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ABSTRACT OF THE DISSERTATION 

 

Modeling and simulations of electroenzymatic sensors in vitro and in the brain 

 

by  

 

Mackenzie Clay 

Doctor of Philosophy in Chemical Engineering 

University of California, Los Angeles, 2021 

Professor Harold Monbouquette, Chair 

 

Mathematical modeling and simulations were employed to guide successfully the 

optimization of electroenzymatic biosensors for glutamate and for choline and to clarify how well 

such sensors can monitor rapid neurotransmitter signaling in the brain. Improvements in 

methods for accurate neurotransmitter detection in behaving animals are vital for the study of 

many neurological processes. However, the spatial and temporal resolution of even the most 

optimized sensors will be insufficient to record neurotransmitter dynamics directly in vivo, 

thereby causing potential confusion in the analysis of sensor data. Much of this confusion arises 

from the effects in vivo of both neurotransmitter mass transport and clearance on sensor 

recordings. These effects historically have been considered too complex or insignificant to 

investigate but must be included in the proper analysis of sensor data. Surprisingly, a chemical 

engineering approach for the analysis of mass transfer-influenced sensor kinetics has remained 

largely unexplored until now, where the value of the chemical engineering perspective is 

demonstrated through the study of electroenzymatic sensor performance in vivo. 
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To increase spatial and temporal resolution and minimize uncertainties in data analysis, 

a model of an electroenzymatic glutamate sensor was used to reveal the theoretical limits of 

sensor performance and to suggest biosensor modifications that led to a six-fold increase in 

sensitivity to 320 nA µM-1 cm-2 and an order-of-magnitude reduction in intrinsic response time (in 

the absence of external mass transfer limitations) to 80 ms while maintaining excellent 

selectivity. However, the improved response times were still an order of magnitude slower than 

the simulated response time at optimal sensitivity. Due to the importance of sensor response 

times for the proper analysis of data collected from measurements of transient glutamate 

release events in the brain, the difference in these response times was investigated with an 

adapted mathematical model that accounts for noncatalytic, reversible binding of glutamate to 

the proteins within the sensor immobilized enzyme coating. With reasonable parameter 

estimates, the new model was shown to fully resolve the prior discrepancy in sensor response 

time, and a set of future experiments was proposed to confirm the significance of this 

phenomenon.  

The sensor apparent Km, which is a measure of the linear calibration range, was shown 

to be influenced by O2 diffusion into the enzyme coating at relatively high glutamate 

concentrations rather than to be reflective of the immobilized enzyme kinetics, as was 

commonly believed. Such oxygen limitation is observed when bulk O2 concentrations are less 

than 33% of the local glutamate concentration. Similar simulations of choline sensors led to 

highly selective choline sensors with the improved sensitivity and intrinsic response time of 660 

± 40 nA µM-1 cm-2 and 360 ± 50 ms, respectively. It also was determined that O2 may become 

limiting for bulk O2 concentrations <60% of the local choline concentration.  

Simulations of glutamate sensor response to glutamate transients showed that optimized 

sensors would have difficulty resolving Gaussian shaped transient glutamate concentrations 

present for <40 milliseconds in vitro and that optimized sensors in vivo may provide improved 
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temporal resolution, although they are not likely to respond to glutamate concentration changes 

>30 µm from the sensor surface due to diffusional mass transfer limitations and glutamate 

uptake from the brain extracellular space. Detailed analysis of sensor response in vivo showed 

that variability in the possible rate of H2O2 clearance from brain extracellular space could result 

in a sensor recording that exceeds by 300% the value expected from sensor calibration in vitro. 

It was also shown that apparent response times could be significantly slower in vivo than in vitro 

due primarily to slow diffusion in the brain and that the decay in sensor response is not reflective 

of glutamate uptake rates in any meaningful way without extensive contextual details. Three-

dimensional models additionally served to provide insight into the role of electrode size and 

enzyme deposition area in adequately detecting glutamate release from precisely defined and 

localized increases in neuronal activity, representative of typical changes in neuron firing 

frequencies. These results highlighted the benefits of sensor miniaturization and suggested 

probe design modifications to improve spatial resolution and detect glutamate release from 

smaller populations of active synapses. 

 Modeling and simulations of electroenzymatic sensors in vivo have demonstrated the 

value in bringing a chemical engineering approach to bear on the optimization of such sensors 

and on the interpretation of sensor recordings. Further, detailed mathematical modeling that 

includes descriptions of chemical dynamics with mass transfer equations could prove broadly 

valuable in future neuroscience research. 
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Chapter 1: Introduction 

1.1 Motivation 

The brain employs a fascinating and complex system of coordinated chemical and 

electrical signals that originate from the interplay of chemical transport and reaction rates. Much 

remains unknown about these signaling pathways, particularly within the contexts of 

neurological damage or disease, which has prompted the invention of numerous electrical, 

chemical, and optical sensing techniques.1-5 Each technique and design is intended to measure 

a particular aspect of neurotransmission, which is necessary considering the complexity of 

neurological systems; resolution is often desired at micrometer length scales and millisecond 

time scales.6-8 Electroenzymatic biosensors, which rely on enzymes for selective neurochemical 

analyte recognition and on electrochemical signal transduction, provide the best spatiotemporal 

resolution for chemical sensing but have been limited to electrode sizes >6000 µm2 (large 

enough to maintain distinguishable responses) and reported response times of ~1 s.2 

Improvements to these sensors are needed for the electrochemical sensing of prominent 

neurochemicals to reach desired levels of accuracy and resolution, and understanding the 

theoretical performance limits of such sensors is instrumental in developing optimized designs. 

With non-ideal spatiotemporal resolution, these sensors are still tremendously useful,9 although 

it has remained unclear how well they record the actual chemical dynamics in the brain due to 

their present spatiotemporal resolutions. Improper analysis of data collected by sensors with 

non-ideal spatiotemporal resolution can lead to underestimates of transient concentrations and 

to a distorted picture of their concentration time-course in the brain. These concerns have not 

been addressed rigorously in the literature to date, limiting the conclusions that can be 

definitively drawn from experimental studies.  

Both sensor optimization and analyses of in vivo performance can be greatly aided by 

detailed mathematical modeling and simulations based on fundamental mass transport 

equations, which historically have been constrained to simplified studies of glucose sensors, 
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often without modeling time dependence (including sensor response time) or considering the 

dynamic environment in which the sensor is used. With commercial partial differential equation 

solvers based on the finite element technique, sensor performance can be simulated by 

modeling chemical transport and reaction rates with full control over model parameters and in 

unprecedented detail. This control enables theoretical optimization to sensor design and 

simulations of sensor responses to be done under any environmental conditions, including 

simulations of sensor calibrations (in vitro) and after implantation (in vivo). The work presented 

here has the potential to revolutionize how the biological data gathered by numerous types of 

sensors is analyzed, in many cases where neuroscientists working with sensors have not 

attempted to consider how mass transport influences sensor response. This will provide a much 

clearer understanding of actual neurochemical dynamics and the processes governing them. 

Improving our understanding of the chemical processes of the brain and nervous system is 

fundamental to understand the brain in neurological development, deteriorative aging, motor 

and sympathetic functions, and also in cases of neurological damage and disease. 

 

1.2 Sensor operation and characterization  

 When a neurotransmitter is released into a synapse or the extracellular space of the 

brain it joins a complex mixture of compounds and macromolecules, and its concentration 

quickly diminishes due to a combination of diffusion through the tortuous extracellular space and 

the biological uptake and clearance mechanisms present in brain tissue. To detect released 

neurotransmitters, sensors must be placed close to the location of their release so that they may 

be detected after minimal reductions in concentration due to diffusion, they must have high 

sensitivities and low detection limits to distinguish between sensor signal and noise, they must 

be selective against the many other compounds in the extracellular fluid, and they must have a 

fast enough response time to measure the neurotransmitter concentration before it dissipates, is 

taken up by nearby cells, or is degraded. Multiple types of electrochemical sensors and 
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operation procedures have been used, although in many cases electroenzymatic sensors 

operated under constant potential amperometry offer the best resolution and specificity, further 

being able to detect non-electrooxidizable compounds through the clever use of an immobilized 

enzyme. Electroenzymatic sensors are often designed as single wire probes or as 

microelectrode arrays,2 with arrays having an advantage in spatial resolution, in the possibility of 

monitoring multiple neurochemicals in roughly the same location, and in the option to include an 

on-probe reference electrode, which removes the need for a separate reference electrode probe 

thereby significantly reducing noise.10 

 Electroenzymatic sensors, including those for glutamate (Glut) and choline (Chol), 

operate as specialized electrochemical sensors that can be placed anywhere in the brain where 

probes can be inserted and can continuously monitor concentrations when operated with 

constant potential amperometry. Immobilized enzyme and polymer coatings are deposited on 

the sensor surface and are fundamental to the mechanism of sensing neurochemicals with 

specificity. Immobilized oxidase enzymes, e.g., glutamate oxidase, are bound to the sensor in 

an outer coating and will specifically catalyze the oxidation of the analyte of interest. This 

produces a quantifiable byproduct, e.g. H2O2 in the case of glutamate oxidase, that can be 

readily oxidized by the underlying electrode to produce a current, thereby allowing for the 

sensing of a non-electrooxidizable species such as Glut. Under ideal circumstances, the current 

produced is proportional to the initial analyte concentration. Sensor response is often converted 

to a concentration measurement through the use of a pre-determined calibration factor unique 

to the sensor; an accurate calibration factor or calibration curve (if response is within a non-

linear regime) is vital for data analysis. Since other biomolecules may be electroactive and may 

react with the underlying electrode to give a current signal, permselective polymers generally 

are deposited first on the electrode surface (under the immobilized enzyme layer) to improve 

selectivity through size and charge exclusion of these potentially interfering species.  
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 Sensors are characterized by their sensitivity, selectivity, detection limit, response time, 

and lifetime or stability, although these properties are not always reported in entirety or in the 

same manner. Generally, characteristics are determined in vitro at (~37° C). Sensitivity can be 

defined in units of nA/µM/cm2, although sensitivities are often given in equivalent units or as the 

calibration factor itself (in units analogous to nA/µM). The detection limit is defined as the 

analyte concentration that results in a signal that is 3x that of the background noise, meaning 

that reported values of detection limits can be misleading (noise filtering methods could affect 

the detection limit, and this is not necessarily a property of the sensor itself). Response times 

are typically measured as the time required for sensor response to climb to 90% of the 

maximum sensor response to a step-change in analyte concentration. Selectivity refers to the 

response of a sensor to the target analyte relative to potentially interfering species. 

 All of these properties depend on the polymer and enzyme coatings. Differences in the 

porosities, effective diffusivities, thicknesses, and concentration of active enzyme in the coatings 

can have a large effect on sensor characteristics, and many polymer films and immobilization 

techniques have been employed to improve sensors through trial-and-error processes.2 The 

state-of-the-art technique in the Monbouquette Group involves electrodeposition of poly-

phenylenediamene followed by dip-coating in Nafion and enzyme immobilization using a PDMS 

stamp or manual deposition of droplets onto sensor sites (immobilization is accomplished using 

a bis(sulfosuccinimidyl)suberate or glutaraldehyde crosslinker).11-14 Polymer coatings must be 

thick enough to block interferents from reaching the underlying electrode and enzyme coatings 

must be thick enough (and with a high enough concentration of immobilized enzyme) to 

turnover analyte at a rate sufficient to generate a measurable signal. Thicker coatings lead to 

higher selectivity and are less dependent on maintaining the functionality of the enzyme over 

time, making them more durable. However, thicker coatings lead to an increased mass transfer 

resistance, which reduces sensitivity and increases response time. Optimized sensors will have 

high sensitivities so that sensing sites can be miniaturized (improving spatial resolution) and fast 



 5 

response times (improving temporal resolution), requiring a careful balancing of layer 

thicknesses. 

 

1.3 Modeling electroenzymatic sensors in vitro 

 Partial differential equations can be used to describe the diffusion and reaction of the 

important chemical species within the porous spaces in the sensor coatings that underlies the 

sensing of neurotransmitters. We assume that the approximations required for the use of Fick’s 

law of diffusion are valid. This includes the assumption that concentrations are dilute, that the 

pores are large enough that molecular mean free paths are not affected by pore walls, and that 

the coating can be considered homogeneous. Models must describe Glut, O2, and H2O2 for Glut 

sensors and Chol, O2, and H2O2 for Chol sensors. Concentrations of these species provide the 

minimum number of dependent variables needed to simulate Glut and Chol sensor performance 

in terms of the enzymatically catalyzed production of H2O2 from Glut or Chol and O2 and the 

electrooxidation of H2O2 on platinum electrodes. Equation 1.1 is the 1-dimensional description of 

the relevant diffusion and reactions, with dependent variables representing the concentrations of 

each chemical species Ci (i = Glut or Chol, O2, and H2O2) within the void space of coating j. 

Each term (the accumulation, diffusion, and reaction terms) in the equations has units 

describing the change in concentration over time in the coating (µM/s), prompting the inclusion 

of the void fraction parameters ei to properly relate the overall volume concentration in terms of 

the void space concentration. The tortuosity and porosity of the coatings reduces effective 

diffusion coefficients within the coating, requiring the inclusion of aj parameters to modify the 

molecular diffusivity in aqueous solution Di to represent the effective diffusivity within the coating 

for driving forces related to gradients in Ci. These aj parameters can be found experimentally or 

approximated by theoretical relations to known parameters, such as a random pore model.15 If 

there is a reaction within the coating, such as the enzymatic turnover of Glut or Chol, it is given 



 6 

by ri,j with the appropriate adjustment to ensure the term represents the concentration change 

over time within the volume of the sensor coating. 
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 Numerical solutions to these sets of partial differential equations provide concentration 

profiles over the spatial domains of the coatings as a function of time. Spatial concentration 

profiles at specific times provide insight into the factors affecting sensor response (such as the 

effect of diffusive resistance within a sensor coating), the efficiency of the sensor in detecting 

the H2O2 produced, and the current produced at the electrode surface (depending on the flux of 

H2O2 at the electrode surface is defined by Equation 1.2, where F is Faraday’s constant, A is the 

electrode area, and the factor of 2 accounts for the two electrons generated for each molecule 

of  H2O2 electrooxidized). Solving the partial differential equations for the time-dependent sensor 

response and concentration profiles also requires boundary conditions within the sensor 

coatings and at the enzyme/solution boundary and initial conditions that define what process is 

being simulated. Between coatings, equal flux conditions are appropriate given the conservation 

of mass constraint along with equal or partitioned concentrations, as appropriate. Initial 

conditions and the condition at the enzyme/solution boundary may vary depending on what is to 

be simulated. For a step-increase in exogenous analyte concentration outside the sensor from 0 

to 10 µM within a well-stirred beaker, appropriate initial conditions within the sensor would 

specify the bulk solution values and the outer boundary condition would specify convective 

mass transfer in the form of Equation 1.3. It can be useful to estimate mass transfer coefficients 

for certain species based on the value of a well-known species coefficient, as described by 

Equation 1.4.16 

 



 7 

current = 2𝐹𝐴𝛼(𝐷)"*"
+,#"$"
+-

    (1.2)  

 

α!𝐷.
+,%
+-
= 𝑚.3𝐶.,/ − 𝐶.5    (1.3)  

 

𝑚. = 6 0%
0#"$"

7
1/3

𝑚)"*"     (1.4)  

 

 Mathematical models of this type have rarely been constructed for the analysis of 

biosensors for neurotransmitters, and have often been based on significant assumptions that 

limit the accuracy and informativeness of model simulations. Further description of previous 

modeling efforts is provided in Chapter 2, along with the preliminary results of a much more 

comprehensive 1-dimensional model of electroenzymatic sensors for Glut. Chapter 3 details a 

refinement of the model with the experimental verification of numerous parameters and the 

successful application of it towards Glut sensor optimization, resulting in unprecedented 

improvements to sensitivity and response time. Chapter 4 presents a hypothesis to explain 

better both theoretical and experimental sensor responses by considering reversible adsorption 

of neurotransmitters to the proteins constituting the sensor’s enzyme coating. Chapter 5 extends 

the sensor model to simulate Chol sensors, showing the broad applicability of the model for 

simulating multiple types of sensors and in the subsequent optimizations of such sensors. 

 

1.4 Modeling electroenzymatic sensors in vivo 

 Perhaps the most useful application of an electroenzymatic sensor model is in simulating 

how well sensors perform in response to real neurological dynamics within the environmental 

conditions of the brain. Due to differences in the temporal resolution of a Glut sensor and the 

temporal resolution required to measure synaptic Glut release, it can be inferred that sensor 
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response will be less than or equal to what it might be in vitro, when responding to the same 

bulk Glut concentration. The extent to which signal is reduced and resolution is lost has 

remained unspecified, leading to the current operating method of ignoring such complications 

when interpreting data and considering sensor response only in comparison to responses at 

different times; thus quantitative measurements are difficult to justify and are often not reported 

with properly validated accuracy. To realistically model Glut sensor response to in vivo 

conditions, a detailed mathematical description of the brain volume exogenous to the sensor 

must be included, which introduces a large number of unknown parameters and complications 

which require additional, careful assumptions about neurotransmitter dynamics. These 

assumptions require referencing (in great depth) the previous findings of experimental studies 

and cleverness in mathematically describing neurotransmitter release and in considering how 

spatiotemporal inconsistencies in diffusion parameters and reaction rates (also depending on 

the region of the brain) can be simulated. 

 General modeling of chemical transport in the extracellular space of the brain follows the 

pioneering works of Nicholson and Hrabetova, who have firmly established the concept of using 

diffusion, reaction, and convection equations to model the brain.17 Continued work with these 

equations to study sensor recordings of neurological dynamics is a natural extension of this 

work. Our ever-increasing ability to model complex systems (due to the continued development 

of the hardware and software used to find numerical solutions to partial differential equations) 

makes this a promising direction for sustained, future research. The diffusion and reaction 

equations developed by Nicholson et al. are similar to those in Equation 1.1, although the 

effective diffusivity in the brain is defined using the void fraction in the brain (ε4 = 0.2) and 

tortuosity (𝜆 = 1.6). Since Glut and H2O2 are naturally removed from extracellular space, it is 

necessary to include the relevant Glut uptake and H2O2 clearance rates, possibly as first-order 

reactions as described by Equation 1.6. 
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 Initial methods to simulate sensor response in vivo and to address the challenges in 

modeling neurological systems are explained in full detail in Chapter 6. The initial goals of this 

work are to quantify sensor response to differences in environmental conditions in vitro and in 

vivo and to provide an estimation of sensor spatial resolution. Further development of the model 

to 3 dimensions is detailed in Chapter 7, where different enzyme immobilization strategies 

(droplet-coating vs stamping) and sensor miniaturizations are investigated for optimal sensor 

performance in response to precisely defined increases in neuronal activity within regions of 

varied sizes, localized near the sensor surface.  
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Chapter 2: A detailed model of electroenzymatic glutamate biosensors to aid in 

sensor optimization and in applications in vivo  

 

Reproduced with permission from:  

Clay, M.; Monbouquette, H. G., A Detailed Model of Electroenzymatic Glutamate Biosensors To 

Aid in Sensor Optimization and in Applications in Vivo. ACS Chem Neurosci 2018, 9 (2), 241-

251.  

Copyright 2018, American Chemical Society. 

 

Abstract 

 Simulations conducted with a detailed model of glutamate biosensor performance 

describe observed sensor performance well, illustrate the limits of sensor performance, and 

suggest a path toward sensor optimization.  Glutamate is the most important excitatory 

neurotransmitter in the brain, and electroenzymatic sensors have emerged as a useful tool for 

the monitoring of glutamate signaling in vivo.  However, the utility of these sensors currently is 

limited by their sensitivity and response time.  A mathematical model of a typical glutamate 

biosensor consisting of a Pt electrode coated with a permselective polymer film and a top layer 

of crosslinked glutamate oxidase has been constructed in terms of differential material balances 

on glutamate, H2O2 and O2 in one spatial dimension.  Simulations suggest that reducing 

thicknesses of the permselective polymer and enzyme layers can increase sensitivity ~6-fold 

and reduce response time ~7-fold, and thereby improve resolution of transient glutamate 

signals.  At currently employed enzyme layer thicknesses, both intrinsic enzyme kinetics and 

enzyme deactivation likely are masked by mass transfer.  However, O2 dependence studies 

show essentially no reduction in signal at the lowest anticipated O2 concentrations for expected 

glutamate concentrations in the brain, and that O2 transport limitations in vitro are anticipated 
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only at glutamate concentrations in the mM range.  Finally, the limitations of current biosensors 

in monitoring glutamate transients is simulated and used to illustrate the need for optimized 

biosensors to report glutamate signaling accurately on a subsecond timescale.  This work 

demonstrates how a detailed model can be used to guide optimization of electroenzymatic 

sensors similar to that for glutamate and to ensure appropriate interpretation of data gathered 

using such biosensors. 

 

2.1 Introduction  

 The rapid and selective sensing of neurotransmitters including dopamine,1-3 

acetylcholine,4-7 and glutamate8-12 with high spatial resolution has demonstrated usefulness for 

the study of neurological disorders as well as normal brain function in a variety of systems.13  

Electrochemical devices based on carbon fibers or on microelectrode arrays (MEAs) on silicon 

or ceramic microprobes have proven particularly well suited for selective neurotransmitter 

monitoring at subsecond resolution with less tissue damage than that associated with typical 

microdialysis probes, although not all analytes are amenable to facile electrochemical 

detection.3, 13-17  Nevertheless, the sensing of multiple analytes on MEAs in vivo promises to be 

a powerful approach for study of the neurochemistry underlying normal and abnormal brain 

function and associated behaviors.  Yet, the optimal construction and use of the various sensing 

sites of differing modality on these MEAs will require adequate mathematical simulations both to 

guide sensor optimization and to interpret properly the data gathered with such sensors. 

 Glutamate (Glut) sensors, for example, most commonly are electroenzymatic biosensors 

operated in constant potential amperometry mode.  Typically, glutamate oxidase (GlutOx) 

serves as the molecular recognition element that catalyzes the oxidation of Glut to a-

ketoglutarate in the presence of molecular oxygen to give ammonia and H2O2. 

 

L-glutamate + H2O + O2 ® a-ketoglutarate + NH3 + H2O2 
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This selective recognition event is transduced, usually by electrooxidation of H2O2 at a platinum 

electrode held at a constant positive potential, to provide a measurable current signal that is 

correlated to Glut concentration.  However, a variety of species exist in brain extracellular fluid 

(ECF) that may be oxidized directly at a platinum electrode at positive potential, therefore one or 

more permselective polymer films are deposited underneath or in conjunction with the 

immobilized GlutOx to prevent electrooxidizable species other than H2O2 from accessing the 

electrode surface.10, 18-22  Such species, including ascorbic acid and dopamine, which typically 

are the most problematic for such Glut sensors, would otherwise cause a false current signal.  A 

variety of polymeric materials have been used as permselective films including polypyrrole 

(PPY), polyethylenediamine (PPD), and Nafion.10, 18  GlutOx has been immobilized in or on 

these various polymer films through methods entailing dip coating, manual spreading, or 

electrodeposition.21, 23-25  Most commonly, GlutOx is immobilized on electrodes by spreading a 

mixture of enzyme and bovine serum albumin (BSA) on the electrode surface and crosslinking 

with glutaraldehyde.23, 24  However, the many variations of methods used produces layers of 

different thicknesses and compositions that directly affect the sensitivity, response time, 

stability, and selectivity of the sensor. 

 Synaptic neurochemical signaling is thought to occur on the millisecond timescale, which 

is much faster than the reported response times of Glut sensors to date, yet more responsive 

sensors would be important to correlate neurochemical signaling with action potentials.  In 

addition, the ideal Glut sensor would be able to resolve Glut signals at much less than 1 µM in 

order to address the controversy regarding Glut concentrations in the brain and to enable use of 

smaller sensing sites similar in area to those used for electrophysiological recordings.  These 

important sensor attributes must be exhibited by an implantable device that can operate with 

high selectivity in the complex chemical and biological environment of the brain.  There is a 

clear need for detailed simulations of transient conditions that can establish the theoretical 
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performance limits of an electroenzymatic Glut biosensor and that can facilitate its 

optimization.26 

 Many mathematical modeling studies of electroenzymatic biosensors based on 

numerical solutions of a modified diffusion equation have been published,27-41 although 

frequently these solutions rely on simplified kinetics or a partial analytical solution,33, 34, 37, 39 are 

limited to the steady state,27, 30-34 and/or do not include the detail necessary (e.g., an additional, 

enzyme-free permselective layer) to guide typical biosensor optimization.27, 30-35, 38  Further, we 

are aware of no published, detailed modeling efforts of electroenzymatic Glut biosensors in 

particular.  Glut sensors for neuroscience applications should be optimized for sensitivity, 

detection limit, selectivity, stability, and response time.  Fortunately, modern, commercially 

available software has made the solution of the applicable partial differential equations more 

straightforward. 

 A new transient model of an electroenzymatic Glut biosensor operated in constant 

potential amperometry mode has been formulated and is described here.  The model 

incorporates an oxygen-dependent rate model for GlutOx and explicit H2O2 electrooxidation 

kinetics,42 as well as a description of internal and external mass transfer of Glut, oxygen and 

H2O2.  In addition, the model describes the immobilized enzyme layer composition and 

thickness, and the effects of permselective films on Glut sensing performance.  Detailed 

simulations using the model show the limits of sensor performance, the impact of controllable 

sensor design parameters on sensor attributes, and how the sensor response relates to actual 

external transients in Glut concentration.  Finally, the mathematical model and accompanying 

assumptions show the contextual relevance of these results and can provide insight for similar 

electroenzymatic sensor devices. 

 

2.2 Results and Discussion 
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2.2.1 Model Simulates the Sensitivity and Response Time of Existing Glutamate 

Biosensors 

Numerical solutions of the linked sets of PDEs and boundary conditions that constitute the 

mathematical model (see below and Supporting Information for model details) provide the 

concentrations of Glut, O2 and H2O2 at all points within the sensor surface coatings over chosen 

periods of time.  This information can in turn be used to determine the response of the simulated 

sensor.  To best represent recent Glut biosensor fabrication methods on arrayed 

microelectrodes,3, 18, 25 initial simulations were conducted to describe the response of base-case 

sensors (with a 10-µm-thick permselective layer, a 20-µm-thick enzyme layer, and a GlutOx 

protein mass fraction, fglutox, in the enzyme layer equal to 0.5) to a 0 to 10 µM step in sample Glut 

concentration at time zero.  Such conditions are common for in vitro calibrations.  Fig. 2.1 shows 

the temporal current response and the steady-state (SS) H2O2 concentration profile.  The model 

predicts a corresponding sensitivity of 60.7 nA/µM/cm2, consistent with experimental values of 

51.3, 63.2, and 152.1 nA/µM/cm2 for sensors made using a Nafion layer, and enzyme 

immobilization using BSA and glutaraldehyde.24, 43, 44  The simulated response time, 0.73 s, also 

matches very closely with experimental response times (0.8 ± 0.2 s).24  Here, response time was 

calculated as the time from the initial step-change in boundary concentration until the current 

reaches 90% of its steady-state (SS) value as is customary for these sensors used in 

neuroscience applications. 

These initial results also provided some important observations regarding the sensor 

response time and the efficiency of H2O2 capture at the electrode surface.  As shown in Fig. 2.1A, 

there is a time lag in current response from when Glut is introduced at t = 0 until current begins 

to increase due to the time required for initial Glut turnover and penetration of H2O2 to the 

electrode surface.  This time lag contributes significantly to the overall response time, which 

demonstrates that response time cannot accurately be determined from the current rise time 

alone. 
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Figure 2.1.  A. Temporal response of a base-case sensor (10 µm Nafion layer, 20 µm GlutOx layer) to a 10 µM step 

in bulk sample Glut concentration with sample O2 concentration at 270 µM and B. the corresponding steady-state 

H2O2 concentration profile within the sensor layers.  Note that the outer edge of the Nafion layer is at 10 µm and the 

outer edge of the sensor is at 30 µm. 

 

In addition, the SS H2O2 concentration profile (Fig. 2.1B) shows that much of the H2O2 

generated in the enzyme layer is lost back to the sample bulk solution.  Calculations based on 

the flux toward the electrode surface compared to that toward the sample solution, indicate that 

only 3.6% of the H2O2 generated is electrooxidized at the electrode and contributes to the current 

signal.  The concentration profile also shows that most H2O2 is produced within the first few 

microns into the enzyme layer.  In agreement with this peak in the H2O2 profile near the sensor 

surface, the accompanying data for Glut shows that virtually all the analyte is consumed in the 

first few microns into the enzyme layer.  These results strongly suggest that thinner enzyme layers 

could result in better performing sensors. 

 

A B 
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2.2.2 Thinner Permselective Films and Enzyme Layers Are Shown to Give Better 

Performing Sensors   

Optimization of sensor fabrication generally entails incorporating enough enzyme and 

permselective resistance to ensure high sensitivity and selectivity without applying coatings so 

thick that they cause elevated mass transfer resistance and long response time.  Efforts to 

balance these effects have resulted in numerous enzyme immobilization procedures and 

variations of permselective coatings,45 but a theoretical treatment considering both permselective 

and enzyme layer characteristics can illustrate how a given sensor construct may be expected to 

perform relative to its theoretical limits.  Fig. 2.2 shows that by reducing the Nafion and enzyme 

layer thicknesses, the sensitivity and response time theoretically can be improved an order of 

magnitude or more from the base case.  However, the results also show that the enzyme layer 

thickness goes through an optimum for the various Nafion film thicknesses investigated.  In 

general, sensitivity drops sharply for enzyme layer thicknesses less than a micron, which 

corresponds to ~45 enzyme monolayers.  This result is consistent with published experimental 

results showing that enzyme immobilization through electropolymerization of ultra-thin layers 

produces sensors with lower sensitivity.22, 46, 47  The decrease in sensitivity for thicker enzyme 

layers is consistent with the results shown in Fig 2.2 and is due to diffusional mass transfer 

limitations and the loss of the vast majority of H2O2 generated in the enzyme layer back to the 

sample solution.   

Based on results displayed in Fig. 2.2 for an immobilized enzyme concentration 

corresponding to an fglutox of 0.5, sensors with enzyme layer thicknesses less than ~5 µm show 

the greatest potential for improved sensitivity and response time.  At ~5 µm and less, the 

sensitivity increases most sharply with reduced enzyme layer thickness, and the response times 

converge for Nafion layer thicknesses ranging from 0.1 to 5 µm.  For what may be practical layer 

thicknesses of 1 and 3 µm (permselective layer and enzyme layer, respectively), the model 

predicts that sensitivity to Glut increases 6-fold over the base case and that the response time is 
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reduced to 33 ms.  The highest sensitivity (780 nA/µM/cm2) and fastest response time (10 ms) 

was observed for a sensor with a 0.1 µm thick layer of Nafion and a 0.5 µm thick layer of enzyme, 

although for layers this thin, assumptions concerning Nafion continuity (and ability to block 

interfering species such as ascorbate) and enzyme activity (see below) may need further 

consideration and experimental support.  Based on a recent review article,26 the best sensitivities 

achieved are in the vicinity of ~200 nA/µM/cm2, which likely is due to a lack of experimental 

methods to generate very thin layers of active enzyme at high density on electrodes.  The very 

fast theoretical response times for an optimized biosensor are consistent with characteristic times 

for enzyme-catalyzed reaction, based on kcat, and for species mass transport, based on 

diffusivities and diffusion lengths; yet current experimental response times are in the ~1 s range, 

also due to overly thick enzyme and polymer layers.  It is important to recognize here that these 

theoretical optima for sensitivity and response time are subject to the modeling assumptions 

described below and may not be experimentally attainable, however these simulation results do 

support the subjective conclusion that the performance of Glut biosensors can be improved 

significantly. 
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Figure 2.2.  A. Sensor sensitivity based on steady-state response to a 10 µM Glut step change as a function of 

Nafion and enzyme layer thicknesses, and B. sensor response time (bottom) also as a function of layer thicknesses.  

In all cases, fglutox = 0.5 and sample O2 concentration equal to 270 µM. 

 

2.2.3 Effect of Enzyme Loading and Activity   

Improvements to electroenzymatic glutamate sensors also have been accomplished 

through fabrication procedures that have increased the amount of enzyme deposited on the 

sensor sites, and efforts to do this have been analyzed experimentally through studies that 

measure enzyme loading and functionality indirectly.48  The modeling approach used here 

enables direct investigation of the effect of deposited enzyme concentration on sensor 

performance and thereby shows what can be expected when enzyme loading has been optimized 

experimentally. 

For existing sensor designs, an easy design modification to investigate a change in 

enzyme loading without impacting catalytic layer thickness would be to mix a different proportion 

of GlutOx with BSA, thereby increasing or decreasing fglutox and producing a different enzyme 

A B 
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concentration in the deposited layer.  To test independently the effect of varied active enzyme 

concentration in the catalytic layer, fglutox was varied from 0.01 to 0.9 for the base case sensor. 

Interestingly, the current versus time plots in response to a 10 µM Glut step change show 

almost no difference over the broad range of fglutox examined (Fig. 2.3A).  The corresponding SS 

concentration profiles of Glut and H2O2 give insight into these results (Fig. 2.3B).  As enzyme 

concentration decreases, more Glut diffuses farther into the enzyme layer before being oxidized 

to give H2O2, a phenomenon also observed in the simulation of similar glucose biosensors.38 Even 

at low enzyme concentrations corresponding to fglutox = 0.10, Glut is completely consumed within 

about 3 µm of the outer edge of the sensor, suggesting that the fraction of active enzyme has little 

to no effect for enzyme thicknesses much greater than a few microns.  These results also suggest 

that the actual rate of GlutOx deactivation may be masked by mass transfer effects in sensors 

with thick enzyme layers,49 since GlutOx deactivation essentially results in a decrease in fglutox with 

time.  If the lifetime of an implanted, electroenyzmatic Glut sensor is limited by GlutOx deactivation 

upon immobilization or by later exposure to H2O2, for example, these simulations also indicate 

that it may not be beneficial to construct sensors with the thinnest enzyme layers predicted to be 

optimal (Fig. 2.2). 
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Figure 2.3.  A. Current response to a 10-µM step change in Glut for sensors with 10-µm-thick Nafion and 20-µm-thick 

enzyme layers, where the fglutox is varied from 0.01 to 0.9, and the sample O2 concentration equals 270 µM.  B. 

Corresponding plots of SS Glut and H2O2 concentration profiles in the Nafion and enzyme layers.  Note that the outer 

edge of the Nafion layer is at 10 µm and the outer edge of the sensor is at 30 µm. 

 

2.2.4 Mass Transfer Resistance and Oxygen Limitations Complicate Analysis of 

Immobilized Enzyme Kinetics   

In the development of optimized electroenzymatic sensors, sensor performance is often 

tested over a range of substrate (i.e., analyte) concentrations, and the measured signal commonly 

follows a trend resembling Michaelis-Menten kinetics (the apparent Km represents the 

concentration of analyte that produces half of the maximum response, and the apparent kcat is 

related to the maximum response).  Thus, sensor performance is often evaluated using apparent 

sensor Michaelis-Menten parameters.  Mass transfer resistance and oxygen limitations may 

explain in large part (enzyme crowding, crosslinking and deactivation may also contribute) the 

observed differences between sensor and intrinsic enzymatic values for Km and kcat, although the 

detailed physical basis for these differences have not been fully explored.  Nevertheless, it might 
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be expected that the apparent kinetic parameters describing performance of an electroenzymatic 

sensor are shifted in a similar, straightforward manner away from the intrinsic, free solution values 

of the immobilized enzyme for all biosensors due to mass transfer effects and O2 limitations, but 

the simulations of Glut biosensors shown below demonstrate that simple generalizations cannot 

be constructed.  It is noteworthy here that the range of substrate concentrations that must be 

explored in order to estimate a sensor Km typically extends up to an order of magnitude or more 

beyond that observed in vivo.  Also, for these relatively high concentrations of Glut, levels of H2O2 

near the electrode surface begin to affect the electrooxidation rate, further justifying the use of 

explicit electrooxidation kinetics in our model. 

To investigate the apparent Km of Glut biosensors and any complications due to mass 

transport resistance or O2 limitations, the model was used to simulate the SS response to Glut 

ranging from 0.1 to 30 mM for biosensors with varied enzyme layer thicknesses.  In order to 

highlight the effect of the enzyme coating, the permselective (Nafion) film was reduced to 10 nm 

in thickness so that its mass transfer resistance could be ignored.34, 50  It may be expected that a 

sensor with a thinner enzyme deposit (and therefore reduced mass transfer resistance) would 

display apparent kinetics that more closely correspond to the intrinsic kinetics of GlutOx.  

However, Fig. 2.4 shows that even for enzyme layers 1 µm thick, the sensor Km (0.6 mM) is 

considerably larger than that reported for the free enzyme in oxygen-saturated solution (0.173 

mM), and even for layers 0.1 µm thick, the sensor Km is 0.3 mM.  It is important to note that these 

Km values were generated under conditions affected by oxygen concentration (since the O2 

concentration at saturation is well below the intrinsic Km,O2 and do not represent intrinsic enzyme 

kinetics, although mass transfer influence and oxygen limitation are more evident for the 

immobilized enzyme.  An additional consequence of the oxygen transport limitations is a reduced 

apparent kcat, which further complicates analysis of the immobilized enzyme kinetics underlying 

biosensor performance.  Construction of biosensors with thinner immobilized enzyme layers might 

be expected to bring apparent kcat values more in line with the free enzyme, but sensors with the 
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thinnest enzyme coatings display a further reduced apparent kcat, since a greater fraction of the 

produced H2O2 is swept into the bulk solution due to shorter diffusion distances to the sensor 

surface. 

 

 

Figure 2.4.  Modeled SS response of sensors with varied enzyme layer thicknesses and a permselective layer of 

negligible transport resistance.  In all cases, fglutox = 0.5 and the sample O2 concentration equals 270 µM. 

 

For thicker immobilized enzyme coatings, the sensor current response is linear to a higher 

Glut concentration until the maximum current at which O2 becomes fully limiting (Fig. 2.4).  The 

thickest layers, with a correspondingly greater mass transfer resistance, might be expected to 

have a lower maximum current response.  However, since oxygen is produced at the electrode 

surface when H2O2 is electrooxidized, Glut that has diffused deep into the enzyme layer can be 

turned over to produce H2O2 much closer to the electrode surface.  This mitigates the increased 

mass transfer resistance present in thicker deposits, and causes sensors to operate in a 
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fundamentally different manner at high Glut concentrations.  This is best understood by examining 

first the concentration profiles of O2, H2O2, and Glut in the thickest enzyme layers (> ~3 µm) at 

saturating Glut concentration (Fig. 2.5).  Under these circumstances, it is evident that O2 does not 

penetrate from the bulk to the electrode surface and is essentially depleted to near zero in a broad 

zone in the center of the layer where the GlutOx-catalyzed reaction rate must be near zero as 

well.  When the bulk Glut concentration is sufficiently high that the concentration at the inner edge 

of the enzyme coating is much greater than Km,glut, the enzyme kinetics are independent of Glut 

concentration, and H2O2 and O2 are cycled in a zone close to the electrode.  This condition 

corresponds to the maximum current observed for sensors with thick enzyme layers and is 

identical for all these sensors, since the enzyme kinetics driving the sensor response are 

independent of Glut concentration.  However, as the enzyme deposit is made thinner (but still 

greater than ~3 µm), the Glut transport resistance is reduced and higher currents at lower Glut 

concentrations are observed, which corresponds to lower sensor Km values.  For enzyme layers 

somewhat less than 3 µm in thickness (Fig. 2.5), increased H2O2 loss to the bulk with 

progressively reduced thicknesses limits both the maximum concentration of H2O2 attained in the 

enzyme layer and the maximum current, despite the fact that greater O2 penetration is achieved 

such that Glut turnover occurs throughout the enzyme layer.  Yet importantly, Glut transport 

resistance also is reduced, and optimal performance in terms of current signal at physiological 

Glut concentrations is observed (as described earlier). Based on this analysis, it should be clear 

that inferences about the state of the enzyme upon immobilization cannot be made 

straightforwardly based on sensor Km and maximum current measurements alone, rather the 

influence of O2 limitations and other mass transfer effects must be considered carefully as well. 
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Figure 2.5.  Concentration profiles of O2, H2O2, and Glut for sensors with 1, 3, or 5 µm thick enzyme coating after 

reaching a steady state with saturating Glut (12 mM). In all cases, fglutox = 0.5 and the sample O2 concentration equals 

270 µM. 

 

2.2.5 Oxygen is Not Expected to Limit Glutamate Sensing in the Brain Under Normal 

Conditions   

In brain extracellular fluid (ECF), Glut concentrations are expected to be ≤10 µM under 

normal circumstances where significant trauma has not occurred.51  Sensor response to this 

range of Glut concentrations in vitro should not be influenced by O2 concentrations, since the 

saturating concentration of O2 in water from air at 25° C is ~270 µM.  However, O2 concentrations 

in ECF can be far lower, commonly 5-50 µM.52  To investigate whether O2 limitations would be a 

problem at the lower expected O2 concentrations in vivo, simulations were generated using base-

case thickness parameters (10 µm Nafion and 20 µm enzyme layers) and otherwise identical 

boundary conditions as those used for Fig. 2.4.  The results presented in Fig. 2.6 show that 
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sensors respond linearly, as expected, until O2 is depleted within the enzyme layer, at which point 

a sensor cannot discern differences in Glut concentration and the response flattens.  At the lowest 

O2 concentration examined (5 µM), the sensors could discern differences in Glut concentration 

up to 15 µM, and for O2 at 25 µM, they could differentiate between Glut concentrations well beyond 

expected ECF levels (Fig. 2.6).  Improved sensors with thinner Nafion and enzyme layers behave 

similarly at the low O2 concentrations expected in the brain.  Thus, these Glut biosensors are 

expected to be useful at relatively low O2 concentrations in vivo. 

 

  

Figure 2.6.  Steady-state response of a base-case sensor to increasing Glut concentrations over the range of O2 

concentrations typical in brain ECF. 

 

2.2.6 Mass Transfer Limitations Cause Distortion of Sensor Output Relative to Pulsed 

Glutamate Signal Input   

 One of the advantages of constant-potential amperometric methods as opposed to other 

methods of detection, including fast cyclic voltammetry, is its potential for near continuous 
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sampling and very rapid response times as illustrated above.53  However, the simulations above 

focused on sensor response to an instantaneous step change in Glut concentration, whereas for 

studies in vivo, the Glut signals commonly would take the form of signal pulses.  A key issue, 

therefore, is the relationship between sensor output and the transient signal input.  A further step, 

which is beyond the scope of this work, would additionally consider how release from synapses 

and diffusion through brain tissue results in a transient concentration at the surface of the sensor.  

As an illustrative preliminary investigation into the ability of the electroenzymatic Glut biosensor 

to track concentration transients in the brain, simulations were run to approximate the case where 

Glut release takes place right at the surface of a sensor (i.e., the outer edge of the enzyme layer).  

The results illustrate the ability of a sensor to describe a Glut signal input, and likely represent the 

best possible signal resolving ability to be expected for these sensors in vivo. 

In this modeling study, the Glut concentration at the surface of the sensor  was changed 

from zero to a maximum in a Gaussian-shaped pulse with respect to time, 

, where Cmax is the maximum bulk sample concentration (taken as 10 µM), tp is the center of the 

pulse (0.5 s), and s is its standard deviation.  The value of 4s represents the approximate time 

that Glut is potentially measurable.  The simulated distortion in the base-case sensor signal 

relative to the imposed concentration pulse at the sensor surface is shown in Fig. 2.7 for pulses 

of s = 0.25 s and s = 0.05 s with the pulsed Glut concentration normalized relative to its maximum 

and the sensor current signal normalized relative to its previously modeled, SS response to the 

maximum Glut concentration of the pulse, Cmax.  As expected, the peak sensor response is time 

shifted relative to that for the input Glut transient, which is representative of the sensor response 

time.  The simulated sensor output also is broadened and skewed relative to the symmetric input 

peak, and the maximum current observed is well short of that expected for 10 µM Glut, based on 

the SS response.  Thus, the base case sensor might not prove reliable for estimation of peak Glut 

concentrations in vivo based on SS calibration data in vitro.  Also, the less steep and asymmetric 
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output signal obtained relative to the input can make the use of such sensor data for determination 

of Glut release and uptake kinetics problematic.  Similar issues have been described in a 

frequency response analysis of glucose biosensors.38 

 

 

Figure 2.7.  Glut concentration at sensor edge (relative to its maximum concentration) and observed current signal 

(relative to the SS current for the maximum Glut concentration).  The solid curves correspond to an input pulse and 

output signal for a Gaussian input with s = 0.25 s and Cmax = 10 µM, and the dashed curves correspond to an input 

with s = 0.05 s and Cmax = 10 µM. 

 

Fig. 2.8A shows the predicted response of the base-case Glut sensor to Glut concentration 

pulses (10 µM peak concentration) of varied s centered at 0.5 s, as well as the response to a step 

change in Glut to 10 µM.  The simulations show that if pulsed Glut is present in solution for less 

than 1 s (s < 0.25 s), the sensor will show less than 75% of the maximum concentration reached.  

If the goal is to observe multiple Glut signals, maintaining full resolution of transients present for 

less than a second is ideal.  Fortunately, simulations suggest that a sensor with thinner coatings 

(1 µm Nafion and 3 µm enzyme) and a response time of 0.03 s, would show little delay, distortion, 

or reduction of response relative to the input signal, and would be able to distinguish between 

instantaneous step changes in concentration as well as concentration pulses (Fig. 2.8B).  These 
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results indicate that sensors with thinner layers can not only have greatly increased sensitivities 

but also could be well suited to measure rapid Glut transients. 

 

  

Figure 2.8.  A. Modeled base-case sensor response to a single pulsed Glut concentration reaching maximum 

glutamate concentration (Cmax = 10 µM) at 0.5 s and with standard deviations ranging from 0.01-0.25 s and to a step 

change in bulk sample Glut concentration to 10 µM for reference.  B. Responses of a sensor with 1 µm Nafion and 3 

µm enzyme layers to the same inputs. 

 

2.2.7 Mass Transfer Resistances Limit Resolution of Sequential Glutamate Signals  

 Based on the simulations above, the increased breadth of the base-case sensor output 

relative to the actual Glut pulse width is expected to be problematic for resolution of a rapid train 

of Glut signals in vivo.  When considering this, it also is important to account for noise that can 

obscure currents within 1 pA16, 24 of each other.  Fig. 2.9 shows how multiple pulses of s = 0.1 s 

separated by 0.3, 0.35, 0.4, and 0.5 s (Fig. 2.9) would be reported by the base-case sensor (Fig. 

2.9A).  Based on these simulations, such concentration peaks in solution must be separated by 

at least 0.35 s seconds to be resolved clearly.  In contrast, sensors with thinner coatings (1 µm 
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Nafion and 3 µm enzyme), and thus faster response times, maintain clear resolution of the same 

pulses (Fig. 2.9B). 

 

 

 

Figure 2.9.  Sensor response to a Glut concentration step change to 10 µM and to two Glut pulses of s = 0.1 s and 

Cmax = 10 µM, separated by 0.3, 0.35, 0.4, and 0.5 s.  A. Base-case sensor response.  B. Response of a sensor with 

1 µm Nafion and 3 µm enzyme layers. 

 

B 

A 
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2.3 Mathematical Model 

2.3.1 Differential Mass Balances and Boundary Conditions   

 The model was developed to represent existing electroenzymatic Glut sensors based on 

an immobilized GlutOx layer deposited on a permselective polymer film atop a Pt electrode held 

at constant potential (Fig. 2.10).24  Three chemical species are of particular interest in modeling 

these Glut biosensors, Glut, H2O2, and O2; and the rates at which they are transported and 

participate in reactions determine the limits of how well a sensor can function.  Transport of and 

reactions involving each of these three species were modeled with time-dependent mass balance 

equations of the general form below, 

 

 

 

where e is the porosity of the enzyme or permselective layer; Ci is the pore concentration of each 

species (i), e.g., Glut, O2 or H2O2; t is time; Deff is the effective diffusivity; x is the distance from 

the Pt electrode surface; and ri is the volumetric reaction rate, which is zero for all species in the 

permselective layer (see Supporting Information for a complete listing of mass balance equations, 

boundary conditions, parameters and parameter values).  The enzyme and permselective 

polymer layers were modeled as separate mathematical domains where equality of fluxes as well 

as solute partitioning were described in appropriate boundary conditions at the interface between 

the layers.  As described above, the enzyme layer typically consists of co-deposited GlutOx and 

BSA, which are crosslinked with glutaraldehyde.  Although the permselective layer commonly 

consists of an electrodeposited film of polypyrrole (PPY) or of polyphenylenediamine (PPD) and 

a dip-coated layer of Nafion,24 this model treated these coatings as one layer of Nafion, since the 

Nafion layer is generally much thicker and poses the dominant mass transfer resistance.  At the 

Pt electrode surface, H2O2 electrooxidation kinetics were modeled explicitly in boundary 

  
ε
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∂t
= −Deff

∂2Ci
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conditions, equating species transport to the consumption and generation of H2O2 and O2, 

respectively, since H2O2 electrooxidation results in the generation of O2 as well as protons.  In 

contrast, the Glut flux at this solid boundary was set equal to zero.  At the outer edge of the 

enzyme layer, which is in contact with the sample environment, transport of the species was 

modeled using appropriate mass transfer coefficients (see below) or the concentration was 

described by a time-dependent function.  Depending on the values of the mass transfer 

coefficients used or the imposition of a time-dependent expression for the concentration of 

species at the enzyme layer/sample interface, the model may be representative of a probe in a 

flow cell used to measure sensor response characteristics or of a probe implanted in brain tissue 

where transients in Glut concentration at the sensor surface might be expected.  Finally, the 

current produced by the sensor was modeled based on the expression for H2O2 electrooxidation, 

which includes a parameter that accounts for reduced Pt surface area due to electrodeposited 

polymer and the influence of local O2 concentration on the electrooxidation rate.42 

 

 

Figure 2.10.  Schematic of the base-case Glut biosensor used in the model with a 10-µm-thick permselective Nafion 

layer and a 20-µm-thick immobilized GlutOx layer. 

 

2.3.2 Modeling Assumptions and Parameter Values   

The formulation of the model equations and the choices of parameter values rely on a 

number of assumptions and approximations.  The following key assumptions were made in 

formulating the differential material balances for species in the enzyme and permselective layers: 

Pt 
Electrode 

Immobilized 
GlutOx Layer 

Nafion 
Layer 

       0 x 
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1. One-dimensional mass transport 

2. Solutions are dilute and layers are homogeneous such that Fick’s Law applies 

3. The enzyme layer void space can be represented by a network of random pores such 

that the model for effective diffusivity of Wakao and Smith54 applies 

4. Enzyme kinetics are not changed by immobilization and can be described by a ping-

pong, dual-substrate mechanism similar to that for other oxidases including glucose 

oxidase55 

5. No enzyme is deactivated during immobilization and enzyme deactivation is not 

important over the time course of the simulations 

6. H2O2 electrooxidation kinetics56 are not affected by species other than H2O2 and O2 

7. Ammonia production does not affect kinetics and its potential electrooxidation does 

not contribute significantly to the current signal 

One-dimensional transport is a reasonable approximation for microelectrodes with characteristic 

dimension exceeding 25 µm,57 which applies well to the ~40 µm ´ ~100 µm microelectrodes 

produced by us.24  The second assumption regarding the applicability of Fick’s law is commonly 

applied in models of this type where concentrations are indeed relatively dilute.  However, the 

enzyme and permselective polymer layers may not be homogeneous in reality, which 

necessitates the use of effective diffusion coefficients and average reaction rates. 

 The effective diffusivities of each species were based on their diffusion coefficients in 

water, Di.58 For the enzyme layer, the water diffusivity was multiplied by the square of the medium 

porosity to give the effective diffusivity in accordance with the random pore model,54 while for the 

permselective layer a simple multiplier, a, was used to match published effective diffusivities in 

Nafion.  Since a large range of diffusivities in Nafion have been reported,59 the values used here 

for a were based on reported measurements of O2 effective diffusivity at a temperature, pressure, 

and water content that resembles biosensor conditions.59, 60 
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 Conditions in the enzyme layer of the biosensor may alter enzyme kinetics significantly as 

a consequence of covalent crosslinking and the high protein concentration.  Recent work on 

enzymes in intracellular environments, for example, has shown that enzymatic rates under such 

crowded conditions may be increased or decreased depending on the enzyme, the reactions 

catalyzed, and the nature of the enzyme microenvironment.61, 62 Many of these changes can be 

explained by considering the effects of reduced void space on mass transport,63-65 which is 

accounted for through the effective diffusivities described above.  However, for lack of applicable 

data, other influences on observed GlutOx kinetics were not included in the model.  Also, it is 

known that glutaraldehyde can cause enzyme deactivation during immobilization, yet as 

discussed below, this may not be a significant concern for thicker enzyme deposits. 

 The rate equation for H2O2 electrooxidation was taken from a study conducted under 

conditions resembling the physiological, where the reaction has been shown to be phosphate-

mediated.66  More complex rate forms and slightly different rate constants than those used here 

have been generated to account for nonlinearities in the reaction rate due to influences of pH, 

chloride ion, temperature, electrode potential, and deficiencies in phosphate.67  However, these 

alternative rate forms apply to conditions that generally are not expected in the brain. 

 The last assumption listed above may constitute a significant approximation, especially if 

the ammonia concentration reaches a level sufficient to overcome any buffering capacity in the 

enzyme layer and causes pH to rise significantly into the alkaline range.  In this situation, enzyme 

activity may be affected and ammonia electrooxidation may occur; however this effect may be 

moderated by the production of protons at the electrode surface as H2O2 is electrooxidized.  It is 

well known that ammonia, and to a lesser extent ammonium,68 is electrooxidized on Pt under 

alkaline conditions; yet, we have not observed ammonia or ammonium ion electrooxidation 

currents above noise on bare Pt or on PPD/Nafion-coated Pt at the operating potential for Glut 

biosensors (0.7 V vs. Ag/AgCl) and at pH 7-11 (data not shown).  Clearly, this model does not 

include a description of all phenomena of potential importance and does entail some important 
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assumptions and approximations; regardless, it can serve as a useful tool to study the interplay 

of kinetics and mass transfer on biosensor performance and as a guide for device optimization 

as described below. 

 A full list of parameters, definitions and values is given in the Supporting Information.  

Parameter values were obtained directly from the literature, measured experimentally, or 

calculated from published experimental data.  The thickness of a dip-coated Nafion layer on a 

microelectrode array site3 has been observed by us using scanning electron microscopy to range 

from 5 to 20 µm, thus the thickness of the permselective Nafion layer was modeled in the base 

case as 10 µm, but was also varied over the range of 0.1 to 20 µm when investigating the effects 

of Nafion layer thickness.  The void fraction (i.e., porosity) of the enzyme layer was set at 0.5, 

whereas that for the permselective layer was chosen based on measured Nafion film void 

fractions.69 

 Parameters related to the GlutOx concentration in the enzyme layer and GlutOx kinetics 

are discussed in detail in the Supporting Information.  Although the reaction mechanism for 

GlutOx has not been established, the enzyme kinetics were modeled according to the common 

ping-pong reaction mechanism of oxidase enzymes.55  Also, Glut concentrations in the brain 

before and after trauma have been measured to range from 1-50 µM,51 in accordance with our 

experimental sensor measurements,24 which guided the range of Glut concentrations 

investigated. 

 Species transport from the sample space to the outer edge of the sensor enzyme layer 

was described in terms of mass transfer coefficients.  Such a mass transfer coefficient has been 

measured for O2 at a microelectrode surface in a flow field,70 and experiments testing sensor 

response time have used flow cells with similar flow rates (~1 cm/s) and dimensions.24  The mass 

transfer coefficients for Glut and H2O2 were estimated based on their molecular diffusivities 

relative to that for O2 and the theoretical relationship between a species diffusivity and its mass 

transfer coefficient.71  The partition coefficient between the electronegative permselective film 
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(Nafion) and the enzyme layer was assumed to be 1 for the charge neutral O2 and H2O2 species 

and 10-3 for negatively charged Glut, thereby essentially excluding Glut from the permselective 

layer.  The equation for the current generated at the electrode surface accounts for two electrons 

liberated with each oxidized H2O2 molecule, platinum electrooxidation kinetics based on the 

concentration of H2O2 and O2 at the electrode surface (see Supporting Information),42 and an 

electrode surface area of 4800 µm2 that is half covered with a polypyrrole permselective film as 

follows from its porosity, which was taken as 0.5.72 

 

2.3.3 Numerical Solution   

 The model was solved using COMSOL (v. 5.2a) using 1D coefficient form PDE physics 

and the standard finite element solver, with time steps as small as 0.1 ms in cases where the 

simulations reached a steady state very rapidly or as boundary conditions required.  Each domain 

was given a coefficient form PDE with local variables and a global variable version to implement 

the partition coefficient.  Advanced physics settings were required to specify the partitioned 

concentrations between layers without disrupting flux continuity.  Error tolerances for all variables 

were set to 10-9.  Solutions were verified to be mesh independent at the settings used, by first 

splitting the combined domains into 100 domain elements (between 6 nm and 0.3 µm in size, 

depending on overall sensor thickness) and then refining to 200 or 300 elements as needed.  To 

smooth the solutions over the first few time steps, the bulk sample Glut concentration was stepped 

from 0 to the specified value over the first 0.01 s, or with further mesh refinement at domain 

boundaries.  Use of the COMSOL software package enabled straightforward exploration of 

parameters representing experimentally controllable characteristics, including enzyme and 

permselective layer thicknesses, and enzyme loading, which might be optimized for improved 

sensor performance. 

 

2.4 Conclusion 
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 A detailed mathematical model of an electroenzymatic glutamate sensor that accounts for 

diffusion and reaction in an immobilized enzyme layer and diffusion across a permselective 

polymer layer to an underlying Pt electrode was constructed without any adjustable parameters.  

The model simulates well the performance of existing glutamate biosensors consisting of 

permselective polymer and enzyme layers of ~10 and ~20 microns in thickness, and illustrates a 

lag in biosensor current response that makes estimation of response time from current rise time 

problematic.  These simulations also show that >95% of H2O2 generated in the thick enzyme 

layers characteristic of current biosensors is lost back to the sample environment, which suggests 

that biosensors constructed with much thinner polymer and enzyme layers would be optimal.  A 

theoretically near-optimal biosensor with polymer and enzyme layers of 1 µm and 3 µm in 

thickness would result in several-fold improvement in response time and sensitivity to ~30 ms and 

~365 nA/µM/cm2; yet these predictions might best be interpreted as qualitative, as they are 

subject to the modeling assumptions described.  Interestingly, for enzyme layers greater than a 

few microns in thickness, the simulations also show that enzyme loading over the practical range 

has very little impact on sensor performance due to mass transfer effects unless much less than 

1% of the enzyme is functional.  This result suggests that enzyme deactivation, which was not 

included in the model, may also be masked by mass transfer effects.  Mass transfer effects, 

including related O2 limitations, also mask intrinsic enzyme kinetics such that the apparent sensor 

Glut Km for GlutOx, even for a very thin 1 µm thick layer, is much higher than what is observed for 

the enzyme in free solution.  Thus, care must be taken in inferring conclusions about the state of 

the immobilized enzyme from these sensor kinetic constants without support from simulations.  

Model simulations also showed that O2 transport limitations are not expected to limit sensor 

performance in discerning glutamate concentrations up to 15 µM for sample O2 concentrations as 

low as 5 µM.  Finally, an analysis of biosensor response to subsecond glutamate pulses of the 

sort that may be representative of glutamate signals in the brain shows the limitations of existing 
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glutamate biosensors and the promise of theoretically optimized biosensors in monitoring such 

signals. 

 The results presented here are specific to electroenzymatic Glut biosensors of the 

construction described, although they can be extended to other electroenzymatic sensors by 

adjusting enzyme layer parameters and those of permselective polymer film(s) as necessary.  

However, the limitations of the model to one spatial dimension makes it difficult to investigate the 

effects of electrode surface roughness, which has been shown to increase sensitivity by more 

than an increase in surface area alone would predict,73 and makes it impossible to optimize 

electrode size or placement on microelectrode array probes.  Extension of the model to three 

spatial dimensions is planned to address these issues and to enable incorporation of probe 

placement into a simulated brain region, where synaptic release and subsequent diffusion and 

uptake could also be modeled, so as to provide insights into operation in vivo of existing and 

theoretically optimized sensors. 
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performance limit  
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Abstract  

 The sensitivity and response time of glutamate sensors based on glutamate oxidase 

immobilized on planar platinum microelectrodes have been improved to near the theoretical 

performance limits predicted by a detailed mathematical model. Microprobes with an array of 

electroenzymatic sensing sites have emerged as useful tools for the monitoring of glutamate 

and other neurotransmitters in vivo; and implemented as such, they can be used to study many 

complex neurological diseases and disorders including Parkinson’s disease and drug addiction. 

However, less than optimal sensitivity and response time has limited the spatiotemporal 

resolution of these promising research tools. A mathematical model has guided systematic 

improvement of an electroenzymatic glutamate microsensor constructed with a 1–2 μm-thick 

crosslinked glutamate oxidase layer and underlying permselective coating of 

polyphenylenediamine and Nafion reduced to less than 200 nm thick. These design 

modifications led to a nearly 6-fold improvement in sensitivity to 320±20 nAμM-1cm-2 at 37°C and 

a  ∼10-fold reduction in response time to 80 ± 10 ms. Importantly, the sensitivity and response 

times were attained while maintaining a low detection limit and excellent selectivity. Direct 
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measurement of the transport properties of the enzyme and polymer layers used to create the 

biosensors enabled improvement of the mathematical model as well. Subsequent model 

simulations indicated that the performance characteristics achieved with the optimized 

biosensors approach the theoretical limits predicted for devices of this construction. Such high-

performance glutamate biosensors will be more effective in vivo at a size closer to cellular 

dimension and will enable better correlation of glutamate signaling events with electrical 

recordings.  

 

3.1 Introduction  

 As was articulated clearly several years ago,1 an understanding of information 

processing in the brain can be had only by unraveling of the interrelated roles of chemical 

neurotransmission and neuronal electrical activity. Great strides have been made in recording 

activity simultaneously from large numbers of interconnected neurons through millisecond 

timescale measurements of action potentials or intracellular Ca2+ changes.2-7 However, 

corresponding tools to monitor chemical neurotransmission with the cellular-scale spatial 

resolution and the single-digit millisecond timescale of synaptic signaling events have yet to 

emerge.8-11 This spatiotemporal mismatch has made problematic the desired correlation of 

chemical neurotransmission with neuronal activity. The problem is made particularly challenging 

by the broad array of chemical species involved that must be detected selectively against the 

complex background of brain extracellular fluid. Microdialysis and related techniques have been 

valuable tools for neurotransmitter measurements, although the typical minute-to-minute time 

resolution limits the detection of rapid neurotransmission events which are known to be much 

faster. 12,13 Electrochemical devices based on microelectrode arrays (MEAs) with 

electroenzymatic sensing sites on silicon or ceramic microprobes have emerged as useful tools 

for the monitoring of glutamate and choline (as surrogate for acetylcholine) in vivo. Our group 
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and others have successfully demonstrated the feasibility of MEAs with response times in the 

∼1 s range for use in the study of complex neurological diseases and disorders including 

Parkinson’s disease and drug addiction.14-16  Yet historically, these sensors have lacked the 

temporal resolution to associate unambiguously release events with local field potentials, and 

certainly not action potentials. Further, sensitivity limitations have required sensing sites on 

probes to be much larger than cellular dimension, thereby limiting spatial resolution. This report 

addresses these challenges through several-fold improvement in the design of a selective 

electroenzymatic sensor for the important excitatory neurotransmitter, glutamate (Glut).  

 

 

Figure 3.1. Schematic of an electroenzymatic glutamate (Glut) sensor with permselective films and a glutamate 

oxidase (GlutOx) enzyme layer.  

 

 An electroenzymatic Glut sensor consists of an electrode upon which one or more 

permselective films are deposited as well as an immobilized enzyme (Fig. 3.1). Typically, 

glutamate oxidase (GlutOx) serves as the enzyme and selective molecular recognition element 

that catalyzes Glut oxidation to a-ketoglutarate with production of hydrogen peroxide (H2O2). 

This recognition event is transduced into an electrical current signal most often through the 

electrooxidation of H2O2 by an underlying Pt electrode poised at oxidizing potential. In this way, 

Glut concentration may be correlated with measured current magnitude. However, the Pt 

electrode generally must be coated with permselective films to allow H2O2 to pass but to reject 
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electrooxidizable interfering species common to brain extracellular fluid such as ascorbic acid 

(AA) that could give rise to false signals. Due to the restricted di!usion of Glut through the 

immobilized GlutOx layer and H2O2 through both the enzyme layer and the underlying 

permselective films, bio- sensor performance is impacted significantly by sensor con- struction. 

A variety of polymeric materials have been used as permselective films including polypyrrole 

(PPy), polyphenylenediamene (PPD) and Nafion.17-19 GlutOx is most commonly immobilized on 

the electrode by spreading a mixture of enzyme and bovine serum albumin (BSA) on the coated 

electrode surface followed by crosslinking with glutaraldehyde. (GAH).9,11,15,16,19-22  

 Our previous simulations of then currently representative Glut sensors of the type 

illustrated in Fig. 3.1 suggested that the majority of the Glut diffusing into the enzyme layer is 

consumed near its outer edge, and that the H2O2 concentration in the layer peaks closer to the 

bulk solution than to the Pt electrode surface.23 The steeper H2O2 concentration gradient in the 

direction of the bulk solution and the larger corresponding flux indicated that the vast majority of 

H2O2 generated by the GlutOx-catalyzed Glut oxidation reaction escapes from the sensor site 

and is not available at the Pt electrode surface to give rise to a current signal. These simulations 

strongly suggest that reducing the enzyme layer thickness while maximizing active enzyme 

concentration to improve H2O2 capture would be an effective strategy to reduce response time 

and to improve sensitivity.  

 This report describes sensors fabricated with thinner permselective films and enzyme 

layers based on the guidance of our simulations. In order to characterize these new sensors, 

the mass transport properties of H2O2 within these permselective and immobilized enzyme films 

were evaluated experimentally using rotating disk electrodes (RDEs). These values provided 

improved parameter estimates for our mathematical model, and enabled demonstration that the 

new Glut biosensors had been improved to near the theoretical performance limit.  

 

3.2 Experimental  
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3.2.1 Reagents  

 Nafion (5 wt% in lower aliphatic alcohols and 15–20% water), m-phenylenediamine (PD), 

pyrrole (Py), bovine serum albumin (BSA) lyophilized powder, glutaraldehyde solution (GAH), L- 

glutamic acid (Glut), L-ascorbic acid (AA), 3-hydroxytyramine (dopamine, DA), sodium 

phosphate dibasic, sodium chloride, HCl (36.5–38%), and hydrogen peroxide solution (30%) 

were purchased from Sigma-Aldrich (St Louis, MO). L-Glutamate oxidase (EC 1.4.3.11) was 

obtained from US Biological. Bis(sulfosuccinimidyl) suberate (BS3) was purchased from Thermo 

Fisher Scientific (Pittsburgh, PA). Ag/AgCl glass-bodied reference electrodes with NaCl 

electrolyte (3 M) and a 0.5 mm-diameter Pt wire auxiliary electrode were obtained from BASi 

(West Lafayette, IN). Sodium phosphate buffer (PBS, pH 7.4) was composed of 50 mM sodium 

phosphate dibasic and 100 mM sodium chloride. Four-inch silicon wafers (p-type boron doped; 

orientation h100i; thickness 150 μm) were purchased from Silicon Valley Microelectronics 

(Santa Clara, CA). The platinum rotating disk electrodes (RDEs) (5.0 mm disk, 12.0 mm OD 

PEEK shroud) were purchased from Pine Research (Durham, NC). Microcloth (PSA, 2-7/8′′) for 

electrode polishing was purchased from Buehler (Lake Bluff, Illinois).  

 

3.2.2 Instrumentation  

 The RDE system (model AFMSRX) was purchased from Pine Research (Durham, NC). 

Microsensors were calibrated using a Versatile Multichannel Potentiostat (model VMP3) 

equipped with the ‘p’ low current option and N’Stat box driven by EC-LAB software (Bio-Logic 

USA, LLC, Knoxville, TN) in a three-electrode configuration consisting of the sensing electrode, 

a Pt wire auxiliary electrode, and a Ag/AgCl reference electrode. The film thicknesses on 

microelectrodes and RDEs were measured using a SEM (Nova 600 SEM/FIB System), a 

Dektak 8 stylus profilometer, and/or a Wyko NT300 optical profiling system.  
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3.2.3 Sensor preparation  

 The silicon-based microelectrode arrays used in this work were manufactured in house 

using microelectromechanical system (MEMS) techniques. The fabrication and array details are 

described in our previous work.11 The microelectrode array probes were 150µm thick, 140 µm 

wide and 9 mm long, with four, 6000 μm2 (40 μm x 150 μm) Pt recording sites arranged in pairs 

at the tip (Fig. 3.2). A PPD film first was electrodeposited on Pt microelectrodes from a 5 mM 

PD solution in phosphate buffered saline (0.1 M PBS) by holding the voltage constant at 0.85 V 

vs. Ag/AgCl until the desired total charge was transferred (7.6 x 10−7 coulombs). Alternatively, a 

PPy film was electrodeposited from 200 mM pyrrole in PBS at 0.85 V vs. Ag/AgCl for 5 min. A 

Nafion layer then was applied by dip-coating a 2% Nafion solution (diluted from stock with 4 : 1 

IPA : water) 3x for PPy/Nafion and only 1x for PPD/Nafion, followed by annealing at 115 °C for 

20 min (115 °C-Nafion) or 180 °C for 4 min (180 °C-Nafion). Next, an immobilized GlutOx 

coating was deposited manually by loading a GlutOx and BSA mixture (dissolved in PBS) on the 

microelectrodes and crosslinking with 174 mM BS3 or 5% GAH vapor for 1 min. After the final 

crosslinking step, sensors were stored dry at 4 °C for 48 h prior to testing.  

 

 

Figure 3.2. Scanning electron microscopy (SEM) image of the microelectrode array probe. 

 

3.2.4 Electrochemical measurement  
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 To determine sensor selectivity and sensitivity, a constant potential of 0.7 V vs. Ag/AgCl 

was applied to the sensors in stirred PBS buffer solution. After current stabilization, AA, DA, 

Glut or H2O2 were added to give final concentrations of 250 μM AA, 10 μM DA, 20–60 μM Glut 

and 20 μM H2O2. The selected concentrations of AA and DA were chosen to be reflective of 

those found in vivo.24-26 To test the response time of the Glut microsensors, two peristaltic 

pump-driven streams of solution (PBS buffer and analyte) flowing from separate pipette tips 

were positioned close to the microprobe tip (Fig. 3.3). Rapid step changes in analyte 

concentration at the microsensors were achieved by alternating between PBS buffer and 

analyte streams by turning pumps on and off.22  

 

Figure 3.3. Testing set-up for microsensor response time. Rapid switching of solution flow onto the microprobe was 

controlled by alternating between pumped streams of PBS buffer and analyte solution.  

 

3.2.5 Diffusion coefficient measurement  

 Diffusion of H2O2 within the PPD, Nafion or immobilized enzyme coatings was 

determined using a Pt RDE. The Pt RDE was polished using a microcloth and a 0.05 μm 

particle suspension, followed by rinsing with DI water and sonication in isopropyl alcohol. Next, 

a PPD, Nafion or enzyme film was deposited onto the electrode surface in the same way 

described in the sensor preparation section above. Linear sweep voltammetry (LSV) from 0.2 V 

to 0.9 V vs. Ag/AgCl was used as well as constant potential amperometry with varied rotation 
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rate (see Results and discussion). Aftermath software was used for collection of voltammetric 

data (Pine Research, Durham, NC).  

 

3.2.6 Mathematical Model and Simulations  

Simulations of sensor performance were generated using an established model for 

electroenzymatic sensors with updated values for transport parameters based on this work, 

adjusted for temperature dependence.23 In the model, sets of partial differential equations 

describe the one-dimensional transport and reaction rates of Glut, O2, and H2O2 within 

separately considered PPD, Nafion, and immobilized enzyme coatings. Boundary conditions 

simulate a step- change in Glut concentration from 0 to 20 μM on the microsensor surface at t = 

0. Numerical solutions of model equations were generated using COMSOL (COMSOL, Inc. Los 

Angeles).  

 

3.3 Results and Discussion  

3.3.1 Optimization of permselective films  

 Our published Glut sensor modeling study showed that permselective film thicknesses 

and transport properties are important parameters to address in sensor optimization.23 

Dopamine (DA) and ascorbic acid (AA) are two common, electroactive interferents found in 

brain extracellular fluid at relatively high concentration that should be rejected by permselective 

films coated on the sensing electrode surface (Fig. 3.1). For what we will refer to as the base-

case microsensor in this study, a PPy film and a Nafion overlayer annealed at 180 °C for 4 min 

(180 °C-Nafion) were used to reject DA and AA, respectively, yet to permit transport of H2O2 to 

the Pt electrode surface. However, this PPy/180 °C-Nafion combination resulted in slow H2O2 

diffusion to the electrode surface and low Glut sensitivity, mostly due to the overly thick Nafion 

coating necessary for adequate AA rejection, which was measured by SEM at 304 ± 87 nm (n = 



 56 

3). Alternatively, when PPD was used as the underlying permselective film, a much thinner 180 

°C-Nafion coating (96 ± 10 nm (n = 5)) was adequate, thereby improving H2O2 sensitivity ∼3-fold 

from 121 ± 52 nA μM−1 cm−2 (n = 4) to 372 ± 70 nA μM−1 cm−2 (n = 15) (Fig. 3.4).  

 The Nafion annealing temperature also impacts sensor performance significantly. In 

order to improve the mechanical stability of Nafion coatings and to reduce water solubility, dip-

coated Nafion films normally must be heated above the glass transition temperature (Tg = 109 

°C for protonated Nafion) to anneal them.27,28 However, the choice of annealing temperature 

and duration of the annealing process also affects Nafion properties. As illustrated in Fig. 4, we 

found that lowering the annealing temperature from 180 °C to 115 °C while increasing the 

baking time from 4 min to 20 min resulted in a further improvement of the H2O2 sensitivity by 

∼25% to 536 ± 69 nA μM−1 cm−2 (n = 15). The improved annealing process resulted in an even 

thinner final Nafion layer thickness of 71 ± 11 nm (n = 5) while retaining excellent selectivity 

against AA. This result is in agreement with the recently published work of Leppänen et al. 

showing that very thin Nafion films can retain effective anion exclusion properties.29  
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Figure 3.4. (a) Comparison of H2O2 sensitivity among sensors prepared with PPy/180 °C-Nafion, PPD/180 °C-

Nafion, and PPD/115 °C-Nafion. (b) The Nafion thicknesses corresponding to the three different sensor preparations. 

Inset: SEM image of a Nafion film on Pt. (c) Representative current responses of PPD/115 °C-Nafion coated sensors 

to 250 μM AA, 5 μM DA, and H2O2 administered in 20 μM concentration increments. (Error bars shown are 95% 

confidence intervals.)  

 

3.3.2 Hydrogen peroxide diffusion coefficient in permselective films and the crosslinked 

GlutOx layer  

 In addition to electrode coating thicknesses, measurements of H2O2 diffusivities in the 

permselective films and crosslinked enzyme layers are needed to improve the accuracy of 

sensor simulations and to better guide sensor optimization. There are three “resistances” that 

can limit the rate of H2O2 oxidation at the coated Pt electrode: (1) the transport of H2O2 in the 

external diffusion boundary layer just above the coated electrode surface, (2) the diffusion of 

H2O2 within the deposited films and (3) the H2O2 electrooxidation kinetics at the Pt surface. The 

overall current density can be described in terms of these serial resistances by a form of the 

Koutecky–Levich equation.17,30-35  

      (3.1)  
1
I
= 1
Ik
+ 1
If
+ 1
Il
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where I is the measured current, Ik is the current in the absence of any mass transfer limitations, 

If is the current when limited totally by diffusion in a film deposited on the electrode and Il is the 

current when limited totally by mass transfer through the liquid boundary layer on the coated or 

uncoated electrode surface. Further, Il can be modeled using the Levich equation, and eqn (3.1) 

then becomes35  

      (3.2)  

where BL is the Levich constant, ω is the electrode rotation rate (radians per s), and C is the 

bulk concentration of H2O2. The Levich constant is a function of H2O2 diffusivity in the bulk liquid, 

Dl, and the kinematic viscosity of the liquid medium, ν, such that35  

      (3.3) 

where n is the stoichiometric number of electrons transferred in the electrode reaction, F is 

Faraday’s constant, and A is the electrode surface area.  

 Representative current–potential (I–E) curves corresponding to bare Pt and Nafion-

coated Pt RDEs in 0.2 mM H2O2 are shown in Fig. 3.5 and 3.6, respectively. The anodic current 

increases initially as the voltage and the electrode rotation rate are increased as expected, while 

water dissociation occurs in the potential region above 0.85–1.0 V vs. Ag/AgCl. The limiting 

current condition (plateau current) on bare Pt (Fig. 3.5) is achieved when the current is limited 

by the rate at which H2O2 is transported to the Pt electrode surface. When Nafion films are 

deposited on the Pt surface, these films ultimately limit the current achievable; and the electrode 

rotation rate, which influences external transport, has little to no impact (Fig. 3.6a). These 

results also show that diffusion of H2O2 was more hindered in 180 °C-Nafion than 115 °C-Nafion.  

 In order to obtain estimates for the diffusivities in Nafion, the current was set at 0.7 V vs. 

Ag/AgCl while the electrode rotation rate was varied. The plot of the inverse of the recorded 

current versus the inverse square root of the electrode rotation rate shows a linear relationship 

1
I
= 1
Ik
+ 1
If
+ 1
BLω

1 2C

BL = 0.62nFADl
2 3ν−1 6
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as expected from Equation 3.2. Since the bathing solution (0.2 mM H2O2 in PBS) is unchanged 

during the whole experiment, the slopes of the lines are about the same (Fig. 3.6b). For the bare 

Pt RDE, extrapolation to infinite rotation rate yields an inverse current intercept close to zero, 

which indicates that the system was limited by mass transfer through the liquid boundary layer. 

Thus, to a good approximation, If may be obtained directly from the plot intercept for the coated 

electrodes assuming that external mass transport to the coated electrodes is approximately the 

same as that for bare Pt. Since If can be defined as a function of Nafion film thickness, δ, and 

the H2O2 effective diffusivity in the Nafion film, Df, according to,35  

𝐼: = 𝑛𝐹𝐴𝐷:𝐶/𝛿     (3.4) 

an estimate for Df may be calculated from the intercept of the Koutecky–Levich plot.  

 

Figure 3.5. Representative current vs. potential curves showing the charge transfer, mass transport controlled 

and water dissociation regions at a bare Pt RDE using a potential sweep rate of 20 mV/s with rotation rates of 

100, 200, 400, 800, 1600 rpm in PBS and 0.2 mM H2O2 solution. 
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Figure 3.6. (a) Oxidation of 0.2 mM H2O2 in PBS (pH 7.4) at Nafion-coated Pt RDEs annealed at 180°C and 

115°C using a potential sweep rate of 20 mV/s with rotation rates of 100, 200, 400, 800, 1600, 2400 rpm. (b) 

Koutecky-Levich plot of data for a bare Pt RDE (gray trace) and for 180°C-Nafion/Pt (blue trace) and 115°C-

Nafion/Pt (red trace) RDEs. Current data were obtained at 0.7 V vs. Ag/AgCl. 

 

 For the larger RDE electrodes, the thickness difference between the dip-coated 180 °C- 

Nafion and 115 °C-Nafion films were more obvious at ∼2 μm and ∼1 μm, respectively, than 

what was observed for our micromachined microelectrode array probes, probably due to the 

substantial differences in geometry. The average values of Df were found to be (1.7 ± 0.2) ́ 10−7 

cm2 s−1 (n = 3) for 180 °C-Nafion and (1.3 ± 0.2) ́ 10−7 cm2 s−1 (n = 3) for 115 °C-Nafion. Since 

these effective diffusivities are approximately the same, these results highlight the importance of 

the thinner 115 °C-Nafion films that still show excellent selectivity against interferents. Also, 

these results are in rough agreement with literature values for effective diffusivity of the slightly 

smaller O2 molecule in Nafion in the range of ∼2 x 10−7 - ~2 x 10−6 cm2 s−1.31,36,37 The broad range 

of values is due primarily to the different preparation conditions for the films and membranes 

studied.  

 The data and estimated diffusivities were further examined by comparing the values of Ik 

and the slope (1/BL) to expected values. Specifically, Ik is the current limited by the kinetics of 
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the electrooxidation of H2O2 on Pt, assuming no mass transfer limitations, so the value of Ik 

should match the value calculated using published reaction kinetics.38 RDE data gave Ik = 0.208 

mA, in general agreement with that derived from published data of 0.273 mA. The measured 

slope was validated by checking consistency with the known value of H2O2 diffusivity at room 

temperature in water, 1.43 x 10−5 cm2 s−1.39 Based on the measured slope and eqn (3.3), a 

comparable diffusivity of 0.94 x 10−5 cm2 s−1 was obtained. Thus, this RDE analysis appears to 

be giving at least semiquantitative results that are well within an order of magnitude of those 

expected.  

 A similar experimental procedure was followed to obtain estimates for H2O2 effective 

diffusivities in the PPD film and in the crosslinked GlutOx deposit. For the PPD film, the mean 

value of the H2O2 diffusion coefficient was found to be (1.7 ± 0.3) x 10−8 cm2 s−1 (n = 3), based on 

the measured film thickness of ∼20 nm. This result is in agreement with literature data for H2O2 

diffusivity in overoxidized polypyrrole (OPPy) (10-8 cm2 s-1), which is a similar polymer.17 The 

average estimated value for the effective H2O2 diffusion coefficient in the GAH-crosslinked 

GlutOx layer on the Pt RDE was found to be ∼1.6 x 10−6 cm2 s−1, which is about an order of 

magnitude less than that in free solution due to a deposit porosity less than unity as well as its 

substantial tortuosity. The effective diffusivities of Glut and O2 in permselective films and the 

GlutOx layer were obtained from the H2O2 effective diffusivities scaled by the ratio of the 

molecular diffusivities with that of H2O2. These measured values for deposit thicknesses and 

effective diffusivities provide improved parameters for our simulation studies described below.  

 

3.3.3 Effect of Enzyme loading and Activity  

 Most commonly, GlutOx is immobilized on electrodes by spreading a mixture of GlutOx 

and BSA on the electrode surface and crosslinking with GAH. However, the many variations of 

methods used produces layers of different compositions and thicknesses that directly affect the 
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sensor performance. Typical reported immobilized enzyme layer thicknesses have been in the 

10-20 μm range. However, our simulation results suggest immobilized GlutOx layers 1-3 μm 

thick may be optimal to ensure high sensitivity while achieving rapid response time (if GlutOx 

activity is well preserved during the immobilization process).23 Therefore, our experimental 

strategy was first to improve enzyme activity retention during the immobilization process, and 

then to optimize systematically the layer thickness.  

 Homobifunctional crosslinker, BS3, which like GAH also reacts with amine groups, 

appeared to be a good alternative due to its longer spacer arm, 11.4 Å vs. 5 Å. We 

hypothesized that this longer spacer arm would result in less enzyme crowding and better 

access to enzyme active sites. Also, the BS3-crosslinked enzyme layer might be more 

permeable overall. Crosslinking conditions for both BS3 and GAH were investigated individually 

before making comparisons. GAH concentrations and vapor exposure times were varied as 

were BS3 concentrations to find the best conditions for use of each crosslinker. After this simple 

optimization procedure, sensors made with enzyme crosslinked via BS3 showed ∼1.5-fold 

improvement in sensitivity compared to those crosslinked via GAH, which showed sensitivity of 

259 ± 25 nA μM−1 cm−2 (n = 11) and 196 ± 24 nA μM−1 cm−2 (n = 11), respectively. Further, the 

importance of permselective film and enzyme layer thicknesses on sensor performance should 

be evident here again. Compared to our base-case sensors, a ∼4-fold improvement in Glut 

sensitivity was achieved merely by applying a thinner permselective film and halving the 

enzyme layer thickness to ∼5 μm even while using the inferior crosslinker, GAH (Fig. 3.7).  

 For our existing sensor designs, a direct investigation of the effect of deposited enzyme 

concentration on sensor performance can be performed easily by changing the relative 

proportion of GlutOx and BSA without changing enzyme layer thickness. The protein mass 

fraction of GlutOx (fglutox) was varied from 0.02 to 0.95 for the sensors coated optimally with PPD 

and 115 °C-Nafion and crosslinked with BS3. Based on the experimental results shown in Fig. 
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3.8, Glut sensitivity goes through a peak at fglutox = ∼0.4. Theoretically, as GlutOx mass fraction 

decreases for thicker enzyme layers, more Glut diffuses deeper into the layer before being 

oxidized resulting in more penetration of H2O2 to the electrode surface, less loss back to the bulk 

medium, and a greater current signal.23,40 However, for the very thin enzyme layers explored 

here, an optimum fglutox is expected. At low enzyme mass fraction, decreased Glut sensitivity 

was observed due to insufficient active enzyme available to consume Glut at a high rate. On the 

other hand, high enzyme concentration corresponding to fglutox ≥ 0.5 was found not to be 

preferable either due to the fact that GlutOx does not have an abundance of surface lysines 

available for crosslinking, unlike BSA. The relatively low BSA concentration at high fglutox led to 

poor crosslinking, an unstable enzyme layer, and great difficulty in gathering data for Fig. 3.8 at 

high enzyme concentration. As a result, fglutox = 0.2 was chosen as the target level for future work 

since there is little compromise in sensitivity in exchange for excellent stability.  

 

 

Figure 3.7. (a) Representative current response of Glut sensors crosslinked via BS3 (red trace) and GAH 

(blue trace) to interferents (250 μM AA and 5 μM DA), followed by three 20 μM step increases in H2O2 

concentration. (b) Glut sensitivity comparison between BS3 and GAH crosslinked GlutOx sensors with error 

bars giving 95% confidence intervals. In all cases, the mass ratio of GlutOx to BSA was 1 : 4 and the enzyme 

layer was less than 5 μm thick. 
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Figure 3.8. Effect of GlutOx concentration on the Glut sensitivity, where fglutox is varied from 0.02 to 0.95. In 

all cases, sensors were crosslinked with BS3 and the layer thickness was less than 5 μm. Error bars represent 

95% confidence intervals. 

 

3.3.4 Optimal enzyme layer thickness  

 Our experimental results of Fig. 3.9 show the expected result that Glut sensitivity goes 

through an optimum with regard to enzyme layer thickness. The Glut sensitivity drops sharply for 

GlutOx layer thickness less than a micron and remains a roughly constant value for up to a 2 μm 

thickness. These results match stimulations well and are consistent with other published 

experimental reports showing that very thin enzyme layers realized by electropolymerization 

result in low sensitivity.40,41 As discussed earlier, the decrease in Glut sensitivity with thickness 

for thicker GlutOx layers is due to the greater diffusional mass-transfer limitation and the loss of 

the majority of H2O2 generated in the enzyme layer back to the bulk solution. Also, the added 

mass-transfer resistance of a thick enzyme layer leads to a slower response time. 
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Figure 3.9. Sensor sensitivity based on the linear range of calibration curves (0-60 μM Glut) versus 

immobilized GlutOx layer thickness. In all cases, fglutox = 0.2, and sensors were crosslinked with BS3. 

 

3.3.5 Comparison in performance between the optimized and base-case sensors 

 Sensors with the optimal permselective film (PPD/115 °C-Nafion) topped with an 

enzyme layer of optimal thickness of 1-2 μm with mass fraction of GlutOx (fglutox) = 0.2 and 

crosslinked with BS3 has led to excellent sensitivity of 320 ± 19.6 nA µM-1 cm-2 (n = 18), which 

is a ~6-fold improvement compared with our previously reported design (51 ± 1.96 nA µM-1 cm-2) 

without sacrificing selectivity and detection limit (signal-to-noise ratio equal to 3).11 The detection 

limit for the improved sensors and those previously reported are 0.70 ± 0.08 µM (n = 18) and 

0.79 ± 0.31, respectively (Fig. 3.10). Noise limited improvement in detection limit despite the 

large increase in sensitivity achieved with the optimized sensors.  
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Figure 3.10. (a) Sensor sensitivity and (b) detection limit based on the linear range of the calibration curves 

(0-60 μM Glut) for the improved (current) and previously published11 (old) Glut sensors. Error bars represent 

95% confidence intervals. 

 

 Response time is defined here as the time for the current signal to reach 90% of its 

steady-state value in response to a step change in Glut from zero to 40 µM under conditions 

where external mass transfer is essentially eliminated. Our base case and other published 

response times are in the ~1 s range,11,42 mostly due to the overly thick enzyme and 

permselective layers thought to be needed for high sensitivity and selectivity. Our improved 

sensors having thin enzyme and polymer layers enabled a faster response time of 0.080 ± 

0.012 s (n = 5), which is a ~10-fold improvement over prior work (Fig. 3.11).  The fact that the 

bare Pt response to H2O2 appears as a near step change as expected given very rapid 

electrooxidation kinetics suggests that this method for measuring response time essentially 

eliminates the external mass transfer resistance.  In contrast, the intrinsic response of our 

optimized Glut biosensor is obscured by the rate of external mass transfer when the 

measurement is attempted in a stirred beaker or a simple flow cell.  However, the response time 

measurement method, whether using a stirred beaker or pump-driven buffer streams (Fig. 3.3), 

was not seen to affect sensor calibration and therefore the determination of sensitivity.  In fact, 

essentially the same response time was measured for our early Glut sensor design using the pump-driven 

bu!er streams (Fig. 3.11). The higher temporal resolution exhibited by the optimized Glut sensor will enable better 

correlation of Glut signaling  in vivo with local field potentials, which occur at <100 Hz.4  

Straightforward correlation with single-unit action potentials will require improvement of 

response time to the single digit millisecond range, which may be attainable without sacrificing 

sensitivity by further optimization of these biosensors (see below). 
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Figure 3.11. Representative sensor response to a 0-40 µM step-change in Glut concentration for base-case Glut 

sensor (blue trace), the improved Glut sensor (orange trace) and a step-change in H2O2 for bare Pt sensor (grey 

trace) as reference. Dimensionless response is the current divided by the steady-state current.  

 

3.3.6 Simulation Results 

 Using the newly measured values of coating thicknesses and transport parameters, a 

mathematical model for Glut sensor performance in vitro was updated to estimate the 

theoretical limits of sensitivity and response time for these improved sensors.23 For the 

simulations, an external mass transfer coefficient of 0.05 cm s-1 and the currently optimized 

permselective film thicknesses were used. Note that at this mass transfer coefficient value and 

above, there is little or no impact on predicted sensor response time. Also, an appropriate range 

of fglutox and enzyme layer thicknesses were chosen for comparison with experimental work 

(Fig. 3.12). As expected, simulations predict that increasing fglutox increases sensitivity and 

reduces the optimal enzyme layer thickness. The comparison with representative experimental 

data suggest that improvements to sensor design described here have brought performance 

near the theoretical sensitivity limit of ~375 nA µM-1 cm-2 for this sensor construction at fglutox 

= 0.2. As suggested by the simulations shown in Fig. 3.12, even higher sensitivities of ~450 nA 

µM-1 cm-2 at fglutox = 0.4 and ~550 nA µM-1 cm-2 at fglutox = 1.0 (data not shown) are 

possible if stable enzyme layers can be created at these concentrations and all activity is 
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retained upon immobilization. Theoretically, sensitivities well above 1000 nA µM-1 cm-2 are 

possible, although such results would require additional hypothetical improvements including 

better transport properties of the immobilized enzyme layer, essentially no mass transfer 

resistance of the permselective films, and improved H2O2 electrooxidation kinetics.  

 Experimental results are consistent with simulated results in terms of optimal enzyme 

layer thickness and sensitivity for simulated values of fglutox in the range of "0.02 to <0.2, given 

measured thicknesses and transport properties of microelectrode coatings. The observation that 

most experimental results correspond to simulations at lower fglutox values than the 

experimental preparation of 0.2 suggests that enzyme activity was reduced substantially upon 

immobilization. It is suspected that amine crosslinking negatively impacts immobilized enzyme 

activity both through direct inactivation of the active site and steric hindrance e!ects, so that 

actual active fglutox after crosslinking is less than the fglutox used to prepare the sensor.  

 Response time predictions showed little dependence on fglutox, and fell within the range 

of ~8–10 ms for sensors with optimal enzyme layer thicknesses (1–2 μm). The discrepancy 

between experimental and simulated response time may be due to key differences in the 

experimental and model sensors. In particular, the model assumes a perfectly planar, rigid 

sensor surface, whereas SEM images show that the surface is rough and probably soft. Thus, 

external mass transport from the bulk liquid in vitro to the sensor surface likely is impacted. 

Also, the model does not account for the likely possibility that Glut adsorbs to sites in the 

immobilized enzyme layer and that there likely are dead-end pores as well. Both of these 

possibilities could contribute to the longer response times observed experimentally but would 

not necessarily affect sensitivity. In any case, the value of these response times measured in 

vitro where an effort is made to reduce the impact of external mass transfer on the 

measurement is clear in comparing sensors, but the relevance to utility in practice is not so 

straightforward since the surrounding medium is essentially quiescent in the brain.  The true 
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value of these improved sensors may best be assessed from performance in vivo.  Recently, 

data was reported showing excellent recording of ms-scale Glut signals in vivo using an 

innovative Glut biosensor with a thin GlutOx layer.43  Although the response time and sensitivity 

were not measured in vitro, these results offer promising evidence of the utility of high 

performance Glut biosensors as neuroscience research tools going forward. 

 

 

Figure 3.12. Simulations of sensor sensitivity to Glut as a function of GlutOx mass fraction in the enzyme 

layer (fglutox) and enzyme layer thickness. 

 

3.4 Conclusions 

 Guided by a detailed mathematical model of electroenzymatic Glut sensors based on 

crosslinked GlutOx immobilized on planar Pt microelectrodes coated with permselective polymer 

films, a ~6-fold improvement in sensitivity from ~50 to ~320 nA µM-1 cm-2 and a ~10-fold 

improvement in response time from ~0.8 s to ~80 ms was achieved while maintaining a low 

detection limit of ~0.70 μM and excellent selectivity against AA and DA. The transport properties 

of the enzyme layer and polymer films used to construct the biosensors were measured directly 

so as to improve the predictive capability of the mathematical model. Subsequent model 

simulations showed that the experimentally attained biosensor performance approaches the 



 70 

theoretical limits of sensitivity (~550 nA µM-1 cm-2) and response time ("8–10 ms) achievable with 

electroenzymatic Glut sensors of this construction using this enzyme. Such high-performance 

biosensors will enable monitoring of Glut signaling with near cellular-scale spatial resolution and 

at a temporal resolution closer to that of electrical recordings, particularly local field potentials.4  
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Chapter 4. Electroenzymatic glutamate sensors are slowed by reversible binding 

to pore walls of requisite sensor coatings  

 

This chapter presents a proposal for experimental work to address the discrepancy between the 

simulated Glut sensor response time and the experimentally observed, order-of-magnitude 

slower response times, with the support of simulation data from new mathematical models. 

Simulations show that if previous models of electroenzymatic Glut sensors are modified to 

account for noncatalytic, reversible binding of Glut to the proteins within the sensor’s enzyme 

coating (i.e., glutamate oxidase (GlutOx) and bovine serum albumin (BSA)), the simulated 

sensor response time increases without affecting the sensor’s sensitivity. With reasonable 

parameter estimates, the new model can fully resolve the prior discrepancy in sensor response 

time, although experimental evidence is needed to validate these simulations. It is hypothesized 

that sensors may operate with slower response times during calibrations in vitro than during 

studies in vivo due to these reversible binding effects since many of the adsorption sites may 

already be filled by other biomolecules which are naturally present within the complex 

extracellular fluid of the brain (and not typically included in solutions for calibrations in vitro). 

Confirmation of this phenomenon and its significance will improve our understanding of sensor 

response time, which is necessary for the proper analysis of data collected from measurements 

of transient Glut release events in the brain. It would also be useful for modeling diffusion near 

and within similar biological structures including misfolded protein aggregates, which are 

characteristic properties of a number of neurodegenerative diseases including Alzheimer's 

disease, Parkinson's disease, Huntington's disease, and Amyotrophic lateral sclerosis (ALS).1 

 

4.1. Motivation  
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 The important role of glutamate (Glut) as the most common excitatory neurotransmitter 

in the brain has led to great interest in understanding the biological mechanisms which dictate 

its release and subsequent signaling as well as its importance in relation to larger scale 

systems, including those responsible for addictive behavior and neurological diseases. 

Electrochemical sensors built onto microelectrode array probes have frequently been used to 

measure such Glut signaling and dynamics in the extracellular space of brain slices, 

anesthetized animals, and freely behaving animals. Two of the most important properties of 

these sensors are sensitivities, which relate sensor response to exogenous Glut concentrations, 

and response time, which is the time required for a sensor to reach a steady-state response 

(often defined as reaching 90% of the steady-state response) to a step change in Glut 

concentration. Recently optimized electroenzymatic Glut sensors exhibit great improvements in 

both of these properties, reaching sensitivities of 320 nA/µM/cm2 and response times of ~80 ms, 

aided by mathematical simulations to guide sensor design.2 However, simulated response times 

(8 ms) were an order of magnitude faster than those observed experimentally. Identification of 

the causes of this discrepancy will lead to improved models better able to guide further sensor 

optimization toward the theoretical limit of sensor response time of ~8 ms, at optimal sensitivity 

as well. 

 

4.2 Models and simulations 

4.2.1 Equations and numerical methods 

 Mathematical models have been used to simulate Glut biosensor performance by 

mathematically describing diffusion and reaction of the three chemical species of interest in Glut 

sensor performance: Glut, O2 and H2O2.2, 3 These processes are specified in separate time-

dependent mass balance equations for each chemical species over every layer of the biosensor 

(3 separately defined domains, j, of 3 linked partial differential equations, i) of the following form: 
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i = Glut, H2O2, O2;  j = PPD, Nafion, immobilized enzyme 

 

In these models, effective diffusivities within sensor coatings are given by ajDi, where Di is the 

molecular diffusivity of species i in water and aj is a constant that adjusts for the porosity of the 

biosensor layer, j, and the tortuosity of the diffusion path within it. The concentration of species i 

within the pore space of each layer is Ci and any reactions it participates in is given by 𝑟.(𝐶.).  

Describing diffusion this way (using Fick’s Law of diffusion) makes a number of assumptions 

about the chemical species and the porous sensor coatings, including the assumptions that 

concentrations remain dilute, that their diffusion is not affected by interactions with the walls of 

the porous region, and that reaction and diffusion rates are constant throughout the coatings 

(the porous sensor coatings are homogeneous). The accuracy of any results of simulations that 

are based on these assumptions are dependent on their validity in the system being described. 

In the case of Glut diffusing through the immobilized enzyme layer, it is hypothesized that the 

negatively charged Glut interacts significantly with charged amino acid residues (of BSA and 

glutamate oxidase) that form the pore walls in the enzyme layer, requiring a modification of 

Equation 4.1 to describe this effect. 

 Incorporation of Glut binding to proteins within the sensor’s immobilized enzyme layer 

required the definition of another variable (Cglut,ads), with an effective diffusivity of 0, representing 

the concentration of adsorbed Glut that is unable to diffuse or react with GlutOx. The rate of Glut 

binding and unbinding is described by Equation 4.2, where the binding rate constant is Kon = 106 

M-1 s-1,4, 5 the total concentration of proteins in the layer (BSA and glutamate oxidase) is Cprotein, 

equal to approximately 0.14 M,3 the number of exposed amino acids that bind with Glut per 

protein (assuming one Glut molecule per site) is aaratio, which is an unknown parameter that 

was varied from 5 to 20 in the simulations, and the rate of desorption is given by Koff as defined 
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by Equation 4.4. Binding was assumed to follow a Langmuir binding isotherm (Equations 4.3, 

4.4), where q is the fraction of filled binding sites and DG is the change in fee energy for Glut 

binding. Binding energies are also uncertain due to the complexity of the protein surfaces and 

were varied up to the highest binding energies that have been reported for the binding energy of 

Glut to some amino acid residues (10,6 15-30,6 and 18 kJ/mol7 for Glut to binding to Glut, lysine, 

and arginine, respectively). This model assumes equal binding energies to all sites, although 

more complex binding can also be simulated;4 this simplification means the values for binding 

energies and number of binding sites in this model should be considered effective values since 

the actual binding parameters vary depending on multiple factors including amino acid identity, 

protein folding, and nearby ions and molecules in solution. 

 

𝑟;<=7,>?/ = 𝐾@A𝐶;<=73𝑎𝑎𝑟𝑎𝑡𝑖𝑜 × 𝐶BC@7D.A − 𝐶;<=7,>?/5 − 𝐾@::𝐶;<=7,>?/  (4.2) 
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>>C>7.@×,/01*2%3

= F24,5()*
GHF24,5()*

    (4.3) 

 

∆𝐺 = −𝑅𝑇𝑙𝑛 6 F13F166
7     (4.4) 

 

 Boundary conditions specify equal fluxes and partition-coefficient dependance on 

concentrations (or equal concentrations, when appropriate) at internal boundaries, maintaining a 

conservation of mass and a partitioning of negatively charged Glut from the negatively charged 

Nafion layer. A mass transfer coefficient describes the flux condition at the sensor surface (mh = 

0.05 cm/s for H2O2, with relations for the coefficients of other species based on their molecular 

diffusivities as described in Chapter 1)8 representing rapid convective mass transfer in a well-

stirred beaker. Kinetics for the electrooxidation of H2O2 on platinum define the flux at the 

electrode surface.9 Initial concentrations of 0 µM for Glut and H2O2 species and a bulk O2 
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concentration everywhere of 200 µM are used to represent a step-change in the bulk Glut 

concentration from 0 to 10 µM; the change to 10 µM is incorporated using the convective mass 

transfer flux for t > 0. Numerical, time-dependent solutions were generated using COMSOL 

Multiphysics (COMSOL Inc., Los Angeles), as explained previously in Chapters 2 and 3 (other 

sensor variables including coating thicknesses were kept constant).2 Further details regarding 

the use of COMSOL to numerically solve the sets of equations are provided in Appendix A. 

 

4.2.2 Simulations of sensor response time  

 Initial simulations of Glut sensor response time with the incorporated Glut binding show 

that simulated sensor response time is strongly dependent on the binding energy (DG) and 

concentration of binding sites, as defined by Equations 4.3 and 4.4. Simulations show that 

response time (the time to achieve 90% of the steady-state response) increases to the 

experimental value of ~0.08 s when a binding energy of -18.28 kJ/mol and a binding site 

concentration corresponding to 10 binding sites per protein are used (aaratio = 10). The 

parameter, Kon, was seen to have no effect on response time if Kon > 105 m-1s-1, and does not 

need to be considered further since binding rate constants are generally greater than this 

value.4, 5 Overall, precise information regarding the binding energies, distribution of binding 

energies, and number of binding sites is needed to make definitive conclusions. In the 

meantime, the model can be used to represent a Glut sensor with the same sensitivity and 

varied response times, depending on the binding parameters specified. 
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Fig. 4.1. Sensor response relative to maximum sensor response for varied binding energies (DG), above, 

and for varied number of binding sites per protein in the enzyme layer (aaratio).  Response time is 

defined as the time to achieve 90% of the steady-state response, or a dimensionless response of 0.9. 

Sensor parameters, including coating thicknesses, are consistent with previously reported values.2 

 

 Additional simulations (not shown) have verified that in the presence of a large 

concentration of molecules with similar binding affinities and diffusivities, such as ascorbate 

(ascorbate concentrations in dog cerebrospinal fluid have been measured at ~800 µM),10 can 
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improve sensor response to ~8 ms (the theoretically fastest response time at optimum 

sensitivity). In this case, competitive binding at the protein surfaces is marginalizing the effect of 

adsorption on response time. If this can be experimentally verified, it may be possible to 

introduce a sensor pre-treatment method to fill these possible binding sites before sensor use 

and potentially bring observed sensor response times down to 8 ms.  

 

4.3 Determining effective binding energy and number of effective binding sites 

 Simulations of glutamate sensors have suggested that glutamate binds to proteins in the 

enzyme layer, increasing sensor response time if the magnitude of the binding energy is >15 

kJ/mol and there are around 5-20 binding sites per protein. To confirm this, it is necessary to 

measure both the binding energy and number of binding sites per protein. Since the enzyme 

layer is a mixture of bovine serum albumin (BSA) and a smaller fraction of glutamate oxidase 

(GlutOx), it would be ideal to measure the amount of Glut that is adsorbed into a similar mixture. 

However, the high cost of GlutOx makes this an expensive process; instead of the expensive 

mixture, binding to BSA could be measured instead. Although the amino acid content and 

sequences are different between proteins, similar residues are present in both proteins and 

results are expected to be similar for both mixtures and pure BSA. 

 To measure the BSA binding energy, a solution can be mixed with a relatively large 

amount of BSA (so that the Langmuir adsorption model is valid), allowed to equilibrate, and then 

filtered using centrifugal filters (BSA has a molecular weight of 66500 Da) or other methods. Any 

change in Glut (which can be measured with electroenzymatic Glut sensors) corresponds to 

Glut binding to the BSA. If this is repeated for increasing initial Glut concentrations, the 

concentration difference will approach 0 as all or most of the BSA’s binding sites become filled. 

This corresponds to q approaching 1 (Fig 4.2). By plotting this concentration change as a 

function of the equilibrated, leftover Glut solution, we should see curves similar to those in Fig. 

4.2 where the shape of the curve is a function of the binding energy. By fitting experimental data 
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to these curves, we can identify an effective binding energy for Glut to BSA. For example, 

calculations show that binding energies of -15, -18, and -21 kJ/mol should result in half-filling of 

sites for final solution concentrations of 3, 1, and 0.25 mM and fully filled binding sites for final 

solution concentrations of ~20, ~10, or ~4 mM, respectively. 

 

      

 

Figure 4.2 Langmuir binding isotherms for binding energies of -15, -18, and -21 kJ/mol. Glut 

concentration (x-axis) is in equilibrium with BSA. 

  

 If the amounts (moles) of BSA and Glut are known, the effective number of binding sites 

per BSA can also be calculated. This requires measuring the change in Glut concentrations in 

solution before and after mixing with BSA, conversion to moles transferred using the original 

solution volume and a mass balance, and calculating the moles of Glut per mol BSA based on 

the initially measured amount of BSA and fraction of filled adsorption sites. 
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4.4 Additional Considerations 

 It will be wise to test the assumption that the presence of other amino acids or sugars 

would compete for these binding sites and could make response time faster in vivo. It is 

possible that these molecules compete for the theorized binding sites; if this is true, sensors 

may not be inhibited by adsorption effects in vivo to the same degree as in vitro. To test this 

hypothesis, the experiment would be repeated after first adding physiologically relevant 

amounts of ascorbate, dopamine, sugars, or other amino acids that are naturally present in the 

brain extracellular space to the Glut or BSA component. Differences between the results of 

these experiments and the initial results would inform us of the significance of competitive 

binding in determining sensor response time. An additional test of the sensor response time 

after submerging it in a similar complex mixture may further confirm that the presence of 

competitive binding could decrease response time. This practical confirmation of our hypothesis 

concerning reversible binding in the sensor coating would provide a satisfying conclusion to the 

set of simulations, experiments, and calculations conducted. 
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Abstract 

 A high performance, electroenzymatic microsensor for choline based on choline oxidase 

(ChOx) immobilized on Pt coated with permselective polymer layers has been created that 

exhibits sensitivity approaching the theoretical performance limit. Sensor construction was 

guided by simulations performed with a detailed mathematical model. Implantable microsensors 

with an array of electroenzymatic sensing sites provide a means to record concentration 

changes of choline, an effective surrogate for acetylcholine due to its very rapid turnover in the 

brain, and other neurochemicals in vivo. However, electroenzymatic sensors generally have 

insufficient sensitivity and response time to monitor neurotransmitter signaling on the 

millisecond timescale with cellular-level spatial resolution. Model simulations suggested that 

choline sensor performance can be improved significantly by optimizing immobilized ChOx layer 

thickness and minimizing the thicknesses of permselective polymer coatings as well. 

Electroenzymatic choline sensors constructed with a ∼5 μm-thick crosslinked ChOx layer atop 
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200 nm-thick permselective films (poly(m- phenylenediamine) and Nafion) exhibited 

unprecedented sensitivity and response time of 660 ± 40 nA μM-1 cm-2 at 37 °C and 0.36 ± 0.05 

s, respectively, while maintaining excellent selectivity. Such performance characteristics provide 

greater flexibility in the design of microelectrode array (MEA) probes with near cellular-scale 

sensing sites arranged in more dense arrays. Also, faster response times enable better 

resolution of transient acetylcholine signals and better correlation of these events with 

electrophysiological recordings so as to advance study of brain function.  

 

 

5.1 Introduction 

A deep understanding of information processing in the brain is critical for rational development 

of effective treatments for complex neurological disorders including drug addiction. Brain 

processes are controlled by neuronal networks whose functioning is evidenced both by 

neurochemical signaling and electrophysiological events. Thus, there is great incentive to 

develop advanced technologies for neurochemical and electrophysiological recordings with 

similar spatiotemporal resolution in vivo so that this data may be correlated and used to unravel 

network functions. Current implantable devices enable electrophysiological recordings 

simultaneously from large numbers of interconnected neurons at millisecond temporal and 

cellular-scale spatial resolution.1–5 However, techniques for neurochemical recording have yet to 

achieve such high spatiotemporal resolution due to slow sensor kinetics exacerbated by the 

need for selectivity against the complex background of brain extracellular fluid.6–14 Historically, 

broadly applicable neurotransmitter detection in vivo has been accomplished using microdialysis 

probes coupled to analytical instrumentation (e.g., high performance liquid chromatography 

(HPLC)). However, the typical minute-to-minute temporal resolution and relatively large size of 

the probes has limited utility of this technique, although there have been recent impressive 

advances both in probe size and sampling rate.15,16  



 86 

 Micromachined microprobes supporting an array of microelectrode sensing sites have 

emerged as alternative tools to monitor concentration changes for a limited number of 

neurochemicals. These microsensors, once implanted in the brain, are in direct contact with 

extracellular fluid, potentially providing a means for near-real time neurochemical sensing.17–21 

Sites on these microelectrode array (MEA) microprobes may be modified with permselective 

polymer films and immobilized redox enzymes to create selective electroenzymatic sensors. For 

example, the electroenzymatic choline (Ch) sensor studied in this work consists of a platinum 

(Pt) microelectrode coated first with permselective polyphenylenediamine (PPD) and Nafion 

films and then a layer of cross-linked choline oxidase (ChOx). ChOx catalyzes the 4-electron 

oxidation of Ch to glycine betaine in the presence of oxygen to give two equivalents of hydrogen 

peroxide (H2O2), which diffuse through the underlying polymer layers to the electrode surface 

where they are electrooxidized thereby generating a current signal indicating the presence of 

Ch. 

Ch + O1
ChOx
O⎯⎯Q 	betaine aldehyde + H1O1    (5.1) 

 

betaine aldehyde + O1	+ H1O	
ChOx
O⎯⎯Q 	glycine	betaine	+ H1O1   (5.2) 

 

Electrooxidizable interfering species existing in brain extracellular fluid such as dopamine (DA) 

and ascorbic acid (AA), which are larger than H2O2 and charged, are blocked from the electrode 

surface by the PPD and negatively charged Nafion films through a combination of size exclusion 

and charge repulsion mechanisms. The high specificity of ChOx for Ch provides selectivity 

against non-electroactive species other than Ch.22 

 Choline is a useful surrogate for the important neurotransmitter, acetylcholine (ACh), 

which is turned over very rapidly to Ch and acetate in the brain.23 Our group and others have 

demonstrated successfully the feasibility of such electroenzymatic Ch sensors with response 
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times in the ~1 s range for the detection of Ch both in vitro and in vivo.14,19,21,24 An alternative 

approach to achieve selective detection of Ach directly is to co-immobilize acetylcholinesterase 

and ChOx on an electrode and to employ fast-scan cyclic voltammetry (FSCV) rather than 

constant potential amperometry. However, a FSCV sampling rate of 10 Hz (100 ms sampling 

interval) leads to an effective response time of ~1 s as well (sampling at 10 Hz cannot resolve 

~100 ms events).25,26 Such 1 s temporal response times still are not fast enough to detect rapid 

neurotransmitter signaling events that are thought to occur on the millisecond time scale. 

Furthermore, the previously published sensitivities are too low to create small microsensors with 

cellular-scale spatial resolution. 

 To address these challenges of spatiotemporal resolution, a mathematical model has 

been developed for devices of this type. Our previous glutamate (Glut) sensor modelling and 

experimental studies showed that performance can be improved dramatically by engineering the 

compositions and thicknesses of the immobilized enzyme and permselective film 

compositions.27,28 To construct an electroenzymatic sensor, the protein catalyst most  commonly 

is immobilized by loading a mixture of enzyme and BSA on the microelectrode surface and 

crosslinking with glutaraldehyde (GAH).9,11,14,20,29–31 The resulting enzyme layer thicknesses 

typically have been in the 10 µm range to ensure adequate signal. Our simulation results 

suggested that such thick coatings cause elevated mass-transfer resistances leading to long 

response times.28 If enzyme activity and accessibility could be preserved well during the 

immobilization process, the density of active enzyme in the layer could be increased so that 

layer thicknesses could be reduced with an actual enhancement in sensitivity. The systematic 

optimization of Glut sensors based on the guidance of our simulations led to a remarkable 6-fold 

improvement in sensitivity and a 10-fold reduction in response time to 80 ms.28  

 In this work, a model of electroenzymatic Ch sensors was developed and used to guide 

sensor optimization in the same manner as was done for Glut sensors previously.28 Simulations 

of Ch sensors similarly illustrated the importance of depositing enzyme layers with optimal 
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thicknesses, dependent on the active enzyme concentration, in order to maximize H2O2 

generation near the electrode surface. Such an approach shortens diffusion times and improves 

sensor response. Retention of enzyme activity was enhanced by exploring additional enzyme 

crosslinkers and changes to the enzyme immobilization conditions. The optimized, thinner 

immobilized ChOx layer resulted in sensors with higher sensitivities approaching theoretical 

limits, significantly faster response times, low detection limits, and excellent selectivity. 

 

5.2 Experimental 

5.2.1 Reagents 

 Nafion (5 wt% in lower aliphatic alcohols and water, 15-20% water), m-

phenylenediamine (PD), bovine serum albumin (BSA) lyophilized powder, choline oxidase 

(ChOx, from Alcaligenes sp.), choline chloride (Ch), glutaraldehyde solution (25% in water, 

GAH), L-ascorbic acid (AA), 3-hydroxytyramine (dopamine, DA), sodium phosphate dibasic, 

sodium chloride, and hydrogen peroxide solution (30%) were purchased from Sigma-Aldrich (St. 

Louis, MO). Sulfuric acid (30%), hydrochloric acid (36.5-38%), bis(sulfosuccinimidyl)suberate 

(BS3), sulfo-(ethylene glycol bis(sulfosuccinimidyl succinate)) (EGS), and (1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide hydrochloride) (EDC) were purchased from Thermo Fisher 

Scientific (Pittsburgh, PA). Ag/AgCl glass-bodied reference electrodes with NaCl electrolyte (3 

M) and a 0.5-mm-diameter Pt wire auxiliary electrode were obtained from BASi (West Lafayette, 

IN). Sodium phosphate buffer (PBS, pH 7.4) was composed of 50 mM sodium phosphate 

dibasic and 100 mM sodium chloride. Four-inch, 150 µm silicon wafers were purchased from 

Silicon Valley Microelectronics (Santa Clara, CA). 

 

5.2.2 Instrumentation 

 Electrochemical preparation and calibration of the microsensors were performed using a 

Versatile Multichannel Potentiostat (model VMP3) equipped with the ‘p’ low current option and 
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N’Stat box driven by EC-LAB software (Bio-Logic USA, LLC, Knoxville, TN) in a three-electrode 

configuration consisting of the sensing electrode, a Pt wire auxiliary electrode, and a Ag/AgCl 

reference electrode. The film thicknesses on microelectrodes were determined by milling pores 

on the deposited films using a focused ion beam (FIB) and measuring cross-section thicknesses 

using a scanning electron microscope (Nova 600 SEM/FIB System). 

 

5.2.3 Sensor preparation 

 Fig. 5.1 shows a scanning electron micrograph (SEM) and optical microscopy image of 

the microelectrode array (MEA) tip of a single probe used in this work. The probe shafts were 

150 μm thick, 140 μm wide and 9 mm long with four 6000 μm2 (40 μm x 150 μm) Pt recording 

sites arranged in pairs at the tip. Microelectrode array probes were manufactured using 

microelectromechanical system (MEMS) fabrication techniques as described in our previous 

work.11 Each microsensor was cleaned with 0.1 M H2SO4 solution by cycling the potential 

between -0.2 V and 1.5 V at a scan rate of 50 mV/s vs. Ag/AgCl, repeated at least 4 times. 

Afterward, a poly-phenylenediamine (PPD) film was electrodeposited from a 5 mM PD solution 

in phosphate-buffered saline (0.1 M PBS) by holding the voltage constant at 0.85 V vs. Ag/AgCl 

until the total transferred charge reached 7.6 ´ 10-7 coulombs. A Nafion layer then was applied 

by dip-coating a 2% Nafion solution (diluted from stock with 4:1 IPA:water) once, followed by 

annealing at 115 °C for 20 min. Next, enzyme immobilization was accomplished by manually 

swiping ~1 µL of a ChOx and BSA mixture (at different ratios, see below) onto the 

microelectrode sites using a microliter syringe and exposing the deposit to different crosslinkers, 

also as described below. Twelve to 15 coatings of enzyme solution typically gives a ~4 µm thick 

ChOx layer on the electrode surface, depending on solution concentration and environmental 

conditions. 
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Fig. 5.1 (a) SEM and (b) optical microscopy images of the bare microelectrode array (MEA) probe. (c) Optical 

microscopy image of the MEA probe after polymer and enzyme deposition. 

  

 In this work, four different crosslinkers, including three amine-to-amine crosslinkers with 

different spacer arm lengths (GAH, BS3, EGS) and one carboxyl-to-amine crosslinker (EDC), 

were used and compared. Each set of crosslinking conditions was optimized individually before 

making comparisons (see Supplementary Information). A previously loaded ChOx/BSA mixture 

was exposed to 5% GAH vapor for 1 min at room temperature or to manually applied ~0.5 µL 

BS3 (100 mg/ml in PBS) or ~0.5 µL EGS (100 mg/ml in PBS). Alternatively, when EDC was 

used as crosslinker, EDC was mixed directly with ChOx and BSA to give a final EDC 

concentration of ~6.3 mg/ml in PBS prior to rapid application onto a microelectrode. After the 

crosslinking step, sensors were stored dry at 4 °C for 48 h prior to testing. 

 

5.2.4 Electrochemical measurements 

 To determine the selectivity and sensitivity, a constant potential of 0.7 V vs. Ag/AgCl was 

applied to the microsensors in rapidly stirred PBS buffer solution at pH 7.4 and ~37 °C. 

Selectivity was assessed relative to AA and DA, which are electroactive interferents commonly 

found in brain extracellular fluid (ECF). Their typical concentrations in ECF are in the range of a 

few hundred µM for AA and from nM to a few µM for DA.32,33 In selectivity tests, the current 

signal from a probe immersed in stirred buffer was allowed to stabilize. Subsequently AA and 

DA were added separately to the beaker to reach final concentrations of 250 µM AA and 10 µM 

DA. Next, serial injections were made to give final concentrations of 20-100 µM Ch and 20 µM 

H2O2 to determine sensitivities to both species. The response time (t0-90%) of Ch sensors was 
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estimated from the current response to a near step change in concentration created by analyte 

injection into rapidly stirred PBS buffer. 

 

5.2.5 Mathematical model and simulations 

 Simulations of sensor performance were generated using an adaptation of our 

established model for electroenzymatic glutamate (Glut) sensors that was modified to include 

ChOx rather than glutamate oxidase in the immobilized enzyme coating.28,34 In the model, a set 

of partial differential equations describe one-dimensional transport as well as consumption or 

generation rates of Ch, O2, and H2O2 within and between separately modelled PPD, Nafion, and 

immobilized enzyme domains, 

 

ϵ!
"#!
"$
= −α!D%

""#!
"&"

+ r%,!.     (5.3) 

 

 In each equation for species i in coating j, Ci is the concentration within the pores of the 

coating, t is time, x is the distance from the Pt microelectrode surface, 𝜖j is the void fraction, 𝛼𝐷 

is the effective diffusivity, and r is the reaction rate (if enzyme is present). In these equations, 

each chemical species is allowed to diffuse freely within the void spaces of the coatings in which 

they are soluble, as defined by the transport parameters that were used in the Glut sensor 

model, assuming them to be unchanged; the Ch diffusion coefficient at 25 °C has been 

reported,35 and the diffusivity at 37 °C (1.816 x 10-9 m2/s) was calculated according to the 

Stokes-Einstein equation. It is also assumed that the H2O2 electrooxidation kinetics on the Pt 

microelectrode sensing sites is also unchanged from that used previously.36 Enzymatic reaction 

rates reflect ChOx kinetics for the full oxidation of Ch to glycine betaine, recognizing that the 

betaine aldehyde intermediate does not leave the enzyme active site,  
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 Since the measured kinetic rates for ChOx isolated from Alcaligenes sp are for air-

saturated concentrations of O2 (~206 µM) and do not account for oxygen dependence,37 which 

is important to consider in modelling biosensors, O2 kinetics terms were added and the 

published, apparent kcat and km,Ch were multiplied by a factor of (1 + kN,L"/CL") to give the kcat 

and km,Ch in the rate equation above and to reflect the intrinsic, O2-dependent rates (kN,L" was 

assumed to be 1 mM). The resulting enzymatic rate constants were found to be consistent with 

values found from ChOx isolated from A. globiformis at the temperature and pH used (kcat = 95 

s-1; kN,#I = 5.07 mM; kN,L"= 1 mM),38 suggesting that ChOx isolated from either organism may 

show similar kinetic behavior. The enzyme concentration (mol/L) depends on the fraction of 

ChOx in the layer and the void fraction, and was calculated in the same way as in the Glut 

model based on a protein density of 1.41 g/mL: cO = [1000 ∗ 1.41 ∗ f#IL& ∗ (1 − ϵ)]/MW#IL&, 

where fChOx is the mass fraction of protein in the immobilized enzyme layer that is ChOx. 

Numerical solutions were obtained using COMSOL (COMSOL, Inc. Los Angeles), employing 

boundary conditions that simulate a step-change in Ch concentration from 0 to 20 µM at the 

microsensor surface at time, t = 0. 

 

5.3 Results and discussion 

5.3.1 Effect of enzyme loading and activity 

 In an effort to improve enzyme activity retention, the alternative homobifunctional 

crosslinkers BS3 and EGS (that like GAH also react with amine groups at neutral pH) were 

studied. We demonstrated earlier that Glut sensors made with enzyme crosslinked with BS3 

showed great improvement in sensitivity compared to those crosslinked with GAH, probably due 

to the longer spacer arm of BS3, 11.4 Å vs 5 Å.28 In this work, in addition to BS3 and GAH, the 
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crosslinker, EGS, with the longest spacer arm of 16.1 Å was used in order to explore further the 

effect crosslinker spacer arm length on resulting sensor performance. Before making a 

comparison among these three reagents, crosslinking conditions were investigated individually 

by varying crosslinker concentrations and vapor exposure times to find the best conditions for 

use of the reagent for Ch sensor fabrication (see Supplementary Information). Representative 

EGS optimization data is illustrated in Fig. 5.2(b), which shows that above ~100 mg/mL EGS, 

there is no statistically meaningful improvement in sensor sensitivity. 

Fig. 5.2 (a) Ch sensitivity comparison between GAH, BS3 and EGS crosslinked Ch sensors with error bars giving 

95% confidence intervals. (b) Effect of EGS concentration on the Ch sensitivity. In all cases, the mass ratio of ChOx 

to BSA was 2 : 3 and the enzyme layer was ~3-4 μm thick. 
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 After this optimization process, Ch sensors made with BS3-crosslinked ChOx showed 

the greatest sensitivity relative to those crosslinked with GAH or EGS, 557 ± 99 nA µM-1 cm-2 (n 

= 11), 409 ± 59 nA µM-1 cm-2 (n = 12) and 351 ± 101 nA µM-1 cm-2 (n = 4), respectively. This 

~1.5-fold improvement in sensitivity of Ch sensors crosslinked with BS3 compared to those 

crosslinked via GAH agrees with our previous work on Glut sensor optimization.28 However, it 

was interesting to observe the decrease in Ch sensitivity when the longest crosslinker, EGS, 

was used. We hypothesize that spacer arm length not only affects the accessibility of substrate 

to the enzyme active site, but also the void fraction within the enzyme layer and the 

concentration of active enzyme entrapped in the BSA/ChOx network. The optimal crosslinker 

will immobilize ChOx as densely as possible without becoming a barrier to diffusion or restricting 

any enzyme conformational changes that may occur during catalysis. The moderate length of 

the BS3 spacer arm may be preferable, because such a length (11.4 Å) is long enough to 

reduce enzyme crowding and improve active site accessibility, but also short enough to 

maintain a stable, high enzyme concentration in the crosslinked BSA/ChOx network.  

 

Fig. 5.3 Effect of immobilized ChOx concentration on the Ch sensitivity of sensors crosslinked via BS3 (grey trace)  

and sensors crosslinked via EDC (orange trace). In all cases, the enzyme layer thickness was ~3-4 μm. Error bars 

represent 95% confidence intervals. 

 

 The effort to improve Ch sensor performance was carried further by conducting a study 

of the effect of deposited enzyme concentration on sensor performance, which can be 
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performed straightforwardly by changing the relative proportion of ChOx and BSA without 

changing enzyme layer thickness of ~3-4 µm. The mass fraction of ChOx (fchox) was varied from 

0.2 to 0.8 for the sensors coated with PPD and Nafion and crosslinked with BS3. The 

experimental Ch sensitivity versus fchox plot showed that Ch sensitivity tends to fall above fchox = 

~0.4 and drops to zero at high enzyme concentration corresponding to fchox = 0.8 (Fig. 5.3). It is 

noteworthy that this general trend also was observed for GAH- and EGS-crosslinked Ch 

sensors. For the thin enzyme layers explored here, a decrease in Ch sensitivity at low fchox was 

expected due to insufficient active enzyme available to turnover Ch at the high rate needed for a 

strong current signal. However, high relative enzyme concentration (low BSA concentration) 

also was found not to be preferable. This result again matched our previously published data on 

Glut sensor optimization showing that there are insufficient lysine groups available for 

crosslinking of the protein layer at low relative concentrations of lysine-rich BSA (Fig. 5.3). 

 These consistent results prompted us to consider crosslinkers that react with carboxyl 

groups of which ChOx has an abundance on its surface. The heterobifunctional crosslinker, 

EDC, which crosslinks carboxyl and amine groups, was chosen due to its ready commercial 

availability. The mass fraction of ChOx was varied from fchox = 0.2 to fchox = 1.0 and the 

experimental results are shown as the orange trace in Fig. 3. This amine-to-carboxyl crosslinker 

enabled the stable immobilization of ChOx in the absence of BSA (fchox = 1.0). This data 

supports our unsurprising contention that the availability of crosslinkable functional groups on 

the enzyme surface plays an important role in stable enzyme immobilization at higher 

concentration. However, a decrease in Ch sensitivity at high enzyme concentration was still 

observed, which may be due to hindered accessibility of the enzyme active site and/or 

increased enzyme deactivation as more EDC, which has a very short spacer arm, reacts directly 

with ChOx instead of BSA. Overall, sensors crosslinked with EDC showed lower Ch sensitivity 

of 435 ± 27 nA µM-1 cm-2 (n = 6) compared to those crosslinked with BS3 at optimal values of 
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fchox. As a result, the BS3 crosslinked sensor with fchox = 0.4 was chosen for future work due to 

its best sensitivity. 

 

5.3.2 Optimized enzyme layer thickness 

 Fig. 5.4 shows Ch sensitivity for varied thicknesses of the enzyme layer, using the 

optimal fchox of 0.4 and best crosslinker (BS3). As expected, Ch sensitivity decreased sharply for 

enzyme layer thicknesses less than 3 µm due to insufficient deposited enzyme. Sensitivity 

reached a plateau as enzyme layer thickness increased beyond ~4 µm. Since response time is 

known to increase with layer thickness, a ChOx layer thickness of 4-6 µm was determined to be 

best to ensure both high Ch sensitivity and fast response time. The plateau in sensitivity for 

enzyme layers more than 3 µm thick may be due to the counterbalancing effects of greater 

enzyme availability and increasing mass-transfer limitation as the enzyme layer is thickened. 

 

Fig. 5.4. Sensitivity versus immobilized ChOx layer thickness. In all cases, fChOx = 0.4. All sensors were crosslinked 

with BS3. Each data point represents one trial. 

 

5.3.3 Optimized sensor performance 
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 The sensitivity of the best Ch sensor constructed was based on the slope of the linear 

range of calibration curves (0-100 µM Ch), and the detection limit was determined at a signal-to-

noise ratio of 3. Ch sensors generated with optimal enzyme layer composition fChOx = 0.4, 

crosslinked with BS3, and with enzyme layer thickness in the 4-6 µm range showed high Ch 

sensitivity of 658 ± 40 nA µM-1 cm-2 (n = 20), low detection limit of 0.34 ± 0.06 µM (n = 20), and 

excellent selectivity against two common interferents, AA and DA, tested at physiologically 

relevant concentrations (Fig. 5.5). This detection limit is suitable for detecting Ch transients in 

the brain, which have been reported in the range of 0.5-2 µM in response to behavioural cues 

and up to ~6 µM following KCl injections.39,40  

 

Fig. 5.5  Representative current responses of optimized Ch sensors tested in batch with key interferents AA (250 

μM), DA (5 μM), target Ch (final 20, 40, 60 μM in solution), interferent DA (final 15 μM in solution), H2O2 (20 μM ) and 

Ch (final 100 μM in solution) in series. 

 

5.3.4 Response time 

 Response time is defined here as the time for the current signal to reach 90% of its 

steady-state value in response to a step change in Ch from zero to 60 µM in a stirred beaker. 

Compared to other sensors in the literature that reported response times of Ch sensors of ~1 

s14,19, our improved sensor with thinner enzyme and permselective layers showed fast response 

time of 0.36 ± 0.05 s (n = 8) without compromising sensitivity and selectivity (Fig. 5.6). The very 
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rapid response of bare Pt to 10 µM H2O2 is also shown in Fig. 5.6 as a benchmark, which is 

close to a step as expected. A comparison of the performance of reported Ch sensors illustrates 

the remarkably improved sensitivity and response time of the sensor reported here (Table 5.1). 

Fig. 5.6  Representative optimized Ch sensor response to a step-change in Ch concentration from 0 to 60 µM (blue 

trace) and a step-change in H2O2 for a bare Pt sensor (orange trace) serving as a benchmark. 

 

5.3.5 Stability 

 The stability of the Ch sensor in vitro was expressed as half-life, the amount of time 

required for the sensitivity to be reduced to one half of its original value, for sensors stored in 

PBS at 4 °C and tested periodically at 37 °C. The decay in sensitivity over time, 

nondimensionalized relative to the initial sensitivity, is shown in Fig. 5.7. Results showed that Ch 

sensors crosslinked with BS3 (n = 4) had longer half-lives on average than those crosslinked 

conventionally with GAH (n = 4), which were ~11 days and ~ 8 days, respectively. After 2 

weeks, the GAH-crosslinked Ch sensors exhibited less than 10% of initial sensitivity, whereas 

BS3-crosslinked Ch sensors retained 40% sensitivity over the same time period. The fast 

decrease in Ch sensitivity after 2 weeks for GAH-crosslinked sensors is likely due to the 

instability of the immobilized enzyme layer, which was readily observed under the microscope. 

We hypothesize that the smaller GAH is more likely to form intramolecular bonds that do not 

contribute as well to a more stable three-dimensional network.31 
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Table 5.1. Comparison of the performance characteristics of the Ch sensor of this work with other recently reported 

electroenzymatic Ch sensors. 

Sensitivity (nA 

µM-1 cm-2) 

Response time (s) Limit of detection (µM) Reference 

654 0.35 0.34 This work 

354 2 0.45 41 

286 1.5 1.00 14 

204 4 0.60 42 

128 1.16 0.12 19 

75 2 15.00 43 

 

5.3.6 Simulations to determine theoretical performance limits 

 Simulations of optimized Ch sensors (Fig. 5.8) predict the maximum theoretical 

sensitivities of sensors with the required permselective films and the enzyme layer thicknesses 

and compositions that were tested experimentally. The fraction of active ChOx is expected to 

decrease upon immobilization and over time, prompting simulations to consider how sensitivity 

is affected when fChOx drops below 0.4. Experimental data suggest that fChOx is significantly 

reduced after immobilization, consistent with simulations and optimizations of Glut sensors.28 In 

Ch sensors, experimental maximum sensitivities are consistent with a simulated fChOx of 0.2. 

Comparison of experimental performance to theoretical predictions may suggest that sensors 

perform as though they have a thinner enzyme layer; this could be explained by considering the 

roughness of the immobilized enzyme layer’s surface, which can result in a lower effective 

thickness. 
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Fig. 5.7  Stability of GAH-crosslinked (blue trace) and BS3-croslinked (orange trace) Ch sensors stored in PBS at 4 

°C and tested periodically at 37 °C. Data shown with 95% confident intervals (n = 4 for both cases). 

 

Fig. 5.8  Simulated sensitivity over a range of ChOx layer thicknesses and fChOx within the layer. Experimental values 

included for reference. 

 

 Simulated response times increased linearly with increasing enzyme layer thicknesses 

as expected, but simulations also predict that response time could be as fast as 0.048 s for 

sensors with an enzyme thickness of 5 µm rather than the 0.35 s found experimentally. Model 

modifications could be made to increase simulated response times without affecting sensitivity 

by incorporating in the model an accounting of Ch adsorption to protein surfaces. The likelihood 
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of this type of interaction is supported by experimental data showing reduced response times for 

later additions of Ch (Fig. 6), when more of the proposed Ch binding sites may already be filled. 

If this is true, it is likely that in vivo response times will approach the theoretical response times, 

which are significantly faster than those observed in vitro, although further work would be 

required before making definitive conclusions. 

 Oxygen dependence was investigated by simulating sensor response to varying O2 and 

Ch concentrations. The linear range of the sensor was found to be determined linearly by the 

bulk concentration of O2 for concentrations of Ch at least as high as 200 µM, where the 

concentration of O2 must be >60% of the Ch concentration for >90% of the maximum sensor 

response or >150% of the Ch concentration for full sensor response. Since the concentration of 

O2 in the brain is known to range from ~5 to 50 µM, it is plausible for Ch sensors to begin 

showing nonlinearity in vivo at Ch concentrations in the range of 10 to 100 µM, depending on O2 

availability. 

 

5.4 Conclusions 

 A detailed mathematical model has been developed for an electroenzymatic Ch sensor 

to guide the optimization of sensor construction. Model simulations showed the importance of 

maximizing active enzyme concentration in the immobilized layer and predicted the optimal 

enzyme thickness to ensure both high sensitivity and fast response time. Therefore, an 

experimental optimization was conducted whereby enzyme activity retention is first improved 

followed by an optimization of immobilized enzyme layer thickness. Such an approach resulted 

in a significantly improved Ch sensor with a 4-6 µm-thick crosslinked ChOx layer on a 200 nm-

thick underlying permselective coating of PPD and Nafion, which shortened diffusion times and 

enhanced H2O2 generation near the electrode surface. This design modification led to 

unprecedent Ch sensitivity of 654 ± 40 nA µM-1 cm-2 (n = 20) and fast response time of 0.36 ± 



 102 

0.05 s (n = 8) without compromising selectivity. The improved Ch sensors provide greater 

flexibility to fabricate more densely arrayed MEAs comprised of near-cellular-scale sensing 

sites. Such MEAs will facilitate better resolution of choline transients reflective of acetylcholine 

signals and better correlation of neurotransmitter signaling with electrophysiological activity. 
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Chapter 6: Simulated performance of electroenzymatic glutamate biosensors in 

vivo illuminates the complex connection to calibration in vitro 

 

Abstract 

 Detailed simulations show that the relationship between electroenzymatic glutamate 

sensor performance in vitro to that in vivo is complicated by the influence of both mass transfer 

resistances and clearance rates of glutamate (Glut) and H2O2 in the brain extracellular space 

(ECS).  Uncertainties in the accuracy of using calibrations in vitro to interpret sensor responses 

in vivo have long been present, limiting the value of collected sensor data. Detailed 

mathematical modeling provides a unique perspective for analyzing sensor response by 

showing how sensors respond to known sets of conditions in ways that cannot be done 

physically with existing experimental techniques and systems. Through the use of 1-D model 

simulations, it is shown that sensor response in vivo shows much greater dependence on H2O2 

mass transfer and clearance in the surrounding tissue than previously thought, potentially 

leading to sensor measurements more than double the expected value (based on prior sensor 

calibration in vitro) for glutamate release events close to the sensor surface. Sensor response in 

general is greatly affected by the distance between the sensor and location of glutamate 

release, with measured apparent concentrations decaying below the actual simulated values at 

glutamate release distances greater than 3 µm. Simulations of transient glutamate 

concentrations, including a physiologically relevant bolus release, showed that detection of 

glutamate signaling likely is limited to events within 30 µm of the sensor surface. Important 

limitations also exist in how well decays in sensor response represent actual concentration 

changes, which makes it difficult to use sensor data to determine rates of glutamate uptake in 

the brain ECS. The model is designed to represent a broad range of relevant physiological 



 107 

conditions, and although limited to one dimension, provides much needed insight into the 

interpretation of electroenzymatic sensor data gathered in vivo. 

 

6.1 Introduction 

Electroenzymatic microsensors have proven valuable for the selective monitoring of 

chemical species including glutamate (Glut), glucose, ATP, acetylcholine and choline in the 

deep brain.1-7 These biosensors are based on one or more immobilized enzymes that serve as 

the selective recognition element(s) and that generate an electroactive species, commonly 

H2O2, which is oxidized or reduced at an underlying electrode to give a current signal. The 

electrode normally is coated with one or more permselective polymer layers to prevent 

electroactive interfering compounds, such as ascorbic acid, from accessing the electrode 

surface. For example in the case of Glut sensors, glutamate oxidase (GlutOx) commonly is 

immobilized onto a polymer-coated electrode surface using a cross-linking compound. The 

immobilized enzyme catalyzes the oxidation of Glut to produce H2O2, which is then free to 

diffuse to the electrode surface where it is electrooxidized to produce a measurable current 

signal, usually in the picoamp range. The current produced is a function of the exogenous Glut 

concentration, and the biosensor response is often reported as a concentration measurement 

calculated using a calibration factor. 

Historically, the primary competing technology for deep-brain sensing has been 

microdialysis. Microdialysis may be employed to detect virtually any neurochemical for which an 

analytical technique exists, including HPLC, mass spectrometry, LC-MS, etc., whereas 

electroenzymatic sensors have been developed only for the small set of analytes for which 

appropriate enzymes are available. The typical tradeoffs have been the relatively large size of 

microdialysis probes compared to electroenzymatic probes and their poor spatiotemporal 

resolution, although some recent technical advances have reduced these disadvantages. 
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Of late, genetically encoded fluorescent sensors for neurochemicals, including Glut, 

have emerged as powerful tools to follow the activity of hundreds of neurons simultaneously.8-11 

However, extensive implementation of the technique is complicated by the limited, mm-scale 

penetration depth of visible light in the brain, requiring the use of fiber-optic probes or 

implantable miniaturized microscopes (i.e., miniscopes) to stimulate the fluorophores and to 

monitor the emitted light from deep-brain regions.12 Light absorption and scattering by brain 

tissue clearly present obstacles to the use of optical techniques, while neurochemical mass 

transfer limitations and clearance mechanisms in the brain limit sensor sampling space and can 

mask neurotransmitter signal characteristics. 

The clear advantages and disadvantages of these primary approaches for monitoring 

neurochemicals in vivo suggests that each will have a role going forward in elucidating brain 

function.  Electroenzymatic sensors are well suited to deep-brain measurements where good 

spatiotemporal resolution and minimal tissue damage are vital. A recent electroenzymatic Glut 

sensor design offers a several-fold improvement in sensitivity to 320 nA µM-1 cm-2 and an order-

of-magnitude improvement in intrinsic response time (in the absence of external mass transfer 

resistance) to ~80 ms,13 which adds to the appeal of the technology.13 

However, even the fastest electroenzymatic sensors exhibit response times that are too 

slow to monitor true synaptic neurotransmitter dynamics, which occurs on the millisecond to 

sub-millisecond time scale. Analysis of sensor response is further complicated by slow diffusive 

mass transfer of neurochemicals through the brain extracellular space (ECS) to the sensor,14 

which introduces physical limitations that cannot be overcome by any sensor improvements. 

These considerations highlight the need to formulate validated approaches for the interpretation 

of electroenzymatic sensor data in order to better establish the true usefulness of these tools for 

study of neurological processes. 

A central issue is the utility of calibration factors obtained in vitro, typically by measuring 

sensor responses to step changes in concentration administered in a rapidly stirred beaker, to 
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interpretation of sensor data gathered in vivo. To date, use of electroenzymatic sensors to study 

neurotransmitter concentrations has been predicated on the assumption that these biosensors 

will perform the same in both environments and that the rise and decay of signals from 

implanted sensors is straightforwardly reflective of corresponding concentration changes in vivo. 

However, the environments employed for calibration where external mass transfer is minimized 

or essentially eliminated are not reflective of the relatively quiescent deep brain environment 

where external mass transfer limitations cannot be ignored. A previous theoretical and 

experimental study of glucose and hypoxanthine biosensors has confirmed this conclusion 

through an investigation of differences in sensor performance in a stirred beaker, in agar, and in 

brain tissue. In brain tissue, Newton et al. found that the lack of convective mass transfer to 

quickly transport analyte to the biosensor surface combined with the presence of H2O2 

clearance mechanisms, resulted in a steady-state sensor response of only ~1.5% of that for the 

same concentration in a stirred beaker.15 Detailed models of analyte transport in the brain, 

including biological uptake and clearance mechanisms, must be combined with biosensor 

models to properly analyze data collected in vivo. 

To understand how Glut sensors perform in the complex environment of the brain, a 

simulation strategy using an accepted model of diffusive mass transport and sensible ranges of 

average Glut and H2O2 uptake and clearance rates is applied for a number of Glut release 

scenarios at varied distance from the biosensor. Although this one-dimensional model is an 

approximation, it is known to be a reasonably good one for description of transport to typical 

sensors with characteristic dimension >25 µm.16 The sensor parameters used in this study 

correspond to a theoretically optimized design of the sort shown in Fig. 6.1 with sensitivity of 

364 nA µM-1 cm-2 and response time of 8 ms whereas the best measured instrinsic response 

time (in the absence of external mass transfer resistance) is ~80 ms.13 These simulation results 

therefore correspond to somewhat aspirational sensor spatiotemporal resolution in vivo, yet still 

illustrate well the key issues encountered in the interpretation of sensor data. Of course, these 
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findings apply best to Glut biosensors of the particular design described here, yet they are 

expected to be qualitatively relevant to electroenzymatic sensors of related construction. 

 

6.2. Results and Discussion 

6.2.1 Model development and simulated sensor response to concentration step changes 

in the brain ECS 

A detailed, transient mathematical model in one spatial dimension (1-D) was developed 

to describe Glut sensor performance in vivo, and to study the sensitivity of simulation results to 

parameters describing the clearance of Glut and H2O2 from the ECS. This model builds upon a 

previously published mathematical description of sensor performance in vitro under conditions 

where external mass transfer resistance was minimal13, 17 to include an additional, brain ECS 

domain where the rates of chemical diffusion to and from the sensor as well as the biological 

clearance rates of Glut and H2O2 are included. These rates of external mass transfer and 

clearance often are not of concern when a Glut sensor is calibrated in a stirred beaker, yet they 

play an important role in sensor performance in vivo. This importance has been corroborated by 

previously reported simulations of electroenzymatic sensors implanted in a gel or tissue and 

exposed to constant analyte concentration.15  

However, an understanding of sensor response to transients in neurotransmitter 

concentrations as well as the influence of varied clearance and uptake rates within the ECS 

clearly is of central importance for the interpretation of sensor data used to study actual brain 

function. Noting that many of the properties affecting the clearance of neurochemicals from the 

ECS are expected to vary from one region to another, as well as over time, the model 

simulations presented here were run over a range of reasonable values (high, middle, or low) to 

capture the effects of temporal and spatial variability in the brain (see Methods). However, 

modeling in 1-D has some intrinsic limitations, including the description of neurotransmitter 

release. For example, the difference between synaptic dimensions and sensor sites (~40-150 
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µm) cannot be addressed in 1-D models that describe only the depth into sensor coatings, not 

the size of the sensor itself. Nevertheless, transport to the sensors themselves is expected to be 

modeled well in 1-D, since their characteristic dimensions exceed 25 µm.16 

Since sensor calibration in vitro normally is conducted by recording sensor responses to 

step changes in Glut concentration, initial simulations were conducted for comparison purposes 

for step changes to 10 µM Glut at various distances from the sensor, d, in the simulated ECS 

(Fig. 6.1a). (A Glut concentration of 10 µM was chosen since it appears to be representative of 

the peak concentration observed in the mammalian ECS.18 Since concentration changes 

originate at a distance from the sensor surface, the step change was specified at increasing 

distances from the sensor to assess how well sensors may describe a well-defined change in 

concentration beyond their immediate vicinity in vivo. 

For a calibration factor obtained from data gathered in vitro to be useful directly, sensor 

responses to actual Glut concentration in the simulated ECS should be predictable 

straightforwardly by applying the corresponding calibration factor. For the simulations shown in 

Fig. 6.2 and elsewhere in this study, the sensor is characterized by a calibration factor of 21.85 

pA/µM for Glut concentrations within the sensor’s linear range. Surprisingly, simulations show 

that when a step change in concentration occurs close to the sensor surface (<3 µm) sensor 

current signals correspond to apparent concentrations (based on the calibration factor) that are 

much higher than the actual imposed concentration of 10 µM in the release zone (Fig. 6.2). For 

step changes in concentration more distant from the sensor surface, sensor response is 

reduced significantly relative to that expected for a sustained 10 µM release, dropping to 25% of 

the expected response for Glut release at a distance of 10 µm and to below 7.6% of the 

expected response for Glut released at 20 µm. For the simulated range of Glut and H2O2 

clearance rates, the sensor response was greater for slower rates and lower for faster rates, as 

shown by the error bars in Fig. 6.2. These simulations suggest that the relationship between 
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sensor performance in vitro in the absence of external mass transfer limitations to sensor 

performance in a simulated brain environment is not straightforward. 

 

 

Figure 6.1. Sensor schematic and the set of conditions used to model Glut release into the brain ECS. 

Equation 1 (see Methods) describes the diffusion and reaction of Glut, O2 and H2O2 within each 1-D 

domain (PPD, Nafion, Enzyme/BSA, and Brain ECS). Ascorbic acid (AA), dopamine (DA), a-ketoglutarate 

(a-KG), NH3, and H+ are not modeled. 

 

Table 6.1. Rate constants for Glut uptake and H2O2 clearance (s-1) 

Species Slow Moderate Fast 
Glut 4.33 s-1 4.95 s-1 7.7 s-1 
H2O2 0.0116 s-1 5 s-1 30 s-1 

 

 

 
 

Sensor Brain ECS 

AA(-) 

DA(+) 

a-KG 
NH3 

H2O2 Glut(-) 

O2 

AA(-) 

DA(+) 

etc. 

H2O2 

2e-  O2 + 2H+ 

Glut(-) release conditions: 
 
a) Constant Glut, x ≥ d 

All x,  CGlut(t < 0) = 0 
x ≥ d, CGlut(t ≥ 0) = 10 µM 

 
b) Glut constant, x = d for tr seconds 

All x, CGlut(t < 0) = 0 
x = d, CGlut(0 ≤ t ≤ tr) = 10 µM 

 
c) Bolus Glut release, d1 £ x £ d2 (20 nm) 

All x CGlut(t < 0) = 0 
d1 £ x £ d2  CGlut(t = 0) = 60 mM 

 
 x = 0 

Platinum  PPD(+)  Nafion(-)  Enzyme/BSA 

0.7 V 
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Figure 6.2. Simulated biosensor response in vivo to a 10 µM step-change in Glut concentration at varied 

distances for moderate Glut and H2O2 clearance rates. Apparent concentration measurements were 

calculated using the calibration factor (21.85 pA/µM) obtained in vitro. The time periods required for the 

approximate steady-state responses represent the time to 90% of the actual steady-state values, 

consistent with calibration procedures in vitro (see text). Error bar termini correspond to the slow and fast 

biological clearance rates of Glut and H2O2 given above (see Methods) where slower rates resulted in 

higher sensitivities and longer response times. Steady-state response times for the slowest H2O2 

clearance rate (for any Glut uptake rate) were omitted since achievement of steady state required >80 s. 

 

The large deviations in sensor response from what might be expected (Fig. 6.2) arise 

from the significant mass transfer resistance to species transport to and away from the sensor 

surface in vivo as well as chemical clearance mechanisms in the brain ECS. A rapidly stirred 

beaker often is used for calibrations in vitro, which minimizes mass transfer resistances 

between the sensor and bulk fluid. Stirring results in rapid convective transport of Glut and O2 to 

the sensor surface and rapid removal of typically most of the H2O2 produced in the sensor 

enzyme layer. It is important to note that the Glut concentration at the sensor surface never 

achieves the concentration released (10 µM in this case) as the system approaches steady 
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state whether in vivo or in vitro. Sensor response is related to the rate of Glut transport to the 

sensor, the rate of Glut uptake in the brain, the rate of Glut turnover in the GlutOx layer of the 

sensor, and ultimately, the delivery of H2O2 to the Pt electrode surface where H2O2 is 

electrooxidized to give rise to the current signal. For example, for a Glut step change to 10 µM 

at 5 µm from the sensor in vivo, a sensor surface concentration of <2.6 µM provides the driving 

force for Glut diffusion to the sensor surface at steady state and a current signal corresponding 

to a bulk concentration of ~6 µM Glut (based on in vitro calibrations). Since resistance to mass 

transport of H2O2 from the sensor surface also is greater in vivo, a greater fraction of H2O2 

produced may be transported to the Pt electrode surface which can give rise to larger sensor 

current signals in vivo than expected (Fig. 6.2), particularly when Glut release events occur 

relatively close to the sensor surface. Representative concentration profiles for Glut, H2O2 and 

O2 both within the sensor coatings and the brain ECF at steady state for Glut release 

maintained at 10 µM at 5 µm from the sensor surface are shown in Fig. 6.3. Note that the slopes 

of the concentration profiles at the sensor surface provide an indication of the diffusive mass 

transfer rates of the chemical species between the sensor surface and the simulated ECS. 

Prior simulations of sensor calibration in vitro (using the same sensor parameters but 

including convective mass transfer at the sensor surface and a mass transfer coefficient of 0.5 

cm/s for H2O2) indicate that only ~15% of the H2O2 arising from Glut oxidation catalyzed by 

GlutOx immobilized in the sensor surface layer diffuses to the underlying Pt electrode where it is 

electrooxidized to give a current signal; most of the H2O2 diffuses to the sensor surface where it 

is flushed away rapidly to the bulk solution by convective mass transfer. In the brain, mass 

transfer of H2O2 from the sensor surface to the ECS occurs primarily by a much slower diffusive 

mechanism, which is enhanced somewhat by biological mechanisms that clear H2O2 at 

relatively slow first-order rates. These H2O2 clearance mechanisms primarily result from 

catalase activity and the glutathione system and exhibit characteristic times ranging from 0.1 s 

to minutes.19-21  Nevertheless, the slower removal rates of H2O2 can lead to not only higher 
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sensor signals in vivo than expected from calibrations in vitro as mentioned above but also to a 

moderate accumulation of H2O2 in the brain in the vicinity of the sensor. However, this H2O2 

accumulation is not expected to show any toxic effects unless it well exceeds 10 µM.22 For 

moderate rates of H2O2 clearance (5 s-1) the highest accumulation of H2O2 for the sensor 

responses shown in Fig. 2 is 10 µM (faster and slower expected clearance rates result in peak 

concentrations of 7.25 and 13.5 µM, respectively) for Glut release at 1 µm and in all cases this 

value drops by ~60% or more for release 3 µm or greater from the sensor surface. Sensor 

response scales with H2O2 concentration at the electrode surface which can be augmented for 

Glut release events closest to the sensor surface that give rise to local H2O2 accumulation. 

The intrinsic response time for these sensors is defined in accordance with common 

practice in the field, namely the time required for the sensor to reach 90% of the steady-state 

response to a step change in bulk Glut concentration in a system where external mass transfer 

resistance between the sensor and the bulk solution essentially is eliminated (by rapid stirring 

for example). The simulations presented here (Fig. 6.2) suggest that much longer times 

generally are required to approach steady state in vivo, typically >90 ms vs 8 ms in vitro for an 

ideal optimized sensor of the design shown in Fig. 6.1,13 depending on sensor proximity to the 

Glut source and H2O2 clearance rate. This order-of-magnitude difference between simulated 

sensor response in vivo and the intrinsic sensor response time also arises from the slow rate of 

diffusive transport between the brain and the sensor surface. When Glut release occurs very 

close to the sensor surface, within a few microns for example, the steady-state Glut 

concentration profile over this small distance sets up quickly whereas the H2O2 profile, which 

extends 10s of microns into the brain, approaches its steady-state character much more slowly. 

Thus, H2O2 mass transfer and clearance rates control the apparent response of the sensor in 

vivo. For example, for Glut release <1 µm from the sensor surface, the Glut profile becomes 

constant after ~10 ms, whereas the H2O2 concentration profile approaches steady state at ~100 

ms thereby controlling the apparent sensor response. H2O2 mass transfer and clearance 
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becomes progressively less controlling as the distance between the sensor surface and the 

point of Glut release is increased (Fig. 6.2). 

As expected, the overall apparent sensor response time increases almost linearly with 

distance for Glut release distances from the sensor >5 µm. Surprisingly, the opposite trend is 

shown for the closest Glut release distances. This can be explained by examining the steady-

state Glut profiles. At short release distances, there is enough Glut entering the sensor layer to 

be driven to the Nafion/enzyme layer boundary, where the concentration begins to increase 

nonlinearly for distances of less than 3 µm. Any H2O2 produced here by the accumulating Glut 

will have an added mass transfer resistance against diffusing back to the outer edge of the 

sensor, causing an increased response time. At greater release distances, where Glut is fully 

consumed before reaching the enzyme/Nafion boundary, more H2O2 is produced at the outer 

edge of the immobilized GlutOx layer where it can diffuse directly into the brain thereby resulting 

in quicker attainment of steady state. 
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Figure 6.3. Steady state concentration profiles after a 10 µM step-change in Glut 5µm from the sensor 

surface (sensor surface is located at x = 2.093 µm). H2O2 concentration decreases asymptotically to 0 for 

x > 2.093 µm. 

 

In considering the distances traveled by diffusing molecules in the brain, it is important to 

acknowledge how the tortuosity of diffusion paths in the brain ECS impacts apparent or effective 

diffusivities by increasing relative diffusion distances. The anisotropic nature of the brain also 

influences mass transport, an effect that has been exploited for creation of detailed maps of 

neural connections using diffusion weighted magnetic resonance imaging: for example, the 

diffusion of water has been shown to be significantly faster in the axial direction of myelinated 

axons.23 These differences are often characterized in terms of the fractional anisotropy (FA), 

relating the magnitude of diffusivity in primary, axial (faster) and radial (slower) directions. In 

studies of brains in developing Sprague Dawley rats, FA stabilized through developmental 

cycles to a value of about 0.3.24 This corresponds to diffusion in a primary direction that is 1.67 
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times the average value and diffusion in radial directions 0.667 times the average value. This 

could increase or decrease the distance at which sensors can detect Glut depending on where 

the probe is located within the brain and could prove to be an important factor in deciding where 

to implant sensor probes. However, in order to reduce the complexity of the simulations 

conducted here while still addressing the main points of discussion, the brain medium is 

assumed to be isotropic with a void fraction of 0.2 and tortuosity of 1.6, as detailed in the 

methods.14  

Although the Glut step change modeled in these initial simulations may not be realistic 

biologically, these results highlight the impact of the dramatically different conditions used for 

calibrations in vitro and for measurements in vivo on sensor response. Simulations of sensor 

response in vivo to transient Glut release described below provide further indication that 

calibration plots and response time measurements obtained by the typical means in vitro cannot 

be used straightforwardly for the interpretation of sensor data gathered in vivo. 

 

6.2.2 Simulated sensor response to transient Glut release events at fixed distances in the 

brain ECS 

Figure 6.2 shows that if Glut concentrations are not maintained at the site of release for 

>0.09 s, steady-state sensor responses will not be reached for the conditions explored, and the 

device will provide a signal corresponding to a lower Glut concentration, except for release 

events very close to the sensor surface. Since it is unlikely that Glut concentration transients in 

vivo occur on such lengthy time scales, the time course of the release event and its distance 

from the sensor surface will further reduce sensor response below the value expected (based 

on calibrations in vitro). Figure 4 shows simulations of the ideal optimized sensor response if 

Glut concentration were held constant at specific distance points from the device for very short 

periods of time (1-10 ms). This scenario corresponds to a rectangular Glut concentration pulse 

in time at a point location (Fig. 6.1b). This study is intended to investigate how closely a sensor 
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signal time course might be expected to describe a clearly defined, transient pulse in Glut 

concentration in a simulated ECS environment. The specific release times investigated (1, 5, 

and 10 ms) are intended to approximate in vivo timescales. For example, recordings from rat 

nucleus accumbens using relatively fast electroenzymatic sensors recorded exocytosis events 

with apparent sub-millisecond rise times and ms decay times, resulting in Glut presence near 

the synapse over the range of 1-5 ms.25 

Simulated sensor responses to 10 µM Glut concentration releases are shown to vary 

significantly depending on how long the concentration is maintained and the distance between 

the sensor and the point of release (Fig. 6.4). Sensor current signals generally correspond to 

underestimates of the actual 10 µM Glut release concentration, except for some release events 

very close to the sensor, which is consistent with the results illustrated in Fig. 6.2 for step 

changes in Glut concentration at varied separations from the sensing site. 

It is also notable that although all sensor responses shown in Fig. 6.4 have a similar 

asymmetric shape, a more distant Glut release event results in a broader signal. The decay rate 

of sensor responses has been used by some to estimate the extracellular residence times and 

cellular uptake rates. However, comparing the simulated sensor signal decay profiles with the 

actual decay in Glut concentration at the release point and also the simulated component of 

Glut concentration decline due to biological uptake from the ECS (Fig. 6.4) shows how difficult it 

would be to determine such Glut uptake rates directly from signal decay data. The declining 

sensor signal results from a combination of Glut uptake from the ECS, actual Glut consumption 

by the sensor, and diffusion of Glut in the positive x-direction away from the release site. Among 

these influences, the effect of the sensor is minor, but can be observed by comparing the time 

profiles of the dotted lines across different release point distances. For release at 1 µm, the Glut 

concentration decays most quickly; however at 5 µm and 15 µm, the Glut time courses are 

slower and nearly indistinguishable indicating that consumption of Glut by the sensor has 

become inconsequential. 
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Figure 6.4. Sensor response to transient Glut release at various distances from a sensor. Black portions 

of solid curves show sensor response while Glut is maintained at 10 µM. The dashed gray curves show 

modeled Glut disappearance due only to an imposed biological uptake corresponding to a 4.95 s-1 rate 

constant. Simulations were conducted using the moderate rate constants for Glut uptake of 4.95 s-1 and 

for H2O2 clearance of 5 s-1. The dotted curves show the actual Glut concentration at the release site. In all 

plots, the blue, green and red curves represent data for release times of 1 ms, 5 ms, and 10 ms, 

respectively. 

 

Of course, simulation of Glut release in this way lumps together the many factors that 

actually influence Glut release and concentration regulation in the ECS. These factors may 

include variations in the number of vesicles releasing Glut during signaling events, the number 

of molecules contained in each vesicle, the fraction of molecules released by each vesicle, local 

geometric constraints, unique synaptic structures, the fraction of Glut spillover into the ECS, and 

even the possibility of Glut release from astrocytes, which has been observed in response to 

inflammatory conditions26 that could be caused by probe insertion. After 1, 5, or 10 ms of 

maintained Glut concentration there would be approximately 15, 20, or 30 million molecules 

present in the ECS, assuming outward diffusion from a point into a spherical region. However, 

due to the 1-D nature of this model, the actual numbers of molecules needed to produce these 
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simulated sensor responses would be higher, unless sensor sites are miniaturized significantly. 

These Glut numbers are still 10-100 times the number found inside a single presynaptic 

vesicle,27 and do not account for molecules that were taken up from the ECS in those time 

periods. These 1-D simulations, therefore, should be understood as simplified representations 

of concurrent release from multiple vesicles and/or synapses. 

 

6.2.3 Simulated sensor response to bolus Glut release events in the brain ECS 

 Sensor response was also simulated for single, bolus-type releases of Glut into the ECS 

at varied distances from the sensor. This scenario roughly represents how sensors respond to 

neurotransmitter release from synaptic vesicles where it is assumed that synaptic vesicles 

release Glut instantaneously into a volume roughly the size of a synapse, simulated as a 1-D, 

20 nm wide region in the ECS, resulting in localized concentrations near 60 mM.28 After release, 

Glut diffuses through the ECS and the responses of sensors at various distances from the 

release site are simulated (Fig. 6.5A). The concentrations of Glut within the ECS at the time of 

the maximum sensor responses also are shown in Fig. 6.5B. The model conditions for these 

simulations are given in Fig. 6.1c. Simulations corresponding to the extrema of the range of 

plausible uptake and clearance rates of Glut and H2O2 are shown by the dashed lines, although 

the differences are less pronounced than under the steady-state conditions presented in Fig. 

6.2. However as in Fig. 6.2, higher sensor responses are observed for slower clearance and 

uptake rates and lower responses are observed when these rates are faster. 

 At simulated times corresponding to maximum sensor response, actual concentrations in 

the brain ECS are much lower than the initially imposed 60 mM and vary significantly over 

micron-scale distances (Fig. 6.5B), complicating analysis of how well a sensor reports the actual 

concentration in the brain, since the actual concentrations show large spatiotemporal variations. 

It is important to note once again here that the sensor response at any moment is generated 

from the rate of electrooxidation of H2O2 at the Pt electrode surface, which is directly related to 
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the flux of H2O2 within the sensor coatings arising from the turnover of Glut by the immobilized 

GlutOx and the flux of Glut to the sensor surface. As time progresses, the peak Glut 

concentration diminishes due to Glut diffusion into the simulated ECS in the positive x-direction 

and Glut clearance from the ECS, which results in a decreasing slope in Glut concentration at 

the sensor surface and a decay in the sensor signal. The effect of Glut consumption by the 

sensor on simulated Glut concentrations is minimal, although its impact is reflected in the slight 

shift in the peak centers away from the original 10, 15, 20, or 30 µm release locations, as shown 

in Fig. 6.5B. 

 

 

Figure 6.5. A: Simulated sensor concentration measurements after bolus releases of Glut at varied 

distances from the sensors within a 20 nm, synaptic scale region, where Glut is specified to be 60 mM at t 

= 0. B: The actual Glut concentration profiles in the brain plotted over the distance from the sensor 

surface, taken at the times of maximum response for releases at each distance. Dashed lines show the 

effects of slower and faster uptake or clearance rates of Glut and H2O2 corresponding to the smaller and 

large rate constants presented in the table in Fig. 6.2, where slower uptake rates result in higher 

concentrations. 

 

 These 1-D simulations make it appear that it may be possible to observe single, synaptic 

releases of Glut. However, by modeling in 1-D we are assuming that the concentration at the 

release distance is constant across the sensor surface; in reality the synapse is much smaller 
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than the sensor, and the true sensor response to a single synaptic release may be much lower. 

Also, the apparent Glut concentrations corresponding to sensor signals vary significantly 

depending on the distance between the sensor and location of Glut release, despite the 

identical Glut release conditions specified for each sensor/release site separation distance. For 

Glut released farther from the sensor surface, response is lowered and broadened. For 

distances greater than 30 µm, even with the 1-D simplifications that overestimate response, 

simulated response remains below the detection limit, which has been characterized 

experimentally as 0.7 µM (detection limit is defined as the concentration at which sensor 

response is 3´ that of the noise). However, this 1-D simulation cannot provide a quantitative 

prediction of the maximum sensor/release site separation distance that could give rise to a 

detectable signal. Regardless, these distances are far shorter than the range of 

electrophysiological recordings (100-200 µm).10 Fortunately, the peak broadening effect that 

occurs over increasing release distance suggests that it may be possible to correlate the peak 

widths or rise times to the distance between the sensor and Glut source, although this would 

require experimental validation and careful consideration of relevant assumptions including the 

time course of Glut release, the concentration achieved in the synapse, and the Glut leakage 

rate from the synapse. 

It is suspected that in reality only a fraction of the neurotransmitters are released during 

exocytosis,29 which would reduce the initial Glut concentration and simulated sensor signals, 

although not enough is known to account quantitatively for partial neurotransmitter release. This 

consideration, along with the 1-D nature of the model, suggest that the simulations likely 

overestimate the sensor signal and that these results should be understood as a maximum 

possible sensor response. 

Nevertheless, these simulation results qualitatively agree with experimental 

measurements made with less-than-optimal versions of these sensors that had response times 

in vitro of ~0.8 s. In an experimental study in vivo, Glut release was detected following cortical 
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stimulation in the nucleus accumbens of anesthetized rats that decayed to 30% of baseline 

within 3.5 s.30 In the basolateral amygdala, similar sensors detected transient increases in 

extracellular Glut of ~1µM in the time surrounding reward-seeking decisions with transient 

release frequencies observed on the order of 1 to 8 per second, depending on the rat’s activity. 

31 Another study entailed injection of nanoliter volumes of 500 µM Glut at ~100 µm from the 

sensor surface, resulting in a measured value ~25% of the sensor response to 500 µM in vitro 

with signal decay occurring over 3-5 s.32  Amplitude, rise time, signal decay and asymmetric 

signal response in these cases all are consistent with the simulations shown here corresponding 

to Glut release >20 µm from the sensor surface. 

 

6.3. Methods 

6.3.1 Models and simulation methods 

 Mathematical models were used to simulate diffusion and reaction of the three chemical 

species of primary interest in modeling Glut biosensor performance in vivo: Glut, O2 and H2O2.17 

These processes are described by separate time-dependent mass balance equations for each 

chemical species in each coating layer of the biosensor (Fig. 6.1) as well as in the brain ECS 

(four separately defined domains, each described by three linked partial differential equations 

corresponding to the three species of interest, as seen for the ECS in Equation 6.1). The 

equations used to describe the biosensor, in one spatial dimension (1-D), were reported in our 

earlier work.13, 17 In these models, Glut is excluded from the negatively charged Nafion layer 

using a large partition coefficient of 1000, with equal fluxes and concentrations for all species at 

all other internal (within sensor layer) boundaries. Others have published a 1-D model of 

species diffusion and reaction in the brain ECS suitable for our purposes,14  

 

𝜖5
6,%
67
= P&

9"
𝐷.

6",%
6-"

+ 𝜖5𝑟.(𝐶.)     (6.1) 
i = Glut, H2O2, O2;  j = PPD, Nafion, enzyme, brain ECS 



 126 

 

In this model, brain porosity and tortuosity of diffusion paths in the ECS are represented by 𝜖5 

and 𝜆, respectively. The concentration of species i within the ECS is Ci, its molecular diffusivity 

in water is Di, and its clearance rate from the ECS is 𝑟.(𝐶.). 

Boundary and initial conditions for the brain ECS varied depending on the simulation 

being performed; a general visualization of the 1-D domains and simulation initial conditions are 

provided in Fig. 6.1. In all simulations, equal diffusive fluxes for the ECS domain at the sensor 

immobilized enzyme layer/ECS boundary were specified, using Equation 2, where 𝛼D𝐷. 

represents the effective diffusivity through the enzyme layer of species i.  
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At the same boundary in the immobilized enzyme domain, concentrations were set to be equal 

to that in the ECS (no concentration partition was specified between these domains). At the 

edge of the ECS far from the sensor, Glut and H2O2 were set to be 0 µM while O2 was set to a 

bulk in vivo concentration of 25 µM (see below). To ensure this boundary condition did not 

influence simulation results, the length of the domain was increased until further increases did 

not affect simulation results. Initial conditions generally specified Glut and H2O2 at 0 µM and O2 

at 25 µM, although some parts of the ECS domain set Glut to a different value in some 

simulations. To simulate Glut being held at 10 µM for specified time periods, first a constant 

concentration boundary condition was used for the given time period, then it was removed, and 

finally the simulation was continued using data from the last time point as the initial conditions. 

Solutions to these sets of equations and boundary conditions were found numerically 

using COMSOL Multiphysics (COMSOL, Inc, Los Angeles). Equations were entered using the 

coefficient form PDE interface. At internal domain boundaries, it was necessary to select the 

“apply reaction terms on individual dependent variables” option to ensure boundary conditions 
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remained as specified. Time-dependent solutions were found using the default, fully coupled 

multifrontal massively parallel sparse direct solver (MUMPS). Time steps and variable 

tolerances were adjusted as necessary, depending on the simulation. 

A number of assumptions are implicit in these models. In using Fick’s Law to construct 

the diffusion equations, it is assumed that all regions have a homogeneous nature and that 

concentrations are low. Other previous assumptions concerning the sensors also apply,17 

including the application of free-enzyme kinetic rate constants for immobilized enzyme, no loss 

in GlutOx activity upon immobilization and over time, and the nonparticipation of the ammonia 

byproduct in the reactions of interest. The fraction of active GlutOx in the enzyme layer is 

assumed to be 0.1, fitting in vitro experimental data.13 It is also important to realize that 1-D 

models require area-averaged rates and assume homogeneity and temporal consistency in 

these rates.  

 

6.3.2 Selection of H2O2 clearance, Glut uptake, and O2 bulk concentration parameters 

It is assumed that appropriate ranges of rate constants for Glut uptake and for H2O2 

clearance from the brain ECS can be used to encapsulate the spectrum of conditions expected, 

making the model more widely applicable over different regions of the brain. The clearance 

rates of H2O2 and Glut from the brain ECS can greatly affect simulated sensor response in vivo, 

and are expected to vary depending on many biological factors including differences due to 

anisotropy, location within the brain, and the influence of other neurotransmitters and 

neuromodulators. These considerations led to the performance of multiple simulations for each 

set of Glut release conditions in order to explore a representative range of H2O2 and Glut 

clearance rates described as fast, moderate, and slow in the discussion of simulation results. 

Further considerations that must be made when interpreting these results concern the likelihood 

of tissue damage resulting from probe insertion,33 which would likely affect the rates of 

clearance and uptake. If a blood vessel is ruptured on insertion, for example, a layer of red 
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blood cells would be expected over the sensor surface33 and would alter normal biological rates 

for that region of the brain; accumulation of glial cells has also been observed near inserted 

electrode probes.18 Ultimately, the values for first-order clearance or uptake rates (Fig. 6.2) were 

selected based on available literature data and from observations made from sensor use in vivo 

over a range that should be applicable to most in vivo conditions. 

 Prior data gathered in vivo with sensors constructed on microelectrode array (MEA) 

probes did not show evidence of crosstalk between sensor sites arrayed ~50 µm apart, 

suggesting that any H2O2 produced at one site is diluted into or cleared by the surrounding ECS 

before it can diffuse to an adjacent site at sufficient concentration to give a signal. Simulations 

were performed to determine the minimum clearance rate required for crosstalk to be absent. 

For sensor spacings of 40 µm on a MEA probe, a clearance rate constant >5 s-1 is required. 

This is consistent with the rate constant measured for cultured Jurkat T cells of 4.5 s-1,19 and 

was chosen as the mid-range parameter. An upper bound was found by repeating the 

simulation assuming that crosstalk would not be observed for a smaller sensor spacing of 20 

µm, in this case showing rate constants >30 s-1 would be required. Studies of cultured neurons 

and astrocytes displayed slower clearance rates on the order of minutes,20 leading to 

specification of a slow rate constant representing a 1 minute halftime (0.0116 s-1). Other cell 

types show similarly slow clearance of H2O2, including for the red blood cells that may be 

present in cases of insertion damage. For example, mouse red blood cells have shown a H2O2 

clearance rate constant of 0.048 s-1.21 Rates this slow would likely result in significant crosstalk 

between sensors under sustained Glut exposure, but this value was included as the lower 

bound that may be situationally accurate for certain instances and locations in the brain. 

Clearly, measurement of the extracellular H2O2 present during Glut monitoring could 

help improve sensor accuracy. Furthermore, it is worth mentioning that evoked H2O2 has 

neuromodulatory effects and is known to be produced from additional sources in the brain. For 

example, electrical stimulation of dopaminergic axons has been shown to produce H2O2 along 
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with neurotransmitters.34 The possibility of these effects were not incorporated into this model, 

but may be worth consideration. In some cases, they could cause a greater sensor response 

due to H2O2 evoked by neuronal stimulation. The importance of H2O2 production and regulation 

on biosensor accuracy are unexpected and complex, and the topic deserves further 

independent study. 

The range of Glut uptake rate constants used was taken from data obtained via a 

genetically encoded glutamate sensing fluorescent reporter (SuperGluSnFR) technique in 

cultured hippocampal neurons, where Glut dynamics were recorded after electrically stimulating 

neural tissue at different frequencies.11 Middle, upper, and lower bounds for Glut uptake rate 

constants were estimated from this data, where the uptake rate from a single stimulation 

resulted in the fastest uptake and repeated, high-frequency stimulations resulted in the 

moderate and slower uptake rates. These rate constants likely result in overestimates of Glut 

uptake rate since diffusion is not accounted for in the experimental measurements, however 

they provide a good initial set of values for simulations. 

Oxygen concentration was fixed for all simulations at a level such that it would not 

influence results, which is a reasonable approximation based on previous sensor simulations 

showing that O2 is not limiting unless the concentration of Glut is held constant at a 

concentration more than triple that of O2.17 Since the concentration of O2 in the brain ranges 

from 5-50 µM, similar to that expected for Glut,35 simplifications to ignore oxygen dependency 

are not expected to influence simulation results. 

 

6.4. Conclusions 

A mathematical model was developed to simulate the performance in vivo of 

electroenzymatic Glut sensors, which highlights the complex relationship to calibration in vitro 

that is dependent on sensor placement relative to locations of Glut release and the local rates of 

Glut uptake and H2O2 clearance from the brain ECS. Ranges of values for the volume-averaged 
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uptake and clearance rate constants for Glut and H2O2 were chosen to represent the range of 

their probable variations, spatially and temporally, in the brain. Rates of H2O2 clearance were 

shown to be most significant in affecting steady-state sensor signals and apparent response 

times, which implies a need for additional experimental study of H2O2 concentration regulation in 

the brain. Simulations of sensor steady-state responses to a 10 µM step-change in vivo showed 

that apparent sensor concentration measurements (based on calibration factors obtained in 

vitro) can be more than double the actual concentration for Glut release events very close to the 

sensor due to H2O2 diffusive mass transfer resistance from the sensor surface that is not 

present during typical sensor calibration runs in vitro. However, if Glut release occurs >3 µm 

from the sensor surface, measured concentrations are likely to be significantly lower than 

actual. 

Simulations showing sensor responses to transient Glut as a rectangular pulse in time at 

specified distance from a sensor also showed great dependence of sensor response on both 

the relative location and duration of Glut release. If Glut concentrations are maintained for <10 

ms, sensor measurements (based on calibration data previously gathered in vitro) are not likely 

to correspond to the higher actual concentration reached in the brain. As the sensor signal 

decays in time due to a combination of Glut diffusion away from the sensor, Glut consumption 

by the sensor (a minor contributing factor), and Glut uptake from the ECS, it is clear that rate 

constants for Glut uptake cannot be estimated straightforwardly from signal decay data. Further, 

as the distance between the sensor and the Glut release site was increased, the sensor signal 

became progressively broader and lower. 

For the most biologically relevant simulations performed, in which a bolus Glut release is 

specified within a 20 nm region at varied distances from the sensor, it was shown that detection 

of Glut release within 30 µm of the sensor is feasible, and that the breadth of sensor response is 

related to the sensor distance from the release site. This information could be useful in 

distinguishing Glut release events from various locations using a single sensor if all release 
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events are assumed to have the same character, including magnitude and duration. However, 

the apparent concentrations measured using a sensor are difficult to interpret since the actual 

Glut concentration profile in proximity to the sensor at the time of maximum response shows 

very large spatiotemporal variations (quickly changing with distance from the sensor and over 

time). 

Electroenzymatic biosensors of similar construction for other biomolecules are expected 

to be similarly affected by conditions in vivo, especially considering the key importance of H2O2 

dynamics on sensor response reported here. Deviations from in vitro performance may even be 

more pronounced if sensors with slower enzyme kinetic rates are used, as even small 

differences in sensor response time were seen to theoretically have a dramatic effect on the 

ability of Glut sensors to monitor quickly changing concentrations. 

Within the context of the available sensing techniques, miniaturization of Glut sensors 

will be necessary (and is feasible considering recent sensitivity improvements) if 

electroenzymatic sensing techniques are intended to operate with spatiotemporal resolution 

approaching that of electrophysiological measurements,36 for which temporal resolution has 

resolved >250 Hz action potentials within ~50 µm of a three-dimensional electrode array.37 

Reaching similar levels of spatiotemporal resolution with electroenzymatic sensors would 

provide exciting opportunities for coordinated electrophysiological and electrochemical 

recording.  

The current 1-D model cannot be used to determine the lateral spatial resolution of these 

electroenzymatic sensors. However, this 1-D model provides a foundation upon which to 

construct a 3-D model to further investigate spatial resolution issue and perhaps to optimize 

overall probe design for improved spatial resolution. 
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Chapter 7: Simulations of glutamate sensor performance in three spatial 

dimensions recommend sensor miniaturization to monitor neurotransmitter 

release with improved spatial resolution 

 

Abstract   

 Simulations show that miniaturization of electroenzymatic sensors for neurotransmitters 

is necessary and feasible for glutamate (Glut) sensors and can provide resolution improvements 

from monitoring tens of thousands of synapses to hundreds of synapses; it is also shown that 

sensors can be situated much closer than 40 µm apart on sensor probes without risk of 

crosstalk. Ambiguity in what is detected by electroenzymatic sensors for neurotransmitters, 

including Glut, includes a basic uncertainty of how many synapses are being monitored and 

how far they can be from the probe surface to result in sensor detection. The limits on sensor 

packing on a probe have also seen little experimental verification lately, largely due to the 

lengthy process of micromachining new probe designs. Simulations are an effective tool to 

investigate both of these uncertainties; 3-D models of Glut sensors in the brain were 

constructed to simulate the performance of standard and miniaturized sensors (of various 

enzyme deposition schemes) in detecting both large-scale and small-scale Glut release. 

Simulations show sensors could be packed as tightly as is desired and miniaturized to radii of 

~10 µm, with sensitivities increasing for small sensors (radii <25 µm) over that of larger sensors 

and showing the benefits of different enzyme deposition schemes: stamping in small areas 

around electrode sites vs dip-coating enzyme onto the larger probe surface. Simulations further 

show that excitation of thousands of synapses over the course of 0.5 s is likely required for Glut 

detection. The consistency of these results with previous experimental reports suggests a 

widespread applicability of this model for the interpretation of sensor data for similar sensors, 

including those for glucose and choline. 
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7.1 Introduction 

 Chemical signaling in the brain can be thought of as the physiological framework that 

guides neural function; improving our understanding of this framework is key to understanding 

normal and abnormal neurological processes, including the mechanisms and processes that 

enable plasticity and repair, disease propagation, psychological well-being, and motor or 

sympathetic functions. Recognition of the importance of chemical signaling has led to the 

development of multiple sensing techniques to monitor neurochemical transmission, generally 

with a focus on a specific neurochemical. Glutamate (Glut) is of particular interest as it is the 

primary excitatory neurotransmitter, meaning Glut dynamics can provide vital information about 

neuronal activity across many locations and conditions of the brain. Debate continues, however, 

regarding many of the fundamental aspects of Glut transmission, including how presynaptic 

vesicles fuse to synaptic membranes to release Glut, how much Glut is released, and how far 

into the brain the released Glut can travel before being removed from the extracellular space. 

 The most reliable, recent data available regarding Glut dynamics largely comes from two 

promising techniques for monitoring Glut, including fluorescent methods, which often require 

genetic expression of fluorescing proteins or fluorescing particle sensors along with detection 

scopes,1, 2 and electroenzymatic biosensors,3, 4 which are comparable to electrophysiological 

array probes5 (although electroenzymatic sensors are currently in earlier stages of development 

and would still benefit from further analysis of sensor spatiotemporal resolution). Each technique 

is designed to be useful for specific situations, depending on the study being conducted. There 

are clear benefits of electroenzymatic sensing, particularly if electroenzymatic and 

electrophysiological sensing sites can be situated on the same probe, which would allow for 

combined, simultaneous electrophysiological and chemical measurements of synaptic 

transmission. 
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 Electroenzymatic Glut sensors use a metal electrode (often platinum) that is held at a 

constant potential, relating the current produced by oxidizing chemicals at the electrode surface 

to a Glut concentration in the brain or surrounding solution near the sensor surface. Glut is 

specifically detected by immobilizing an enzyme (glutamate oxidase), which catalyzes 

conversion of Glut and O2 to H2O2, NH3, and a-ketoglutarate; this reaction results in a locally-

produced, electrooxidizable species (H2O2) which can be detected at a Pt electrode. To prevent 

other oxidizable compounds (including ascorbate and dopamine) from obscuring the signal from 

Glut-mediated H2O2, positively and negatively charged polymer coatings (polyphenylendiamine 

and Nafion, respectively) are deposited between the enzyme layer and electrode surface. 

Sensitivities must be very high to minimize sensor size (which increases the number of sensing 

sites that can be incorporated on each probe and the spatial resolution) and response times 

must be very fast to record sub-millisecond dynamics of neurotransmitters in the brain. The best 

reported sensitivities and measured response times of Glut sensors are 320 nA µM-1 cm-2 and 

80 ms, made on an electrode array with four 6000 µm2 sensing sites.4   

 

 

Figure 7.1. Mechanism of electroenzymatic sensing at a single sensor site. H2O2 is produced 

stoichiometrically from Glut and O2 and releases 2 electrons when electrooxidized at a platinum surface. 

Ascorbate, dopamine, and other interfering compounds are excluded from the electrode surface by size 

and charge restrictions imposed by the polymer coatings. 

  

 

Sensor Brain ECS 

AA(-) 

DA(+) 

a-KG 
NH3 

H2O2 
Glut(-) 

O2 

AA(-) 

DA(+) 

etc. 

H2O2 

2e-  O2 

x = 0 

Platinum  PPD(+)  Nafion(-)  Enzyme/BSA 

0.7 V 



 139 

 In the development of electroenzymatic biosensors for neurotransmitters, sensor usage 

has remained largely exploratory in light of the many unknowns encountered in taking 

measurements in vivo that complicate data analysis. Some of these factors that influence Glut 

sensor response in vivo have been theoretically investigated in 1-dimensional models, 

concluding that the distance from the sensor to the location of Glut release fundamentally 

affects the nature and magnitude of sensor response and that a number of biological rates 

(particularly the regulation of hydrogen peroxide and cellular uptake of Glut) can further 

obfuscate the analysis of sensor response.6 Ultimately this shows that direct, quantitative 

measurements of Glut using electroenzymatic biosensors could lead to inaccurate 

interpretations of sensor response if biological conditions are not accounted for properly. 

However, previous modeling has been of a scope that is insufficient for large-scale 

deconvolutions of sensor response, most notably due to its restriction to 1 dimension which 

makes Glut release from a single synapse (on a nm scale) difficult to model within the context of 

a 6000 µm2 electrode. Further modeling can be used to begin interpreting the overlapping and 

complex signals that have been observed in the brain in terms of the events of Glut release that 

cause them; it requires modeling sensor response to numerous neurotransmitter release 

conditions in 3 dimensions.  

 In developing models to simulate sensor performance in 3 dimensions, it would be 

negligent to ignore the opportunity to test different probe and sensor designs, including the size 

and spacing of electrodes and the extent to which enzyme is coated on the outer surface of the 

probe. Sensing sites for electroenzymatic sensors are typically about 6000 µm2 in size with 

spacings of ~40 µm, although a recent design for a glucose sensing array used much smaller 

sites (20 µm in diameter) with spacings of 200 µm to ensure separate sensing from each site.7 

The minimal spacing required between sensing sites has not been investigated for 

electroenzymatic sensors and can be clearly determined using 3-dimensional models (unless 

experimental noise becomes problematic). This would greatly accelerate the development of 
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probes with optimal sensor placement without needing to carry out the rigorous experiments to 

slowly increase sensor site density on a probe; such work requires modifying the complex 

micromachining processes required for probe design. Further consideration of whether the 

enzyme should be stamped or electrochemically entrapped only onto specific sensing sites or 

whether it is better to fully coat a probe in immobilized enzyme will also be helpful in guiding 

further sensor design and in analyzing the response of sensors produced with different enzyme 

deposition schemes. 

 In this work, an analysis of sensor performance in response to large-scale and small-

scale neurotransmitter release is presented (additionally examining the effects of different 

enzyme deposition schemes and electrode sizes for Glut sensors), along with a method to 

determine the minimum spacing requirements for sensor sites on electrode array probes. It is 

the intent of this work to provide an initial theoretical framework for interpreting the magnitude of 

sensor response over time in terms of the number of vesicles releasing neurotransmitters and 

their location relative to the sensor surface.  

 

7.2. Methods 

7.2.1 Mathematical model of diffusion and reactions in the brain and sensor coatings 

 A three-dimensional mathematical model in cartesian coordinates was developed with 

time-dependent partial differential equations in the form of Equations 7.1 and 7.2, representing 

the chemical processes and diffusion within the sensor coatings and the brain extracellular 

space (ECS), respectively. These equations and the relevant parameter values remain the 

same as reported in Chapters 3 (for the sensor) and 6 (for the brain ECS), and diffusive 

transport parameters follow from those reported previously.8 In these models, concentration 

variables refer to the number of moles per volume of ECS, while the overall terms in the 

equations represent the change in moles per second within the entire tissue domain. The 

different volumes used necessitate the inclusion of void fractions in some of the terms so that 
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the volumes considered in each term remains consistent. Within the sensor, effective 

diffusivities are used (modifying the molecular diffusivity in water Di by the constants aj) and in 

the ECS, diffusion is modified by the tortuosity (l = 1.6) and void fraction (e = 0.2) as previously 

reported.8  The rate terms ri are used to describe enzymatic turnover of Glut (within the enzyme 

domain) and the uptake and clearance of Glut and H2O2 in the ECS. No void fraction term is 

needed for the enzyme rate since the rate equation uses the enzyme concentration, which is on 

the total volume of the immobilized enzyme layer. 
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i = Glut, H2O2, O2;  j = PPD, Nafion, enzyme; b = brain ECS 

 

 Rates for the uptake and clearance of Glut and H2O2 in the ECS are assumed to follow 

first-order kinetics, as was done in Chapter 6. Due to uncertainties in appropriate rate constants 

to be used, partly due to the non-isotropic nature of the brain, a range of constants was used for 

each species. Actual average rate constants within the brain are expected to be described 

within these limits. Fluorescence data using genetically modified fluorescing proteins in the brain 

(that bind to Glut) were used to estimate Glut uptake rate constants, and a combination of 

crosstalk simulations and experimental data was used to select H2O2 clearance rate constants 

(as described in greater depth in Chapter 6). The first-order rate constants for Glut are assumed 

to fall within the range of 4.33, 4.95, and 7.7 s-1 with associated H2O2 clearance rate constants 

of 0.0116, 5, and 30 s-1. Oxygen concentration was regulated such that it would not influence 

the simulation results, which is a reasonable assumption based on the previous observations 
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from in vitro simulations that O2 is not limiting unless the concentration of Glut is held constant 

at a concentration more than triple that of O2.6 Since the concentration of O2 in the brain ranges 

from 5-50 µM, similar to that expected for Glut,9 simplifications to ignore oxygen dependency 

are not expected to influence simulation results. 

In all simulations, equal diffusive fluxes were applied at all boundaries between sensor 

layers with a zero flux condition at the sensor’s silicon boundaries and at the deeper regions of 

the ECS. Platinum electrooxidation of H2O2 was specified with a detailed rate equation at the 

electrode surface equal to the flux at the electrode surface. Current response was calculated by 

integrating the electrode reaction rate over the surface of the sensor, and compared to 1-D 

results for the same Glut concentration at the sensor edge to ensure consistency between the 

two models. Initial conditions specified zero concentrations everywhere for Glut and H2O2 and 

25 µM for O2 in all regions. A different initial condition was specified for a single bolus release of 

Glut (see 7.2.3). The geometries and meshing used are shown in Fig. 7.2. A small region (1-3 

µm) near the sensor is separately modeled with no uptake or clearance, representing a volume 

of space disrupted by sensor insertion in which normal biological functions are not active. 

 

7.2.2 Modeling large-scale neurotransmitter release 

 To model large-scale Glut release, a domain in the brain was specified with its bottom 

edge 3 µm from the probe surface (directly above the disrupted ECS region). In this large region 

>3 µm from the probe surface, where active neurons would be present, Glut release was 

specified assuming there is an even distribution of synapses releasing Glut at the rate of a given 

firing pattern. This assumes that with enough sources of Glut release near the sensor at varied 

distances, the overall Glut level detected by the sensor would be an average of these individual 

signals. This can be input into the model as a source function (analogous to a reaction rate term 

that continually produces Glut), specifying an increase in concentration over time. This value 

can be calculated from the firing rate by assuming a density of glutamatergic synapses of 0.9 ´ 
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7 ´ 108 synapses/mm3 as might be expected in the rat neocortex10 (assuming 90% are 

glutamatergic) and that each time a synapse fires it releases one vesicle’s payload of Glut 

(~3640 molecules).11 Cans et al. recently have estimated larger quantities in vesicles,12 although 

it is commonly thought that not all of the neurotransmitters escape a vesicle when it releases its 

contents, so the original estimation of 3640 molecules was used. 

 If a baseline firing pattern produces a tonic level of Glut, the sensor would record this 

Glut concentration as its baseline. To simplify model initial conditions, the initial concentration of 

Glut was set to 0 to represent this baseline rate. For levels of increased activity, an increase in 

firing rate of 10 Hz results in an increase in Glut production of 38.1 µM/s throughout the 

specified domain (the firing rate of pyramidal neurons has been observed to change by 5-10 Hz 

at times of increased activity). Since the dendritic tree of a pyramidal neuron is ~100 µm in 

characteristic length, modeling increases in neuronal activity on this scale is reasonable. By 

specifying Glut release this way, we can roughly estimate sensor response to a large region of 

glutamatergic release, using the difference between high and low average firing rates to 

simulate a change that might be observed in vivo. Increased firing was specified for periods of 1 

s, recognizing that many electroenzymatic sensors have reported response times of ~1 s and 

that large-scale, stimulated releases of Glut in the brain could easily last for this time period and 

result in the responses that have been observed experimentally. 
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Figure 7.2. Overall geometry and mesh used in single-site, 3-D calculations. The Glut concentrations 

shown over time (at a distance where the sensor does not affect results) is shown on the right for 

averaged, large-scale Glut release at a frequency of 10 Hz above baseline firing frequencies: final Glut 

concentrations are 24.7 µM, 38.2 µM, or 43.4 µM for different rates of glut uptake. 

 

7.2.3 Modeling Glut release from a single synaptic vesicle 

 Release from a single synaptic vesicle was modeled as an initial condition for solving the 

sets of partial differential equations, specifying that inside a synaptic volume (2.87 ´ 10-5 µm3) a 

vesicle-sized number of Glut molecules (~3640) is present the extracellular space, after which it 

is free to diffuse and react as defined by the governing equations (effective diffusivity and 

reaction rates are assumed to be the same in this region as specified for the rest of the ECS, 

where volume-averaged rates describe reactions and effective diffusivities.  

 The large difference between vesicle size and electrode surface resulted in poorly 

meshed domains or too many volume elements for reasonable calculation times and memory 

usage. To improve the meshing, an isolated system was modeled for a few tenths of a 

millisecond and repeated for three possible Glut uptake rates. The average concentration after 

3-4 ms within a 1 µm sphere was ultimately used as the initial condition for bolus release 

models. Before incorporation into the model, the accuracy of this simplification was determined 

by monitoring the concentrations at 1 and 2 µm from the release site for both the simplified 

model (initial concentration specified in 1 µm radius sphere) and the initial system (initial 
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concentration specified in 19 nm radius sphere). Concentrations at 1 or 2 µm from the center of 

release of the simplified (larger) system conformed to within 90% of the actual system within <1 

ms, showing this simplification is suitable. Since varying the location of the bolus Glut release 

changes the meshing, initial concentrations were integrated over the ECS volume and modified 

to ensure the same number of molecules were being released in each simulation regardless of 

meshing.  

 

7.2.4 Modeling Glut release from clusters of neurons at an increased firing frequency for 

a brief time period 

 For modeling an increase in the firing rate of a specific number of neighboring 

glutamatergic neurons, the same release function described in 7.2.2 was applied within a 

volume of space related to the number of excited neurons being modeled. The volume 

necessary was calculated based on the average density of glutamatergic synapses in the rat 

neocortex (6.3 ´ 108 synapses/mm3),10 assuming 90% of the synapses are glutamatergic. The 

volume was specified as a cylinder with a height, h (= r/2), located with its lower, circular side 

parallel to the sensor at varied distances from the enzyme layer. Dimensions for the number of 

synapses used are provided in Table 1, along with the maximum Glut concentrations within this 

volume resulting from 0.5 s of a 10 Hz increase in firing frequency. 

 

7.2.5 Numerical solutions 

 Solutions were generated using COMSOL Multiphysics (COMSOL Inc., Los Angeles), 

with coefficient form PDEs as governing equations being solved by time-dependent solvers. 

Parametric sweeps were specified in the solver inputs to compare changing variables. The large 

number of specified PDEs required use of the fully coupled solver. Time steps were reduced 

along with variable tolerances until smooth solutions were found. Meshing (see Fig 7.2) was 

built from the domains with the highest aspect ratios first; for the sensor coatings, the electrode 
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surface was meshed first and extended vertically using a swept mesh of 3 layers. Since 

parameter sweeps require re-meshing, some mesh modifications were made manually for large 

enzyme overlap models; in these cases, a free tetrahedral mesh produced good results. 

 

7.3 Results: 

7.3.1 Response of sensors with varied sizes and enzyme coverages to large-scale Glut 

release 

 Since the scale of Glut release required for electroenzymatic detection is currently 

unclear, it is logical to begin by modeling the sensors within the context of the most Glut a 

sensor could be expected to encounter, and compare sensor designs in detecting Glut under 

these conditions. Within the context of large-scale Glut release where the firing rates of all 

nearby glutamatergic neurons increases from 0 to 10 Hz for 1 s, sensor response was simulated 

for sensors of 5, 10, and 25 µm radii and for 40 ´ 150 µm sensors with different extents of 

enzyme coverage (overlap), with basic model parameters as defined in Fig. 7.3. After 1 s of 

increased firing rates, Glut concentrations rise to the values shown in Figure 7.2 in the deeper 

spaces of the brain where there is no sensor influence and no diffusive dissipation since such a 

large region is releasing Glut. The range of values shown results from different first-order Glut 

uptake rate constants, as measured by fluorescence imaging and as used in previous, 1-D 

simulations (see section 7.2.1). 
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Fig 7.3. Method for testing effects of enzyme overlap (for enzyme stamping) and analysis of spacing 

requirements to prevent crosstalk. Simulations used both circular and rectangular electrode shapes. 

 

 As could be expected, increased immobilized enzyme layer overlap of the surrounding 

probe surface results in an increase in Glut consumption and H2O2 production, leading to higher 

concentrations of H2O2 in the sensor coatings and surrounding brain extracellular space (Figure 

7.4), which also means an increased sensor response. For different overlap lengths (after 1 s of 

increased stimulation), the maximum H2O2 concentration within the enzyme coating can vary 

from 7 to 9 µM at the middle of the sensor and from 12.5 to 24 µM in the middle of the overlap 

region, depending on the overlap and not on the sensor’s electrode size. Along the centerline, 

Glut concentrations reach 90% of the maximum bulk value at distances of 22.45 and 22.8 µm 

from the electrode surface (depending on the overlap), indicating that a sensor site could 

influence local Glut concentrations under these release conditions within ~20 µm; this could be 

an important value in determining the optimal sensor spacing on a probe, although it will depend 

on the local rate of Glut uptake in the brain. By stamping enzyme only over the electrode, 

response will be reduced due to the lower amount of H2O2 generated but the sensor will have a 

minimized effect on the surrounding tissue. 
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Figure 7.4. Cross-sectional concentration profiles of Glut and H2O2 at the center of the cylindrical domain 

after 1 s of 10 Hz increased neuron firing frequency. Above, results are for 50 µm of overlap; below are 

the profiles resulting from 2 µm of overlap. 

  

 Sensor response for various electrode sizes and overlap distances was found by 

integrating over the electrode surface in each case, and the resulting responses over time are 

shown in Figure 7.5. Possible variations in response due to differences in Glut and H2O2 

clearance or uptake rates (shown by the error bars) are seen to be roughly consistent on a log 

scale. The biological factors of Glut and H2O2 clearance or uptake, which retain an unknown 

level of uncertainty, are shown to potentially have a larger effect on sensor response than the 

amount of enzyme overlap. Yet as expected, the increased production of H2O2 observed with 

greater overlap does lead to an increased sensor response. For the smallest sensor size (5 µm 

radius) sensor response with the 50 µm overlap was 1.225 times that of the 2 µm overlap. 

Similar trends are evident in all sensor sizes, with sensor response generally following a linear 

relationship with electrode area. Noticeable positive deviations from linearity are present for all 

three circular sensors, which is expected since their characteristic dimensions drop below ~25 

µm.13 For example, 5 µm radius sensors with 2 µm of enzyme overlap record a response of 8.15 

pA while the linear trend would predict 3.97 pA.  

 Normally a calibration factor is used to relate sensor response to a bulk Glut 

concentration. Calibration factors used here are based on simulations of the same 40 ´ 150 µm 

Glut (µM) H2O2 (µM)

160 µm
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sensors in vitro, for highly optimized Glut sensors with a sensitivity of 364.2 nA µM-1 cm-2 (in 

agreement with observed sensitivities of 320 ± 19.6 nA µM-1 cm-2).4 Since this conversion factor 

is determined in vitro, where stirring results in rapid convective mass transfer that clears H2O2 

away from the sensor (and reduces the possible sensor response), it is not necessarily an 

accurate conversion for sensor response in vivo, where µM concentrations of H2O2 can 

accumulate due to a lack of convective clearance (this buildup effectively boosts sensor 

response, as shown in Chapter 6). For the rectangular 40 ´ 150 µm sensors of Figure 5, the 

simulated calibration factor is 21.8 pA/µM, and for the circular sensors off radii 5, 10, and 25 µm 

the calibration factors are 0.286, 1.24, and 7.15 pA/µM, respectively (all use the same sensitivity 

of 364.2 nA µM-1 cm-2). This calculation is made assuming that during a calibration in vitro (with 

high external mass transfer) all sensors will have the sensitivities of the macro-sized 40 ´ 150 

µm sensor; smaller sensors would not benefit from increased diffusive flux due to 3-D transport 

from this calculation since mass transfer to the larger sensor is described by 1-D transport. This 

may help small sensors appear to perform better in vivo, should they be developed and used. 

 Applying the simulated in vitro calibration factor to the linear regime of the simulation 

data (for moderate uptake and clearance rates) gives concentrations that would be measured 

when the enzyme overlap is 2 or 50 µm: 13.81 and 15.16 µM, respectively. These “measured” 

concentrations are much lower than the actual bulk concentration that is reached far from the 

sensor (38.2 µM), although the measured values exactly match the concentrations at distances 

of 6.2 and 6.8 µm from the electrode surface along the sensor’s centerline. These values are 

directly dependent on the conditions of Glut release and are expected to vary for actual neuron 

and synapse firing frequencies and spatial distributions. Since these concentrations and 

distances use moderate rates of Glut and H2O2 clearance or uptake, differences and 

inconsistencies in rates may also affect these results. 
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Figure 7.5. Sensor responses to large-scale Glut release for varied sensor sizes and enzyme overlap 

lengths. Error bars show dependence on Glut and H2O2 uptake and clearance rates, where larger 

response corresponds to slower uptake and clearance. Plots of response vs electrode area are drawn on 

a log scale to improve clarity; equations for linear fits are given. 

 

7.3.2 Determination of minimum spacing distances for detecting large-scale Glut release  

 To determine minimum spacing distances between sensor sites, a set of simulations 

were performed with 2 sensor sites of various spacing distances and electrode radii of 10 or 20 

µm (enzyme overlap was set to 2 µm). The same large-scale Glut release used for the 
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simulations in section 3.1 were used. Initially, the second site was given the same permselective 

films and diffusive resistance of an immobilized enzyme layer (the second enzyme layer was 

given no reaction term, representing an enzyme for a different substrate such as choline).4 Even 

for a minimal spacing distance of 3 µm (a spacing of 2 µm would result in enzyme layers in 

contact with each other) the response of the second sensor was < 10-30 pA (for both 10 and 20 

µm radii), meaning it is not likely for there to be any noticeable crosstalk between fully modified 

electroenzymatic sensor sites no matter how closely they are spaced, even if electrodes are 

miniaturized to 20 µm diameters. Sensors with less mass transfer resistance within the sensor 

coating can be shown to be more sensitive to neighboring sensor sites. 

 

      

      

Fig 7.6. Crosstalk with bare electrode: on the left, response of the fully coated sensor site (blue circles) is 

plotted with the response at a bare, neighboring site (orange circles). The ratio of the bare site response 

relative to the fully coated site response is shown on the right (green diamonds). Error bars represent 

possible variations in Glut and H2O2 uptake or clearance rates. 
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 A similar set of simulations were performed for a bare secondary site, representing 

cases where an on-probe reference electrode is used (see Fig. 7.2 for a model diagram).14 If the 

reference electrode is affected by the H2O2 produced by the neighboring electroenzymatic 

sensor, there will be interference and the overall sensor response will likely be reduced. 

Simulations to investigate this possibility and elucidate what spacing distances would be safe for 

such sensor designs led to the plots of electroenzymatic sensor response and bare sensor 

response in Figure 7.6. Since the magnitude of the bare sensor responses remain below ~5 or 

~10 pA for 10 and 20 µm radius sensors, the bare sensor response was also plotted relative to 

the Glut sensor response. These results show that the relative magnitude (thus the significance) 

of the neighboring bare site’s response is a function of both electrode size and sensor spacing. 

For an array where multiple neighboring sites are present, crosstalk increases proportionately. 

Error bars again represent possible variations in Glut and H2O2 uptake or clearance rates, 

where faster rates lead to lower sensor response. 

 

7.3.3 Sensor response to bolus Glut release from a single vesicle  

 For sensor responses to be related to specific Glut release events, it may be helpful to 

consider sensor response to a single vesicle releasing its neurotransmitter contents into the 

ECS, even though it is highly unlikely that such a small release of Glut would be observed. It is 

predictable that response (and measured concentrations) will be affected by the size of the 

electrode used and the amount of enzyme coverage on the sensor site. However, under these 

conditions (see section 7.2.3), such little Glut is released that simulations showed there is no 

difference in sensor response for enzyme coverages of 2 µm and 50 µm for any sensor size 

considered. To compare the performance of electroenzymatic sensors of standard minimum 

dimensions (40 µm wide ~50 µm diameter)4  with a much further miniaturized sensor, 

simulations were performed of sensors of 5 µm and 25 µm radii responding to a single vesicle 

release of Glut (~3640 molecules) into the ECS. For any release distances simulated the 
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response was extremely small (femto amps) and would not be observable without an 

unprecedented reduction in noise. In both of these cases, the larger sensor showed little 

improvement in overall current generated, with both recording ~ 10 fA. However, if an apparent 

concentration is calculated (as in section 7.3.1) from the fA response using in vitro calibration 

factors, the smaller sensor showed a much higher measurement, although the value remained 

indistinguishable (on the order of nano molar). The shape of the response is characteristic of 

observed sensor responses, with rise times of ~5-10 ms and decays ~4´ as long as the rise 

time. However, it is clear that many releases in close proximity to the sensor will be required for 

detection, for any sensor that is used.  
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Fig 7.7. Simulated sensor response to a single vesicle bolus release at varied distances. Apparent 

concentrations are calculated using an in vitro calibration sensitivity of 364.2 nA/µM/cm2, determined from 

in vitro simulations,4 corresponding to calibration factors of 0.286 and 7.15 pA/µM for sensor radii of 5 and 

25 µm, respectively. 

 

7.3.4 Sensor response to Glut released from clusters of synapses with a 10 Hz increase 

in firing rate for 0.5 s 

 The maximum sensor response to a single vesicle releasing Glut, even for release 

directly above a sensor with a 5 µm radius, is over 2 orders of magnitude too low to be detected 



 155 

(assuming the 0.7 µM detection limit that has been observed for larger sensors is maintained, 

which may overestimate the detection limit in this case).4 Simulating release >2 orders of 

magnitude higher requires consideration of many synapses, which would occupy a relatively 

large volume of space compared to the sensor and would result in overlapping signals (even if 

all releases occur at the same point in time, which is not realistic). For this reason, sensor 

response to releases from a cluster of synapses was modeled as a constant source of Glut over 

time within the appropriate volume of space (see 7.2.4). A “hockey puck” shape was chosen as 

the release region to roughly optimize the amount of Glut detected and maintain the specified 

distance between the puck and the enzyme layer, no matter how large the puck was (i.e., how 

many synapses were modeled to have an increased firing rate). Simulations were performed 

using varied puck sizes, or numbers of excited synapses, for two sensor sizes, with 5 and 25 

µm radii, to represent a highly miniaturized sensor and one similar to existing electroenzymatic 

glucose sensors7 (or the smaller dimension of existing rectangular Glut sensors). The 

dimensions of the puck regions and synapse numbers are provided in Table 7.1. The table also 

lists the change in Glut concentration from baseline levels at the center of the puck that would 

result from the same synapses firing at 10 Hz increased frequency for 0.5 s without any sensor 

present. Variations shown for each puck size depend on the rate of Glut uptake modeled in the 

brain. In comparing the puck maximum concentrations to the results of Fig. 2 (24.7 µM, 38.2 

µM, or 43.4 µM for different uptake rates), the concentrations reached within the puck regions 

are noticeably lower. 

 

Table 7.1. Dimensions and number of synapses for the specified “puck” regions of increased 

glutamatergic synapse firing frequency, as well as the maximum concentrations reached within the puck 

after 0.5 s of firing at a rate increased by 10 Hz from baseline values (in an isolated brain region with no 

sensor consumption or influence). Concentrations reached depend on the local rate of Glut uptake, 

modeled as a range of predicted values. 
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Number of Synapses Diameter (µm) Height (µm) Max Glut after 0.5 s, 10 Hz (µM) 
  4.33 s-1        4.95 s-1       7.7 s-1 

50 7.4 1.8 1.15 1.14 1.08 
150 10.7 2.7 2.22 2.17 2.02 
350 14.1 3.5 3.54 3.45 3.14 

1,000 20.1 5.0 6.09 5.89 5.17 
2,500 27.2 6.8 9.33 8.94 7.59 
5,000 34.3 8.6 12.5 11.8 9.75 
10,000 43.2 10.8 16.1 15.1 12.1 
20,000 54.5 13.6 19.9 18.7 14.5 
50,000 73.9 18.5 25.1 23.3 17.5 
75,000 84.6 21.2 27.3 25.2 18.7 
100,000 93.2 23.3 28.6 26.3 19.3 

 

 The responses of a 5 µm radius sensor and a 25 µm radius sensor to puck-shaped 

regions of increased glutamatergic synapse firing frequency are shown in Fig 7.8 and naturally 

depend on both the number of synapses modeled with increased firing rates as well as the 

distance of these synapses from the enzyme surface. Three distances, 1 µm, 5 µm, and 10 µm 

were simulated, where the first µm of this distance is considered as damaged tissue where 

molecules have the same diffusivities as in the rest of the brain but no uptake or clearance of 

Glut or H2O2 occurs (see section 7.2.1). Solid lines represent moderate rates of Glut uptake and 

H2O2 clearance and dashed lines represent slow or fast rates, as explained in section 7.2.1, 

where fast rates result in lower sensor response and slow rates result in higher sensor 

response. In the legends of each plot, the concentration provided is the value for an isolated 

puck of the same dimensions and rates corresponding to moderate Glut uptake.  

 The numbers of synapses used were chosen to result in puck sizes similar to the sensor, 

larger than the sensor, and much larger (with sensor response to larger amounts of excited 

synapses shown for release at greater distances). For releases as close as possible to the 

sensor (1 µm is the minimum distance due to the “damaged tissue” region) the apparent 

concentrations measured can approach the actual concentrations reached within the puck if the 

puck diameter is greater than the sensor’s (7.8A for >1,000 synapses), although this is not 

replicated for the larger sensor (7.8B) since the maximum concentration reached within the puck 

is also a function of the puck height and the larger diameter results in a taller puck. The 



 157 

variations in these two results highlights an important difference between sensors of different 

radii: a sensor with a larger radius will not record apparent Glut measurements at observable 

magnitudes unless much larger regions of nearby brain tissue display increased firing 

frequencies for a significant period of time, and if a large region is stimulated (above its normal 

firing frequency) it is likely that a significant part will be farther from the sensor. Regions of 

increased neurological activity of lower aspect ratios or that are not ideally oriented around the 

sensor will result in actual concentrations much higher in the brain than a sensor would 

measure. Ultimately, it is evident that use of calibration factors can be misleading in large 

sensors in a way that is not evident in smaller sensors. 

 Although the sensor’s current response is a much better indicator of nearby Glut release, 

it would be difficult to associate a response amplitude with an actual Glut concentration without 

detailed simulations as performed here, which rely on simplifications that limit their accuracy 

(see the large number of overlapping lines, particularly the dotted lines in Fig. 7.8C and 7.8E-F, 

resulting from the assumptions and simplifications used in describing the uptake and clearance 

of Glut and H2O2). Measuring with small sensors and calibration factors appears to be the better 

approach for measuring the concentration changes specified, assuming that noise does not 

obscure the responses. If noise is problematic, as it likely is, the larger sensors show a clear 

advantage in recording response from the same conditions of neurotransmitter release: the 25 

µm radius sensor records ~85 pA response to 2,500 synapses while the 5 µm sensor records 

~2.5 pA (solid purple lines in 7.8A and 7.8D), and similar trends are shown in the black lines 

(10,000 synapse) in Fig 7.8C and 7.8F for releases 10 µm from the sensor. 
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Sensor radius: 5 µm 
A) Release 1 µm from sensor B) Release 5 µm from sensor C) Release 10 µm from sensor 

   

   
Sensor radius: 25 µm 

D) Release 1 µm from sensor E) Release 5 µm from sensor F) Release 10 µm from sensor 

   

 
   

Figure 7.8. Sensor response to 10 Hz increase in glutamatergic synapse firing frequency within puck-

shaped regions (depending on the number of synapses and average synapse density) containing various 

numbers of synapses at distances of 1, 5 and 10 µm from the sensor’s enzyme surface. Dashed lines 
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show fast (lower sensor response) and slow (higher sensor response) rates of Glut and H2O2 uptake and 

clearance. Concentrations given in the legends are for moderate uptake rates in simulations with no 

sensor. Calibration factors used for calculating the apparent Glut concentrations were 0.286 and 7.15 

pA/µM for 5 µm and 25 µm sensors, as discussed in 7.3.1. 

 

7.4 Discussion 

 Results from the simulations of a large-scale, 10 Hz increase in glutamatergic synapse 

firing frequency for 1 s show that Glut levels will reach ~38.2 µM in the brain and H2O2 can 

reach ~25 µM within large enzyme overlap regions of the sensor. These Glut concentrations are 

higher than is often measured, which might initially suggest that the 10 Hz increase in firing rate 

is a bad model for Glut release. However, when the in vitro calibration factor is used to translate 

the pA response of the sensor to a concentration measurement, reasonable values of 13-15 µM 

are found. This suggests that although experimental measurements of Glut concentrations 

using electroenzymatic sensors may record concentrations on the order of 10 µM, it is 

reasonable to assume that concentrations may reach 2-3 times that value farther from the 

sensor and that this could be caused by a large-scale increase in the glutamatergic synapse 

firing frequency on the order of 10 Hz. Recent Glut measurements taken in rats during periods 

of addictive behavior15 were able to record concentration changes on the magnitude of 

simulated 10 Hz firing rate increases, with experimental measurements of up to ~40 µM with 

sensor responses of ~50-200 pA (noise of < ~20 pA). This experimental observation lends 

credence to the accuracy of these simulations and may justify a significant miniaturization of 

Glut sensing sites due to the relatively low noise produced. 

 It is interesting to note that the Glut concentration reached within a small region of the 

brain due to an increase in firing frequency is largely determined by the size of the stimulated 

region. Miniaturized, closely packed sensors would be much more capable for making 

conclusions in cases of small-scale Glut release since their calibration factors are representative 
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of a smaller quantity of molecules and since increases in sensitivity are observed for sensors 

below ~25 µm in radius due to diffusion in 3 dimensions. Smaller sensors will also respond 

equally well to large-scale Glut release (noise permitting), and their smaller footprint allows for 

more precise determinations of the volume of space experiencing excited firing if more sites are 

positioned on each probe. 

 The low simulated crosstalk calculated between sensor sites is very promising for 

choosing electrode spacings in that it indicates that realistic conditions may allow for even more 

tightly packed sensor sites in an array. However, the ~20 µm distance in which a sensor affects 

the Glut concentration (see Figure 7.4) seems to suggest that a larger spacing is needed for 

similarly modified sensing site neighbors. In considering this effect that a sensor site has on 

local Glut, it is helpful to realize that the presence of similar neighboring sites will result in a 

larger enzyme coverage on the sensor probe; any loss in local Glut concentration due to a 

neighboring site is likely to be mitigated into insignificance by the H2O2 produced by it. Noise 

permitting, miniaturization and close packing is feasible considering that the risk of potential 

crosstalk between sensor sites obscuring results is minimal. 

 Ultimately, it is most interesting to compare electroenzymatic sensors with competing 

technologies including fluorescence detection, which can boast a very useful field of view and 

spatiotemporal resolution.2, 16 Fluorescence detection is limited by light absorption and 

scattering, but appears to be a useful technique in many future applications once multi-photon 

techniques circumvent a power dissipation problem for large-scale, deep-brain imaging or other 

methods are developed to resolve fluorescing signals above background light scattering.16 

Electroenzymatic sensors have room for improvement as well, although these modeling results 

bring some very useful information into consideration: these sensors do a very good job of 

monitoring for large-scale increases in glutamatergic activity over a relatively large number of 

synapses (possibly up to 100,000 as shown in Fig 7.1F) within a fairly short distance from the 

sensor surface. This range of sensing makes the technique less affected by background 
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signals, which are known to require special treatment in fluorescence imaging including dual-

photon systems and miniscope devices.17 

 The results presented from these simulations are perhaps most intriguing within the 

context of more recent probe designs, including the recent development of silicon/PDMS probe 

arrays with 4 sensing sites (one as an on-probe reference electrode to reduce noise and 

insertion damage) and a microfluidic channel used to deliver fluids for calibrations in vivo or 

drug delivery.12 Applying 3-D models to the data collected from these studies provides an 

opportunity to precisely test the diffusion and reaction rates in the probe vicinity for multiple 

relevant neurochemicals, including Glut and H2O2. Preliminary results reported from these 

sensors, designed for glucose detection, showed that sensor response to sustained injections of 

4 mM glucose (at 20 psi) showed a maximum response for injections sustained for more that 

1.2 s. It can be assumed that after this time, glucose concentrations reach a steady state in the 

sensor vicinity. This time to reach a steady state from a sustained release of molecules is 

consistent with the simulation data for sustained Glut release >10 µm from the sensor surface. 

Further modeling of this system could be accomplished with only minor alterations to the models 

presented here, and this begins to show the value of simulating diffusion and reaction in the 

vicinity of neurochemical sensors for the analysis of sensor data. 

 

7.5 Conclusion 

 Simulations of electroenzymatic Glut sensor performance in the brain using 3 

dimensional models provided a unique opportunity to consider new probe design modifications 

to improve sensor performance. Simulation results can be used to guide significant 

miniaturization and advise for tightly packing sensing sites on the probe, despite the long history 

of the conventional approach, where much larger sensors are used with large spacings between 

sensor sites. For guiding miniaturization, the results of Fig. 7.5 are intended to be instructive in 

determining the relative magnitude of expected sensor response in vivo, which could be 
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compared to experimental magnitudes of noise that may be expected; sensors must have a 

response that is clearly distinguishable above the noise. Miniaturization shows clear benefits in 

sensitivity, deviating from the linear trend of response to electrode size by a factor of 2 for 

sensors with 5 µm radii, and shows that stamping enzyme precisely onto probe locations is 

beneficial for electroenzymatic sensing relative to large-scale deposition onto the probe surface: 

although large amounts of enzyme overlap can increase sensor response, a good stamping 

method that prints enzyme layers with 2 µm overlap results in similar sensitivities and may be 

preferable because it allows for different enzymes to be stamped onto different sensor sites, 

affects natural Glut levels less, and reduces H2O2 concentrations in the brain. Overall, when 

choosing an ideal electrode size and spacing, noise concerns must be addressed, although this 

can be difficult to predict since sensors require a number of coatings that may affect the noise. 

 Simulations of sensors responding to smaller scale Glut releases further showed the 

potential benefits of miniaturization, providing much more accurate detection of smaller amounts 

of Glut release and similar functionality for larger scale release. In considering smaller scale 

release, models explicitly defined the number of synapses exhibiting an increased firing rate 

within their representative volumes, showing the number of synapses that are generally being 

monitored by 5 µm and 25 µm sensors. Although simplifications were made in designating these 

regions of increased activity (namely that the aspect ratio of this region was preserved for varied 

synapse numbers) the results are informative and indicate how the shape of a region 

experiencing increased neural activity can also define the neurotransmitter concentrations that 

are reached within that space. It would be interesting to model regions of differently shaped 

systems of excited synapses to determine normal concentration gradients reached for more 

specific activities or stimulations. The more immediate further use of these models should be for 

the further analysis of real sensor data, particularly within the context of controlled injections so 

that model parameters in the brain (within the immediate vicinity of a particular location in the 

brain) can be narrowed and models can make more specific predictions.  
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Chapter 8: Recommendations for future work 

8.1 Experimental investigation of sensor response time 

 As outlined in Chapter 4, it would be of great value to confirm experimentally the cause 

of the differences between simulated and observed glutamate (Glut) sensor response times. A 

precise understanding of how the sensor responds to transient Glut is necessary for proper data 

analysis and an accurate understanding of neurochemical dynamics, as highlighted in Chapters 

2, 6, and 7. Confirmation of the hypothesized phenomenon of noncatalytic adsorption of Glut 

onto the surfaces of the proteins in the enzyme layer (and its significance) will lead to sensor 

models that are fully consistent with existing electroenzymatic Glut sensors. Furthermore, after 

confirming the cause of an order-of-magnitude increase in response time, methods can be 

developed to mitigate the undesired effects and reduce experimental response times to the 

theoretical limit of ~8 ms at optimal sensitivity. This may require a simple change in protocol for 

measuring response times, if it is shown that sugars and other amino acids found in the brain 

reduce the delay in response time as hypothesized in Section 4.4, or an additional step in 

sensor fabrication to prevent Glut from binding to the proteins in the enzyme layer. 

 Choline sensor simulations showed a similar disparity between simulated and observed 

response times, and a modification of the choline sensor model (originally presented in Chapter 

5) to include adsorption of choline to the exposed amino acids in the enzyme layer may similarly 

resolve the observed response time discrepancy. Improvements to sensor models, including the 

level of detail required to model response time with full accuracy and the types of parameter 

verifications presented in Chapter 3, dramatically improve the value of simulations in further 

work. With additional experimental verifications of the mathematical sensor models, the models 

become more useful in testing the less well understood dynamics of the brain. 

 Should these suggested experiments prove fruitful, they may be useful in modeling 

diffusion more accurately within similar biological domains, such as the brain extracellular space 

(ECS). This would be particularly useful for modeling diffusion near and within misfolded protein 
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aggregates in the brain. These types of aggregates are characteristic of a number of 

neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's 

disease, and Amyotrophic lateral sclerosis (ALS), which continue to be important directions of 

medical and scientific research.1  

 

8.2 Further simulations of electroenzymatic sensors in vivo 

 The simulations of Glut sensors in 3 dimensions (Chapter 7) should mark the beginning 

of a new era in the analysis of sensor data collected in vivo by providing a means to simulate 

sensor response to precise distributions of activated neurons (and their synapses). With such 

models, sensor response can be interpreted in terms of the possible numbers, distributions, and 

firing frequencies of synapses within ~20 µm of the sensor. More detailed models of 

neurotransmitter release will be required to make these approximations. For example, it may be 

more realistic to represent neurotransmitter release from many synapses as a number of 

separately defined source functions applied at each synapse location: by dividing the brain 

domain into a grid of points, each point could represent a synapse and be given its own 

equation to describe the neurotransmitters it releases as a function of time. With this approach, 

release could be simulated as bolus releases at realistic firing patterns and distributions; these 

methods are likely to reveal the consequences of the simplifications made in Chapter 7, where 

an average release rate of neurotransmitters was modeled within a volume of space.  

 The application of such models for real data analysis has been limited thus far, but it is 

clearly useful in the interpretation of collected data. By coupling these models with experiments 

designed to test our assumptions about the rates of diffusion, Glut uptake, and H2O2 clearance 

(see Chapters 6 and 7 for the significance of these assumptions), models can be further 

specialized for the analysis of specific biosensor data (i.e., considering the local diffusion and 

clearance rates of compounds in the particular region of the brain where a sensor is located). 

This is a very plausible and exciting future direction thanks to the recent development of 
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electroenzymatic sensor probes with built-in microfluidic channels for drug (or other chemical 

compound) delivery at the probe location.2 Not only does this provide a much less destructive 

method for chemical delivery directly to the brain by circumventing the need of a separate 

injection probe, but it gives precise control of the location of the injection, which is vital for 

determining diffusion and clearance rates. 

 The model of the brain region alone (without an electroenzymatic sensor) was designed 

as a simplified system, in both the 1-D and 3-D models, to provide more immediate answers to 

questions concerning biosensor performance. However, as mentioned in Chapter 7, increased 

neuronal activity for a brief (or extended) period of time within a particular volume of the brain 

(not necessarily a cylindrical region, as used in Chapter 7) will result in a local neurotransmitter 

concentration change that is highly dependent on the size of the region or distribution of excited 

synapses. The relationship between these distributions and local changes in local 

neurotransmitter concentrations could be further investigated using images of real neuronal 

structures (to realistically specify synapse locations within modeled domains). Within these 

more realistic conditions, we could come to understand much more about how neural firing 

patterns in distinct regions of the brain produce and regulate important neurochemicals, in 

states of health, during specific activities (such as addictive or depressed behavior), and in 

cases of disease and neurological damage. 

 All of the models presented in this dissertation could also be adapted to represent 

electroenzymatic sensors for other neurochemicals, with only minor modifications to the relevant 

parameters (diffusivities, reaction rates, sensor dimensions, and rates of biological clearance 

mechanisms in the case of in vivo simulations). The choline sensor model has already been 

constructed in one dimension to simulate performance in vitro and has proved efficacious for 

choline sensor optimization (Chapter 5). The application of these methods to glucose sensors 

(or the elusive electroenzymatic GABA sensor, which first requires the identification of a suitable 

enzyme) should prove equally useful. It is also reasonable that these methods could aid the 
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analysis of data collected from other types of sensors, including fluorescence data obtained via 

miniscope devices3 using genetically encoded indicators or fluorescing nanoparticle sensors.4-6 

 

8.3 Probe design modifications and noise limitations 

 In Chapter 7, simulations showed that sensor miniaturization will lead to more accurate 

measurements of Glut concentrations in the brain, noise permitting, by increasing the sensitivity 

(defined in units of nA/µM/cm2) in vivo and improving spatial resolution (smaller sensors are 

more accurate in detecting Glut released from smaller regions of space in the brain). It was also 

importantly shown that sensors can be situated very closely on a probe (potentially < 5 µm 

apart) with little risk of crosstalk between sensor sites. Hopefully, these model results will lead to 

the experimental development of probes containing many, smaller electroenzymatic sensing 

sites, as has proven feasible for glucose sensors,7 but with more closely packed sensing sites to 

optimize the probe’s spatial resolution.  

 However, the miniaturization of electroenzymatic sensors is limited by the presence of 

noise, since the amplitude of microsensor response is often a function of electrode size and it 

must be large enough to be distinct from the background noise. It follows that consideration of 

noise must become a topic of much greater significance in both sensor development and use. 

The development of an on-probe iridium oxide reference electrode has significantly reduced 

experimental noise and should see widespread use; with the miniaturization of sensing sites it 

will be easier to include a reference electrode on the same probe without significantly reducing 

the number of sensing sites. 

 A relatively large body of work regarding the noise of electrochemical sensors has been 

published by others,8, 9 but it is possible that the sensor coatings affect the noise of the sensor 

and it may be best for this optimization to be performed primarily through experiments. Whether 

through experimental methods or theoretical estimations, it is vital to understand in greater 

detail the limits that noise imposes on sensor minimization. Further reductions in noise may be 
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possible with noise filtering techniques, although care must be taken to avoid the loss of 

important data. 
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Appendix A: COMSOL inputs for simulating 1-D Glut sensors in vitro  

 The follow appendices outline how to implement the mathematical sensor models in 

COMSOL Multiphysics, with explanations of particular model parameters used and precise 

details of how to input the desired set of simulation conditions (including varied sensor 

parameters or boundary conditions that change partway through the simulation). Example 

model input screens are shown in Figures A.1, B.1, and C.1. 

 

Figure A.1. Example COMSOL interface for 1-D glut sensor simulations in vitro. These are the 
COMSOL windows where model specifics are entered; other windows that will appear include 
the geometry/plotting window and one for messages/logs/progress/tables. 
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A.1 COMSOL Physics equations, boundary conditions, and initial conditions 

 A “coefficient form PDE” physics was added to the model for each sensor coating in 

these models (for example, “Enzyme PDE 2 (c2) in Fig. A.1); it is also possible to use a single 

coefficient form PDE physics with additional PDE nodes inset to the physics to describe 

domains with different diffusion coefficients and porosities. Other physics equations can be 

added by right-clicking on the file node (“COMSOL 1-D model for images” in Fig. A.1) Including 

all PDEs within a single physics node will automatically equate fluxes and concentrations at 

internal boundaries, which is beneficial in the case where no partition coefficients are needed to 

describe solubility differences in one layer relative to another.  

 The PDE physics node is where the number and names of dependent variables is 

specified. Within each PDE sub-node, parameter names or values for diffusion coefficients, etc. 

can be specified. With multiple variables, parameter inputs will appear as a matrix of inputs; use 

the diagonals only unless anisotropic conditions must be used. Many of the variables are not 

needed and can be “zeroed-out” (see the “equation” drop-down menu within the physics 

specification node to see what each variable refers to in the overall equation). 

 Initial conditions are straight-forward with no added complications, as long as the correct 

domains are selected within the “initial values” section. Each physics PDE also requires 

boundary conditions to be specified; the default setting is a zero flux condition at all external 

boundaries. For in vitro models, the flux to the enzyme is given by a mass transfer coefficient 

relation, so a flux/source boundary condition is used in COMSOL, which has he form g – qu 

where u is the set of dependent variables. In this case, g is the flux coming in and q is what 

leaves the domain (flux = gci – qu for each ci). In boundary condition equations, dependent 

variables from the other side of the boundary can be used (i.e., glut_e = glut_naf). If BCs are 

required between coatings described by a different PDE physics node, it is best to use a flux 

boundary condition on the outer physics and a Dirichlet BC on the inner one to maintain equal 
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concentrations and fluxes (this will likely not be necessary in future versions of COMSOL or 

when using a specialized software package). 

 Note: it is useful to add a variables list for each domain that has different variable names 

(i.e. glut_all = glut_enz, h_all = h_enz, o2_all = o2_enz for the enzyme domain) so that results 

can plot “glut_all” to show glut concentrations in multiple regions. Otherwise, each domain will 

need its own plot group (see section A.3 Results for more information on plotting results). 

 To model sensor response to a gaussian-shaped concentration over time at the sensor 

surface, as was done in Chapter 2, the time dependent equation was used directly as a Dirichlet 

(constant concentration) boundary condition as defined in Section A.2. 

 

A.2 Parameters and variables  

 The following parameters, values, and descriptions were used in COMSOL to model 1-D 

Glut sensors in vitro (Chapters 2 and 3), including those used for the models describing 

noncatalytic Glut adsorption to proteins in the enzyme layer (Chapter 4). They were specified 

under the “Global Definitions” node in COMSOL (see Fig. A.1). Parameter justifications and 

references are given in Chapters 2 and 3. 

k_glut   0.001  “partition into Nafion” 
k_o2   1 “partion” 
k_h   1 “partition” 
lt   2[µm] "enz thickness" 
lf   .071[µm] “Nafion thickness” 
lppd   ".022 [µm]" “PPD thickness” 
glutblk   10[µmol/L]  
o2blk   230[µmol/L]  
kcat   (1+1.5/.23)*53.2[1/s] “glutox kinetics” 
kmglut   (1+1.5/.23)*0.173e-3[mol/L]  
kmo2  1.5e-3[mol/L]  
ce   "1410*fglutox/70000*(1-epsilon) [mol/L]" “enzyme conc.” 
mh   "(0.05) [cm/s]" 
F   9.64853e4[C/mol]  
area   6000[µm^2]  
epsilon  .33  
dglut   t37c*7.6e-6[cm^2/s] “diffusivity corrected for 37 C” 
do2   t37c*1.92e-5[cm^2/s]  
dh   t37c*1.43e-5[cm^2/s]  
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k1   .357[m^3/mol] “electrooxidation kinetics H2O2 on Pt” 
k2n   0.00101[mol/(m^2*s)]  
k4   .149[m^3/mol]  
alpha_p  1/96.1 "permselective film D modification" 
glutox   70000  
bsa   66500  
fglutox   .1 "mass fraction glutox" 
nafeps  0.3 
pteps   .4  
alpha_e  epsilon^2  
alpha_ppd  1/735  
t37c   1.3355 “correction factor for diffusivity from 20 to 37 C” 
enzT   1 ".4 at 20C, .6 at 25C, for modeling enzyme rate at room temp" 
kon   "10^6 [1/(mol/L)/s]"  
koff   kon*test[mol/L] "was 1.439e7" 
aaratio  10 "21 lys, 53 arg, 18 hist" 
deltaG   "-18.28 [kJ/mol]"  
ceBSA  "1410*(1-fglutox)/bsa*(1-epsilon) [mol/L]" 
cetot   ceBSA+ce  
p1exp  (t-p1center)^2/(2*sigma^2) 
pulsedirichlet glutblk*(1-pulseon)+pulseon*glutblk*(exp(1)^(-p1exp)) 
pulseon 1 “used to toggle between a pulse BC and a step-change at t = 0 BC” 
glutstickrate rglut-kon*glut_e*(aaratio*cetot-stuckg)+koff*stuckg 
glutunstick kon*glut_e*(aaratio*cetot-stuckg)-koff*stuckg 
aaratio  10 
deltaG  -18.28 [kJ/mol] 
ceBSA  1410*(1-fglutox)/bsa*(1-epsilon) [mol/L] 
cetot  ceBSA+ce 
 

 The following were defined as variables within the “Component 1” node. These could 

also be defined under the “Global Definitions” node, but defining them within the component 

node allows for different sets of variables to be assigned to different domains, which is useful for 

setting a local Glut concentration equal to a glut_all variable so that plots of glut_all will provide 

all of the calculated results for Glut. 

rglut   -(enzT)*kcat*ce*glut_e*o2_all/(kmo2*glut_e+o2_e*(glut_e+kmglut))  
ro2   rglut  
rh   -rglut  
mglut   (dglut/dh)^(2/3)*mh  
mo2   (do2/dh)^(2/3)*mh  
Electroox  pteps*k2n*k1*h_ppd/(1+k1*h_ppd+k4*o2_ppd)  
Current  2*F*area*Electroox  
 

A.3 Methods for varying parameters and model configurations 
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 The simplest method for testing how varying 1-2 parameters affects results is to use the 

parametric sweep (it can be added to study nodes). More parameters can be swept, but results 

become challenging to display in plots because each set of parameter combinations will need to 

be specified individually. Sweeps can combine specific combinations of parameter values or 

every combination. If a sweep changes a parameter used to construct the geometry it will 

automatically re-mesh, which can be problematic. Sweeps cannot vary component variables, 

and if a sweep changes the values of something defined as a component variable then the 

solutions will only keep track of the latest set of parameters. 

 Another way to change aspects of a simulation (like toggle between boundary 

conditions) is to use the “modify model configuration for study step” button found in study -> 

step 1: time dependent. Another node within this section allows for the initial dependent 

variables to be defined by a previous study step. 

  

A.4 Results and numerical solutions  

 Creating plots of results is intuitive and details are available within the COMSOL 

documentation. Right-click on the “Results” node and add the desired plot type. It is then 

necessary to add a plot group to this new plot node. Multiple plot groups can be added, allowing 

different visual styles to be completely controlled within each plot group. 

 A number of notation configurations allow for derivatives of dependent variables to be 

plotted: for example, f(variable,t) will give the time derivative of a variable and if “glut” is a 

variable then “glutx” gives the derivative with respect to x. To save a plot for papers and 

presentations, there are a number of options including the snapshot button. Snapshots can be 

saved to the clipboard or as a file, and the plot and font sizes can be specified here along with 

the DPI (image size) and font size. Correctly sizing images can be a guess and check process 

since image sizes are not always pasted into word documents at the specified dimensions. 
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 To plot, it is necessary to select a data set or table. Data sets are generated 

automatically, and from these initial results additional sets can be made (for example, a 3-D 

model can be simplified to a 2-D cross section if a 2-D plot of that cross section is desired). 

 Tables can be input from outside COMSOL and plotted, as was done in Chapters 3 and 

5 to compare theoretical and experimental results, or created within COMSOL. To create a table 

within COMSOL, right-click on the “Derived Values” node and add the desired type of 

calculation needed for your table. Settings will appear allowing tabulations of the desired row 

and column organization. 

 

A.5 Troubleshooting 

 If there appears to be noise or strange values, refine the mesh or decrease the global 

tolerance of variables. To change tolerances, go to study -> solver configurations -> time 

dependent solver.  

 With multiple, inter-related physics equations it can be necessary to specify that a fully 

coupled solver is used This is also found within the time dependent solver node. 

 Some of the steps are simplified if built-in packages are used; note that the free versions 

can have limited functionality or modifications available. Some processes are very difficult to 

model without using a software package, including Nernst-Plank-Poisson equations where 

diffusion, reactions, and electrophoretic mobility can be modeled. Fluid flow with mass transfer 

is also difficult to model with the mathematical PDEs provided in the basic package. 
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Appendix B: COMSOL inputs for simulating choline sensors in vitro 

 The same model implementation, solution methods, and results formatting from 

Appendix A also apply to the 1-D choline sensor simulations used in Chapter 5. New variables 

and parameters were needed to model choline diffusion and the reaction catalyzed by choline 

oxidase within the enzyme layer, as follows: 

kcatA  (1+kmo2A/207[µmol/L])*16.3 [1/s] 
kmA  (1+kmo2A/207[µmol/L])*.87e-3[mol/L] 
kmo2A  1e-3 [mol/L] 
ce  (1000*1.41*fcholox*(1-enzeps)/chox) [mol/L] 
dchol  t37c*1.36e-5[cm^2/s] 
 

Parameter justifications and references are given in Chapter 5. The enzyme reaction rate was 

specified as a variable with the following input: 

rchol  -kcatA*ce*chol_e*o2_e/(chol_e*kmo2A+kmA*o2_e+chol_e*o2_e) 
ro2 2*rchol 
rh -2*rchol 
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Figure B.1. Physics and condition nodes used to simulate choline sensors in vitro. Nodes in 

light gray are disabled and not used. 
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Appendix C: 1-D in vivo simulations  

C.1 New parameters 

 As detailed in Chapters 6 and 7, a number of new parameters are needed to model 

diffusion and reactions within the brain ECS. As was done for the other models (see Appendices 

A and B), parameters were defined under “Global Definitions.” 

 The new parameters used, including important geometric definitions, are as follows: 

alphab   beps/2.56  "modification to diffusivity in the brain" 
beps    .2  "void fraction in brai tissue" 
vg    4.33[1/s]  "glut uptake rate in the brain" 
vh    ".0116 [1/s]"  "h2o2 clearance rate in the brain" 
glutrelzone   (synapses*1.5873/(pi/2))^(1/3)[µm]  "defines zone of release (Ch 7)" 
glutreldist   1[µm]  "distance from sensor to glut source" 
rbrain    rsensor+overlap+50[µm]  “radius of brain region domain" 
overlap   2[µm]  "for 3-D models. See Chapter 7" 
correction   6.0445  "Used in 3-D models to correct the initial concentration for  
     bolus release" 
Hz    "10 [1/s]"  
reldens   "(6.3e14*3640/(6.022*10^23)) [mol/L]"  "synapse density*molecules  
         per vesicle*molconversion" 
synapses   25  
glutsourceterm   -vg*glutb*beps+reldens*Hz 

 

C.2 1-D models  

 Models of sensors in vivo in 1-D were constructed from the 1-D model files (see 

Appendix A) with the addition of another physics domain representing the brain. Descriptions of 

the equations used are provided in Chapter 6. To model response to a constant Glut 

concentration at a specified distance, a Dirichlet (constant concentration) boundary condition 

was used. In the simulations where this boundary was present for a limited time, the simulation 

was run until the condition needed to be removed. This result was stored as the result from 

“Study 1”. A second study was added to carry out simulations for the following time period, 

where the Dirichlet condition was removed. This was done by modifying the model for the study 

step, as described in Section A.3. 
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C.3 3-D models 

 COMSOL models in 3 dimensions must be specified upon creating a file, and will 

automatically suggest physics equations that use those dimensions. In 3-D, some of the model 

parameters will be in the form of a matrix, including the dependent variables (defined in Fig. C.1 

as glutb, o2b, and hb). In these models, the solver would not converge with each domain being 

represented by a separate physics, but when the enzyme PDE was incorporated into the brain 

PDE physics node, “Brain PDE 4 (c4)” the solver had no trouble. 

 Correctly meshing the sensor and brain is vital to prevent mathematical artifacts from 

obscuring results in strange places (for example a dip into negative concentrations for the 3rd 

though 6th time steps) and for reasonable calculation times. Incorrect meshing will result in an 

end to the simulation; this may occur during a parameter sweep if the sweep changes a 

geometric parameter and causing re-meshing. 

 When inputting mesh instructions, the default setting will mesh every domain with the 

specified element sizing (fine, normal, coarse, etc.). For customized meshing, the online videos 

from COMSOL are helpful for particular situations. Custom meshing instructions perform the 

mesh commands sequentially from the top. For the simulations performed in Chapter 7, the thin 

sensor coatings needed special meshing instructions due to their extreme aspect ratio. This is 

best done by meshing these regions first, by a triangular mesh on the electrode surface followed 

by a sweeping mesh upwards, through the sensor coatings. This meshes with the desired mesh 

density on the base and a desired number of elements going vertically (I used 3 vertical 

elements per swept domain). 

 Some parameter changes required different meshes. For example, for modeling sensors 

with a large “overlap” parameter, the swept mesh didn’t work. In these cases a free tetrahedral 

mesh through this domain solved the meshing issue without adding too many elements. 
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Figure C.1. Sample COMSOL input screen for 3-D simulations in vivo. 

  

 

 




