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Abstract

Carbene polymerization provides polyolefins that cannot be readily prepared from olefin 

monomers; however, controlled and living carbene polymerization has been a long-standing 

challenge. Here we report a new class of initiators, (π-allyl)palladium carboxylate dimers, which 

polymerize ethyl diazoacetate, a carbene precursor in a controlled and quasi-living manner, with 

nearly quantitative yields, degrees of polymerization >100, molecular weight dispersities 1.2–1.4, 

and well-defined, diversifiable chain ends. This method also provides block copolycarbenes that 

undergo microphase segregation. Experimental and theoretical mechanistic analysis supports a 

new dinuclear mechanism for this process.

Cooperativity among two or more metal centers is an evolution-validated tactic to catalyze 

challenging chemical transformations. Such multinuclear catalysis is at work, for instance, 

in the hydrolysis of urea by the urease enzyme: two Ni(II) centers bridged by a carboxylate 

ligand cooperatively direct hydroxide addition to an activated urea (Figure 1A).1 Outside of 

the context of enzymatic chemistry, multinuclear catalysis has received far less attention 

than single-site catalysis, but its power is undeniable for molecular synthesis and 

polymerization,2,3 including the globally significant Fischer-Tropsch reaction (FTR) (Figure 

1A).4 Here we report evidence of dinuclear catalysis operative in the quasi-living and 

controlled carbene polymerization to produce densely substituted block-co-polyolefins that 

cannot be prepared from olefin monomers.
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Pioneering work by the groups of Ihara and de Bruin demonstrated that polymerization of 

ethyl diazoacetate (EDA) and other α-diazocarbonyl compounds, functional carbene 

precursors, could be initiated by homogeneous palladium5,6 and rhodium6–19 species (Figure 

1B): the former generally yield atactic polymers, and the latter, syndiotactic ones.5,20 Yet, 

controlled and living polymerization of α-diazocarbonyl compounds has been a crucial 

challenge: in one case control could be attained by alcohol/water-mediated chain transfer,14 

and only two reported systems exhibited control and living-ness,21–23 of which one21,22 did 

not generalize beyond cyclotriphosphazene-containing monomers. Furthermore, formation 

of maleate and fumarate esters and analogous carbene dimers plagues most15 existing 

methods and compromises the polymer yield (Figure 1B).5,7,11,15 Although theoretical and 

mechanistic studies have been carried out for some initiators, particularly based on Rh,
15,18,24 numerous aspects of initiation and propagation remain ill-defined, which has 

inhibited progress.

Inspired by our recent studies into migratory insertion in carbenoid gold intermediates,25 we 

began our investigation with (π-allyl)palladium chloride dimer (l), known to initiate the 

polymerization of EDA.26 We hypothesized that the low-moderate yields of polymer 

resulted from the low nucleophilicity and Lewis basicity of the chloride ligand, detrimental 

to its migratory aptitude. This factor, in addition to suboptimal reaction conditions, could be 

responsible for reported chain termination, poor control of the number-average molecular 

weight (Mn) and end-groups, and broad dispersity (D) known for 1 (Figure 1B).26 We 

hypothesized that replacing the chloride ligands with the more nucleophilic and Lewis basic 

carboxylates would accelerate initiation relative to propagation, which would suppress 

maleate/fumarate formation, reduce Ð, and improve chain end control.

Comparison of 1 and (π-allyl)palladium acetate dimer27–29 (2), as well as (π-

allyl)palladium methacrylate dimer (3) in the polymerization of EDA and 2,2,2-

trifluoroethyl diazoacetate (TFEDA)30 under equivalent conditions revealed that, as 

anticipated, in the presence of 2 and 3, both monomers were polymerized in nearly 

quantitative yield, while 1 afforded low yields of corresponding polycarbenes and mostly 

produced maleate and fumarate esters (Figure 2A). Matrix-assisted laser desorption 

ionization time-of-flight mass spectrometry (MALDI-TOF MS) confirmed that the polymer 

chains were virtually uniformly carboxylate-initiated and hydrogen-terminated, the latter 

presumably generated through protodepalladation upon exposure to air (Figure 2B, 

Supporting Information (SI), Figures S1 and S2). In some cases, small amounts of OH-

initiated chains were observed (Figure 2B, inset), due to incomplete elimination of water 

from the reaction mixture. Use of both 2 and 2-d6, wherein the acetate moieties were 

deuteriumlabeled, facilitated these assignments and indicated that protodepalladation was 

the only mode of termination operative under these conditions (SI, Figure S2). Therefore, 

the controlled installation of distinct chain ends is another advantage of this method.

Furthermore, in anhydrous fluorobenzene at 0 °C, excellent Mn-control and low Ð(≤1.3) in 

the polymerization of EDA were observed for 2 up to an EDA:initiator ratio of ∼150:1; this 

control is in stark contrast to 1 (Figure 2C and SI, Figure S3). As a testament to the 

robustness of the present method, high polymers (Mn ≈ 25000 (degree of polymerization 

(DP) ≈ 290) and Ð≈ 1.42) were readily accessed in the polymerization of EDA. Notably, the 
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observed Mn values were close to the theoretical ones based on the ratio of the monomer to 

the dinuclear initiator, which indicated that half of the available Pd sites initiated chain 

growth, either due to incomplete initiator consumption, initiator decomposition, or a 

dinuclear polymerization pathway. From variable temperature (VT) 1H nuclear magnetic 

resonance (NMR) spectroscopy (in DCM-d2 at −40 °C), we also noted that the methyl 

resonance from the acetate groups of 2 (“a” in Figure 2D) was completely consumed and 

transformed into three resonances upfield of “a”; one of these resonances (“d” in Figure 2D) 

was broad, integrated to ∼ half of the original methyl resonance from 2, and based on 

diffusion ordered spectroscopy (DOSY, SI, Figure S4) was assigned to the chain end of the 

polymer. DP determined via end-group analysis was 47, nearly identical to [EDA]o:[2]o ratio 

of 50. These results supported a dinuclear mechanism, wherein one of the acetate ligands in 

2 initiates the polymer growth through migratory insertion, while the other remains ancillary 

and bridges the two Pd centers.

VT 1H NMR kinetics analysis is fully consistent with this mechanism (SI, Figures S5–S9 

and “VT NMR Kinetics” in the SI). We find that the decay profile of 2 exhibits first-order 

behavior; meanwhile, EDA is consumed with mixed first-order/second-order kinetics that 

give rise to a mixed exponential/double exponential rate law (SI, Figure S6):

[2] = [2]oe
−A1φ × t

(1)

[EDA] = [EDA]oe
−[2]o × A2t +

−2A1 + A2
A1φ e

−A1φ × t
− 1

(2)

wherein [EDA] and [2] are the concentrations of EDA and 2, respectively, at time t, [EDA]o, 

and [2]o are the corresponding initial concentrations, A1 = 1.64 ± 0.10 × 10–1 M–1 s–1 and 

A2 = 8.76 ± 0.09 × 10–2 M–1 s–1 are measures of initiation and propagation rate constants, 

and φ = 2.3 ± 0.2 × 10–2 and φ> 1 (SI, Figures S7–S9 and “VT NMR Kinetics” in the SI) are 

measures of selectivity of acetate and enolate migration, respectively, over the formation of 

diethyl maleate and fumarate.

From rapid injection NMR spectroscopy (RI-NMR)34,35 in toluene-d8 at −20 °C (Figure 3, 

SI, Figures S10–S19, Tables S2–S8, and “Rapid Injection NMR” section, SI), we concluded 

that initiation is substantially accelerated in the absolute sense for 2 compared to 1: the 

former was completely consumed within ∼2 min at −20 °C, while the latter has a t1/2 = 4.4 

± 0.2 min. Additionally, we observed from RI-NMR that 1 catalyzed the dimerization of 

EDA more rapidly than does the propagating Pd-enolate species (formed via initiation with 

2). Thus, 2 initiates faster than 1, and once initiation occurs, dimerization is outcompeted by 

propagation.

Theoretical analysis via density functional theory (DFT) also supported a dinuclear 

mechanism (Figure 4 and SI, Figure S20, “Computations” section, SI). We computed ΔH‡ = 
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36.5 kcal/mol for the mononuclear initiation pathway for 2, wherein 2 first dissociates into 

two halves prior to carbene generation via rate-determining N2 elimination; on the other 

hand, the dinuclear pathway has ΔH‡ = 22.1 kcal/mol, i.e., 14.4 kcal/mol lower (a similar 

disparity is observed for 1). Furthermore, in accord with experimental evidence, theory 

dictates that one of the acetate ligands in 2 migrates and generates a Pd2-enolate species, 

while the other acetate remains ancillary, holding the two Pd centers in proximity.36

Beyond improved control, the polymerization of EDA with 2 was also found to be quasi-

living based on the chain lifetime test, wherein progressively greater time intervals separated 

the addition of a second batch of 50 equiv EDA from the addition of 2 to the first. As shown 

in Figure 5A, Mn hardly changed (~4–8%) even with a 16 min interval, and D was 

essentially constant with time between batches, although the first batch of EDA is 

completely consumed within ~4.5 min (SI, Figures S20 and S21, and “DMAP-quenching 

experiments” section, SI). In other words, nearly all of the chains initiated by 2 remain alive 

during the course of at least 16 min; however, because we do observe a small drop in Mn, we 

believe that this method is best described as quasi-living.

The reality of a quasi-living carbene polymerization for readily available monomers like 

EDA opens the door to the synthesis of a diverse range of densely functionalized block 

copolymers. Similarly to 2, quasi-living behavior and fine chain-end and Mn control were 

also observed for (π-allyl)palladium pivalate dimer (4) (SI, Figure S23), and this initiator 

was utilized to test the ability to form block copolymers (Figure 5B). Indeed, polymerization 

of 50 equiv of EDA, followed by addition of 50 equiv of TFEDA, led to nearly perfect chain 

extension and the formation of diblock copolymers as judged by GPC-viscometry (SI, 

Figure S24), as well as complete dissolution of the polymer in CDCl3, in which the TFEDA-

derived homopolymers are only marginally soluble.

Furthermore, sequential enchainment of 50 equiv of EDA and 70 equiv of TFEDA (SI, 

Figure S25) produced materials that exhibited efficient microphase segregation typical of 

block copolymers. Small-/wide-angle X-ray scattering (SAXS/WAXS) (Figure 5B) revealed 

a scattering peak pattern of (1q, 2q, 3q), indicative of a well-ordered lamellar morphology in 

the films of this polymer produced by slow THF evaporation. Peak broadening was 

attributed to finite grain size effects, and Scherrer analysis was used to calculate a grain size 

of 62 μm based on this assumption.37 Furthermore, the value of q = 0.018 Å–1 corresponded 

to a characteristic lamellar spacing of 350 A. The end-to-end distance of the fully stretched 

out block copolymers of DP ~ 175 (based on Figure 2C and relative ratio of two blocks) is 

estimated to be 220 Å (“End-to-End Distance” section, SI), which translates to a d-spacing 

of 440 Å. These numbers suggest that the polycarbene backbones are highly extended rather 

than coiled, as recently described for atactic homopolymers of benzyl diazoacetate.38 Note 

also that compared to the corresponding homopolymer segments, the block copolymer 

appears to have similar thermal stability in air up to ~260 °C (SI, Figure S26).

Hence, we report an efficient, controlled, and quasi-living polymerization of EDA and 

block-co-polymerization of EDA and TFEDA enabled by a dinuclear mechanism. Although 

dinuclear polymerization of olefins is well-precedented,3 as is the existence of bridging 

carbenes,39–44 dinuclear reactivity in carbene polymerization has no precedent in 
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homogeneous catalysis. The mechanistic insights in this report, e.g., the ancillary nature of 

one of the carboxylates, and the stabilization of reactive intermediates by the two Pd centers,
45–49 will not only advance initiator design for carbene polymerization, but will also readily 

translate to catalysis as broadly defined.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) Examples of dinuclear catalysis. Upper left: active site of urease enzyme cocrystallized 

with diamidophosphoric acid (Reprinted with permission from ref 1. Copyright 1999 

Elsevier Ltd.); dinuclear mechanism of urea hydrolysis is provided below.1 Bottom left: 

mechanism of a Jacobsen epoxide azidation,31 and Rh2-carbene structure implicated in a 

number of carbene transfer reactions.32 Upper right: example of a dinuclear catalyst for 

Ziegler—Natta olefin polymerization: agostic or n-metal interactions with one metal center 

modulate chain transfer at the other.3 Bottom right: intermediates, including bridging 

carbenes, believed to be generated in the Fischer—Tropsch reaction.4 (B) Several literature 

precedents and this work.7,26,33 Note that “poor Mn control” refers to insensitivity of the 

number-average molecular weight Mn to the monomer:initiator ratio. Mes = 2,4,6-

trimethylphenyl. *Living behavior was observed for cyclotriphosphazene-containing 

monomers.21,22
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Figure 2. 
(A) Initiator efficiency as judged by the 1H NMR yield of polymer. (B) Matrix-assisted laser 

desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) of the product of 

EDA polymerization initiated with 2. (C) Exploration of Mn control based on the [EDA]: 

[initiator] ratio (error bars = standard deviations): GPC-MALLS in tetrahydrofuran (THF) at 

35 °C was used to analyze polymer samples. Note: for 1, with [EDA]:[l] =50 and 100, Mn is 

overestimated due to exclusion of the portion of the peak that overlapped with low-Mn 

species/solvent impurity. (D) EDA polymerization and dimerization mediated by 2 
monitored by 1H NMR spectroscopy (CD2Cl2, 500 MHz, −40 °C).
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Figure 3. 
Comparison of initiators 1 and 2 in the polymerization/dimerization of EDA by 1H rapid-

injection (RI)-NMR spectroscopy (toluene-d8,600 MHz, −20 °C).
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Figure 4. 
Potential energy diagram calculated via density-functional theory (DFT; level of theory is 

indicated in the diagram) for the initiation of EDA polymerization with 2 via the mono-and 

dinuclear pathways (in blue and red, respectively).
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Figure 5. 
(A) Chain lifetime evaluation for 2/EDA (Mn and D were determined through GPC-

MALLS). (B) SAXS/WAXS analysis of the diblock copolymer from EDA and TFEDA 

formed using initiator 4; illustration of the lamellar morphology is in the bottom left-hand 

corner.
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