly as well as seasonal data. This study is 

performed on the residential customer dataset.  
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3. LITERATURE REVIEW 

This section presents various forecasting approaches that have been used to 

forecast the electricity demand. This review focuses on basic understanding of the 

models and their applications.  

3.1. Classification of Load Forecasts 

In the context of load forecasting, one of the basic categorizations has been in 

terms of the horizon of application, i.e. Short-Term Load Forecasting (STLF), Mid-

Term Load Forecasting (MTLF) and Long-Term Load Forecasting (LTLF). Short 

term load forecasts generally include one hour to one week ahead forecasts. The 

mid-term load forecasts include around 3 years ahead forecasts whereas long-

term load forecasting includes around 10-20 years ahead forecasts. There is no 

single forecast that can cover all the desired needs of the user. A regular practice 

is to use different forecast methods for different purposes.  

The classification of the forecast approaches is also dependent upon climate and 

different human activities. Climate in general refers to various natural occurrences 

like rains, winds, temperature etc. If the prediction is for a short period, in STLF out 

of all the mentioned occurrences, temperature has the most impact on the 

consumption of power out of all the other factors and thus most of the research 

available uses temperature information to create models [1]. Since the temperature 

cannot be predicted in advance for long periods, other factors also play a 

significant role in MTLF and LTLF. 
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3.2 Point Forecasting 

The approaches in the current literature that are developed or applied in the 

context of STLF currently can be divided into point forecasting and probabilistic 

forecasting. Over the years, many techniques have been used in point forecasting 

like neural networks, ARIMA, SVR etc. In [2], authors perform a super short-term 

point forecasting using regression, neural network, ARMA and wavelet transform. 

Authors develop a new hybrid method to predict the solar output power which 

requires only historical solar power time series data. In [3], authors perform a 

univariate time series point load forecasting using four different methods: SVR, 

ARIMA, kNN and Random Forest. The authors conclude that the kNN and the 

Random forest algorithm outperforms the other algorithms.  

Neural networks are widely used in both point and probabilistic forecasting. Over 

the years there have been many techniques which have used neural networks or 

artificial intelligence for short term prediction. In [5], a short-term load forecasting 

has been performed using an artificial neural network. As the load profile of the 

customers is different for weekdays and weekends, the neural networks are trained 

separately for better performance. The forecast results obtained by the authors are 

then compared to the actual data. The authors concluded that separate analysis 

for weekdays and weekends gives a better prediction with less forecasting error. 

A Feed-forward neural network can also be used for forecasting. This approach is 

generally used when dealing with a nonlinear and multivariate problems in large 

datasets [6]. The paper showed that artificial neural networks (ANNs) require large 
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amounts of data, without which, training is inadequate and can result in large 

errors. Nonetheless, when large datasets are available, the implementation of ANN 

algorithms always outperforms linear regression and achieves a very high 

forecasting performance.  

A few analysts have showed quantitative case studies to look at and assess the 

different methods for STLF, bringing about empirical surveys.  The authors in [7], 

focus on Artificial Intelligence with Short Term Load Forecasting. It has a critical 

analysis and review of about 40 journal papers. On extensive comparison, the 

authors found that there is a possibility of overfitting in ANN models which is a 

result of overparameterization or overtraining. This is one of the most common 

problems when working with neural network. In [8] two techniques have been 

implemented for demand forecasting namely Artificial neural network and linear 

regression. These two techniques were evaluated, and it was found that the 

artificial neural network performs better than the linear regression. However, 

further in [9], a similar forecast and comparison was performed when artificial 

neural network is compared with bagged tree regression. Bagged tree regression 

is a type of regression designed to improve the stability and accuracy of the 

algorithms used. It was found that the bagged trees regression performs better 

than the artificial neural network.  

There are many different surveys which provide a summary for different 

forecasting techniques. Many other techniques like extrapolation, ARIMA, 

exponential smoothing, etc. can also be used for forecasting other than regression 
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and neural networks. Paper [10] lists and performs a survey on a wide range of 

techniques and concepts that could be used to model the system and perform 

demand predictions. It presents the different models used as well as future trends.  

A 2007 comparative analysis [11] shows a comparison between five different 

methods. These methods are: autoregressive integrated moving average (ARIMA) 

modeling, periodic AR modeling, an extension of Holt–Winters exponential 

smoothing for double seasonality, an alternative exponential smoothing 

formulation, and a principal component analysis (PCA). A 24-hour ahead 

forecasting is performed, and the five techniques are compared. The Holt-Winter 

exponential smoothing for double seasonality is found to perform the best. 

 The review papers discuss the various methods used in forecasting but in order 

to create a model it is required to know the dependence of our input data on 

external factors to establish a relationship. As discussed before, the weather plays 

an important role in estimating the total demand met to a greater degree of 

accuracy. In [12], the various factors that affect the accuracy of the forecasts were 

discussed in detail. These include weather data, time of the day, type of customer, 

economy of the country. The paper analyzed various statistical and AI techniques 

for short term load prediction. Another recent paper [13] also discusses the 

dependence of power data on weather data to perform short term load predictions 

using fuzzy logic.   
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3.3 Probabilistic Forecasting 

 Compared to point forecasting approaches there are less development and less 

abundance of studies on Probabilistic approaches for probabilistic load 

forecasting. In 2014, a research by Weron [14] offered a review of the electricity 

price forecasting which although is not demand forecasting but the research further 

helped in recognizing that there is very less amount of literature available on 

probabilistic forecasting. A comparison between point forecasting and probabilistic 

forecasting can be seen in [15]. This paper presents a comparative study on model 

selection for probabilistic load forecasting, using point and probabilistic error 

measures respectively. The authors of the paper concluded that the probabilistic 

forecasting performs better than the point forecasting by performing a pinball test. 

However, the results obtained only had a marginal difference between the point 

forecasting and probabilistic forecasting technique. Since the performance of point 

and probabilistic forecasting is almost the same, we can say this paper does not 

provide proper forecast using probabilistic approach.  

There are mainly two types of techniques used in forecasting which are parametric 

and non-parametric approaches. The parametric approach relies on the underlying 

data distribution whereas, no prior information about the data distribution is needed 

in the non-parametric approach. One of the prime examples in parametric 

forecasting is quantile regression. Quantile regression is a type of regression 

analysis used in statistics and econometrics. In [18], the authors propose a 

practical methodology to generate probabilistic load forecasts by performing 
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quantile regression averaging on a set of sister point forecasts. One advantage of 

quantile regression is that the quantile regression estimates are more robust. The 

authors then compared the proposed approach with several benchmark methods 

and concluded that the proposed approach leads to a dominantly better 

performances measured by the pinball loss function and the Winkler score. 

The probabilistic approaches generally employ a non-parametric approach as it 

does not require the prior knowledge of the data. In paper [16], a method using 

Gaussian process is designed for residential load forecasting. In this work, 

probabilistic and deterministic error metrics were evaluated, and several kernels 

were compared. The estimation of the kernel requires various bandwidth 

parameters which determine the smoothness and the width of the kernel. It is 

extremely important to select proper parameters, or the resulting PDF estimate 

may be incorrect. In [17], a probabilistic load forecasting algorithm considering 

contingency parameters is developed for the peak load forecasting. Using 

Anderson-Darling test toolbox in MATLAB and the historical data, the probabilistic 

distribution of the contingency parameters can be determined. The Monte-Carlo 

simulation is used to forecast the load scenarios based on the proposed algorithm. 

It was concluded that the developed algorithm can follow the real scenario with 

over 95% accuracy.  

In a paper [20], a novel approach is proposed, which applies linear quantile 

regression technique to approximate unknown cumulative distribution of random 

variables in the hierarchy without any distributional assumptions. The distribution 
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of all aggregates are computed by using the empirical copulas in order to 

produce probabilistic coherent forecasts. By combining quantile regression and 

empirical copulas, the joint distribution of random variables is estimated, which 

simplifies the prediction procedure and makes it less complicated than the 

existing methods. Although novel, the training time for this approach is 

considerably high and thus might be too long to be acceptable.  

Probabilistic load forecasting has gained widespread attention in recent years 

because it presents more uncertainty information about the future loads. In paper 

[22] a PLF method to leverage existing point load forecasts by modeling the 

conditional forecast residual is proposed. Specifically, the method firstly conducts 

point forecasting using the historical load data and related factors to obtain the 

point forecast. Then, this point forecast is used as an additional input feature to 

describe the conditional distribution of the residual on the point forecast. 

Conditional distribution helps to better understand the relationship between the 

power consumption by the users and the input feature. Finally, the point and the 

residual forecasts are integrated to produce the final forecast. This method 

significantly improves the accuracy of the forecast. Overall, it is evident that the 

probabilistic forecasting approach is a more powerful tool as compared with point 

forecasting. Also, in probabilistic forecasting, we prefer to use the non-parametric 

methods over the parametric methods because it requires no prior information 

about the data distribution. 
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 This thesis develops a forecasting model based on probabilistic non-parametric 

methods to predict the daily aggregate consumption of a class of customers by 

estimating the conditional probability at a given time and temperature. These 

above-mentioned methods in the literature face a series of challenges in 

forecasting as there is no proper profile for consumption of electricity by the users. 

As known, the electricity consumption largely depends upon external factors which 

includes outside temperature and time of the day. To perform the prediction, 

historical data is needed through which we can estimate the conditional probability 

of the output power (demand) with respect to a given temperature for a given time 

of the day.   

 The methods mentioned in this paper allows a PDF to be estimated by kernel 

density estimation method and mixture density networks from a dataset without 

making any assumption on population properties. It is possible to create an 

effective model from the survey data that shows the temperature dependence. This 

thesis describes how to develop such models and use them for demand 

estimation.  
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4. METHODOLOGY 

The conditional probability of the demand with temperature is estimated. Two 

models are created, implemented and compared. The first model is called kernel 

density estimation model and the second model is called a mixture density network 

model. These models provide the conditional probability of demand at any given 

temperature and time. 

4.1 Non-Parametric Kernel Estimation Model for Probability density 

estimation 

This method creates a model between the residential customer demand, 

temperature and the time of the day. It helps the estimation of the PDF without 

making any population property assumptions.  

There is a variation in demand at any given time. This demand is random and can 

vary from day to day. The variation in demand for a residential customer depends 

mainly on the weather factors (majorly temperature).  Thus, a bivariate PDF of 

demand and temperature can be used to describe the demand at a given time. In 

order to create a PDF, we make use of the method of Kernel Density Estimation. 

 4.1.1 Kernel Density Estimation 

Kernel density estimation is a fundamental data smoothing problem where 

inferences about the population are made, based on a finite data sample. This 

kernel density estimation is for univariate data as well as bivariate data.  

There are many different kernel density functions that can be used to estimate the 

PDF. Some of the kernel density functions include: uniform, triangular, triweight, 
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Epanechnikov, Gaussian etc. All these different kernel density functions have 

different tradeoffs such as the Epanechnikov kernel is optimal in a mean square 

error sense [32]. In this approach we use a gaussian kernel density function to 

estimate the PDF between temperature and demand.  

For each hour we estimate a gaussian kernel density PDF as in [3] using (1):  

 

f (p, T) =

∑ exp [(
𝑝 − 𝑝(𝑡)
2ℎ𝑝2(𝑡)

) − (
𝑇 − 𝑇(𝑡)
2ℎ𝑡2(𝑡)

)]
𝑛

𝑖=0
 

2𝜋𝑛ℎ𝑝ℎ𝑡
 

(1) 

where  

p(t) = power demand (from the data) 

T(t) = temperature (from the data) 

hp(t) = Smoothing parameter for demand data  

ht(t) = Smoothing parameter for temperature data 

n = number of days 

The Gaussian kernel density can be calculated as shown above. However, there 

is still a need to estimate the smoothing parameters for the data before we begin 

with estimation of the PDF.  
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4.1.2 Estimation of Smoothing Parameters (Bandwidth Selection) 

The bandwidth or the smoothing parameters of the kernel has a very strong 

influence on the estimate of the PDF. In practice one can say that if the smoothing 

parameters are larger, we get a general and a smooth shaped PDF estimate 

whereas if the parameters are smaller, we get a PDF which may not be as smooth 

as the previous case, but it reveals all the local properties. The selected 

parameters can be validated once the PDF curve is obtained through cross 

validation. The initial smoothing parameters can be found by using [3] in (2) and 

(3): 

 

ℎ𝑝(𝑡) =  𝜎(𝑡)(1 − 𝜌2(𝑡))
5

12⁄
(1 +

𝜌2(𝑡)

2
)

−1
6⁄

𝑛
−1

6⁄  

(2) 

 

ℎ𝑡(𝑡) =  𝜎(𝑡)(1 − 𝜌2(𝑡))
5

12⁄
(1 +

𝜌2(𝑡)

2
)

−1
6⁄

𝑛
−1

6⁄  

(3) 

where 

σp = standard deviation for demand at time t 

σt = standard deviation for temperature at time t 

ρ = correlation coefficient calculated at time t 

Once all the smoothing parameters are calculated, (1) can be used to estimate the 

gaussian kernel density function.  

Next, the limits for the demand are calculated. These limits are determined from 

the sample as shown below in (4) and (5): 

𝑝𝑚𝑖𝑛 = min{𝑝𝑚𝑖𝑛(𝑡), 𝑝𝑎𝑣𝑔(𝑡) − 3.5𝜎𝑡(𝑡)}                          (4) 
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𝑝𝑚𝑎𝑥 = min{𝑝𝑚𝑎𝑥(𝑡), 𝑝𝑎𝑣𝑔(𝑡) + 3.5𝜎𝑡(𝑡)}                         (5)                      

where  

pmin(t) = minimum demand at time t 

pmax(t) = maximum demand at time t 

pavg(t) = average demand at time t 

This method used in (4) and (5) calculates the limits based on standard deviation, 

assuming a normal distribution of the demand. 

4.1.3 Conditional Probability Estimator (Demand Estimation) 

Having the gaussian kernel density estimate of demand at any given temperature 

Tt, the conditional distribution is given as follows: 

 𝑓𝑡(𝑝 𝑇𝑡⁄ ) = 𝑐. 𝑓𝑡(𝑝, 𝑇𝑡) (6) 

where c is a constant calculated from the following condition 

 
∑ 𝑓𝑡(𝑝 𝑇𝑡⁄ ) = 1

𝑃𝑚𝑎𝑥

𝑃𝑚𝑖𝑛

 
(7) 

From the above given equations, we can calculate the conditional probability for 

any given time and temperature.  

Once the distribution of demand at a given time and temperature is available, the 

expected demand can be calculated as the expectation of the conditional 

probability which is given as in (8): 

 

𝑝̂ = 𝐸(𝑝 𝑇𝑡⁄ ) = ∫ 𝑝. 𝑓𝑡(𝑝 𝑇𝑡⁄ ). 𝑑𝑝

𝑃𝑚𝑎𝑥

𝑃𝑚𝑖𝑛

 

(8) 

where 𝑝̂ is the expected demand in kW. 
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4.2 Mixture Density Networks for Conditional Probability Estimation 

The Mixture Density Networks can be implemented using neural networks where 

a custom layer of neurons is trained to learn the conditional probability density 

functions. The probability density of the target data is then represented as a linear 

combination of kernel functions in the form: 

 
𝑓(𝑝 𝑡⁄ ) =  ∑ 𝛼𝑖

𝑚

𝑖=1

(𝑡)∅𝑖(𝑝 𝑡⁄ ) 
(9) 

 

where m = number of mixture components which is a user defined parameter 

p = target data/demand data 

t = input data/temperature data 

𝛼𝑖(x) = mixing coefficients 

And ∅(𝑝 𝑡⁄ ) is the conditional density of the target vector for the ith kernel. Gaussian 

kernel function has been used in this method to estimate the conditional probability 

which is obtained from (10): 

 

∅𝑖(𝑝 𝑡⁄ ) =
1

√(2𝜋)𝜎𝑖(𝑡)2
 𝑒𝑥𝑝 {−

||𝑝 − 𝜇𝑖||
2

2𝜎𝑖(𝑡)2
} 

(10) 

 

Where 𝜇𝑖 represents the center of the ith kernel.  

𝜎𝑖 is the variance of the ith kernel. 

For any given value of t, the mixture model provides a general formalism for 

modelling an arbitrary conditional density function 𝑝(𝑝 𝑡⁄ ). We now take the various 
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parameters of the mixture model, namely the mixing coefficients 𝛼𝑖(t), the means 

𝜇𝑖(t) and the variances 𝜎𝑖(t), to be general (continuous) functions of t. This is 

achieved by modelling them using the outputs of a conventional neural network 

which takes t as its input. The combined structure of a feed-forward network and 

a mixture model we refer to as a Mixture Density Network (MDN) is shown in figure 

1 below [10]. 

 

Figure 1: Example of Mixture Density Network whose outputs determine the 

distribution parameters in a mixture density model 
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In this approach we have a hidden layer of sigmoidal units and the output layer of 

linear units zj. The total number of network outputs are (c+2) *m instead of the 

usual c outputs. 

Now since 𝛼𝑖(x) represents the mixing coefficients (or the priori probability), it must 

satisfy the constraint: 

 
∑ 𝛼𝑖(t)

𝑚

𝑖=1

= 1 
(11) 

 

This is achieved by introducing the softmax function to the network outputs 

  
𝛼𝑖 =

exp(𝑧𝑖
𝛼)

∑ exp(𝑧𝑗
𝛼)𝑀

𝑗=1

 
(12) 

 

Where 𝑧𝑖
𝛼 is the corresponding network outputs. Since the variances are the scale 

parameters, they are represented as the exponentials of the corresponding 

network outputs.  

  𝜎𝑖 = exp(𝑧𝑖
𝜎) (13) 

 

The centers 𝜇𝑖 represent location parameters that are directly represented by the 

network outputs 

  𝜇𝑖 =  𝑧𝑖
µ
 (14) 
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The error function for the network is defined as the negative log likelihood function 

which is given as follows: 

 
𝐸𝑞 =  − log {∑ 𝛼𝑖

𝑚

𝑖=1

(𝑡𝑞)∅𝑖(𝑝𝑞 𝑡𝑞⁄ )} 
(15) 

 

is the contribution of error from each pattern q. The total error is given as  

                                  𝐸 =  ∑ 𝐸𝑞
                                                                                        (16) 

4.2.1 Training and Prediction 

From the input and the target data given, the goal is to predict the conditional 

probability of demand in kW at a given temperature and time. Thus, we need a 

total of 24 neural networks to predict the conditional density at any given hour 

based on temperature. 

A neural network model is created according to the above conditions (13), (14) and 

(15) for hour 1. The temperature is taken as the input data and the demand in kW 

as the target data. Further the variances are now represented using an Exponential 

Linear Unit (ELU) model with an offset. ELU being a monotonic function with an 

offset never allows the variances of the distribution to be negative. Thus, we end 

up with the following transformation. 

          𝜎𝑖 = ELU(𝑧𝑖
𝜎) + 1                                                                         (17) 

The neural network with 800 neurons, 2 layers and the 3 gaussian curves is then 

trained for 1000 epochs to predict the distribution parameters corresponding to the 
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target. These parameters are found to be optimal after many trial and errors 

methods by varying these parameters and training the neural network.  

Similarly, all the remaining neural networks (23) for all other hours of the day are 

created and trained in a similar way. Once all the networks are trained and ready 

the conditional probability can be predicted.  

The input data (temperature) is given as the input to the neural network. The neural 

network generates distribution parameters for the underlying gaussian curves. 

These parameters are then substituted in (7) and (8) to get the conditional density 

function. Since the maximum probability never exceeds one, the following 

condition must be satisfied.  

∫ 𝑓(𝑝 𝑡⁄ )
𝑃𝑚𝑎𝑥

𝑃𝑚𝑖𝑛
. 𝑑𝑝 = 1                                                                  (18) 

The expected demand can be easily calculated as shown: 

𝑝̂ = 𝐸(𝑝 𝑇𝑡⁄ ) = ∫ 𝑝. 𝑓𝑡(𝑝 𝑇𝑡⁄ ). 𝑑𝑝

𝑃𝑚𝑎𝑥

𝑃𝑚𝑖𝑛

                                                                    (19) 

where 𝑝̂ is the expected demand in kW. 
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5. VALIDATION 

5.1 Error Calculation 

The Relative Root Mean Square Error (RRMSE) is used to measure the error over 

the given data by comparing the estimated demand with actual demand. The 

RRMSE is calculated as shown below in (20): 

 

𝑅𝑅𝑀𝑆𝐸 =  √
∑ (𝑃(𝑡) − 𝑃̂(𝑡))

2
𝑁
𝑡=1

∑ 𝑃2(𝑡)𝑁
𝑡=1

 

(20) 

 

Where 𝑃(𝑡) is the actual demand and 𝑃̂(𝑡) is the predicted demand, t is time and 

N is the total number of hours. Further Mean Absolute Percentage Error was also 

calculated for the error evaluation. It is given as in (21): 

 

                                   𝑀𝐴𝑃𝐸 =  
1

𝑁 
 ∑ |

𝑃(𝑡)−𝑃̂(𝑡)

𝑃(𝑡)
|𝑁

𝑡=1                                               (21) 

The power has been predicted using both the methods mentioned above and the 

results are compared in the next section. 

5.2 Quantile Comparison 

For the comparison of error quantiles, a Q-Q plot of the errors from both the models 

is created. A Q-Q plot is a scatterplot created by plotting two sets of quantiles 

against each other. The steps to generate a Q-Q plot are straightforward. First, 

each data point needs to be given its own quantile. The set of intervals of the 

quantiles are chosen based on the data. Next, take a normal curve and add the 
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same interval of the quantiles that were chosen for the input data. Now, plot each 

of the point from first data set with respect to the point from normal curve in the 

given quantile range. Each y coordinate on this plot corresponds to one of the 

quantiles of the distribution plotted against the quantiles of the normal distribution. 

If both the sets are from the same distribution, we get a straight line for the Q-Q 

plot.  

5.3 Statistical Analysis Test 

The need for formal tests for comparing predictive accuracy is necessary but most 

methods have no considerations of the statistical significance. Such comparisons 

are incomplete. A statistical analysis of both the models is performed to determine 

which one of the models has a better performance. This test used in this analysis 

is called the Diebold- Mariano (DM) Test. 

The essence of the DM approach is to take forecast errors as primitives, 

intentionally, and to make assumptions directly on those forecast errors. First, the 

residual (or errors) for both the methods should be calculated. Next, a differential 

is defined as the difference between square of the residuals from first and second 

method. Once the value of the differential is calculated, the values of DM statistic 

are then calculated based on the errors of the model as shown in (19). The models 

are scored against one another and the model which obtains the highest score is 

considered to outperform the other model. However, only two models can be 

compared at one time using this test.  
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                                                      𝐷𝑀 =  
𝑑̅

√[γ+2 ∑ γℎ−1
𝑘=1 ] 

𝑛

                                              (22) 

Where 𝑑̅ is mean of the differential,  γ is the autocovariance of each element.  
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6. RESULTS 

6.1 Simulation Setup 

The research uses the dataset provided in GEFCOM12. The dataset consists of 

hourly observations of temperature in Fahrenheit and corresponding demand in 

Watts. 

For these models a full year of data has been used for training the model. In case 

of kernel density estimation this historical data has been used to estimate the joint 

PDF of demand and temperature at any given time. This estimate is later used to 

calculate the forecasted demand using probability.  

In case of mixture density networks, the temperature is given to the neural network 

as the input data and demand as the target data. The chosen neural network for 

the model has 800 neurons, 2 layers and 3 outputs for gaussian curves. 

It is known that the demand profile for the customer depends on outside 

temperature and time of the day. However, we can also see the effect of 

seasonality. For instance, in summer the collective use of air conditioning can 

contribute to the overall demand, whereas in winter it could be due to the use of 

heaters. It is easier to capture this trend if the models are trained by keeping 

seasonality in mind. The consumption profile of customers is expected to be similar 

from seasons to season. A different model is created using both the methods to 

account for seasonality. These models use two years of seasonal data to train the 

models in each case. 
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The testing for the forecasts is performed for the next subsequent year when the 

whole year is taken into account whereas seasonal testing is performed on 

subsequent seasons of the subsequent year. 

Reported Parameters for Joint Probability Kernel Density Estimation 

A joint PDF is estimated between demand and temperature for each hour of the 

day. A gaussian kernel density estimate can be found by using (1). In order to 

estimate the gaussian kernel density, smoothing parameters are also required. 

These parameters can be calculated from (2) and (3). The PDF is generated using 

gaussian kernel with parameters ℎ𝑝 = 1.49 and ℎ𝑡 = 7.7171 F. Figure 2 shows the 

implemented gaussian kernel for hour 24 using the reported parameters.  

 

Figure 2: Gaussian Kernel density estimation for hour 24 

6.2 Forecast 

Figure 3 shows the actual and the forecasted demand for a whole year using the 

kernel density estimation model and mixture density function. The training of the 

model is performed for the whole previous year.  
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Figure 4 shows the actual and the forecasted demand for the 

winter month of the year using the kernel density estimation model and mixture 

density networks. The training of the model is performed for the winter seasons of 

the previous two years. 

 

Figure 3: Actual v/s Forecasted Demand (500 hours shown) for a full year using 

Kernel density estimation and Mixture Density Networks 

 

Figure 4: Actual v/s Forecasted Demand (500 hours shown) for a full winter using 

Kernel density estimation and Mixture Density Networks. 
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6.3 Performance 

The estimation results were compared to the actual demands. Table 1 shows the 

RRMSE and MAPE values for both the models for yearly as well as seasonal 

training on data. The table compares the error values generated from the 

implemented model to the standard benchmark models in Matlab. A Neural 

network with 1000 neurons and ARIMA model (1,0,0) were implemented as a part 

of the benchmark. 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 1: Errors of Demand Estimation 

From (5) and (6), the conditional probability for any given time and temperature 

can be calculated. Figure 6 shows the conditional probability of power demand 

Model RRMSE MAPE 

Standard Neural 

Network (Yearly)  

0.6039 0.3614 

Standard ARIMA 

Model (Yearly) 

0.3010 0.2506 

Standard Neural 

Network 

(Seasonal) 

0.1883 0.1508 

Standard ARIMA 

Model 

(Seasonal) 

0.2226 0.1874 

Kernel density 

estimation 

(Yearly) 

0.1670 0.1355 

Mixture Density 

Network (Yearly) 

0.1549 0.1270 

Kernel density 

estimation 

(Seasonal) 

0.1456 0.1209 

Mixture Density 

Network 

(Seasonal) 

0.1444 0.1109 
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with temperature at a particular given time of the day (For e.g. 8 pm) using the 

kernel density estimation method. Figure 6 shows an example of conditional 

distribution of demand with temperature at a particular time of the day with the 

assumption of 3 gaussian curves using Mixture Density Networks. 

 

Figure 5: Example of demand distribution at given time 

 

Figure 6: Example of demand distribution a given time for 3 Gaussian curves 

using Mixture Density Network 
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6.4 Analysis 

After the forecasts and error matrix is generated, it is seen in Table 1 that both the 

models perform better than the benchmark models. It is also seen from the table 

that the Mixture Density Network model performs better than the kernel density 

estimation method. However, it is not yet completely possible to determine which 

model performs better than the other. So, we perform some extra tests that help 

us understand the statistical significance of both the models. The following plot 

shows the distribution of probability of errors from both the implemented methods. 

These errors are plotted over the percentage values according to the ascending 

order.  

 

Figure 7: A plot for Number of errors from each method 

Q-Q Plot 

This test is performed to visualize the nature of the error. The nature of error (or 

noise) ideally is normal in nature (white noise). So ideally, errors from both the 

models must belong to the normal distribution. Although errors both the models 

follow a normal distribution, it can be seen from Figure 8 and Figure 9 that the 
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errors from the MDN follow a closer normal distribution than the errors from KDE 

model. 

 

Figure 8: A Q-Q Plot of Errors from the KDE vs Normal Distribution 

 

 

Figure 9: A Q-Q Plot of Errors from the MDN vs Normal Distribution  
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Diebold-Mariano Test 

The above figures are still not enough to say that the mixture density network 

forecast is better than kernel density estimation forecast. The D-M test however 

gives the statistical analysis of the models as seen in the table below. On 

comparing both the models for yearly and seasonal dataset, we can see from the 

Mixture Density Network model outperforms the kernel density estimation model. 

 

 

 
 
 
 
 

TABLE 2: DM test Statistics 
 

 

  

Seasonal KDE MDN 

KDE * 0.98543 

MDN 0.014563 * 

Yearly KDE MDN 

KDE * 0.97362 

MDN 0.0264 * 
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7. CONCLUSION 

The goal of this thesis was to perform probabilistic demand forecasting using non-

parametric methods and compare them. The forecasting approaches implemented 

are based on the temperature dependence of the demand. While forecasting, 

temperature data is given as the input to the system to forecast the demand.  

The Non-parametric methods for probability estimation helps us in constructing 

models which have only temperature dependence. Since a non-parametric method 

is applied, there is no need for prior analysis of the data i.e., there is no need to 

make assumptions about the population. The kernel density estimation model and 

the mixture network density model were implemented under these methods. The 

Kernel Density Estimation method estimates the joint PDF between demand and 

temperature at any given time whereas the Mixture Density Networks estimates 

the distribution parameters for a Gaussian Kernel by using a neural network.  

We address several challenges in the implementation of the two models. We 

address the challenges of overfitting, range selection, training time, bandwidth 

selection, parameter selection for neural networks. 

 In kernel density estimation method, it is important to select proper range of inputs 

for power and temperature during the construction of the joint PDF. If we select a 

wide range of inputs, then our model may capture extra information for the joint 

PDF which is not desirable and if the input range is very narrow, there is a chance 

that the model does not capture the desired information for kernel density 

estimation. Another challenge in this method is the selection of bandwidth 
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parameters for kernel density estimation which determine the width of the 

estimated PDF.  

In Mixture density networks method, there is a challenge of overfitting of data. This 

can be avoided by choosing the proper parameters for the neural networks. If we 

have too many neurons and layers, it can result in overfitting whereas too less of 

it can cause underfitting. These parameters also affect the training time of the 

networks.  Since both the methods are data driven it ensure the portability of the 

methods.  

During training of the neural networks, it was found that there is a trade-off between 

number of neurons, hidden layers and the overall accuracy. Also, it can be seen 

from the results that there is an improvement in the model accuracy when the 

seasonality is considered over the yearly dataset. This is because when 

seasonality is considered it is possible to capture the minute variations. In future, 

we can also implement and compare the same models on weekdays and 

weekends customer profiles separately.  

Since there isn’t much work done on probabilistic demand forecasting using 

mixture density networks, this research provides a foundation for the same. The 

current dataset has hourly observations for temperature and demand, it would be 

interesting to see how the accuracy of the models change with change in dataset 

and time intervals.  
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9. APPENDIX 

9.1 MATLAB CODE FOR NONPARAMETRIC PROBABILITY DENSITY 

ESTIMATION 

 Read the temperature and the power data for the entire training duration. Let the 

data be of the univariate time-series form where for each temperature observation, 

a corresponding reading for power in kW is available. 

Once we have the data available, we use it to determine the smoothing parameters 

using the following function which takes power data, temperature data and the 

number of days as the input and produces the smoothing parameters for power 

and temperature as the output respectively. 

function [hp, ht]= smoothing_parameters(class, temp,days) 

i=1; 

i1=1; 

h=1; 

count=1; 

a=1; 

for count=1:24 

   gg=zeros(days,1);  

   ggg=zeros(days,1); 

   a=1; 

    for i=count:24:length(class) 

        gg(a) = temp(i,2); 
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        ggg(a) = class(i,2); 

        a=a+1; 

    end 

    cc = corr2(gg,ggg); 

    cc(isnan(cc))=0; 

    hp(count,1) = count; 

    ht(count,1) = count; 

    sdp = std(ggg); 

    sdt = std(gg); 

         

    hp(count,2) = (sdp)*((1-(cc^2))^(5/12))*(1+((cc^2)/2))*(days^(-1/6)); 

    ht(count,2) = (sdt)*((1-(cc^2))^(5/12))*(1+((cc^2)/2))*(days^(-1/6)); 

end  

for i=count:24:length(class) 

    gg(a) = temp(i,2); 

    ggg(a) = class(i,2); 

    a=a+1; 

end 

cc = corr2(gg,ggg); 

cc(isnan(cc))=0; 

hp(count,1) = count; 

ht(count,1) = count; 



 42 

sdp = std(ggg); 

sdt = std(gg); 

hp(count,2) = (sdp)*((1-(cc^2))^(5/12))*(1+((cc^2)/2))*(days^(-1/6)); 

ht(count,2) = (sdt)*((1-(cc^2))^(5/12))*(1+((cc^2)/2))*(days^(-1/6)); 

end 

 

Next, we use the parameters to generate a gaussian kernel using the following 

function 

function [f,x]=gaussiankernel3(class,hp,ht,temp) 

%Gaussian Kernel Density Estimation 

for j=4:27 

   gg(:,1) = class(1:end,j); 

   gg(:,2) = temp(1:end,j); 

   [f{j-3},x{j-3}] = ksdensity(gg,"Bandwidth",[hp(j-3,2) ht(j-3,2)]); 

  % figure 

   ksdensity(gg,"Bandwidth",[hp(j-3,2) ht(j-3,2)]); 

   title('Gaussian Kernel Estimation') 

   xlabel('Power Demand') 

   ylabel('Temperature') 

   zlabel('PDF') 

end 

end 
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The following function is used to generate the limits for demand 

function [max1,min1] = maxmin1(class) 

i1=1; 

h=1; 

count=1; 

a=1; 

for count=1:24 

for i=count:24:length(class) 

   ggg(a) = class(i,2); 

   a=a+1; 

end 

pmin = min(ggg); 

pavg = mean(ggg); 

pmax = max(ggg); 

sdp = std(ggg); 

min1(count,2) = min(pmin,(pavg-sdp)); 

max1(count,2) = max(pmax,(pavg+sdp)); 

min1(count,1) = count; 

max1(count,1) = count; 

end 
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This function takes inputs as the PDF function generated using the gaussian 

kernel and the limits for demand as the input and generates the constant for 

conditional probability  at different temperature matrix  as the output. 

function[const temp] = condtn(pout,xin,max1,min1) 

count =0; 

for i=1:30     

for j=1:24 

 

    minval = min1(j,2); 

    maxval = max1(j,2); 

    ans=abs((minval)-xin{j}(:,1)); 

    [mval index]   = min(ans); 

    [mxval indexm] = min(abs((maxval)-xin{j}(:,1))); 

    sm=0; 

    for k = index:30:indexm 

        sm = sm + pout{j}(k+count); 

    end 

    temp(j,i) = xin{j}(index+count,2); 

    condt(j,i) = sm; 

    end 

count = count+1; 

end 
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const = 1./condt; 

 

The following function generates the expected power demand model 

corresponding to the constant of conditional probability generated at different 

temperatures. 

function [np]=npw1(pout,xin,max1,min1,const1) 

for count = 1:30 

for k =1:24 

    minval = min1(k,2); 

    maxval = max1(k,2); 

    ans=abs((minval)-xin{k}(:,1)); 

    [mval index]   = min(ans); 

    [mxval indexm] = min(abs((maxval)-xin{k}(:,1))); 

b=count-1; 

j=1; 

for i=index:30:indexm 

    g(j) = pout{k}(i+b); 

    p(j) = xin{k}(i+b,1); 

    h(j) = xin{k}(i+b,1); 

    j=j+1; 

end 

p=p'; 



 46 

g=g'; 

h=h'; 

w=g.*const1(k,count); 

plot (h,w); 

tempval=p.*w; 

np(k,count) = sum(tempval); 

end 

end 

 

Once the model is generated, we can use it predict and calculate the performance 

on new test data. 

function [class_error] = cerror(class,temp1,temp2,np) 

for count=1:24 

tmpvar=0; 

j=0; 

b=count-1; 

 

for i=1:length(temp1) 

    if (i>24) 

        index = mod(i,24); 

    else  

        index = i; 
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    end 

    if (index==0) 

        index =24; 

    end 

    val = temp1(i,2); 

    ans1=abs((val)-temp2(index,:)); 

    [mxval indexm] = min(ans1); 

    tmpvar(i) = class_mean*np(index,indexm); 

    temperature(i) = temp2(index,indexm); 

    aa(i) = np(index,indexm); 

end 

%Calculate RMSE 

tot=0; 

tot1=0; 

for i=1:length(class) 

    a= isnan(tmpvar(i)); 

    if (a==0) 

    tt=(class(i,3)-tmpvar(i))^2; 

    dt=class(i,3)^2; 

    tot=tot+tt; 

    tot1=tot1+dt; 

    end 
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end 

class_error = tot/tot1; 

class_error = sqrt(class_error); 

 

9.2 CODE FOR PROBABILITY ESTIMATION USING MIXTURE DENSITY 

NETWORKS 

Let the data be of the univariate form where we have temperature observation for 

each hour for all days and a corresponding reading for power in kW is available. 

We need to generate 24 separate neural networks corresponding to each hour of 

the day. Implementation of one such network is shown below 

 

from __future__ import absolute_import, division, print_function 

import numpy as np 

import tensorflow as tf 

import tensorflow.keras as K 

from keras.models import Sequential 

from keras import utils as np_utils 

from tensorflow_probability import distributions as tfd 

from tensorflow.keras.layers import Input, Dense, Activation, Concatenate 

from tensorflow.keras.callbacks import EarlyStopping, TensorBoard, 

ReduceLROnPlateau 

from sklearn.linear_model import LinearRegression 
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from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import MinMaxScaler 

import xlrd 

import numpy as np 

 

##This function is the MDN function realization 

class MDN(tf.keras.Model): 

 

    def __init__(self, neurons=100, components = 2): 

        super(MDN, self).__init__(name="MDN") 

        self.neurons = neurons 

        self.components = components 

         

        self.h1 = Dense(neurons, activation="relu",               name="h1") 

        self.h2 = Dense(neurons, activation="relu", name="h2") 

         

        self.alphas = Dense(components, activation="softmax", name="alphas") 

        self.mus = Dense(components, name="mus") 

        self.sigmas = Dense(components, activation="nnelu", name="sigmas") 

        self.pvec = Concatenate(name="pvec") 

         

    def call(self, inputs): 
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        x = self.h1(inputs) 

        x = self.h2(x) 

         

        alpha_v = self.alphas(x) 

        mu_v = self.mus(x) 

        sigma_v = self.sigmas(x) 

         

        return self.pvec([alpha_v, mu_v, sigma_v]) 

def nnelu(input): 

    return tf.add(tf.constant(1, dtype=tf.float32), tf.nn.elu(input)) 

 

def gnll_loss(y, parameter_vector): 

    alpha, mu, sigma = slice_parameter_vectors(parameter_vector)      

    gm = tfd.MixtureSameFamily( 

        mixture_distribution=tfd.Categorical(probs=alpha), 

        components_distribution=tfd.Normal( 

            loc=mu,        

            scale=sigma)) 

     

    log_likelihood = gm.log_prob(tf.transpose(y)) 

     

    return -tf.reduce_mean(log_likelihood, axis=-1) 
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tf.keras.utils.get_custom_objects().update({'nnelu': Activation(nnelu)}) 

#Defining model parameters and training the data 

no_parameters = 3 

components = 2 

neurons = 300 

opt = tf.train.AdamOptimizer(1e-3) 

mdn1= MDN(neurons=neurons, components=components) 

mdn1.compile(loss=gnll_loss, optimizer=opt) 

x_train, x_test, y_train, y_test = train_test_split(x_data, y_data, test_size=0.1, 

random_state=42) 

x_train = np.array(x_train).reshape((-1, 1)) 

x_test = np.array(x_test).reshape((-1, 1)) 

 

history1=mdn1.fit(x=x_train, y=y_train, epochs=1000, validation_data=(x_test, 

y_test)) 

 

#To predict the new parameters for the test data 

y_pred = mdn1.predict(np.array(x_test)) 

Now these parameters are exported to MATLAB to estimate the conditional 

probability.  

 



 52 

for i=1:length(alpha) 

pmx=pmax(hr,1)/1000; 

pmn=pmin(hr,1)/1000; 

%pmx to pmn =1 

p = @(x,m,s) exp(-((x-m).^2)/(2*s.^2)) / (s*sqrt(2*pi)); 

c(i,1) = integral(@(x) p(x, mus(i,1), sigma(i,1)), pmn, pmx); 

c(i,2) = integral(@(x) p(x, mus(i,2), sigma(i,2)), pmn, pmx); 

  

%Prediction 

p1 = @(x,m,s) (x.*exp(-((x-m).^2)/(2*s.^2)) / (s*sqrt(2*pi))); 

c1(i,1) = integral(@(x) p1(x, mus(i,1), sigma(i,1)), pmn, pmx); 

c1(i,2) = integral(@(x) p1(x, mus(i,2), sigma(i,2)), pmn, pmx); 

  

pred_pwr(i,hr) = (alpha(i,1)*c1(i,1)) + (alpha(i,2)*c1(i,2)); 

end 

Error Calculation 

 

nm = tst_pwr-pred_pwr; 

nm = nm.^2; 

  

dn = data1_tst_NN.^2; 

nnerror = sum(nm(:))/sum(dn(:)); 

nnerror = sqrt(nnerror); 
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j=1; 

for i=1:365 

    for k=1:24 

        pp(j,1) = data1_tst_NN(i,k); 

        pp_pr(j,1) = pred_pwr(i,k); 

        j=j+1; 

    end 

end 




