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Frequency-dependent preference extremity arises from a noisy-channel processing
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Department of Linguistics, 1 Shields Avenue

Davis, CA 95616 USA

Emily Morgan (eimorgan@ucdavis.edu)
Department of Linguistics, 1 Shields Avenue
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Abstract

Language often has different ways to express the same or sim-
ilar meanings. Despite this, however, people seem to have
preferences for some ways over others. For example, people
overwhelmingly prefer bread and butter to butter and bread.
Previous research has demonstrated that these ordering prefer-
ences grow stronger with frequency (i.e., frequency-dependent
preference extremity). In this paper we demonstrate that this
frequency-dependent preference extremity can be accounted
for by noisy-channel processing models (e.g., Gibson et al.,
2013; Levy, 2008). We also show that this preference extrem-
ity can only be accounted for if the listener infers more noise
than the speaker produces. Finally, we show that the model
can account for the language-wide distribution of binomial or-
dering preferences.

Keywords: Frequency-dependent preference extremity;
Noisy-channel processing; Psycholinguistics.

Introduction
Speakers are often confronted with many different ways to
express the same meaning. A customer might ask whether
a store sells “radios and televisions”, but they could have
just as naturally asked whether the store sells “televisions
and radios.” However, despite conveying the same meaning,
speakers sometimes have strong preferences for one choice
over competing choices (e.g., preference for men and women
over women and men, Benor & Levy, 2006; Morgan & Levy,
2016a). These preferences are driven to some extent by gen-
erative preferences (e.g., preference for short words before
long words), however they are sometimes violated by id-
iosyncratic preferences (e.g., ladies and gentlemen preferred
despite a general men-before-women generative preference,
Morgan & Levy, 2016b).

Interestingly, ordering preferences for certain construc-
tions, such as binomial expressions, are often more extreme
for higher frequency items (e.g., bread and butter). That
is, higher-frequency items typically have more polarized
preferences (Liu & Morgan, 2020, 2021; Morgan & Levy,
2015, 2016b, 2016a). This phenomenon is called frequency-
dependent preference extremity, and while there is evidence
of it in several different constructions, it is still unclear what
processes this phenomenon is driven by. For example, it
could be a consequence of learning processes or a conse-
quence of sentence processing more broadly. In the present
paper we examine whether a noisy-channel processing model
(Gibson et al., 2013) combined with transmission across gen-

erations (Kirby et al., 2008; Reali & Griffiths, 2009) can ac-
count for frequency-dependent preference extremity.

Frequency-dependent preference extremity
Frequency-dependent preference extremity has been docu-
mented for a variety of different constructions in English (Liu
& Morgan, 2020, 2021; Morgan & Levy, 2015, 2016b). For
example, Morgan & Levy (2015) demonstrated that more fre-
quent binomial expressions (e.g., bread and butter) are more
polarized (i.e., are preferred in one order overwhelmingly
more than the alternative). These ordering preferences are
also not simply a result of generative ordering preferences
(e.g., short words before long words, Morgan & Levy, 2016a).
Interestingly, Morgan & Levy (2016b) even showed that the
distribution of binomial orderings at the corpus-wide level are
different than what would be expected given the generative
preferences for the binomials (see Figure 1).

Additionally, Liu & Morgan (2020) demonstrated that
the dative alternation in English also shows evidence of
frequency-dependent preference extremity (e.g., give the ball
to him vs give him the ball). Specifically, they demon-
strated that higher frequency verbs have more polarized pref-
erences with respect to the dative alternation. Similarly, Liu
& Morgan (2021) showed that in adjective-adjective-noun
constructions, the adjective orderings also show frequency-
dependent preference extremity. That is, adjectives in
adjective-adjective-noun constructions with higher overall
frequencies (i.e., the summed counts of both orderings) show
stronger ordering preferences, even after taking into account
generative preferences of adjective orderings.

Interestingly, frequency-dependent preference extremity
patterns differently from rule-following regularization pro-
cesses (e.g., morphological regularization) where it is the
low-frequency items that become more regular (rather than
the high-frequency items, e.g. Singleton & Newport, 2004).
For example, Schneider et al. (2020) demonstrated through a
noisy-channel processing model that regularization can arise
from learners attributing variation in the low-frequency items
to noise. On the other hand, frequency-dependent preference
extremity patterns more similarly to other processes, such as
semantic entrenchment, where it is the high-frequency items
that develop strict preferences (Harmon & Kapatsinski, 2017;
Theakston, 2004). For example, people are generally more
willing to accept a low-frequency intransitive verb in a transi-
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tive context than a high-frequency intransitive verb (e.g., He
vanished it is judged to be more acceptable than He disap-
peared it, Kapatsinski, 2018; Robenalt & Goldberg, 2015;
Theakston, 2004).

Why is it that it is the high-frequency items that develop
more polarized preferences in frequency-dependent prefer-
ence extremity? One possibility is that it occurs as an in-
teraction between imperfect learning and transmission across
generations. For example, it’s possible that while learners of
a language are in general very good at learning the statisti-
cal patterns in the language (e.g., Saffran et al., 1996; Yu &
Smith, 2007), they may do so imperfectly and with a bias to-
wards preference extremity. For example, if a learner hears 70
tokens of bread and butter and 30 tokens of butter and bread,
they may imperfectly infer the ordering preference and trans-
mit the language with a more skewed distribution (e.g., 75
tokens bread and butter and 25 tokens of butter and bread).
Indeed, previous studies have shown that learners will repro-
duce the more frequent item at an even higher rate than they
heard it (Harmon & Kapatsinski, 2017; Hudson Kam & New-
port, 2009). As the language is transmitted from generation
to generation, it is possible this compounds until the highest-
frequency items develop polarized ordering preferences.

Following this logic, Morgan & Levy (2016b) investi-
gated whether frequency-dependent preference extremity can
arise as a result of imperfect learning across generations.
They found that a data generation model with a frequency-
independent bias can result in frequency-dependent pref-
erence extremity across generations of learners in a 2-
alternative iterated learning paradigm. They argued that
frequency-dependent preference extremity emerges because
for low-frequency items, the preference extremity bias cannot
overcome the learner’s generative preferences for maintain-
ing variation, but for high-frequency items, it can. In other
words, for lower frequency items, learners may rely more on
their generative preferences because they haven’t heard the
item very much. As the language is transmitted across many
generations, it may result in frequency-dependent preference
extremity.

While there is good evidence that a frequency-independent
preference extremity bias can account for frequency-
dependent preference extremity across generations, it remains
unclear what processes in language transmission are analo-
gous to this preference extremity bias.

Noisy-channel Processing
One possibility is that the frequency-independent preference
extremity bias is a product of noisy-channel processing (Gib-
son et al., 2013). Listeners are confronted with a great deal
of noise in the form of perception errors (e.g., a noisy envi-
ronment) and even production errors (speakers don’t always
say what they intended to, Gibson et al., 2013). In order to
overcome these errors, a processing system must take into
account the noise of the system, for example by probabilisti-
cally determining whether the perceived utterance was infact
intended by the speaker.

Indeed, there is evidence that our processing system does
take noise into account. For example, Ganong (1980) found
that people will process a non-word as being a word under
noisy conditions. Additionally, Albert Felty et al. (2013)
demonstrated that when listeners do misperceive a word, the
word that they believe to have heard tends to be higher fre-
quency than the target word. Further, Keshev & Meltzer-
Asscher (2021) found that in Arabic, readers will even pro-
cess ambiguous subject/object relative clauses as the more
frequent interpretation, even if this interpretation compro-
mises subject-verb agreement. These results taken together
suggest that misperceptions may sometimes actually be a
consequence of noisy-channel processing (although it’s worth
noting that good-enough processing theories also make very
similar predictions, e.g., Ferreira & Patson, 2007).

Further, people will even process grammatical utterances,
as a more frequent or plausible interpretation (Christianson et
al., 2001; Levy, 2008; Poppels & Levy, 2016). This can even
arise in two interpretations that cannot both be consistent with
the original sentence. For example, Christianson et al. (2001)
demonstrated that when people read the sentence While the
man hunted the deer ran into the woods, people will answer
in the affirmative for both Did the man hunt the deer? and
Did the dear run into the woods?. Levy (2008) argued that
this phenonenon was explained by noisy-channel processing,
since a single insertion results in plausible, grammatical con-
structions for both meanings (While the man hunted it the
deer ran into the woods vs While the man hunted the deer
it ran into the woods).

In order to account for findings like these, Gibson et al.
(2013) developed a computational model that demonstrated
how a system might take into account noise (see Levy, 2008
for a similar approach). Specifically, their model operational-
izes noisy-channel processing as a Bayesian process where
a listener estimates the probability of the speaker’s intended
utterance given what they perceived. Specifically, this is op-
erationlized as being proportional to the prior probability of
the intended utterance multiplied by the probability of the in-
tended utterance being corrupted to the perceived utterance
(See Equation 1):

P(Si|Sp) ∝ P(Si)P(Si → Sp) (1)

where P(Si|Sp) is the probability of the intended utterance
given the perceived utterance, P(Si) is the prior probability
of the intended utterance, and P(Si → Sp) is the probability
of the perceived utterance (Sp) given the intended utterance
(Si). If the perceived utterance is butter and bread, for ex-
ample, the listener can infer the probability that the intended
utterance was bread and butter or butter and bread.

Gibson et al. (2013)’s model made a variety of interest-
ing predictions. For example, the model predicted that when
people are presented with an implausible sentence (e.g., the
mother gave the candle the daughter), they should be more
likely to interpret the plausible version of the sentence (e.g.,
the mother gave the candle to the daughter) if there is in-
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creased noise (e.g., by adding syntactic errors to the filler
items, such as a deleted function word). Their model also
predicted that increasing the likelihood of implausible events
(e.g., by adding more filler items that were implausible, such
as the girl was kicked by the ball) should increase the rate
of implausible interpretations of the sentence. Interestingly
both of these results were born out in their experimental data.
In a follow up study, Poppels & Levy (2016) further demon-
strated that word-exchanges (e.g., The ball kicked the girl vs
The girl kicked the ball) are also taken into account by com-
prehenders. These results taken together suggest that humans
do utilize a noisy-channel system in processing.

In addition to Gibson et al. (2013), previous research has
demonstrated that noisy-channel processing models may also
account for certain types of regularization (e.g., Ferdinand et
al., 2019; Schneider et al., 2020). For example, as mentioned
earlier, Schneider et al. (2020) has demonstrated that a noisy-
channel model can account for some rule-following regular-
ization processes (e.g., morphological regularization). How-
ever, it is unclear whether noisy-channel processing models
can also account for frequency-dependent preference extrem-
ity.

Present Study
Given the evidence of noisy-channel processing, it is possi-
ble that the frequency-dependent preference extremity that
Morgan & Levy (2016b) saw is a product of listeners’ noisy-
channel processing. Perhaps when learners hear the phrase
butter and bread, they think the speaker intended bread and
butter, which results in an activation of bread and butter even
though they didn’t hear it. This activation could potentially
even be stronger for bread and butter than butter and bread
in cases where the listener thinks the speaker made a mistake.
Further, this may compound over time for high frequency
items, but not for low frequency items. Thus, the present
study examines whether Gibson et al. (2013)’s noisy-channel
processing model can also predict frequency-dependent pref-
erence extremity across generations of language transmis-
sion.

Dataset
Following Morgan & Levy (2016b), we use Morgan & Levy
(2015)’s corpus of 594 Noun-Noun binomial expressions
(e.g., bread and butter). There is evidence that human bi-
nomial ordering preferences are driven by a combination of
generative preferences and observed preferences. Genera-
tive preferences are abstract constraints on ordering prefer-
ences, such as a preference for short words before long words,
or male-coded terms before female-coded terms. The ob-
served preference for a given binomial is the percentage that
a given binomial occurs in alphabetical vs nonalphabetical
form. That is, if cats and dogs appears 40 times in a cor-
pus, and dogs and cats appears 60 times, then the observed
preference for the alphabetical form is 0.4. The corpus also
contains the overall frequency (total count of alphabetical and
nonalphabetical forms for a given binomial) which has been

Figure 1: The left plot is a plot of the observed orderings of
binomials in the corpus data from Morgan & Levy (2015), the
right is the plot of the generative preferences of binomials in
the same corpus.

shown to affect the strength of ordering preferences (Morgan
& Levy, 2016b). A detailed description of the constraints is
listed below:

1. The estimated generative preferences for each binomial,
which are values between 0 and 1 representing the alpha-
betical ordering preferences (a neutral reference order), es-
timated from various phonological and semantic features
that are known to influence binomial ordering preferences
(Morgan & Levy, 2015). The generative constraints are
calculated using Morgan & Levy (2015)’s model. Values
closer to zero represent a generative preference for the non-
alphabetical order, while values closer to 1 represent a gen-
erative preference for the alphabetical order.

2. The observed binomial orderings preferences (hereafter:
observed preferences) which are the proportion of bino-
mial orderings that are in alphabetical order for a given
binomial. A visualization of the distribution of observed
preferences and generative preferences is included below
in Figure 1.

3. The overall frequency of a binomial expression (the fre-
quency of AandB plus the frequency of BandA). Frequen-
cies were obtained from the Google Books n-grams cor-
pus (Lin et al., 2012), which is orders of magnitude larger
than the language experience of an individual speaker, and
thus provides reliable frequency estimates for these expres-
sions.

Model
Following Morgan & Levy (2016b), we use a 2-alternative it-
erated learning paradigm. In our iterated learning paradigm,
at each generation, learners hear N tokens of a given binomial
with some in alphabetical (AandB) and some in nonalphabet-
ical (BandA) order. The learner’s goal is to learn the ordering
preferences for each binomial. After hearing all N tokens, the
learner then produces N tokens to the next generation. This
process then repeats. Morgan & Levy (2016b) used a beta-
binomial model: A learner has some prior over binomial or-
dering preferences, which can be expressed as pseudocounts
favoring each order (e.g. 3 pseudocounts for AandB and 7 for
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BandA). Each time the learner hears a binomial, they update
their beliefs by adding 1 count to the perceived order, e.g. if
they heard AandB, adding 1 AandB count. We modify this by
instead having the learner update their beliefs in proportion to
what they believe the intended order was: e.g. if they believe
the intended utterance was AandB with 50% probability and
BandA with 50% probability, they will add 0.5 to each count.
These updated beliefs then influence their beliefs about future
intended utterances (Eq. 1).

Specifically, the prior probability over the binomial order-
ing preferences, P(Si), follows Equations 2 and 3. α1 and
α2 are pseudocounts of the alphabetical and nonalphabetical
forms respectively.

Si ∼ Bernoulli(ptheta) (2)

ptheta ∼ Beta(α1,α2) (3)

After hearing a token, learners compute P(Si = AandB|Sp)
according to Equation 1. P(Si → Sp) is determined by a fixed
noise parameter, which we will call pnoise. pnoise represents
the learner’s belief of how likely a binomial ordering is to
have been swapped (i.e., AandB being swapped to BandA or
vice versa).

To initialize ptheta, and thus P(Si), before the learner hears
any data, we used the mean and concentration parametriza-
tion of the beta distribution. The mean (µ) represents the ex-
pectation of the distribution (the mean value of draws from
the distribution). The concentration parameter (ν) describes
how dense the distribution is. Before the learner hears any
data, µ is equal to the generative preference for the binomial
(taken from Morgan & Levy, 2016b). ν is a free parameter,
set to 10 for all simulations in this paper.1 α1 and α2 can also
be expressed in terms of µ and ν:

α1 = µ ·ν (4)

α2 = (1−µ) ·ν (5)

For all future tokens, learners will use the updated P(Si)
from the previous token, where P(Si = AandB) is the expec-
tation of pθ. Crucially, this value will be different for each
token of learning due to the update that occurs on the previ-
ous token.

P(Si = AandB) = E(pθ) (6)

We then use P(Si) and pnoise to compute P(Si|Sp), follow-
ing Equation 1. If the perceived binomial is alphabetical
(AandB), we compute the unnormalized probability of the
alphabetical and nonalphabetical orderings according to the
below equations. Note that the process is comparable if the
perceived binomial is nonalphabetical.

1Changing ν does not qualitatively change the pattern of the re-
sults for any simulations in the paper, as long as it’s greater than
2.

Praw(Si = AandB|Sp = AandB)

= P(Si = AandB) · (1− pnoise) (7)

Praw(Si = BandA|Sp = AandB)

= (1−P(Si = AandB)) · pnoise (8)

After calculating the unnormalized (raw) probabilities,
they are then normalized:

p̂α =
Praw(Si=AandB|Sp=AandB)

Praw(Si=AandB|Sp=AandB)+Praw(Si=BandA|Sp=AandB) (9)

p̂¬α = 1− p̂α (10)

where p̂α is the probability that the intended binomial order
was the alphabetical order, and p̂¬α is the probability that the
intended binomial order was the nonalphabetical order.

We then update α′
1 and α′

2 to be used as the parameters
of pθ, and thus P(Si), when the learner hears the next token.
This update is done according to the following equation:

α
′
1 = α1 + p̂α (11)

α
′
2 = α2 + p̂¬α (12)

Note that when the learner hears any binomial, they up-
date their beliefs about the probability of both the alphabeti-
cal and nonalphabetical forms of the binomial (in proportion
to how likely they believe each ordering was intended by the
speaker).

When the learner is done hearing N tokens and updating
their beliefs of P(Si) for a given binomial, they then produce
N tokens for the next generation of learners. These are gener-
ated binomially, where θ = E(pθ) is the inferred probability
of the alphabetical form of a given binomial. For the first
generation of speakers (before any learning has occurred), θ

is initialized at 0.5.
When producing each token, there is also a possibility that

the speaker makes an error and produces an unintended or-
dering of the binomial. The speaker error is analogous to
a speaker choosing to produce a binomial ordering (AandB
or BandA), and then accidentally flipping it. For example,
perhaps they intended to say butter and bread, but acciden-
tally said bread and butter (or vice versa). Note that the
“unintended ordering” is whichever order the speaker did not
choose to produce on that trial, regardless of the overall pref-
erence for the binomial. In order to model this, the speaker
produces a token in the unintended order with probability
pSpeakerNoise. This is a fixed parameter in the model and re-
mains constant across binomials and generations.

This process continues iteratively for ngen generations.
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Figure 2: A plot of the distribution of simulated binomials
at the 500th generation, varying in frequency. The top value
represents N, which is the overall frequency of a binomial
regardless of ordering (i.e., count(AandB) + count(BandA)).
On the x-axis is the predicted probability of producing the bi-
nomial in alphabetical form. On the y-axis is probability den-
sity. Speaker and listener noise was set to 0. The generative
preference was 0.6, and nu was set to 10. 1000 chains were
run. Note that all values of N produce dense distributions
clustered around 0.6 (i.e., there is no frequency-dependent
preference extremity).

Results
We present our results in two main sections. The first section
demonstrates the effects of the speaker and listener noise pa-
rameters (pnoise and pSpeakerNoise respectively) on simulations
of individual binomials. The aim of this section is to exam-
ine whether the model can account for frequency-dependent
preference extremity across individual binomials varying in
frequency.

The second section compares our model’s predicted bino-
mial orderings across a range of binomials to the real-world
corpus-wide distribution. In this section, rather than simulat-
ing individual binomials, we simulate the distribution of bi-
nomial orderings across the entire dataset of binomials from
Morgan & Levy (2015) with the intent of examining whether
our model can capture the corpus-wide distribution.

Speaker vs Listener Noise
First we demonstrate that frequency-dependent preference
extremity does not arise when there is no listener or speaker
noise.2 Instead we see convergence to the prior, which is
expected following Griffiths & Kalish (2007). They demon-
strated that when learners sample from the posterior in an iter-
ated learning paradigm, the stationary distribution converges
to the prior. To confirm this, we simulated the evolution of
a single binomial across 500 generations with various N (50,
100, 500, 1000, and 10,000). The generative preference was
0.6. 1000 chains were run. We then examined the model’s
inferred ordering preference in the final generation. A visual-
ization of the results is presented in Figure 2.

We then systematically manipulated N, listener noise
(pnoise) and speaker noise (pSpeakerNoise). Specifically, we var-
ied N across 100, 1000, and 10000, and listener and speaker

2All code and results can be found publicly available here:
https://github.com/znhoughton/Noisy-Channel-Iterated
-Learning

noise were varied across 0, 0.033, 0.066, and 0.1. We ran
simulations for every combination of these values (Figure 3.
For these simulations, the generative preference was set to 0.6
and 1000 chains were run across 500 generations.

Our results suggest that frequency-dependent preference
extremity does arise from the model when noise is introduced,
but only if listener noise is greater than speaker noise. Further
our results demonstrate that if listener noise is greater than
speaker noise, then the greater the difference between the lis-
tener and speaker noise, the stronger the preference extremity
effect (this is demonstrated by moving vertically down the
column labeled pSpeakerNoise = 0 in Figure 3).

Interestingly this preference extremity disappears if the lis-
tener’s noise parameter is less than or equal to the speaker’s
noise parameter. For example, notice how if you split the
plot along the diagonal, all the plots on the top half, includ-
ing the diagonal, show no evidence of preference extremity.
These graphs are all visualizations where the speaker noise is
greater than or equal to the listener noise.

It is useful to revisit here what the speaker and listener
noise parameters represent. The speaker noise parameter is
how often the speaker produces an error and the listener noise
parameter is the listeners’ belief of how noisy the environ-
ment is. Note that a speaker error here is not whether the
speaker produces the more frequent binomial ordering, but
rather whether the speaker produces the intended binomial or-
dering. In other words, if a speaker intends to produce butter
and bread, and instead produces bread and butter, this is an
error in our model. Framed this way, one explanation for our
results is that when the listener is inferring more noise than
the speakers are producing, they are relying more on their in-
ferences, which can become more and more extreme. On the
other hand, if they’re not inferring enough noise, then they are
relying more on the data. The greater the speaker noise, due
to how we operationalized speaker noise, the more balanced
the data will be.

Thus our model makes a novel prediction: In order to ac-
count for frequency-dependent preference extremity, listeners
must be inferring more noise than speakers are actually pro-
ducing.

Corpus Data
Finally, we now demonstrate that our model also predicts the
language-wide distribution of binomial preference strengths
seen in the corpus data. In order to demonstrate this, we sim-
ulated model predictions for all 594 binomials from Morgan
& Levy (2015). The model estimated the ordering prefer-
ence across 500 generations with 10 chains each. Values for
the generative preference and N for each binomial were taken
from (Morgan & Levy, 2015)’s corpus. Listener noise was
set to 0.02 and speaker noise to 0.005. Note that we scale N
based on an estimated lifetime exposure of 300 million tokens
(Levy et al., 2012).

Our results demonstrate that our model can approximate
the distribution in the corpus data (See Figure 4). In other
words, the corpus-wide distribution of binomial orderings ac-

3765

https://github.com/znhoughton/Noisy-Channel-Iterated-Learning
https://github.com/znhoughton/Noisy-Channel-Iterated-Learning


Figure 3: Our simulation results for every combination of speaker noise, listener noise, and N. Note that there is an increase
in ordering preference extrmity as N increases when listener noise is greater than speaker noise. N corresponds to the overall
frequency of the binomial (count of AandB plus count of BandA) and varies across 10, 100, and 1000. Both speaker and listener
noise were varied across 0, 0.033, 0.066, and 0.1. The distributions in the plot demonstrate the inferred ordering preference at
the 500th generation.

cording to our model is similar to the ordering we see in actual
corpus data. Further, the distribution is qualitatively similar
regardless of listener and speaker noise parameters, as long
as listener noise is greater than speaker noise. Altogether,
this suggests that our model both captures the phenomenon
of frequency-dependent preference extremity, but also in cap-
turing it our model also predicts a similar distribution of bi-
nomial orderings to what we see in corpus data.

Figure 4: A plot of the stationary distribution of ordering
preferences in the corpus data from Morgan & Levy (2015)
and the distribution of ordering preferences after 500 gener-
ations of our iterated learning model (left and right respec-
tively). For our simulations, the binomial frequencies and
generative preferences were matched with the corpus data.
Listener noise was set to 0.02, and speaker noise was set to
0.005.

Conclusion
The present study examined whether a noisy-channel pro-
cessing model (Gibson et al., 2013) integrated in an iter-
ated learning model (Morgan & Levy, 2016b) can capture
the effects of frequency-dependent preference extremity. Our
results demonstrate that frequency-dependent preference ex-
tremity can emerge from a noisy-channel processing model
when listeners infer more noise in the environment than the
speakers actually produce. Our results also make novel pre-
dictions. For example, if our current model is accurate, it sug-
gests that listeners assume more noise than the speakers pro-
duce. Further, it suggests that for high-frequency binomials,
such as butter and bread, hearing butter and bread may ac-
tivate bread and butter more strongly than butter and bread.
Finally, it seems more unlikely that a speaker would uninten-
tionally produce the unintended ordering for high-frequency
binomials than low-frequency binomials (e.g., producing but-
ter and bread, when they mean to say bread and butter). Thus
it will also be interesting to examine models that don’t use a
fixed speaker-noise parameter.
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