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Automated Segmentation of Coronary Vessels in Angiographic Image Sequences
Utilizing Temporal, Spatial and Structural Constraints

James F. O’Brien and Norberto F. Ezquerra

The Graphics, Visualization & Usability Center
College of Computing

The Georgia Institute of Technology

E-Mail: obrienj@cc.gatech.edu norberto@cc.gatech.edu

ABSTRACT

The methods presented here have been developed to perform the automated segmentation of coronary arterial structure

from ciné sequences of biplanar x-ray angiograms. We introduce a methodology to impose an integrated set of constraints

based on knowledge concerning the anatomical structure of the vascular system, temporal changes in position due to

motion, and spatial coherence. Results are shown for data sets generated from both porcine and human studies.

1. INTRODUCTION

Radiographic imaging of coronary arterial structure plays a crucial role both in diagnosing and treating patients who are at risk

of heart disease5. In order to exploit the information generated by current clinical methods in coronary arteriography, it is nec-

essary for the physician to build a mental model of both the three dimensional (3D) arterial structure and of the non-rigid

motion that this structure undergoes as it moves with the beating heart. This mental model must be constructed from sequences

of two dimensional (2D) images obtained from the x-ray projection process (See Figure 1). The images shown in Figure 2 rep-

resent a single pair of images from a typical sequence of sixteen pairs. The image data acquired is noisy and often very difficult

to interpret, adding to the relative difficulty of the physician’s decision-making task.

To facilitate this type of clinical decision-making process, much research has been done in the area of applying various compu-

tational algorithms for the purpose of generating a structural representation that is better suited for understanding and visual-

ization by the physician. The primary focus of these algorithms has been to detect salient image features and then complete a

segmentation of the angiographic 2D image. The segmented images can then be used to build and label a 3D model of the vas-

cular system that can be interactively studied by the physician as it undergoes the motion associated with the beating heart’s

cycle9,1,4,10,11,8,2,14.



Our approach attempts to make use of more information than that provided in a single image by considering the sequence of

images as a set of discrete samples taken from an idealized continuous volume. (See Figure 3.) The result is a system that

combines information contained in:

R Each individual image in a sequence,

R The temporal sequences as a spatiotemporal volume of information,

R A priori knowledge about the vascular structure, its dynamics, and

R A priori knowledge of the imaging technique and of the geometry of the environment.

2. DATA CHARACTERISTICS

The input to the segmentation system consists of two series of standard greyscale images (scale 0-255, 0 maps to black) taken

from two different views. The two views are not taken simultaneously, but are interleaved with a separation time interval of

1/30th of a second. These two sequences can then be viewed as a discrete approximation of the continuous spatiotemporal

motion of the arterial system as projected into two separate viewing planes. The details of the clinical protocols, imaging
devices and preprocessing methods used to produce these

images are described in11,12. The subsequent discussions are

intended to underscore the salient characteristics of the

acquired data in the context of the segmentation process.

In order to minimize ambiguity, it is useful to create a math-

ematical model of the input data in the following fashion.

Each image is a matrix of dimensions w � h, where w is the

width of the image and h is the height. The pixel in the lower

left corner of an image is designated as I0,0 where I is some

image.

There are two views, left (L) and right (R), which consist of

the two distinct sequences of images through time, or ciné

sequences, given by L0,L1,..,Ln and R0,R1,..,Rn-1.* The first

image in the sequence, L, is then referenced by L0 and the

*. Due to the interleave of the image acquisition process, there is
one more left view than right view.

Figure 1. Biplanar Angiographic Projection. X-Ray emit-
ters send out interleaved pulses of x-ray radiation. These
rays are partially absorbed by dense tissues in the subject
and by radio-opaque dye which has been previously
injected into the patient’s coronary arteries. The intensifi-
ers can be positioned to yield different projected views of
the arterial structure.

Emitters

Patient

Image Intensifier

View One View Two



lower left pixel of the first image in the sequence L is L0,0,0 , and in general Lt,x,y. Using this description, each ciné sequence is

a volume referenced by the coordinate frame  as shown in Figure 3.

3. METHODS

The process that performs the segmentation and extraction consists of a series of steps, each of which handles some specific

subtask. Figure 4 provides an illustration of this process, which is subsequently explained.

3.1 Initial preprocessing

The input images may have a high noise content which could cause errors during the segmentation process. To remove this

type of noise, a low pass filter can be applied to the images as a preprocessing step. Because it is possible that this type of fil-

tering may itself introduce errors, the original images are kept available and are used again during the final steps in the seg-

mentation process.

Previous research7,11,12 has suggested several types of possible prefiltering. Among these are histogram equalization, thresh-

olding and various edge enhancements. While we include prefiltering as a valid operation in Figure 4, the results reported here

were obtained without prefiltering so that the results of the algorithms presented may be emphasized.

t̂ x̂ ŷ, ,( )

Figure 2. An angiogram pair showing a projection of the left coronary artery obtained from a study on a
human subject. Figure 2.a shows the LAO view while figure 2.b show the RAO view.

Figure 2.a Figure 2.b



3.2 Region growth and initial segmentation

Although the human eye can quickly locate the larger parts of the vessels in the input image, this task is not trivially imple-

mented within the context of a computational model. There are several areas of the image background that, when locally

viewed, are not readily distinguishable from vessel segments. For instance, physical objects present in the patient’s chest, such

as bone and muscle tissue, may appear in the x-ray projection as artifacts which resemble a blood vessel when viewed at a

local scale. Our approach is to allow the user to select a point (or set of points) in the initial image of the ciné sequence which

lies on the vascular structure, and to begin a search from this point. Currently this method of selecting a “seed point” is prefer-

able because it induces the smallest amount of error into the final segmentation. While it does require user interaction, the time

required is minimal. (Under one second per ciné sequence when a pointing device, such as a mouse, is utilized.)

Once an initial point,  which lies somewhere on the vessel structure is available, a search can be performed to

expand a region outwards from this point. To do so, the following constraints are used:

C1) The area which is part of the vessels is required to be “slightly darker” than the background.

C2) For some sample area in the image, such as a square window, if the area is large enough, the ratio of vessel area to

background area, , will be less than some constant for each image.

C3) The vessel segments are “elongated” structures.

C4) The width of a healthy (non-stenotic) blood vessel changes “slowly”.

C5) The pixel values change “slowly” along the length of the connected vessels except where some object may intersect

or occlude the blood vessel. (e.g. overlapping bifurcations.)

To expand a region once a seed point has be determined, first the set of points, , which are part of the region is initialized to

the empty set, so . Then, starting with the initial point, s0, each of its neighbor pixels within the image is examined. A

test described below is applied to these neighbors and each neighbor pixel that passes the test is added to the set . The pro-

cess is recursively continued until all members of  have been expanded. To prevent infinite recursion, no pixel p with

is examined more than once.

The test used in this process as mentioned above is arrived at in the following way. Let p be some point in a  sample area,

assuming that p is part of some vessel segment of width w which runs through the sample area. Then, from C2,C3 and C4, the

vessel area within the sample area can be approximated by the area of a parallelogram with width w, and height. If the vessel

does not go thorough the sample area in a horizontal or vertical way we can still approximate the area by

 (See Figure 6.)
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If p is part of a blood vessel, then the sum of the intensities across the sample area, , should be approximately equal to the

sum of the intensities across the area of the background, ib, and the sum of the intensities of the pixels across the area of the

blood vessel iv giving . Since the values of iv and ib can not be computed directly, the approximations

 can be used in their place as follows:

Equation (1) utilizes the width approximation of av, and equation (2) the constraint C2. The approximation to the average

intensity across the sampled area, , is then

where as is the area of the sample area. Finally, if the point in question, p, was in fact part of the blood vessel, then from C1 the

inequality

should hold, and the point passes the test. If (4) does not hold then the point in question fails.

3.3 Skeletonization processing

Once a region has been found which represents an initial approximation to the vessel structure, a set of operations is performed

on the region in order to extract the set of pixels that roughly correspond to the points that form a center line of the blood ves-

sels represented by the region. At this point, it is not necessary to have a continuous representation of the center line, nor

would it be desirable. Ambiguities still exist in the extracted regions, and attempts to resolve them at this level in the process

is
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Figure 3. The image sequence forms a discreetly sampled volume in
the Cartesian coordinate frame (t,x,y).
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Figure 4. Schematic of data flow and processing within
the segmentation system.
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are not likely to produce correct results. Therefore the centerline algorithm used is one which will not extract centers for

ambiguous parts of the region. Because the resolution bifurcations and crossovers may not be possible from the information

contained only in a single image, these features are treated as regions of ambiguity to be resolved during the construction of a

center line graph in section 3.5.

The algorithm used to extract the centerline of the region begins with the set of pixels which make up the selected region, ,

and performs a balloon test on each member of the set. Those pixels which pass the subsequently described test become the set

of pixels which makes up the centerline of the region, . The balloon test works as follows. Starting at the pixel to be tested,

the algorithm expands a disk, of initial radius r=1 pixel, outward until some pixel is encountered which is not part of the

region described by . When this occurs, it is called a hit as shown in Figure 7. If two hits occur on opposite sides of the disk

at the same distance, then the point in question passes the test and is added to the set of center line points. Because this is a dis-

crete pixel space, an error of one pixel is allowed. The shape of the disk used is an eight pointed star approximated by eight

lines of length r extending from the center of the disk outward in each of the eight non-tertiary compass directions. In this

algorithm, r is the parameter radius which varies as the disk expands. For those points which pass the test the final values of r

is saved as an approximation of the vessel width at that point, .

3.4 Spatial region expansion

Although the vascular structure is a continuous network of vessels, the projection into the image plane may be broken up into

disjoint segments by noise, image artifacts, structural defects (e.g., a stenosis) or other discontinuities. (See Figure 8) Addi-

tionally, it is possible that small vessels that should be detected will be partially obscured near larger vessels, hence the region

test will not detect a small vessel which is too close to a much larger vessel. To adjust for this problem, the region must be spa-

tially expanded and an extension to the region  is built.
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Figure 5. Extracted Regions superimposed on original
image. Dark areas are initial extractions after filtering.
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Figure 6. Note the area of any parallelogram constrained to
lie in the region may have sides no longer than the diagonal

of the region. This gives: av w d 2××<



To perform this extension, the process starts with each center point,  previously located by the balloon test, and searches

the perimeter of a square area centered at that center point. The width of the square is equal to the sum of the width approxima-

tion at that center point,  and half the width of the search area, d/2, used from the region growth process. This is chosen

so that the perimeter will be outside the influence of the already detected vessel segments. All the pixels on the perimeter are

then tested using the region test as described above. For each one that passes, the region growth process is recursively started

at that point. The new sub-regions generated in this way are then processed for center points and any new center points found

are added to the set  and used for further extension. This continues until no further spatial extension can be done, that is no

perimeter points pass the region growth test.

In addition to the spatial expansion within the image plane, the expansion process is used to locate regions in the subsequent

images of the sequence thus taking advantage of the temporal cohesion through the ciné-sequence. To do this, once the initial

processing on the image I0 has been done, the set of center points in I0 is projected onto the image plane of I1. These center

points are then used to perform a spatial expansion in I1. This process continues until no further expansion, as described previ-

ously, can be done in I1. This centers in I1 are then projected into the next image so that in general Ii is used to perform the

expansion into Ii+1. See (Figure 9).

3.5 Acceptance and Rejection of Regions

At this point in the process, each of the images contained in the input ciné-sequence has been separated into two parts, those

selected regions which contain the vessels, and those areas which do not contain vessels. However, there is still no information
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Figure 7. Center line detection and location of ambiguities
within the extracted regions.

Center Line

Disk

Ambiguity

Hit

Hit



about how these sub-regions are related to each other: i.e. no explicit spatial or temporal connectivity exists in the detected

data. Furthermore, some of the regions that have been selected may include errors, possibly corresponding not to blood ves-

sels, but to noise or some part of the background. The goal of this part of the process is then:

R To establish an explicit spatial and temporal relationship among the sub regions,

R To identify and remove the erroneous regions, and

R To link the center points, , in such a way that a continuous directed skeleton of the arterial structure will be formed.

To do this, it is useful to view the data in the following manner. If each center point of the images in a sequence is viewed as a

vertex node, ,of a graph, , and the sequence of images is viewed as discrete sampling of a volume, L or R,

so that each vertex,  exists in the domain of a function

where w,h,n are the width of an image, height of an image, and number of images in a sequence respectively. The desired out-

put of this stage in the process would then be a directed, acyclic connected graph for each image, Gi=(Vi,Ei), where all vertices

in Gi are reachable from some root vertex, . Each vertex in the structure, , is mapped to a tuple (c,i,o) which cor-

responds to a center point, and inner edge and an outer edge, respectively. A depth first search of Vi from its root, v0, will fol-

^

v VD G V E,( )=
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f:V(G) x y z, ,( ) ,A (5)

x 0.. w 1–( ){ } ,D y 0.. h 1–( ){ } ,D z 0.. n 1–( ){ }D

v0 ViD v ViD

Figure 8. Although the actual arterial structure is continuous,
areas may appear to be discontinuous in the image projection.
This is particularly true where the arteries have become dis-
eased.

image #1 = I1

image #2 = I2

Figure 9. Center points of vessels found in an image of the
sequence are projected into the image planes of subsequent
images. The projected points will not necessarily hit a part of
the vessel in the subsequent image as the structure moves with
time. The projected point will, however, fall near to the new
location of the vessel. The projected point is then used to begin
the expansion process in the next image.



low the structure of the vascular network, with vertices who have more than one child mapping to a bifurcation, and nodes

with no children mapping to vessel terminations. Furthermore a set of bidirectional edges, Es, should be found which map

each set of vertices, Vi, in image i to Vi+1 in the next image. The final graph G is then:

There are, however, multiple graphs which could be fit to the description of G. To provide a means of selecting between them

a, cost function, c, is defined for each edge in G, and the cost of a graph is given by the sum of costs of the edges in the graph.

The cost function used here is the energy functional across the spline surface defined by the nodes in G7,6. The desired output

graph is then the one with the minimal cost value. The cost function is then defined as:

So that the cost of adding an edge e=(u,v) to a graph is a sum of the elasticity and flexibility across the surface at that

edge7,11,6.

Rejection of erroneous regions can be done at this stage by removing any edges which have cost functions significantly larger

than the other edges in the graph. Any sub-set of vertices that is disjoint from the rest of the graph can then be removed. Addi-

tionally, the previously unresolved ambiguities can be mapped to the correct structural interpretation by the energy minimiza-

tion process across the graph.

4. RESULTS AND CONCLUSIONS

The proposed system is a step towards fully automated segmentation of angiographic images, and the subsequent 3D recon-

struction. These methods have been implemented within the context of an interactive image processing system. After each step

in the process is applied by the computer, the user is able to interact with the system to accept or reject the results, or to make

modifications to the extracted data. The image sequence shown in Figure 10 and Figure 11 shows the results of a session,

which included about 30 minutes of user interaction, using a ciné-sequence generated from a human study. The images in col-

umn A are the original images obtained by X-ray angiography. The images in column B show the regions which are extracted

after region growing and expansion have been done. The images in column C show the final segmentation after being passed

through the rejection process and user filtering. The yellow points in Figures 11b and 11c show the extracted center line pixels.
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Finally, Figure 11.d shows the spatial projection of the structural graph superimposed on the original image. When running on

a Silicon Graphics Indigo R4000, a 32 image sequence of 512x480 pixels data can be automatically processed in time between

3 to 5 minutes, depending on the input data.

To fully describe the vessel system, it is also necessary to have information about the edges as well as the centerline of the ves-

sels. The edges formed by the region growing process become rough and jagged where the image quality is bad and are not

acceptable for reconstruction. In their place, a more accurate set of edges should be found.
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6. WORLD WIDE WEB ACCESS

Higher resolution images and mpeg encoded versions of the image sequences shown in this paper are available as hypertext

documents via mosaic. The URL is:

http://www.gatech.edu/gvu/medical_informatics/medinfo_home_page.html

If you are not familiar with mosaic or do not have access to this service, please contact obrienj@cc.gatech.edu for an alterna-

tive means for accessing these files.
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Figure 10.: This shows a sub-sequence of eight
images from a human study. The images are 1/15 sec-
onds apart progressing in time from top to bottom.

The images in column A are the original data obtained
from the X-Ray angiography.

The images in B are the results after the system has
performed an initial segmentation on the data set.

The images in C are the final results after being
passed through the rejection process and user filtering.

The final set in the sequences, highlighted by the grey
box, are shown in more detail in Figure 11.

A B C



11.A
11.B

11.C 11.D

Figure 11.: Detail of final frames from image sequences shown in Figure 10.

Figures 11.a, 11.b and 11.c are larger versions of the highlighted images shown in figure 10.a, 10.b and 10.c
respectively.

Figure 11.a: Detailed view of original angiographic
image.

Figure 11.b: Results after initial segmentation and
expansion. Red areas are extracted regions. Green
points are the corresponding center points.

Figure 11.d.: This image shows the final centerline
graph superimposed on the original angiographic
image.

Figure 11.c: The final results after being passed
through the rejection process and user filtering.




