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Abstract
We report a supervised category learning experiment in which
the training phase contains both classification and observation
learning blocks. To explain the use of different categorization
strategies, we propose an account in which use of a stimuli di-
mension depends on how well the dimension is learned. Our
results show that there is an overall preference for a unidimen-
sional categorization based on the perfectly diagnostic dimen-
sion. The preference for unidimensional categorization is neg-
atively correlated with how well participants learn the partially
diagnostic dimensions. Preference for unidimensional catego-
rization is also negatively correlated with the mean response
time. Bayesian modeling results show that participants use a
partially diagnostic dimension only when it is learned with a
very high level of accuracy. Different strategies are used for
categorization depending on how well the perfectly and par-
tially diagnostic dimensions are learned.
Keywords: supervised category learning; classification learn-
ing; observation learning; Bayesian modeling

Introduction
Classification learning and Observation learning are two
types supervised category learning paradigms commonly
used in the literature (Nelson, 1984; Levering & Kurtz, 2015).
In classification learning, instances of two different categories
are presented one by one and participants are asked to clas-
sify each instance. Feedback is given and participants learn
through trial and error. In observation learning, instance of
a category is presented along with its category label. Partic-
ipants observe each labelled instance before moving to the
next instance. No feedback is given in observation learning.

Studies have consistently reported that in classification
learning participants preferred a unidimensional categoriza-
tion based on the perfectly diagnostic feature (Nelson, 1984;
Rabi, Miles, & Minda, 2015). For observation learning, the
results showed that there was a greater preference for a simi-
larity based strategy that was based on all the diagnostic fea-
tures (family resemblance structure) of a category (Nelson,
1984; Smith & Shapiro, 1989). However, Ward and Scott
(1987) showed that participants preferred a unidimensional
rule plus exception strategy for both classification and obser-
vation learning.

Levering and Kurtz (2015) showed that the perfectly diag-
nostic dimension was learned with 100% accuracy for both
observation and classification learning. Levering and Kurtz
(2015) also showed that the accuracy for the partially diag-
nostic features was significantly higher in observation learn-
ing (85%) compared to classification learning (72%). We

think that a greater preference for a similarity based strategy
in some observation learning studies is due to better learn-
ing of the partially diagnostic features. For example, Thomas
and Srinivasan (2020) showed that the preference for a unidi-
mensional strategy (based on the perfectly diagnostic feature)
decreased when participants were made to memorize the par-
tially diagnostic features.

This study aims to check whether there is a relation be-
tween preference for a unidimensional strategy and how well
partially diagnostic features are learned. In our study, we have
used both observation and classification learning in the train-
ing phase. We show that the perfectly diagnostic dimension
is learned better compared to the partially diagnostic dimen-
sions, which is consistent with the results by Levering and
Kurtz (2015). We show that the percentage of unidimensional
categorization is negatively correlated with how well the par-
tially diagnostic features are learned; also, the participants
whose average response time was longer made fewer uni-
dimensional responses. We use Bayesian modeling to show
that participants use a dimension only when they have learned
the dimension with a high level of accuracy. We use the re-
sults of Bayesian modeling to propose an alternative theoreti-
cal position where the preference for unidimensional strategy
is stronger when accurate knowledge about diagnosticities of
features are not available. We argue that this alternative theo-
retical position has a broader explanatory power.

In the rest of this article, we refer to the categorization strat-
egy based on the perfectly diagnostic feature as the CA (crite-
rion attribute) strategy, and the categorization strategy based
on all the diagnostic features as the FR (family resemblance)
strategy. We refer to the perfectly diagnostic dimension as
CA (criterion attribute) dimension, and we refer to the par-
tially diagnostic dimensions as FR (family resemblance) di-
mensions.

Experiment
Thomas and Srinivasan (2020) reported that participants
showed a preference for the CA strategy even when both ob-
servation and classification learning blocks were used in the
training phase. In this experiment, we wanted to replicate the
results when there are no explicit memorization conditions.
We hypothesized that there would be a correlation between
preference for the CA strategy and how well the FR features
are learned.
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Method

Subjects Forty five volunteers (5 females; mean age = 21.5
years) participated in this experiment. The results of linear re-
gression reported by Thomas and Srinivasan (2020) indicated
that there was an effect between the accuracy for FR features
and percentage of CA categorization (R2 = .16 in condition
M0). Power analysis (Bausell & Li, 2002) indicated 44 sub-
jects are needed for power = .80, R2 = .16 and two-tailed α

=.05 for a significant effect between the accuracy for FR fea-
tures and percentage of CA categorization.

Materials Figure 1 shows the fish-like stimuli that were
used in Experiment 1. The stimuli consisted of five dimen-
sions — shape of the tail, shape of the upper-fin, shape of
the lower-fin, shape of the mouth and the body pattern. Each
stimuli dimension could take one of two possible values. One
of the five feature dimensions was perfectly diagnostic of cat-
egory membership (CA dimension); the remaining four fea-
ture dimensions were partially diagnostic (FR dimensions).
In Figure 1 shape of the mouth is the CA dimension and shape
of the tail is one of the four FR dimensions. The stimuli in
the first two rows of Figure 1 formed the training stimuli. The
stimuli in the last two rows formed the transfer stimuli. The
transfer stimuli were constructed by flipping the CA feature
of the training stimuli. In other words, each transfer stimu-
lus contained the CA feature and FR features from opposite
categories.

We used five different sets of stimuli, where a different
stimuli dimension formed the CA dimension in each set. For
each participant, one of the five sets of stimuli was used. Each
of the five stimuli sets was used 9 times in the experiment
(9×5 sets = 45 participants). In each of the five sets, the CA
dimension was always black in colour, two FR dimensions
were always yellow, and the remaining two were always blue.
The colour on its own did not help in identifying the cate-
gories (as can be see in Figure 1). Colours can make the FR
dimensions more salient, but a pilot study revealed that par-
ticipants continued to show a strong preference for the CA
strategy. In the extended version of this study, we plan to run
an experiment where colours covary with the FR features.

Procedure We developed a web application using the
Django framework for collecting the behavioral data. The
link to the web application was sent to participants over
an email. Participants responded in a self-paced manner
throughout the experiment.

The experiment started with a training phase. In the train-
ing phase, participants were asked to learn to differentiate cat-
egory A objects from category B objects. The instructions
given to the participants were neutral and did not indicate the
categorization strategy that they were expected to use. Each
block in the training phase consisted of an observation learn-
ing sub-block followed by a feedback learning sub-block. In
the observation learning sub-block, the 10 training stimuli
were presented one by one along with the correct category
label. In the classification learning sub-block, the 10 train-

Figure 1: Training stimuli and transfer stimuli used in the
experiment. Here, the shape of the mouth is the perfectly
diagnostic (CA) dimension, and the remaining features are
partially diagnostic (FR) features.

ing stimuli were again presented one by one and participants
were asked to categorize each stimulus. Feedback was given
after every response and indicated whether the response was
correct. At the end of the classification learning sub-block,
participants were shown their accuracy for the classification
learning sub-block. Participants had to achieve an accuracy
of 90% twice (learning criterion) in order to proceed to the
next phase. The training phase was repeated until participants
could achieve an accuracy of 90% two times.

The training phase was followed by the transfer phase. In
each block of the transfer phase, all the 10 transfer stimuli
were presented one by one and participants were asked to
categorize each stimulus. No feedback was given. The trans-
fer phase contained three blocks. So, participants categorized
each transfer stimulus three times.

The transfer phase was followed by an all features test
phase, where participants were asked to identify the category
in which a given feature occurred more commonly in. Partic-
ipants were not informed that there will be an all features test
phase. There were two features along each of the five stimuli
dimensions. So, there were ten features in total. In one block,
all the ten features were tested once. No feedback was given.
There were three blocks in the all features test phase.

After the all features test phase, participants were asked to
describe how they categorized the items.They were requested
to describe their strategy with sufficient clarity so that another
person may read the description and replicate their catego-
rization pattern.

Results
In the transfer phase, 30 participants (out of 45) preferred
the CA strategy more than 90% of the times. A one-sample
t-test showed that the overall percentage of CA categoriza-
tion (M = 74.44%,SD = 38.03) was above the chance level
(50%); t(44) = 4.26, p = 0.0001,d = 0.64. This shows that
there was a strong preference for the CA strategy.

In the all features test phase, the mean and standard devia-
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Table 1: The four columns represent the groups based on
participants’ categorization descriptions. The rows show the
number of participants in each group (row 1), the average CA
categorization responses in the transfer phase (row 2), mean
response time for the transfer stimuli (row 3), mean accuracy
for the CA dimension in the all features test phase (row 4),
mean accuracy for the FR dimensions (row 5) and the average
number of FR dimensions for which a participant achieved
100% accuracy in the all features test phase (row 6).

CA MULTI FR OTHER
1. No. of participants 28 7 6 4
2. CA strategy 97% 48% 29% 36%
3. Mean RT 1.6s 4.5s 9.1s 3.0s
4. CA accuracy 96% 90% 95% 67%
5. FR accuracy 73% 77% 87% 80%
6. FR 100% accuracy 1.6 2.0 3.0 2.0

tion for the CA and FR dimensions were (M = 92.59%,SD =
19.10) and (M = 76.02%,SD = 17.35) respectively. A one-
sample t-test showed that the accuracy for the CA dimension
was above chance level (50%); t(44) = 14.79, p < .0001,d =
2.20. The accuracy for the FR dimension was also above
chance level (50%); t(44) = 9.95, p < .0001,d = 1.48. A
paired-sample t-test showed that the difference in accuracy
for the CA and FR dimensions was significant; t(44) =
4.47, p < .0001,d = .67. This shows that participants learned
the CA dimension better than the FR dimensions.

To further understand feature learning and categorization
strategy, participants were divided into four groups based on
their categorization descriptions (Table 1). Participants who
used only the CA dimension were labeled as CA (column 2
in Table 1). Participants who used two to four stimuli dimen-
sions were labeled as MULTI (column 3). Participants who
used all the five dimensions were labeled as FR (column 4).
Participants who used other strategies (like counting number
of pointy features) were labeled as OTHER (column 5). Some
participants used the CA strategy 100% of the time, but de-
scribed their strategy to be multidimensional. We put such
participants in the MULTI group (and not in CA). Due to this,
the number of participants in the CA group is 28, and not 30
as reported above. Importantly, no participant claimed to have
used a unidimensional strategy based on a single FR dimen-
sion. This is possibly due to the learning criterion of 90% ac-
curacy in the training phase, which cannot be achieved using
a unidimensional strategy based on a single FR dimension.

The third row shows that the mean RT for the transfer stim-
uli was more for the MULTI and FR groups compared to the
CA group. The sixth row in Table 1 shows the average num-
ber of FR dimensions with 100% accuracy (i.e. no error). On
average, participants in the FR group could learn 3 FR dimen-
sions with 100% accuracy, whereas this number was only 1.6
for the CA group. This data becomes relevant in the light of

our results in the Bayesian modeling section.
Table 1 suggests that there is a correlation between CA

strategy and accuracy for the FR dimensions. The re-
sults of linear regression indicated that the accuracy for the
FR features is a significant predictor of the percentage of
CA categorization, β = −.32, t(43) = 2.24, p = .03,R2 =
.11,adjusted R2 = .08. The percentage of CA strategy de-
creased with increase in accuracy for the FR dimensions.

Table 1 also suggests that there is a correlation between the
CA strategy and the mean RT. The results of linear regression
indicated that the mean RT is a significant predictor of CA
categorization percentage, β=−.61, t(43)= 5.11, p< .0001,
R2 = .38,adjusted R2 = .36. The percentage of CA strategy
decreased with increase in the mean RT. In fact, none of the
participants whose mean RT was more than 4s showed a pref-
erence for the CA strategy. These results are consistent with
the finding that a multidimensional strategy is more effort-
ful and takes more time (Milton, Longmore, & Wills, 2008;
Wills, Milton, Longmore, Hester, & Robinson, 2013).

Bayesian Modeling
In classification learning, it has been shown that participants
show a strong preference for the CA strategy (Nelson, 1984;
Rabi et al., 2015). This has been explained as follows:
Theoretical position A. Classification learning promotes an-
alytical processing of information. Due to this, participants
test unidimensional rules until they find the best rule (Nelson,
1984). This leads to a greater preference for the CA strategy
and FR features are not learned well.

Our results show that 74.44% of the overall categorization
responses were based on the CA strategy. This can be ex-
plained using theoretical position A. However, we also found
that participants with a higher accuracy for the FR dimen-
sions showed less preference for the CA strategy. We used
Bayesian modeling to check whether there is an accuracy
threshold below which participants ignore the FR dimensions.

Figure 2 shows the Bayesian model that we have used.
The shaded nodes represent the observed variables. The un-
shaded nodes having a single border represent the free param-
eters whose value depends on a prior probability distribution.
The square-shaped nodes take discrete values, while circular
nodes take continuous values. The nodes with double borders
are the deterministic nodes whose value depend on the parent
node(s).

We have used three observed variables: ~xi, ~tk and rA
ki. The

variable ~xi is a five dimensional vector that corresponds to
the logical representation of the ith transfer stimulus. As
described earlier, we have used five different sets of stim-
uli, where each set had a different stimuli dimension forming
the CA dimension. We have used a logical representation in
which the first dimension is always the CA dimension. Sup-
pose that for a stimuli set the third stimuli dimension is the
CA dimension. Then the third stimuli dimension is mapped
to the first logical dimension, the fourth stimuli dimension
is mapped to the second logical dimension and so on. After
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Figure 2: Graphical representation describes the stochastic
processes that generate the observed data from unobserved
parameters for model I.

the fifth stimuli dimension we rotate back to the first stimuli
dimension and continue the mapping.

The second observed variable that we have used is ~tk,
which is also a five dimensional vector. The jth component of
vector~tk (denoted by tk j) contains the accuracy of the kth par-
ticipant for the jth logical dimension. This means that the first
component of vector ~tk will always contain the accuracy for
the CA dimension. In each block of the all features test phase,
every stimuli dimension was tested twice (because each di-
mension has two features). In total there were three blocks.
This means that each stimuli dimension was tested six times
in the all features test phase. The accuracy for the jth logical
dimension for the kth participant (i.e. tk j) was found by divid-
ing the number of correct responses for each dimension by 6.
So, tk j can have one of the following discrete values: 0, .17,
.33, .5, .67, .83 or 1. The accuracy values have been rounded
to two decimal places.

The third observed variable rA
ki tells us how many times the

kth participant categorized the ith transfer stimulus to cate-
gory A. In the transfer phase, there were three blocks. So,
every participant categorized every transfer stimulus three
times. For this reason, the value of variable rA

ki will be 0,
1, 2 or 3. The deterministic parameter pA

ki gives the proba-
bility that kth participant will categorize a transfer stimulus ~xi
to category A. In our model, the observed variable rA

ki is gen-
erated from a Binomial distribution with probability pA

ki and
three Bernoulli trials (see Figure 2).

The probability pA
ki was determined using distances da

ki and
db

ki. Distance da
ki is the distance of stimulus ~xi from the pro-

totype of category A (denoted by ~a). The prototype ~a will
contain the diagnostic features (both CA and FR) of category

A. So the distance da
ki will increase if stimulus ~xi contains

fewer diagnostic features of category A. We have found the
distance dA

ki as follows:

da
ki =

5

∑
j=1

w jsk j|xi j−a j| (1)

where w j is the attention weight for logical dimension j and
sk j is a parameter that can be either 0 or 1. The parameters w j
and sk j are explained below. In Eqn. (1), |xi j− a j| will be 0
if ~xi and ~a have the same jth feature, otherwise |xi j−a j| will
be 1. We find the distance db

ki in a manner similar to Eqn. (1),
where~b denotes the prototype of category B.

In Eqn. 1, parameter sk j determines whether the kth par-
ticipant used the jth dimension for categorization. We have
hypothesized that participant k would use the jth dimension
only when the accuracy tk j is above some threshold (θ). To
capture this relation we have used a unit Step() function.

sk j←

{
Step(tk j−θ1), if j = 1
Step(tk j−θ2), if 2≤ j ≤ 5

(2)

The value of the Step() function is 1 when its argument is
positive, otherwise it is 0. So, parameter sk j will be 1 if the
accuracy tk j is above some threshold, otherwise sk j will be 0.
If sk j is 0, then the jth logical dimension will be ignored while
computing the distance in Eqn. (1). In Eqn (2), we have used
threshold θ1 for the CA dimension (i.e. j = 1), and threshold
θ2 for the four FR dimensions (i.e. 2 ≤ j ≤ 5). This is be-
cause we are working with the logical representation where
different stimuli dimensions can map to the same logical di-
mension depending on the stimuli set being used. For this
reason, we did not want to differentiate between the different
FR dimensions and have used the same threshold θ2.

The threshold parameters (θ1 and θ2) are generated from a
uniform prior distribution over the following discrete values:
−.01, .16, .32, .49, .66, .82 and .99. These values are .01
less than the accuracy values that tk j can take. We have used
discrete values for the threshold because the accuracy values
are also discrete 1 .

In Eqn. (1), we have used attentional weights w j for each
dimension. These weights are determined as follows:

w j←

{
1−α, if j = 1
α/4, if 2≤ j ≤ 5

(3)

where α is a parameter having a uniform prior distribution
in the interval (0,1). Determining the weights in the above
manner ensures that all the weights sum to 1. Eqn. (3) allows
the weights for the CA dimension to be different from the FR

1We could have used a continuous prior distribution (i.e
Uni f orm(0,1)) for the threshold parameters. In that case, the pos-
terior distribution would lie in the open interval ( 4

6 ,
5
6 ) and ( 5

6 ,1)
instead of being concentrated at .82 and .99 respectively (See Fig-
ure 3). Since we are only interested in the minimum accuracy with
which a dimension should be learned, we have used discrete values.
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Figure 3: Posterior distribution for CA attentional weight
(w1), CA accuracy threshold (θ1), FR attentional weight (w2)
and FR accuracy threshold (θ2) for model I shown in Figure 2.

dimensions. However, the attentional weights for the FR di-
mensions are the same. The reason for this is (again) that we
don’t want to differentiate between different FR dimensions
in the logical representation for the stimuli.

If the distance da
ki is small, it would mean that stimulus

~xi has many diagnostic features of category A; therefore, the
probability pA

ki must be closer to 1. The probability pA
ki was

determined from distances da
ki and db

ki as follows:

pA
ki = 1−

da
ki + .01

da
ki +db

ki + .02
(4)

where da
ki and db

ki lie in the range 0 to 1. The distances da
ki and

db
ki can both become zero for a participant who has learned

all the dimensions poorly (low accuracy), because sk j will be
0 for all the dimensions. To avoid the divide-by-zero error in
Eqn. (4), we have added constant values .01 and .02 in the
numerator and the denominator respectively 2. These values
are small compared to the distances and will not have much
effect when the distances are non-zero. If both the distances
become zero, then the probability pA

i will become .5 because
of the constant values. This will model the fact that the partic-
ipant who is not sure of the diagnosticity of any of the dimen-
sions is probably giving random categorization responses.

Results
We have used the R2jags library (Su & Yajima, 2012) in
R to obtain samples from the joint posterior distribution of
parameters using Gibbs sampling. We have monitored the
attentional weights (~w) and the accuracy thresholds (θ1 and
θ2). All our results are based on three chains of 4,000 samples
each (total 12,000 samples). Each of the three chains had
a burn-in of 1,000 samples, and the samples were thinned
by taking every tenth sample. The convergence of the three
chains were checked using the standard R̂ statistic (Brooks &
Gelman, 1998).

Our model has three free parameters: α, θ1 and θ2. We
had 450 data points (45 participants × 10 transfer stimuli).
Figure 3 shows the posterior distribution for the parameters
w1, θ1, w2 and θ2. The marginal posterior distribution for the

2Instead of .01 and .02 we have tried using c and 2× c, where c
is a free parameter. The results obtained were identical. By using
constants .01 and .02 we have tried to minimize the free parameters.

threshold parameters θ1 and θ2 was concentrated at .82 (M =
.82,SD = 0) and at .99 (M = .99,SD = 0) respectively. These
results indicate that when participants use the jth dimension,
they are sure of the diagnosticity of the features along that
dimension (i.e. tk j > .82). The means and standard deviation
for parameters w1 and w2 were (M = .58,SD= .02) and (M =
.10,SD= .01) respectively. The attentional weight for the CA
dimension (w1) was greater than the attentional weight for
the FR dimensions (w2), which shows participants paid more
attention to the CA dimension.

We compared two theoretical positions T1 and T0. Theo-
retical position T1 states that an FR dimension will be used
only when it is learned with a high level of accuracy (i.e.
tk j > .99). We modeled this theoretical position by letting
the prior distribution for θ2 to be concentrated at .99 (i.e.
θ2∼DUni f orm([.99])). Theoretical position T0 states that an
FR dimension may be used even when it is not learned with
a high level of accuracy. Theoretical position T0 is the null
hypothesis for T1 and was modeled by letting the prior distri-
bution for θ2 to be DUni f orm([−.01, .16, .32, .49, .66, .82]).
Note that in model T0 we don’t allow θ2 to take a value of
.99. All the other details of models T1 and T0 were same as
model I shown in Figure 2. To reiterate, Model T0 allows an
FR dimension to be used at any level of accuracy, whereas for
model T1 the accuracy must be high (tk j > .99).

We used Bayes factor (Kass & Raftery, 1995) to compare
model T1 and model T0. Bayes factor was found as follows:

BF10 =
P(Data|model T1)

P(Data|model T0)
(5)

where P(Data|model Ti) is the marginal probability of gener-
ating the data given model Ti. The marginal probability was
calculated by averaging over the 12,000 samples generated
from the joint posterior distribution of the parameters using
the same procedure described for model I.

The results of Bayes factor comparison between model T1
and model T0 shows that model T1 provides a better explana-
tion for the data (BF10 > 100, extreme evidence). This means
that the participants who used an FR dimension were highly
accurate for that dimension.

Next we checked whether the data can be explained purely
based on theoretical position A described earlier. If we
strictly follow the theoretical position A, then participants
must always use the CA dimension because that is the best an-
alytical solution to the classification problem. Also, the best
analytical answer would remain the same irrespective of how
well participants learn the FR dimensions. For this reason,
we have modelled theoretical position A by setting the atten-
tional weights for the FR dimensions in model T1 to zero. So,
in model TA parameter α is always set to 0. All the other de-
tails of model TA are the same as that of model T1. We have
modified model T1 to obtain model TA because we wanted to
compare two models that differ in just one parameter.

The results of Bayes factor comparison between model T1
and model TA shows that model T1 provided a better explana-
tion for the data (BF1A > 100, extreme evidence). This shows
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that the data cannot be explained purely on the basis of ana-
lytical processing. Participants used the FR dimensions, but
only when they were highly accurate for those dimensions.

The conclusions drawn from the results of Bayesian model-
ing are consistent with the data shown in Table 1. The average
number of FR dimensions learned with 100% accuracy (sixth
row in Table 1) is lowest for the CA group and is highest for
the FR group. In the groups shown in Table 1, the percent-
age of CA responses decreases as more FR dimensions are
learned with 100% accuracy.

Discussion and Conclusion
Our results show that participants use a dimension only when
it is learned with a high level of accuracy. Participants who
deviated the most from the CA strategy had a high accuracy
for several FR dimensions (see Table 1). Rabi et al. (2015)
have reported similar results for classification learning, where
participants showed an overall preference for the CA strat-
egy. However, four participants who performed the best in the
all features test preferred the FR strategy (Rabi et al., 2015,
p.164). Our results are also consistent with the finding that
a multidimensional strategy is more effortful and takes more
time compared to a unidimensional strategy (Milton et al.,
2008; Wills et al., 2013).

We have used distance from the category prototypes to pre-
dict the probability of categorizing a stimulus to category A.
However, we do not argue in favor of prototype-based theo-
ries. The set of stimuli we have used does not help us differ-
entiate between the prototype and exemplar theories. We only
make a claim that some stimuli dimensions will be ignored
during categorization, unless their diagnosticity is learned
with a high level of accuracy.

Our results have non-trivial implications. Consider two
groups of participants (X and Y) having three participants
each. Let participants in group X have an accuracy of 60%,
65% and 100% for an FR dimension. Let group Y partici-
pants have an accuracy of 53%, 85% and 85% for the same
FR dimension. The mean and SD of the two groups are simi-
lar. However, one participant in group X (having 100% accu-
racy) is much more likely to use the FR dimension compared
to the other participants. This pattern in the data gets hidden
when we look only at the mean and SD values of accuracy.
Our results indicate the importance of checking whether indi-
vidual participants have learned a dimension with a high level
of accuracy.

A similar effect happens when a computational model has
attentional weight parameters. During model fitting, these
weights get adjusted depending on how many participants
have used a stimuli dimension on an average. Once again the
underlying pattern, in which some participants completely ig-
nore a stimuli dimension, gets hidden.

Here, we propose an alternative theory (Theoretical posi-
tion B), which postulates that participants will use the FR di-
mensions only when they have learned it with high accuracy
and if not, will use a unidimensional strategy because it is less

effortful. Theoretical position B can explain the preference
for CA strategy in classification learning. Initially, partici-
pants do not know the diagnosticity of any feature. So, they
use the less effortful unidimensional strategy. Theoretical po-
sition B can also predict the results of observational learning.
Observational learning can lead to better learning of the FR
dimensions (Levering & Kurtz, 2015). Model T1 predicts that
when more participants accurately learn the FR dimensions,
there will be a lesser preference for the CA strategy. This can
explain why some observational studies report a preference
for a unidimensional categorization (Ward & Scott, 1987).

In match-to-standards procedure, participants are shown
the prototypes of two categories and told that the prototypes
belong to opposite categories (Regehr & Brooks, 1995; Mil-
ton et al., 2008). Participants are then asked to categorize
a transfer stimulus 3. In this experimental procedure, accu-
rate knowledge of the diagnosticities of all the dimensions are
(perceptually) available to a participant. Theoretical position
B predicts that in such a situation there would be a lesser pref-
erence for unidimensional categorization and a greater pref-
erence for FR categorization. The results for the match-to-
standards procedure (Regehr & Brooks, 1995; Milton et al.,
2008) are consistent with this prediction.

Accuracy of stimuli dimensions are contingent on the at-
tention allocated to the stimuli dimensions. Rehder and Hoff-
man (2005) have shown that in classification learning par-
ticipants tend to allocate attention to stimuli dimensions in
a manner that optimizes category discrimination. Once the
errors get sufficiently reduced, participants start allocating
more attention to other stimuli dimensions as well. The learn-
ing criterion of achieving 90% accuracy twice could have en-
abled participants to allocate more attention to the partially
diagnostic features, thereby learning those features better.
The results reported by Rehder and Hoffman (2005) predicts
that a more lenient learning criterion might lead to a greater
preference for the CA strategy.

The attention allocated to the partially diagnostic dimen-
sions also depends on the experimental procedure used. In
the training phase of inference learning (Yamauchi & Mark-
man, 1998; Chin-Parker & Ross, 2004), each stimulus is pre-
sented along with it category label, but one of the features
is missing. Participants need to correctly predict the missing
feature. Feedback is provided. The results showed that in-
ference learning led to better accuracy for the partially diag-
nostic features compared to classification learning. Also, in-
ference learners rated the typicality of an item based on both
the perfectly and partially diagnostic features, but the classi-
fication learners relied solely on the perfectly diagnostic fea-
tures (Chin-Parker & Ross, 2004). These results are consis-
tent with our finding that participants use a partially diagnos-
tic dimension only when it is learned more accurately. Fur-

3Match-to-standards procedure is often considered to be an ex-
ample of unsupervised categorization. However, it can also be
thought of as a special case of supervised categorization where par-
ticipants must generalize after being shown one member of each cat-
egory.
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ther studies need to determine whether the pattern revealed by
Model T1 also exists for classification and inference learning.

The categorization descriptions given by participants sug-
gest that participants have ignored the colour information.
Using colours for partially diagnostic features should make
it more salient. However, our results are similar to the results
reported for the black version of the same stimuli (Thomas &
Srinivasan, 2020). In the extended version of this paper, we
will be reporting the results of an experiment where colours
covary with the partially diagnostic features.

It has been shown that for some types of two dimensional
stimuli, similarity-based grouping takes less time (Ward,
1983). Also, salience of features have an effect on catego-
rization strategy (Hammer, Sloutsky, & Grill-Spector, 2012).
The nature of instructions given during the experimental pro-
cedure also influences the stimuli dimensions used for cat-
egorization (Medin & Smith, 1981; Kurtz, Levering, Stan-
ton, Romero, & Morris, 2013). Theoretical position B cannot
explain the effect due to these (and possibly other) factors.
However, we believe that theoretical position B has better ex-
planatory power compared to theoretical position A.

Thomas and Srinivasan (2020) have used an explicit ma-
nipulation where participants were made to memorize the FR
features of a category. The results showed that as participants
learned the FR features better there was a corresponding de-
crease in the preference for the CA strategy. This result is
also consistent with theoretical position B. To conclude, our
current empirical and modeling results show the flexible use
of categorization strategies depending on the dimensions that
were learned accurately.
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