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Abstract

Although increasing hidden layers can improve the ability of a neural network in modeling 

complex non-linear relationships, deep layers may result in degradation of accuracy due to 

the problem of vanishing gradient. Accuracy degradation limits the applications of deep neural 

networks to predict continuous variables with a small sample size and/or weak or little 

invariance to translations. Inspired by residual convolutional neural network in computer vision, 

we developed an encoder-decoder full residual deep network to robustly regress and predict 

complex spatiotemporal variables. We embedded full shortcuts from each encoding layer to its 

corresponding decoding layer in a systematic encoder-decoder architecture for efficient residual 

mapping and error signal propagation. We demonstrated, theoretically and experimentally, that 

the proposed network structure with full residual connections can successfully boost the back-

propagation of signals and improve learning outcomes. This novel method has been extensively 

evaluated and compared with four commonly-used methods (i.e., plain neural network, cascaded 

residual autoencoder, generalized additive model and XGBoost) across different testing cases for 
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continuous variable predictions. For model evaluation, we focused on spatiotemporal imputation 

of satellite aerosol optical depth with massive non-randomness missingness, and spatiotemporal 

estimation of atmospheric fine particulate matter ≤ 2.5 μm (PM2.5). Compared to the other 

approaches, our method achieved the state-of-the-art accuracy, had less bias in predicting extreme 

values, and generated more realistic spatial surfaces. This encoder-decoder full residual deep 

network can be an efficient and powerful tool in a variety of applications that involve complex 

non-linear relationships of continuous variables, varying sample sizes, and spatiotemporal data 

with weak or little invariance to translation.

Keywords

Deep learning; encoder-decoder full residual deep network; non-linear regression; spatiotemporal 
modeling; prediction of satellite AOD and PM2.5, bias

I. INTRODUCTION

DEEP learning has achieved great successes in various domains including bioinformatics, 

material science, reinforcement learning, computer vision, natural language processing and 

others [1] due to a series of breakthroughs in back-propagation [2], fast graphics processing 

units [3], activation functions such as rectified linear unit (ReLU) [4], convolutional neural 

network (CNN) [5], long short-term memory [6], generative adversarial network [7], and 

deep belief network [8] etc.

One crucial aspect of deep learning is network depth [9]. Deep networks have more 

trainable parameters (e.g., weights and bias) to capture complex relationships among 

variables and much better generalization than shallow ones [10]. The earlier obstacle of 

vanishing or exploding gradient caused by deep hidden layers has been mostly addressed by 

using efficient activation functions such as ReLU, normalization initialization and batch 

normalization, given sufficient training samples. Whereas activation and normalization 

partially solve the convergence issue in deep networks, too many hidden layers may 

quickly saturate or degrade accuracy, as shown in many experiments of CNN [10], [11] 

and multilayer perceptron (MLP). Further, deep neural networks usually need large training 

samples to find an optimal solution as small samples often result in non-convergence or 

degraded accuracy.

Residual connections have been used in CNN to boost learning efficiency and address the 

issue of accuracy degradation, with a wide range of applications including classification 

[12], segmentation [13], image super-resolution [14], [15] and compression [16], and crowd 

flows predictions [17] etc. Autoencoder and residual learning have been combined in two 

recent studies for imputation of missing modalities [18] and image restoration [19]. In these 

two studies, Tran et al. [18] developed cascaded residual autoencoders (CRA) with one 

hidden layer in each shallow autoencoder; Zini et al. [19] applied a residual dense block 

in the latent coding layer of an autoencoder. In the CRA, each autoenocoder’s input was 

the summation of the input and output of the previous autoencoder, and its desired output 

was the difference between the input (i.e. incomplete) data sample and the complete data 

sample, as the output of residual. Thus, each autoencoder was trained independently and 
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subsequently joint optimization was applied for the CRA [18]. This layer-by-layer residual 

learning in the CRA is different from the end-to-end learning used in Zini’s method in which 

residual units (Supplementary Fig. S1) were directly embedded in the deep neural networks 

[12], [18], [19].

CNN, a data-intensive learner, is powerful in handling data that are highly invariant to 

translation (e.g., scale, rotation, shift and position; mostly images or videos), but challenges 

exist for CNN to handle small samples and data with weak or little invariance to translation. 

One example of such data is satellite-based aerosol optical depth (AOD) [20], which has 

weak translation invariance in space as it is affected by multiple physical factors such 

as meteorology, emission sources and elevation, and the complex atmospheric chemical 

processes involving these factors [21]. Another example is the highly heterogeneous 

spatiotemporal distributions of environmental pollutants, which likely have weak translation 

invariance in space due to the influence of multiple physical and chemical factors, and 

their complex interplay. In addition, measurements of pollutant concentrations are generally 

small in sample size due to sparsely-located monitoring stations [22]. For the two examples 

above with weak translation invariance and/or a small sample size, CNN may be not able 

to account for the complex and likely non-linear influence of various physical parameters 

on the target variables (i.e. AOD and pollutant concentrations). Deep MLP, a class of 

feed-forward neural network consisting of an input layer, multiple hidden layers and an 

output layer, may be effective in modeling complex non-linear relationships due to the use of 

multiple layers, the non-linear activation, and the flexible network structure [23]. However, 

with increased hidden layers the MLP also faces the challenge of vanishing gradient and 

degradation of accuracy, particularly for a small sample size. Residual learning [11], which 

has been extensively used in CNN, can be applied in deep MLP to enhance learning, 

although few studies [18] have reported the use of residual learning in deep MLP.

In this paper, we present a new architecture of encoder-decoder full residual deep 

network as a robust solution of deep learning, particularly for applications in regression 

and spatiotemporal prediction of continuous variables. This method is broadly inspired 

by residual convolutional neural network in computer vision and recent findings in 

neuroscience on crucial shortcuts in animals’ brains [23]. We introduce full residual 

connections into the encoder-decoder architecture. Different from residual connections 

stacked continuously in ResNet [24], we take advantage of the symmetrical structure of 

encoding and decoding layers in the architecture, and leverage the shortcuts of identify 

mapping as residual connections from the encoding layers to their corresponding decoding 

layers. Different from the CRA with cascaded shallow autoencoders [18], our full residual 

connections are embedded end-to-end in a deep encoder-decoder structure for more efficient 

signal propagation and learning. Further, different from the use of residual blocks only 

in the latent layer [19], our residual shortcuts are fully connected from each encoding 

layer (including the input layer) to its corresponding decoding layer in a nested way. 

Thus, forward and backward error signals can be propagated directly and fully between 

the encoding and decoding layers. Additionally, we use non-linear ReLU or Exponential 

Linear Unit (ELU), and/or linear activation to ensure the optimal property of efficient 

backpropagation of errors within the full residual deep network. Our proposed architecture 

can be fully implemented in both CNN and MLP. In this paper, we mainly focus on residual 
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deep MLP and illustrate its applications in multiple case studies with either small samples 

or weak translation invariance in data. We test multiple datasets, focusing on imputation 

of massive non-random missing data in satellite AOD and prediction of atmospheric fine 

particulate matter ≤ 2.5 μm (PM2.5) at a high spatiotemporal resolution. The proposed full 

residual deep network has been extensively evaluated, and compared to commonly-used 

methods.

This paper has three main contributions to the literature: 1) we propose a novel full 

residual deep network embedded in the symmetrical encoder-decoder structure that can 

considerably boost the learning for regression and spatiotemporal estimation of continuous 

variables; 2) we show theoretically and experimentally that full residual connections in 

the proposed network structure can achieve more efficient error signal propagation, more 

efficient learning, and more accurate prediction than no or limited residual connections; 3) 

we demonstrate the state-of-the-art performance of the proposed method in spatiotemporal 

variable imputation and prediction, for data with both small and big sample sizes, and for 

data with weak or little invariance to translation.

II. RELATED WORK

A. Encoder-Decoder

Encoder-decoder is a type of neural network architecture with a possibly symmetrical 

structure (Fig. 1) from the encoding layers to the decoding layers with the input and output 

layers, and the middle layer of latent representation [10]. The motivation of this architecture 

is to efficiently learn feature representations (latent representation) from raw inputs using an 

encoder module and take this feature representation to generate an output using a decoder 

module. If the input and output are the same, this architecture degenerates to an autoencoder 

[25], [26]. Encoder-decoder, a general architecture of deep learning for automatic and 

efficient learning of representation, is used in U-Net [27], SegNet [28], Seq2Seq [29], and 

other applications [10].

Assuming a d-dimension input, x, an m-dimension output, y, weight matrix, W, bias vector, 

b the set of parameters, θw,b, the layer index, L, we have the following mapping formula:

θW, b(x):Rd Rm (1)

The parameters θw,b can be obtained by minimizing the loss function between the ground 

truth (y) and the predictions (y′) over the training data.

The U-shape encoder-decoder provides a symmetrical topology to implement the 

functionality to learn an efficient latent data representation. We can embed multiple 

hidden layers in encoding with sequentially decreased number of nodes to compress high 

dimensional data into powerful latent representations in the coding layer which, with less 

noise than original data, is beneficial for training and generalization [30].
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B. Residual Learning

Artificial neural network, inspired by the biological neural networks that constitutes animal 

brains [31], is crucial in deep learning. Recent findings show the importance of shortcuts 

in the brains for coordinated motor behavior and reward learning [23]. Such shortcuts 

collaborate with plain connections to accomplish complex functionality. Although the 

mechanism about shortcuts in brains is unclear, similar ideas of skip connections or 

shortcuts have been used in artificial neural network. Studies show that residual vectors are 

powerful shallow representation in image recognition [32]. Consequently, residual shortcuts 

in CNN have been proposed to tackle the issue of accuracy degradation in learning [12], 

[24].

In a typical residual CNN, each residual unit (Supplementary Fig. S1) includes two or three 

continuous convolutional layers with optional batch normalization and ReLU activation 

function, and a residual shortcut connection between the input of the first layer and the 

output of the last layer; all of the residual units are stacked continuously to increase the 

depth and the generalization of the model (Supplementary Fig. S2, based on [12]). In this 

residual CNN, the shortcut of identity mapping is employed in a continuously stacked 

sequence (similar to ensembles of relatively shallow networks [33]) to implement residual 

connections. Residual CNN has been extensively applied in many domains, including 

computer vision [14], [18], [19] or remote sensing [34] that typically involve intensive 

training samples with invariance to translations.

C. Spatiotemporal Modeling

Due to its capability of capturing neighborhood information in a spatiotemporal domain, 

CNN has been used for spatiotemporal modeling, e.g., action segmentation [35] and 

understanding [36] of video data. From 2017, residual learning has been introduced into 

CNN for spatiotemporal modeling, first for prediction of citywide crowd flows [17], 

then vehicle counting [37], [38], and prediction of influenza trends [39] etc. In these 

spatiotemporal CNN applications, residual units were used to improve learning efficiency. 

More recently, residual CNN has been combined with long short-term memory for passenger 

flows predictions [40].

Although residual CNN has been increasingly used in spatiotemporal modeling for 

powerful learning ability, such applications are data-driven and require minimal missing 

values in the input data. Since most air pollution data come from sparsely-distributed 

monitoring locations, CNN may not work well to predict pollutant concentrations at a 

high spatiotemporal resolution under the conditions of limited training data with a coarse 

spatiotemporal resolution or incomplete predictors with substantial missing data.

In this paper, we focus on two case applications, spatiotemporal imputation of massive 

missing values of satellite AOD and prediction of spatiotemporal PM2.5 at a high resolution. 

For AOD imputation, typical methods include spatial interpolation [41], [42], forward-

forward neural network (plain MLP) [43], image retrieval algorithms [44], [45], and 

non-linear generalized additive models (GAM) [46] etc. These methods achieved small 

validation R-squared (R2) ranging from 0.18 to 0.44 when comparing to the AErosol 
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RObotic NETwork (AERONET) AOD [47]. For spatiotemporal PM2.5 prediction at a high 

resolution, typical methods include geographically and temporally weighted regression [48], 

[49], mixed-effect model [50], [51], two-stage models [52], GAM [46], hybrid neural 

network [43], random forest [53], and XGBoost [54] etc. These methods achieved validation 

R2 ranging from 0.57 to 0.87. The previous models in the literature have various limitations, 

including inconvenience of use (e.g. two stage and hybrid models), loss of information 

using decision trees (e.g. random forest and XGBoost), and simple model structure that 

limits its capability of handling complex non-linear relationships among multiple variables 

(e.g. GAM). Plain MLP has been used in PM2.5 estimation recently, with only moderate 

performance [43], [55]. A full residual deep network is expected to better capture complex 

non-linear relationships between the spatially and/or spatiotemporal varying predictors and 

the target variables.

III. FULL RESIDUAL DEEP NETWORK

A. Encoder-Decoder Architecture

For the encoding layers of our architecture, every hidden layer has a different number 

of nodes, which can introduce variations in extracting informative latent representation 

potentially beneficial for effective learning. Based on the core of an encoder-decoder, 

residual connections are introduced through the construction of full skip connections or 

shortcuts to jump over the layers between the encoding layers and their corresponding 

decoding layers. This residual network, as a type of special neural network, can preserve the 

information in the input or earlier layers and reduce vanishing gradient and degradation of 

accuracy in deep networks [56]. A U-shape symmetrical encoder-decoder is a natural option 

for such a residual network given that a residual connection requests the same number of 

nodes for the two layers involved (a shallow layer and its corresponding deep layer). Fig. 

2 presents the architecture of a typical encoder-decoder full residual network that includes 

the layers of an input and an output, symmetrical k+1 encoding (1 input layer and k hidden 

layers) and k+1 decoding hidden layers, and a middle latent representation layer. We can add 

activation functions and batch normalization to each layer if necessary.

This architecture is applicable to both MLP and CNN. For MLP, the number of nodes for 

each layer, ni(i = 1, …, k + 1), is given to construct the encoding and the decoding layers, 

and subsequently implement residual connections. For CNN, encoding can be implemented 

using downsampling like a pooling layer to obtain the latent representation layer, and 

decoding can be implemented using upsampling to obtain the target output. Unlike U-Net 

[27] that uses feature concatenations to implement shortcuts in its U-shape encoder-decoder 

structure [57], we used vector additions to implement residual mapping of full shortcuts 

in our architecture. Thus, our architecture is a residual network with short and long 

shortcuts from the encoder to the decoder. Compared with feature concatenations in U-Net, 

vector additions of identity mapping do not increase the number of parameters and model 

complexity. The input of an encoding layer can be added to the output of its corresponding 

decoding layer to implement residual mapping. In this paper, we refined and applied a 

full residual deep MLP to spatiotemporal modeling of satellite AOD imputation and PM2.5 

prediction.
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For residual deep MLP, there are two options for t target variables of y to be output:

1) Output of Target Variables: The target variables can be treated as an independent 

output layer in the encoder-decoder architecture (option 1 in Fig. 2). We can define the total 

loss function, L as the following:

L θW, b = 1
N ℓO y, fθW, b(x) + Ω θW, b (2)

where ℓO y, fθW, b(x)  represents the loss function of mean square error (MSE) for regression 

or cross entropy for classification,y is the observed value, fW, b(x) is the predicted value, 

θW, b represents the network parameters, W and b are to be optimized, and Ω θW, b  denotes 

the regularization for θW, b (L1, L2 or elastic net [58]).

2) Output of Explanatory Variables and Target Variables: The input explanatory 

variables and the target variables can be used as the output layer (option 2 in Fig. 2). This 

option enables more sharing of the parameters among the explanatory and target variables, 

and more constraints on the target variables. The loss function can be defined as:

L θW, b = 1
N ℓO y, fθW, b(x)

+ℓMSE x, fθW, b(x) + Ω θW, b
(3)

where ℓMSE x, fθW,b(x)  denotes the MSE loss function for the output of the input, x.

Options 1 and 2 differ in the placement of the target variables within the network. 

Comparison of Eq. 2 and 3 shows one constraint on the parameters in terms of prediction 

of y in option 2. This constraint works as regularizers for y [10]. When sufficient samples 

are available, option 2 can effectively prevent over-fitting. When the sample size is limited, 

additional regularizers in option 2 may increase training errors, thus option 1 is preferred.

B. Residual Connections and Implementation

Skip connections or shortcuts have been added in neural networks to address the issues of 

vanishing or exploding gradients [11], [59] and degradation of accuracy in residual CNN 

[12], [24]. We use the shortcut connection of identity mapping from each encoding layer 

to its corresponding decoding layer to implement nested residual connections from the 

outermost layers to the innermost layers (Fig. 2). Depending on how activation and batch 

normalization are implemented after the outputs of the hidden layers, three options are 

available for the output of residual connection: none added, only activation added, both 

activation and batch normalization added (Supplementary Fig. S3).

Theoretically, we show below that residual connections can effectively improve information 

backpropagation in learning of the encoder-decoder full residual network. Assuming the 

middle latent layer, M, the decoding layer, l, and its mirror decoding layer, L, with addition 

of residual identity connection, we have:
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yL = xl + fL xL, WL (4)

where xl and yl are input and output of the encoding layer, l, respectively, xL and yL are 

input and output of the decoding layer, L, respectively, Wl is the parameters (including the 

bias) for the l layer, and fL xL, WL  is the sequence of the weighted summation of the L 

layer input, xL and activation.

Since L is a deeper layer for l with residual mapping between both layers, we can rewrite 

Eq. 4 as:

yL = xl + fL gL fl xl, Wl , WL (5)

where gL fl xl, Wl  denotes the multi-layer function for xL with xl as input, where 

xL = gL fl xl, Wl = fL − 1 …fl xl, Wl …, WL − 1 .

According to automatic differentiation [60], we can obtain the general derivative of the loss 

function, L for xl that is used to compute the gradients for the parameters, Wl − 1:

∂L
∂xl

= ∂L
∂fL′ yL

∂fL′ yL
∂yL

∂yL
∂xl

= ∂L
∂fL′ yL

∂fL′ yL
∂yL

1 + ∂
∂xl

fL gL fl xl, Wl , WL

(6)

where fL′ yL  is the possible activation function or batch normalization for the output of the 

L layer.

If we use the residual connection of option 1 in Supplementary Fig. S3-a (no activation and 

batch normalization after addition of the shortcut identity connection), we can get a simple 

version of Eq. 6:

∂L
∂xl

= ∂L
yL

⋅ 1 + ∂
∂xl

fL gL fl xl, Wl , WL (7)

There is one constant term, 1 in 
∂yL
∂xl

 of Eq. 6 and 7 that makes the information of ∂L
yL

directly propagated to the early layer, xl without addition of any weight layers. Further, 
∂

∂xl
fL gL fl xl, Wl , WL  is not always equal to −1 to cancel out the gradient, ∂L

∂xl
 for 

mini-batch learning. This property can reduce gradient vanishing during backpropagation 

and subsequent degradation of accuracy. Thus, such shortcut connections can improve the 

training of networks in collaboration with the plain connections in deep layers.

For option 2 and 3 in Supplementary Fig. S3, the activation function of ReLU, ELU or linear 

unit, and/or batch normalization can be added [fL′ yL  in Eq. 6] to better model non-linear 
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relationships and maintain the nice property of direct backpropagation of error signals from 

the deep layers to the early layers (aforementioned according to Eq. 6).

Based on the architecture, we adopt the nested shortcuts of identity mapping from the 

outermost layers to the innermost layers for residual learning (Fig. 2), which is different 

from the short shortcuts (commonly jumping over two or three layers) stacked continuously 

in residual CNN (ResNet) [12]. In the nested structure, in addition to plain backpropagation, 

error information is directly transferred in the outmost layers of shortcut connections (from 

the last layer to the first layer). Then, such backpropagation occurs from the second nested 

layers till the innermost layers. This nested structure has advantages over the residual CNN 

where error information is backpropagated along a longer path of multiple stacked residual 

units.

For the proposed network structure (Fig. 2), an inner residual connection may recursively 

affect the outer residual connections by backpropagation. To illustrate this, Fig. 3 shows two 

simplified cases with one residual connection vs. two connections surrounding the middle 

latent layer.

For the innermost residual connection (Fig. 2-b) from lk to Lk, we have:

yLk = fLk yM + xlk = fLk fM ylk + xlk
= fLk fM flk xlk + xlk

(8)

where M represents the middle latent layer, and fi (x) is a sequence of the weighted 

summation for the i layer’s input, x, and activation (e.g., ReLU). The weights and biases are 

omitted for simplified notations.

For the outer residual connection from lk − 1 to Lk − 1, we have:

yLk − 1 = fLk − 1 yLk + xlk − 1 (9)

For Fig. 3-b where the innermost residual connection is available, substituting Eq. 8 into Eq. 

9, we get:

yLk − 1 = fLk − 1 fLk fM flk xlk + xlk + xlk − 1 (10)

where xlk = flk − 1 xlk − 1 .

Then, we can get the derivative of the loss function, L for xlk − 1:

Li et al. Page 9

IEEE Trans Neural Netw Learn Syst. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



∂L
∂xlk − 1

= ∂L
∂yLk − 1

∂fLk − 1 xLk − 1
∂xLk − 1

∂xLk − 1
∂xk − 1

+ 1

= ∂L
∂yLk − 1

∂fLk − 1 xLk − 1
∂xLk − 1

∂fLk xLk
∂xlk − 1

+
∂flk − 1 xlk − 1

∂xlk − 1
+ 1

(11)

In Eq. 11, the term of ∂flk − 1 xlk − 1 / ∂xlk − 1 is the single-layer derivative of the lk − 1’s 

output for its input; intuitively, besides the constant term of 1, this term can complement 

the (vanishing) gradient for xlk − 1 since it has a shorter path than ∂fLk xLk / ∂xlk − 1. For 

mini-batch learning, ∂fLk xLk / ∂xlk − 1 does not always cancel out ∂flk − 1 xlk − 1 / ∂xlk − 1. 

Thus, for the outer residual connections, error backpropagation may be further improved 

by the inner residual connection if linear or semi-linear activation function (e.g., ReLU) is 

used. Each residual connection enables direct backpropagation of errors from its decoding 

layer to its encoding layer and can recursively enhance information backpropagation for the 

outer layers. Lack of shallow-to-deep layer residual connections can hinder backpropagation 

due to the presence of multiple layers between the shallow encoding layer and the deep 

decoding layer, potentially resulting in multiplication of small derivatives and vanishing 

gradient. Theoretically, our method has an optimal network structure with all residual 

connections from the encoding layers to the decoding counterparts, which allows for 

highly efficient information backpropagation. Compared to short residual units in ResNet 

[12], [24], residual shortcuts in our architecture can be long, jumping over more layers to 

implement identity mapping, which is theoretically shown above to improve efficiency of 

error back-propagation by directly informing the deep layers with low-level information 

from the early layers. In addition, an inner residual connection is theoretically shown 

to boost back-propagation in the outer residual connections recursively. To differentiate 

our proposed method from the other existing approaches, we name our method “encoder-

decoder full residual deep network”.

We developed an iterative version of the proposed full residual deep network (Algorithm 1) 

for option 3 in Supplementary Fig. S3. In this algorithm, BN denotes
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Algorithm 1:

Full Residual Regression Deep Network

batch normalization and ACT denotes activation function; a stack is used to store the early 

encoding layers and then pop them sequentially to construct the residual connections for 

the popped layers and their corresponding deep layers. We published this algorithm with 
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partial test data on the Github (https://github.com/lspatial/resautonet), and in the resautonet 

package of both Python (https://pypi.org/project/resautonet/) and R Statistics (https://cran.r-

project.org/web/packages/resautonet/).

In the proposed network (Algorithm 1 and Fig. 2), the basic building block consists 

of a shallow layer and its corresponding deep counterpart with activation and batch 

normalization. This building block with optimal choice of its components is crucial in 

our method. For activation, we choose the efficient activation function of ReLU or ELU 

for most layers except the output layer. ReLU and ELU have identity function and the 

constant derivative of 1 for x≥0. Thus, they can partially keep efficient backpropagation. 

For x≤0, ReLU is 0 but ELU has an exponential function (α(ex − 1)) with exponential 

derivatives. With similar property for the positive input as ReLU, ELU can well capture 

non-linear characteristics for negative input [61]. For the output layer, we choose tanh or 

linear activation function. The tanh function can better capture non-linearity than logistic 

activation with its symmetrical range around the mean of 0 [62]. Batch normalization can be 

added to each hidden layer to solve internal covariate shift [63] and to speed up the learning 

process.

C. Training and Predicting

Our network architecture is flexible and can accommodate different types of variables 

(e.g. lagged and non-lagged) to model complex associations in the general applications 

of spatiotemporal regression. The lagged variables have the advantage of capturing 

autocorrelation in spatiotemporal prediction [64]. Given different scales of the input (x) and 

the output (y) variables, normalization (e.g., standardization) is required for both. Network 

training (Fig. 4-a) aims to optimize the following objective function:

θW,b
opt = argmin

θW, b
L fθW, b(x), y (12)

where θW,b
opt  denotes an optimal solution for the network parameters, and the total loss 

function, L, is given in Eq. 2 or 3, depending on selection of the output option (Fig. 

2). We used Adam [65] as the optimizer. Sensitivity analysis was conducted to find an 

optimal structure (the number of encoding layers and the number of nodes for each layer). 

Grid search was conducted to obtain the optimal hyper-parameters including initial learning 

rate, mini-batch size and dropout rate etc. He normalization [66] was used to initialize the 

parameters.

After the optimal model is obtained, it can be used to make predictions (Fig. 4-b). The new 

input data for model predictions, once normalized, are fed to the trained model to generate 

outputs that are further inversely normalized to the original scale of the target variables. 

Although spatially and/or temporally lagged variables can be used to capture autocorrelation 

in spatiotemporal prediction, the use of these lagged variables requires continuous data in 

space and/or time, which is not feasible in model predictions where the target points of 

prediction are not uniformly distributed in space and/or time. This is the case for PM2.5 

prediction in environmental health studies since locations of interest (e.g. residential homes, 

work places) vary greatly in space. Similarly, lagged variables were not used in AOD 
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imputation due to the large percent and irregular missing AOD data in space and time. 

We used spatially varying variables such as coordinate and their derivatives to capture 

spatial correlation, and used multi-scale temporal variables (day of year and month index) to 

capture multi-scale temporal correlation. In addition, spatiotemporally varying meteorology 

variables were used to capture spatiotemporal variability of the target variable.

IV. EXPERIMENTS

A. Test Datasets

To evaluate the performance and generalization of the proposed method, we tested 

a simulated dataset with a small sample size and six benchmark datasets from the 

publicly available UCI repository of machine learning (three for classification and three 

for regression) (http://archive.ics.uci.edu/ml). Then, our approach was applied for 1) 

spatiotemporal imputation of massive non-random missingness of satellite AOD (over 50% 

missing values), and 2) spatiotemporal estimation of PM2.5. The main target variables for the 

two applications were daily Multiangle Implementation of Atmospheric Correction Aerosol 

Optical Depth (MAIAC) AOD in 2015 (365 days) and daily ground PM2.5 concentrations 

in 2015 for the Beijing-Tianjin-Tangshan metropolitan area, China (Supplementary Fig. S4), 

respectively. Independent tests were conducted using AERONET AOD and the measured 

PM2.5 from the US Embassy monitoring site in Beijing, as the ground truth.

Nine datasets from four case studies were used in model evaluation (Table I). For AOD 

imputation and PM2.5 prediction, we used stratified sampling to ensure even distribution of 

training and test samples across space and time. For each dataset, we drew 20% of data for 

independent test, 20% from the rest of 80% samples (16% in total) for validation, and the 

rest of 64% samples for model training. Please see Supplementary Section I for details about 

these datasets and tests.

B. Investigation on the Residual Connections in Training

We examined the influence of residual connections on model training by conducting 

benchmark comparisons between the full residual deep network and the deep plain network 

(i.e. a deep MLP without residual connections). Both networks were based on an encoder-

decoder structure for fair comparison. Our results (Supplementary Table SI) show that the 

full residual deep network consistently and in most cases considerably outperformed the 

deep plain network. More detailed results for the full residual deep network follow: (1) 

the simulated dataset: a 25% increase in R2 and 38% decrease in root mean square error 

(RMSE) in an independent test; (2) three classification dataset from the UCI repository: an 

increase of 1–4% in accuracy, and an increase of 0–3% in area under receiver operating 

characteristic curve, typically used in classification in the independent test; (3) three 

regression datasets from the UCI repository: an increase of 3–58% in R2 and a decrease 

of 0.04–7.98 in RMSE in the independent test; (4) MAIMC AOD: an average increase of 7% 

in R2 and an average decrease of 0.01 in RMSE in the independent test (Supplementary Fig. 

S5 showing distributions of R2 and RMSE of different models across 365 days of 2015); (5) 

PM2.5: an increase of 20% in R2 and a decrease of 14.46 μg/m3 in RMSE in the independent 

test (Fig. 5 for the scatter plots of the observed vs. predicted values).
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The training curves of the loss and performance metrics (R2 for regression; accuracy for 

classification) are shown in Supplementary Fig. S6. For MAIAC AOD, we present a typical 

day; the other days had similar trends. Overall, the full deep residual network performed 

better (lower loss and higher R2) than the deep plain network. Further, the residual deep 

network converged quickly, illustrating its high learning efficiency. For MAIAC AOD 

imputation, the non-residual plain networks did not converge in 28 out of 365 days, 

while the deep residual network converged on all 365 days. The scatter plots of the 

simulated vs. predicted values in the independent tests are presented for the simulated 

dataset (Supplementary Fig. S7) and PM2.5 estimation (Fig. 5), showing that the full residual 

deep network had less overestimation at low values and much less underestimation at high 

values than the non-residual plain network.

In addition, we investigated the influence of different residual connections (the number 

of residual connections and their placements in the network) on model performance 

through independence tests on the simulated data, AOD imputation and PM2.5 prediction. 

Specifically, we examined the number of residual connections ranging from zero to the 

maximum value (5 for the simulated data; 6 for AOD and PM2.5), and all the combinations 

(each combination called a scenario) of different placements of the residual connections 

in the network for each number of connections. The maximum number of connections 

was determined empirically depending on sample size and complexity of the problem. For 

the network with only one residual connection, Fig. 6 shows different placements (from 

the innermost connection to the outermost one) in the network. In order to reduce the 

uncertainty in initialization and local optimization, we trained the network of each scenario 

100 times and summarized the statistics (means and boxplots) of test performance metrics 

(R2 and RMSE) from the 100 trained models. The results (Table II) differed by the location 

of the single residual connection in the network. For AOD, only two days of results are 

shown here due to space limitation. The residual connection in the two mid-layers or 

the outermost layers seemed to perform better than that in the innermost layers. For the 

networks with more than one residual connection, the results showed possibly substantially 

differences in test R2 and RMSE between different placements for the same number of 

residual connections.

Further, the increase in the number of residual connections generally progressively improved 

the performance of the deep network (Table III; Fig. 7 for the boxplot of test RMSE, 

and Supplementary Fig. S8 for the boxplot of test R2). This improvement was pronounced 

for the simulated data and the PM2.5 data that had a small sample size. Fig. 8 shows the 

learning curves for different numbers (ranging from 0 to 6) of residual connections for 

PM2.5 prediction; the other datasets had similar patterns (results not shown). We observed 

better performance for the models with more residual connections, and the best performance 

for the full connection model. These results consistently support the use of full residual 

connections as the optimal model structure, which has been analyzed theoretically in Section 

III-B.

When the network scale (indicated by the number of hidden layers) increases, the full 

residual connections may likely improve model performance with less degradation of 
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accuracy than the deep plain network (Table IV), indicating the robustness of our model 

to the change in network scales.

C. Imputation of MAIAC AOD

We used the full residual deep network to impute massive missing values of daily MAIAC 

AOD for 2015 in the Beijing-Tianjin-Tangshan area.

Our method on average achieved R2 of 0.95 ranging from 0.71 to 0.99. Fig. 9 shows the 

grid surfaces of AOD before (a and c with massive missing values) and after (b and d 

with imputed values) imputation on two typical days: a warm day (05/13/2015) and a cool 

day (10/06/2015). The two days were selected because they had representative missingness 

(>50%) and reflect the AOD distributions in warm and cold seasons, respectively. Our 

results show that the full residual deep network reliably imputed missing AOD values with 

smooth variation in space and reasonable spatial patterns.

For the time series of imputed AOD data, we found excellent agreement between the 

imputed values and the ground truth AOD at two AERONET sites (Supplementary Fig. 

S4 for their locations and Fig. S9 for their scatter plots; Fig. 10 for the time series of the 

residuals between observed and predicted values): Pearson correlation of 0.93 with statistical 

significance (p−value<2.2e-16), R2 of 0.81–0.84, and RMSE of 0.20–0.21. The means of the 

residuals were close to 0 with no significant pattern in their time series plots, indicating that 

our method well captured temporal variability of AOD estimates.

D. Spatiotemporal Prediction of PM2.5

Our approach achieved the state-of-the-art accuracy for spatiotemoral estimation of PM2.5 

(for independent test, R2: 0.88; RMSE: 24.01 μg/m3) comparing to the results reported in 

the related literature [47]. Predicted daily PM2.5 surfaces (spatial resolution: 1 km) on two 

typical days, 05/13/2015 and 10/06/2015 (Fig. 11) showed different spatial and temporal 

patterns, with higher concentrations in the cool season than that in the warm season and 

higher concentrations in the eastern region in the warm season and in the inner middle 

region in the cool season.

Additional independent test showed excellent agreement between measured and modeled 

daily PM2.5 based on the monitoring data from the US embassy in Beijing (Fig. 12 

and Supplementary Fig. S10), with Pearson’s correlation of 0.99 (p −value<2.2e-16). 

The time series residual plot showed higher residuals in winter than those in the other 

seasons. Although spatial and temporal autocorrelations were not directly embedded in our 

model, Moran’s I [67] of the daily residuals of the measurements showed complete spatial 

randomness for 150 days (p −value>0.05) and partial randomness (small mean Moran’s I: 

0.09) for the rest of days, illustrating that the spatial autocorrelations were well captured. 

The use of spatially and/or temporally varying explanatory variables (coordinates, elevation, 

meteorology, and measured and imputed AOD) likely helped to capture the spatiotemporal 

autocorrelations.
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E. Method Comparisons

Besides the comparison of our method with non-residual plain network to show the 

contribution of full residual connections, we compared our method with three other methods, 

namely CRA, GAM and XGBoost. CRA is a neural network using cascaded residual 

shallow autoencoders [18]. GAM is a classical non-linear regression method, commonly 

used in AOD and PM2.5 estimation. XGBoost is a typical advanced machine learner with 

solid performance in many practical applications [68] including PM2.5 prediction [54]. Since 

XGBoost is an ensemble learner, we compared it to bootstrap aggregating (bagging) of 

the full residual deep network for a more fair evaluation. The proposed full residual deep 

network performed better than CRA (20 shallow autoencoders cascaded in this method) and 

GAM (Table V and Supplementary Fig. S11 for AOD imputation). The bagging version 

of the full residual deep network (100 base models used) performed similarly in R2 and 

RMSE as XGBoost. Although similar spatial distributions of PM2.5 were predicted by our 

full residual deep network (Fig. 11) and XGBoost (Fig. 13), the surfaces predicted by our 

method showed more smooth and realistic spatial patterns, while the surfaces predicted by 

XGBoost had abrupt and unrealistic changes at certain locations. The comparisons suggest 

the state-of-the-art performance of our proposed method.

V. DISCUSSION

A robust machine learning model for predicting spatiotemporal variables needs to capture 

complex non-linear relationships among spatially and/or temporally varying influential 

factors. For many real-world problems where CNN or deep plain MLP may not perform well 

(e.g. due to a limited sample size and/or weak translation invariance), with efficient nested 

residual connections across the encoder and the decoder, and latent representation extraction, 

our novel encoder-decoder full residual deep network can be well applied to model complex 

non-linear relationships even for data with a small sample size and/or with weak translation 

invariance. Through extensive model evaluation and comparisons, our method has been 

demonstrated to be efficient and robust in spatiotemporal modeling of continuous variables 

and can be applied to both small and large samples.

Although different from ResNet that commonly uses residual units, an encoder-decoder 

network with full residual connections has advantages over a network with no or limited 

residual connections because full residual connections across the encoder and the decoder 

can facilitate efficient information backpropagation between each shallow layer and its deep 

counterpart, as shown theoretically in this paper and supported by our test results on the 

number and placements of residual connections. We found that although activation functions 

such as ReLU and ELU usually work well for hidden layers, a linear activation function may 

work better for the output layer due to its high computing efficiency.

Our approach consistently achieved the state-of-the-art performance, with better 

performance than non-residual plain network in most cases (>80%). For AOD imputation 

and spatiotemporal PM2.5 estimation, the full residual deep network performed considerably 

better than non-residual plain network, CRA and GAM; its test R2 values were also better 

than those reported in many previous studies (for AOD: 0.80–0.86 vs. 0.18–0.44; for PM2.5: 

0.88 vs. 0.58–0.87). Particularly, our method had less bias in predicting extreme values 
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(both high and low ends) of the continuous target variables, which cannot be well predicted 

in typical regression models such as linear regression, GAM [69] or plain MLP. Although 

plain MLP was used in previous studies [43], [55] to achieve a competent performance, 

its performance was less desirable than our full residual deep network for spatiotemporal 

modeling of complex non-linear systems (e.g. AOD imputation and PM2.5 predictions), 

likely due to accuracy degradation in deep layers. CRA used cascaded shallow autoencoders; 

the lack of deep layers in its autoeoconder may limit its ability to model complex non-linear 

relationships. GAM usually needs the data to satisfy a presumed probability distribution, 

which limits its generalization. In addition, GAM relies solely on polynomial functions 

for parameters, which may limit sharing and interactions of the parameters and hence its 

prediction power.

The bagging version of our full residual deep network achieved similar test R2 and RMSE 

but generated smoother and more realistic spatial surfaces of PM2.5 than the ensemble-based 

XGBoost decision tree model. XGBoost discretizes continuous variables in its decision 

trees, which may result in information loss and abrupt or unrealistic changes in continuous 

variables such as PM2.5, especially in small samples. In contrast, our full residual deep 

network does not discretize data and keeps all the input information, thus the bagging 

version of this model can be more powerful than XGBoost for unbiased predictions of 

continuous variables.

VI. CONCLUSION

In this paper, we propose a full residual deep network nested in the encoder-

decoder symmetrical architecture. The full residual connections can compensate error 

backpropagation through the long path of deep layers, reduce degradation of accuracy, 

and improve learning efficiency. Different from the cascaded residual autoencoder, our 

approach directly and fully embeds residual connections from the shallow layers to the deep 

layers of the network in an end-to-end way. It can efficiently learn and achieve an optimal 

solution despite increased network complexity, as demonstrated in our testing results. The 

proposed full residual deep network can be an efficient and powerful tool in a variety of 

applications that involve complex non-linear relationships, varying sample sizes (particularly 

small samples), and spatiotemporal modeling of variables with weak or little invariance to 

translation due to non-linear processes and multiple influential factors.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
General encoder-decoder architecture.
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Fig. 2. 
Architecture of a typical encoder-decoder deep residual network for MLP and CNN.
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Fig. 3. 
One residual connection (a) vs. two residual connections (b) surrounding the latent layer.
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Fig. 4. 
Training and predicting.
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Fig. 5. 
Scatter plots with sample density coloring for the predicted vs. observed PM2.5
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Fig. 6. 
Networks with one residual connection at different placements.

Li et al. Page 29

IEEE Trans Neural Netw Learn Syst. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Statistical boxplots of test RMSE for the networks with different numbers of residual 

connections ((a) the simulated data; (b) MAIAC AOD of 05/13/2015; (c) MAIAC AOD of 

10/06/2015; (d) PM2.5).
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Fig. 8. 
Learning curves (a: validation R2; b: validation normalized mean squared error) for different 

numbers of residual connections for estimation of PM2.5.
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Fig. 9. 
The MAIAC AOD surfaces of the original incomplete data (a and c) and the complete data 

after imputation (b and d) for two typical days of 2015 in the study region.
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Fig. 10. 
Time series of the residuals of AOD at two AERONET monitoring stations in Chaoyang (a) 

and Haidian (b) of Beijing.
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Fig. 11. 
The PM2.5 surfaces in Beijing-Tianjin-Tangshan area predicted by the full residual deep 

network for two days of warm season (05/13/2015, a) and cool season (10/06/2015, b).
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Fig. 12. 
The 2015-day time series of the observed and predicted PM2.5 for the US embassy 

monitoring station.
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Fig. 13. 
The PM2.5 surfaces in Beijing-Tianjin-Tangshan area predicted by XGBoost for two typical 

days of warm season (05/13/2015, a) and cool season (10/06/2015, b).
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