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Chromatin accessibility differences 
between alpha, beta, and delta cells identifies 
common and cell type-specific enhancers
Alex M. Mawla1, Talitha van der Meulen1 and Mark O. Huising1,2* 

Abstract 

Background High throughput sequencing has enabled the interrogation of the transcriptomic landscape of gluca-
gon-secreting alpha cells, insulin-secreting beta cells, and somatostatin-secreting delta cells. These approaches have 
furthered our understanding of expression patterns that define healthy or diseased islet cell types and helped expli-
cate some of the intricacies between major islet cell crosstalk and glucose regulation. All three endocrine cell types 
derive from a common pancreatic progenitor, yet alpha and beta cells have partially opposing functions, and delta 
cells modulate and control insulin and glucagon release. While gene expression signatures that define and maintain 
cellular identity have been widely explored, the underlying epigenetic components are incompletely characterized 
and understood. However, chromatin accessibility and remodeling is a dynamic attribute that plays a critical role to 
determine and maintain cellular identity.

Results Here, we compare and contrast the chromatin landscape between mouse alpha, beta, and delta cells using 
ATAC-Seq to evaluate the significant differences in chromatin accessibility. The similarities and differences in chroma-
tin accessibility between these related islet endocrine cells help define their fate in support of their distinct functional 
roles. We identify patterns that suggest that both alpha and delta cells are poised, but repressed, from becoming 
beta-like. We also identify patterns in differentially enriched chromatin that have transcription factor motifs preferen-
tially associated with different regions of the genome. Finally, we not only confirm and visualize previously discovered 
common endocrine- and cell specific- enhancer regions across differentially enriched chromatin, but identify novel 
regions as well. We compiled our chromatin accessibility data in a freely accessible database of common endocrine- 
and cell specific-enhancer regions that can be navigated with minimal bioinformatics expertise.

Conclusions Both alpha and delta cells appear poised, but repressed, from becoming beta cells in murine pancreatic 
islets. These data broadly support earlier findings on the plasticity in identity of non-beta cells under certain circum-
stances. Furthermore, differential chromatin accessibility shows preferentially enriched distal-intergenic regions in 
beta cells, when compared to either alpha or delta cells.
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Introduction
The evaluation of the transcriptional landscape through 
high-throughput bulk RNA sequencing in both mouse 
and human of major islet cell types has granted a deeper 
understanding of cellular identity and intercellular cross-
talk within the pancreas. This has enabled the detection 
of distinct gene pattern signatures between major islet 
cell types in mouse and human [1–6]. However, gene 
expression represents the final outcome of a complex 
layer of genetic and epigenetic factors that determine 
islet cell fate [7–9] and identity [10, 11]. Previous studies 
have explored pancreatic islet cellular identity by evalu-
ating epigenomic features such as methylation [12–14], 
histone modifications [15–18], and enhancer regulatory 
regions [19–24]. While each of these factors contributes 
to defining and maintaining cell fate and identity, con-
necting chromatin accessibility differences to epigenetic 
factors promises to provide further insight into outstand-
ing questions within the field.

Chromatin remodeling is a central epigenetic regula-
tor that can be surveyed in order to better understand 
cell states [20, 25–28]. The accessibility of chromatin via 
changes between euchromatin and heterochromatin, and 
nucleosome occupancy, plays a significant role in cell lin-
eage determination and in tissue- and cell-specific gene 
expression [11, 25, 29]. Epigenetic stability is required 
for the maintenance of islet cell identity, while changes in 
chromatin accessibility are associated with perturbations 
in gene expression due to disease [7, 22, 30]. Chromatin 
accessibility in tandem with other epigenetic factors at 
promoter-proximal regions [29, 31] of a gene allows for 
direct activation or repression of transcription. In con-
trast, open chromatin at exonic [32], intronic [33], or dis-
tal-intergenic regions [34] can be accessed by regulatory 
factors that act as nearby or distal enhancers that govern 
lineage branching and stable cell fate.

Assay for transposase-accessible chromatin using 
sequencing (ATAC-Seq) allows for the unbiased, modi-
fication-independent evaluation of chromatin accessibil-
ity within cell types and can be run with relatively small 
sample input [30, 35]. Previous studies have explored 
transcriptional regulation in healthy and T2D human 
islet cells. Some of these studies have employed ATAC-
Seq to specifically address chromatin accessibility differ-
ences in healthy [5, 11, 36, 37] and T2D [22, 23, 38, 39] 
human islets or human pancreatic progenitors [9] using 
bulk RNA-Seq through human antibody panels along-
side FACS-purification or through single-cell sequencing 
(scATACSeq) [40–42]. However, none of these studies 
have explored pancreatic islet cell chromatin accessibil-
ity from mouse FACS-purified alpha, beta, and delta 
cells. Therefore, to better understand endocrine islet 
cell identity between mouse alpha, beta, and delta cells, 

we compared chromatin accessibility and transcriptome 
data for FACS-purified mouse alpha, beta, and delta 
cells sorted from pancreatic islets from triple transgenic 
reporter strains—mIns1-H2b-mCherry beta cells crossed 
to mice with alpha or delta cells marked by YFP in a Cre-
dependent fashion—that we generated for this purpose 
[1, 6]. This approach allowed for the direct comparison 
between ATAC-Seq and RNA-Seq datasets from alpha, 
beta, and delta cells we previously published from these 
exact same reporter lines [1, 6].

We integrated our ATAC-Seq data with high-quality 
transcription factor and histone binding data from other 
mouse pancreatic islet studies to evaluate how transcrip-
tional activators and repressors may collectively regu-
late differential gene expression at promoter-proximal 
regions. To support the visualization and integration of 
our ATAC-Seq chromatin data and previously published 
transcriptome of the FACS-purified alpha, beta, and delta 
cells alongside select epigenomic datasets from histone 
marker and transcription factor Chromatin Immuno 
Precipitation (ChIP) data, we developed an R package, 
epiRomics [See: https:// github. com/ Huisi ng- Lab/ epiRo 
mics]. This package is a novel, publicly available resource 
that is described in detail elsewhere [43]. In short, epiRo-
mics allows for the visualization of integrated epigenomic 
data and visualizes putative enhancer regions without 
the requirement for extensive bio-informatics experi-
ence, with the intent of enabling more of our colleagues 
to tease apart key regions that may drive cell fate switch-
ing and maintenance between the major islet endocrine 
cell types. Through this approach we identified putative 
enhancer regions at distal-intergenic regions common 
to all 3 cell types as well as regions selectively accessible 
only in a single islet cell type and confirmed previously 
identified mouse pancreatic islet enhancers.

Methods
Experimental animals
All mouse experiments were approved by the UC Davis 
Institutional Animals Care and Use Committee and 
were performed in compliance with the Animal Welfare 
Act and the Institute for Laboratory Animal Research 
Guide to the Care and Use of Laboratory Animals. Ani-
mals were humanely euthanized using IACUC-approved 
methods of euthanasia in accordance with the Ameri-
can Veterinary Medical Association Guidelines for the 
Euthanasia of Animals. Mice were maintained in group 
housing (up to 4 mice per cage) on a 12 h light:12 h dark-
ness cycle with water and standard rodent chow provided 
ad  libitum. We adhered to the ARRIVE 2.0 guidelines 
for pre-clinical animal reporting where applicable. Our 
experimental design did not call for a control group as we 
determined the chromatin accessibility between different 

https://github.com/Huising-Lab/epiRomics
https://github.com/Huising-Lab/epiRomics
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endocrine cells of the same tissue from the same animals. 
No animals were excluded from the experiments, and we 
observed no unexpected adverse events in the animals 
reported in this study. Blinding and randomization were 
not applicable to our study.

Islet isolation and FACS sorting
mIns1-H2b-mCherry [1] x Rosa-LSL-YFP crossed to 
either Sst-Cre [44] or Gcg-Cre [45] triple transgenic mice 
were pooled by sex (3 male and 5 female mIns1-H2b-
mCherry x Gcg-Cre x Rosa-LSL-YFP and 2 male and 5 
female mIns1-H2b-mCherry x Sst-Cre x Rosa-LSL-YFP 
triple transgenic mice), each sample yielding a median of 
20,000 cells, with islet isolation and FACS-sorting as pre-
viously described (Fig-S1) [1, 46–48].

All mouse experiments were approved by the UC Davis 
Institutional Animals Care and Use Committee and were 
performed in compliance with the Animal Welfare Act 
and the Institute for Laboratory Animal Research Guide 
to the Care and Use of Laboratory Animals. Animals 
were humanely euthanized using cervical dislocation as 
an IACUC-approved methods of euthanasia in accord-
ance with the American Veterinary Medical Association 
Guidelines for the Euthanasia of Animals.

Assay for transposase‑accessible chromatin using 
sequencing
Single-end 50 bp reads were generated after library size 
selection yielded an average of 450  bp fragments and 
sequenced as previously described using NexteraDNA 
library protocol [30].

Alignment and differential peak calling
Reads from each replicate (Table-S1) were evaluated for 
quality control and trimmed using FastQC and Trim-
momatic, respectively [49–51]. A modified index of 
Gencode GRCm38.p4 (mm10) was built to exclude mito-
chondrial DNA prior to aligning reads with Bowtie 2 [52, 
53]. Post-alignment, duplicates were marked using Pic-
ard Tools, blacklist regions were removed, and BAM files 
were converted into tagAlign format for downstream use. 
Peak calling and normalized bigwig generation was done 
using MACS2 [54]. Differential expression testing was 
performed using DiffBind’s edgeR method [55, 56].

Quality control and validation
Quality control metrics were evaluated within raw reads 
as well as peak calls and compared against ENCODE 
standards for fraction of reads in peaks (FRiP), leading to 
the removal of one beta cell replicate with a FRiP score 
far below 0.3 (Table-S1; Fig. 1A-C) [57, 58].

Downstream analysis
Transcription factor motif analysis and validation 
against existing ChIP data was performed through a 
modified script utilizing chromVar [59], regioneR [60], 
GenomicRanges [61], and motifmatchr [62] using the 
HOCOMOCO database [63]. Pathways analysis on dif-
ferential chromatin accessibility was performed using 
the R Bioconductor packages ChIPseeker [64], Reac-
tomePA [65], and clusterProfiler [66]. Gene expres-
sion and ATAC-Seq congruence testing was performed 
using log2FC values from both differential, companion 
analyses, and visualized using the R package pheatmap. 
Evaluation of gene expression changes across cell types 
was performed on RPKM values processed used Clus-
ter 3.0, and visualized using the R package pheatmap.

Enhancer identification
We developed a novel R package, epiRomics, to inte-
grate our chromatin accessibility data alongside aggre-
gated pancreatic islet ChIP and histone data to identify 
putative enhancer regions, as described [43]. The pack-
age, example data, and vignette can be found at: https:// 
github. com/ Huisi ng- Lab/ epiRo mics and an interactive 
browser of the results from this manuscript is publicly 
available at: https:// www. huisi nglab. com/ epiRo mics_ 
2021/ index. html.

Integrated data
Mouse alpha, beta, and delta (GEO: GSE80673), along-
side alpha- and delta- transdifferentiated beta (GEO: 
GSE88778) transcriptomes were integrated into this 
analysis [6, 67]. Aggregated ChIP datasets of transcrip-
tion factors and histone marks were added to the analy-
sis through epiRomics [43] to identify putative enhancer 
regions (Table-S2).

Results
ATAC‑Seq validation
To determine whether chromatin accessibility patterns 
differed between islet endocrine cell types, principal 
component analysis (PCA) was applied to peak calls 
across all samples. This confirmed that replicates clus-
tered by cell type (Fig.  1A), a finding that was further 
validated by heatmaps using all defined peaks across 
replicates (Fig.  1B). Alongside quality control applied 
through the generation and analysis of this dataset, the 
fraction of reads in peaks (FRiP) score was in excess 
of the commonly applied benchmark of 30% (Fig. 1C). 
Furthermore, the FRiP score was independent of vari-
ability in unique read depth, indicating that peak calls 

https://github.com/Huising-Lab/epiRomics
https://github.com/Huising-Lab/epiRomics
https://www.huisinglab.com/epiRomics_2021/index.html
https://www.huisinglab.com/epiRomics_2021/index.html
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were reproducible across all replicates within cell types 
independent of read depth range.

Validation of islet cell chromatin accessibility data coupled 
to companion transcriptomes
We then checked for the presence of chromatin peak 
enrichment for established alpha, beta, and delta 
marker genes. We expected enriched ATAC signal at 
promoter-proximal regions near the transcription start 
site (TSS) as a reflection of chromatin accessibility. 
Indeed, cell type-specific chromatin accessibility cor-
related with gene expression of Ins2, Gcg, and Sst genes 
for beta, alpha, and delta cells, respectively (Fig.  1D-F) 
[4, 6, 68]. After confirming chromatin accessibility in key 

cell-identity markers, we sought to compare and contrast 
select regions identified from prior groups that evaluated 
chromatin accessibility in human islets [5, 12, 38], as 
well as to further query whether chromatin was always 
uniquely enriched on a panel of cell type-specific genes 
across alpha (Arx, Ttr, Gc), beta (Ucn3, MafA, Pdx1), 
and delta cells (Pdx1, Hhex, Rbp4, Ghsr) (Fig. 2; Fig-S2). 
Many of these genes demonstrated overall strong con-
cordance between cell type-enriched gene expression 
and cell type-specific enrichment of available chromatin. 
For some of these genes – notably MafA, Pdx1, and Gc, 
the chromatin at the TSS is accessible in multiple islet 
cell types, while the corresponding transcripts are more 
restricted. This validated the utility of ATAC-Seq data to 
detect determinants of gene expression.

Fig. 1 Validating alpha, beta, and delta chromatin accessibility ATAC Seq. A Dimensional reduction through principal component analysis across 
seven samples from all three cell types (See Table-S1 for details). All three cell type’s replicates clustered closer together and separate from other cell 
types. B Heatmap further confirming quality of replicates and similarity between replicates within each cell type. C Fraction of Reads in Peaks (FRiP) 
score evaluation across samples, confirming high library complexity irrespective of depth of sequencing. D‑F Confirming chromatin normalized 
accessibility at the TSS (arrows) against normalized bulk RNA-Seq expression in key islet cell type-specific marker gene regions—Ins2, Gcg, and Sst—
in beta, alpha, and delta cells, respectively
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Fig. 2 Validating chromatin accessibility ATAC Seq alongside companion RNA-Seq expression in alpha, beta, and delta cells against hallmark genes 
governing its respective cell’s identity. All genes are oriented for 5’ to 3’ end. A‑C Normalized chromatin accessibility and transcript expression across 
alpha cell hallmark genes Arx, Ttr, and Gc. D‑F Normalized chromatin accessibility and transcript expression across beta cell hallmark genes Ucn3, 
Esr1, and Pdx1. G-I: Normalized chromatin accessibility and transcript expression across delta cell hallmark genes Hhex, Rbp4, and Ghsr 
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The chromatin landscape of the annotated genome 
across cell types
As genes make up a small fraction of the entire genome, 
we determined the overall distribution of peaks across 
the annotated genome within each cell type. We defined 
five regions of interest to further explore – promoter-
proximal, intronic, exonic, downstream, or distal-inter-
genic (Fig. 3A). We identified a consensus set of 124,494 
peaks marking open chromatin through the R pack-
age DiffBind. This number is comparable to the number 
of open regions found in previous studies of pancreatic 
islet chromatin accessibility [11, 38–40] (Dataset-S1). We 
then evaluated the distribution of called peaks present 
in at least two replicate within 3 kb upstream of the TSS 
and confirmed that a majority of genes enriched in each 
islet cell type were accompanied by promoter-proximal 
peaks (Fig.  3B-D). The distribution of ATAC-Seq peaks 
across different pre-defined genomic areas was overall 
similar across alpha, beta, and delta cells. For each endo-
crine cell type between 21.98–24.88% of open chroma-
tin was promoter-proximal, whereas promoter-proximal 
areas account for 2.41% of the mouse genome. A further 
34.92–38.33% of peaks for all cell types were found on 
distal-intergenic regions (Fig.  3E-G). Finally, we noted 
that between 33.07- 33.65% of peaks occurred on intronic 
regions (first or other), relative to the 37.7% of the mouse 
genome classified as intronic [69].

Regional differences and characteristics of differentially 
enriched chromatin
As our overall distribution of ATAC-Seq peaks across 
different genomic regions was consistent across alpha, 
beta, and delta cells, we compared differential chromatin 
accessibility between these cell types in greater detail. To 
this end, we performed pairwise differential ATAC-Seq 
peak enrichment testing across alpha, beta, and delta 
cells. Out of 124,494 identified consensus regions of open 
chromatin across the three cell types, 18,409 (14.8%) dif-
ferentially enriched peaks (p-value <  = 0.05) were iden-
tified between alpha and beta (Fig.  4A), 12,722 (10.2%) 
between alpha and delta (Fig.  4B), and 16,913 (14.6%) 
between beta and delta cells (Fig. 4C).

After performing differential peak enrichment testing, 
we discovered that 22.89% of all differentially enriched 
peaks between alpha and beta cells were promoter-
proximal (0-3  kb) (Fig.  5A). A further 33.22% of differ-
ential peaks were linked to distal-intergenic regions and 
another 33.61% of differential peaks were intronic (first 
and other combined) (Fig. 5A). This assessment of differ-
ential peaks without considering the direction of enrich-
ment revealed no major difference with overall peak 
distribution described earlier (Fig.  3). However, when 
factoring in the direction of enrichment we observed that 

35.08% of alpha cell-enriched peaks was promoter-prox-
imal. In contrast, only 12.5% of beta cell enriched peaks 
occurred in promoter-proximal areas (Fig.  5B). Instead, 
a majority of ATAC peaks enriched in beta cells were 
located at distal-intergenic regions (45.41%) (Fig. 5B).

Between alpha and delta cells, we identified that 21.29% 
of differentially enriched peaks occurred promoter-prox-
imally. Another 36.4% of peaks occurred on distal inter-
genic regions and 35.5% on intronic regions (Fig. 5C). A 
similar preference of alpha cell-enriched peaks in promo-
tor-proximal regions was evident when comparing alpha 
to delta cells, with 30.33% of all enriched alpha peaks 
occurring promoter-proximally, but only 9.56% of delta 
cell peaks. Instead, 38.41% of delta cell enriched peaks 
were distal-intergenic (Fig. 5D).

Lastly, between beta and delta cells, 26.62% of all dif-
ferentially enriched peaks were promoter-proximal, 
32.2% distal intergenic, and 34.33% on intronic regions 
(Fig. 5E). Further break down revealed a bias towards dis-
tal-intergenic enriched peaks within beta cells (42.86%), 
as opposed to promoter-proximal peaks in delta cells 
(28.20%) (Fig. 5F).

Differential chromatin enrichment in the majority of cases 
correlates with gene expression
So far, we detected a disproportionate fraction of peaks 
associated with promoter-proximal regions in general, 
compared to the fraction of the genome that consists of 
this type of region (Fig.  3). Moreover, ATAC-Seq peaks 
that were differentially enriched in alpha and—to a lesser 
extent—delta cells were considerably more likely to occur 
at promoter-proximal sites. Instead, peaks enriched 
in beta cells more likely occurred at distal intergenic 
regions (Fig.  5). Therefore, we determined whether the 
enrichment of promoter-proximal peaks correlated with 
increased expression of the corresponding genes. Genes 
with increased expression in a cell type accompanied by 
a significantly enriched ATAC-Seq peak proximal to its 
TSS were considered ‘congruent’ genes (Fig.  6A). The 
underlying mechanism in such a scenario might be the 
presence of transcriptional activators at the promoter-
proximal site that promote gene expression. Conversely, 
genes with a significantly enriched ATAC-Seq peak 
proximal to its TSS accompanying a reduction in cor-
responding gene expression were considered ‘incongru-
ent’ genes (Fig. 6B). The underlying mechanism for these 
genes might be the presence of transcriptional repressors 
at the promoter that prevent gene expression (Dataset-
S2) [70–73]. Finally, genes that had significantly enriched 
chromatin in either cell type, but no evidence of mRNA 
expression were considered ‘unexpressed’ (Fig. 6C).

When we compared differentially enriched TSS-asso-
ciated chromatin against corresponding gene expression 
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Fig. 3 Evaluating chromatin accessibility ATAC Seq similarities and differences across all three cell types. A Schematic of annotated genomic 
regions – promoter proximal, intronic, exonic, distal-intergenic, or downstream. B‑D TSS peak (defined as 3 kb up or downstream each respective 
gene) chromatin accessibility density across beta, alpha, and delta cells. E–G Distribution of chromatin peaks within each cell type across the 
annotated genome against a background genome distribution (in parenthesis)
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between alpha and beta cells, we found that in the 
majority of cases (86%), differential chromatin enrich-
ment on TSS regions positively correlated with changes 
in gene regulation. Exactly, 50% of genes with differen-
tially enriched chromatin at the TSS had a correspond-
ing increase in gene expression within the same cell type 
(congruent genes; Fig.  6D). 36% showed TSS chromatin 
accessibility enrichment, but with a reduction in gene 
expression for each cell (incongruent genes—either alpha 
repressed (33%), or beta repressed (3%)). Strikingly, a 
substantial majority of the incongruent genes in this 
comparison were alpha repressed. Finally, only 14% of all 
genes with differentially enriched TSS chromatin showed 
no expression in either cell type (unexpressed) (Fig. 6D).

We highlight the beta-specific gene MafA as an exam-
ple of an incongruent gene that is putatively alpha 
repressed or alpha cell poised (Fig. 2E; Fig-S3A).

We observed a similar distribution between congruent 
(55%), incongruent (24%), and no expression genes (20%), 
between alpha and delta cells. We noted a more uni-
form distribution between alpha (14%) and delta (10%) 
repressed genes. (Fig. 6E). Upon visualizing gene expres-
sion and chromatin accessibility, we confirmed congru-
ent gene expression and TSS chromatin accessibility of 
key transcription factors known to regulate both alpha 
– MafB, Ttr, and Arx – and delta – Pdx1 and Hhex – cell 
fate (Fig-S3B).

For the pairwise comparison between beta and delta 
cells, we again found a similar fraction of congru-
ent (57%), incongruent (32%), and no expression (11%) 

genes (Fig. 6F). We noted a minor fraction of repressed 
genes with open chromatin in beta cells (1.5%), with the 
majority of repressed genes corresponding to delta cells 
(30.45%), similar to the pattern seen in alpha repressed 
genes between alpha and beta cells. Further visualiza-
tion of select marker gene expression against chromatin 
accessibility showed generally good congruence between 
chromatin accessibility at the TSS and gene expression 
(Fig-S3C).

Poised genes are enriched in beta cells with a non‑beta cell 
lineage history
Since most of the incongruent genes are assigned to 
alpha and delta cells in their respective comparisons 
with beta cells, we further interrogated whether these 
alpha- or delta- repressed genes could be poised beta 
cell genes. In order to do so, we incorporated transcrip-
tome data from beta cells with an alpha- or delta- cell 
lineage history [67] – also from our companion RNA-
Seq experiment. Unfortunately, there is no accom-
panying ATAC-Seq data for these cells. These cells, 
termed “transdifferentiated,” are beta cells (defined by 
the presence of Ins1-driven mCherry expression), but 
have either a Gcg- or Sst-Cre lineage label, reflective 
of a lineage history as an alpha or delta cell, respec-
tively. We reasoned that if alpha- or delta- repressed 
genes are poised beta cell genes, we should expect to 
observe a stepwise transition in gene expression lev-
els, showing little or no expression in either alpha or 
delta cells, to intermediate expression in alpha- or 

Fig. 4 Comparing chromatin accessibility through differential enrichment analysis across alpha, beta, and delta cells. A Differential chromatin 
accessibility peaks between alpha and beta ATAC Seq data. A total of 18,409 peaks were considered differentially enriched at p-value <  = 0.05 
(Dataset-S1). B Differential chromatin accessibility peaks between alpha and delta ATAC Seq data. A total of 12,722 peaks were considered 
differentially enriched at p-value <  = 0.05 (Dataset-S1). C Differential chromatin accessibility peaks between beta and delta ATAC Seq data. A total of 
16,913 were considered differentially enriched at p-value <  = 0.05 (Dataset-S1)
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Fig. 5 Regional differences and characteristics of differentially enriched peaks between alpha, beta, and delta cells. A Distribution of regional 
preference across the annotated genome of differentially enriched peaks between alpha and beta cells. B Regional preference breakdown of 
differentially enriched peaks between alpha and beta cells, indicating prevalence of enrichment for each cell type and genomic annotation. 
Differentially enriched chromatin favored promoter-proximal peaks in alpha cells, and distal-intergenic regions in beta cells. C Distribution of 
regional preference across the annotated genome of differentially enriched peaks between alpha and delta cells. D Regional preference breakdown 
of differentially enriched peaks between alpha and delta cells, indicating prevalence of enrichment for each cell type and genomic annotation. 
Differentially enriched chromatin favored promoter-proximal peaks in alpha cells, and distal-intergenic regions in delta cells. E Distribution of 
regional preference across the annotated genome of differentially enriched peaks between beta and delta cells. F Regional preference breakdown 
of differentially enriched peaks between beta and delta cells, indicating prevalence of enrichment for each cell type and genomic annotation. 
Differentially enriched chromatin favored promoter-proximal peaks in delta cells, and distal-intergenic regions in beta cells
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delta- transdifferentiated cells, and full expression in 
beta cells. We confirmed that the majority (83.6%) of 
alpha-repressed genes showed intermediate expres-
sion in the alpha-to-beta-transdifferentiated popula-
tion, and the highest expression in beta cells (beta cell 
genes). A subset of genes (16.4%) showed the highest 
expression in the alpha-transdifferentiated population 

(Fig. 7A). We observed a similar pattern between delta, 
delta-transdifferentiated, and beta cells; however, only 
half (50.18%) of delta repressed genes demonstrated an 
intermediate expression in the delta-to-beta-transdif-
ferentiated population and the highest in beta (Fig. 7B). 
The remainder of the genes showed the highest expres-
sion in delta-to-beta-transdifferentiated cells.

Fig. 6 Differentially enriched chromatin at TSS genic regions and their respective gene’s expression between alpha, beta, and delta cells. A‑C 
Schematic of ‘congruent’, ‘incongruent’, and ‘unexpressed’ categories used to determine the association of enriched chromatin at TSS genic regions 
and respective gene expression. D Differentially enriched chromatin at TSS genic regions and their respective gene’s expression between alpha and 
beta cells. The majority (50%) of genes with enriched chromatin at promoter-proximal regions around their TSS had correlated gene expression 
(congruent). Another 36% of chromatin enriched TSS regions showed repressed gene expression for each cell type (alpha repressed (33%) or beta 
repressed (3%)), and finally, 14% were unexpressed. E Differentially enriched chromatin at TSS genic regions and their respective gene’s expression 
between alpha and delta cells. The majority (55%) of genes with enriched chromatin had correlated gene expression (congruent). Another 24% 
of chromatin enriched TSS genic regions showed repressed gene expression for each cell type (alpha repressed (14%) or delta repressed (10%)), 
and finally, 20% showed no expression. F Differentially enriched chromatin at TSS genic regions and their respective gene’s expression between 
beta and delta cells. The majority (57%) of genes with enriched chromatin had correlated gene expression (congruent). Another 32% of chromatin 
enriched TSS regions showed repressed gene expression for each cell type (beta repressed (1.5%) or delta repressed (30.45%)), and finally, 11% 
showed no difference



Page 11 of 22Mawla et al. BMC Genomics          (2023) 24:202  

Differential meta‑chromatin enrichment testing
Given that for a majority of genes, TSS-associated chro-
matin recapitulated the underlying regulation of gene 
expression, we inquired whether differentially enriched 
chromatin peaks were associated with genes concen-
trated in pathways or gene networks that would better 
reflect our understanding of the biology across these dif-
ferent islet endocrine cell types. Between alpha and beta 
cells, KEGG set pathway testing of differentially acces-
sible chromatin identified pathways related to protein 
digestion and absorption and cell adhesion molecules 
unique to beta cells; Hippo, Wnt, and ubiquitin-medi-
ated proteolysis unique to alpha cells; and MAPK, axon 
guidance, and cAMP pathways enriched within both 
(Fig-S4A-B). Upon comparing the differentially acces-
sible chromatin between alpha and delta cells, adherens 
junctions were enriched in delta cells, while no pathways 
were enriched specifically in alpha cells. MAPK, axon 
guidance, and Ras signaling pathways showed general 
enrichment of associated peaks within both alpha and 

delta cells (Fig-S5A-B). Lastly, in beta and delta cells, a 
pairwise analysis of differentially accessible chromatin 
identified the Glycosaminoglycan (GAG) biosynthesis 
pathway as unique to beta cells—where GAG metabolism 
and biosynthesis impairment has been linked to beta cell 
dysregulation [74], adherens junctions and Rap1 signal-
ing pathways unique to delta cells, and MAPK, axon 
guidance, and cAMP signaling pathways enriched within 
both, as well as identified between alpha and beta cells 
(Fig-S6A-B).

Islet transcription factor ChIP‑Seq binding correlates 
with open chromatin
After exploring the interrelationship between acces-
sible chromatin and gene expression, we expanded our 
approach to include additional controls to the regula-
tion of islet cell gene expression. We therefore aggre-
gated high-quality, mouse pancreatic islet transcription 
factor binding data via ChIP-Seq—Pdx1 [75], Nkx6-1 
[76], Neurod1 [77], Insm1 [77], Foxa2 [77], Nkx2-2 [78], 

Fig. 7 Gene expression of poised genes enriched in beta cells with a non-beta cell lineage. A Evaluating alpha repressed genes (Fig. 6A) across 
alpha, alpha transdifferentiated, and beta cell transcriptomes. The great majority (83.6%) of genes repressed in alpha cells showed intermediate 
expression in alpha transdifferentiated cells, and highest expression in beta cells, further validating that alpha cells are poised to become beta cells, 
with a subset (16.4%) of those genes required for the transition. B Evaluating delta repressed genes (Fig. 6C) across delta, delta transdifferentiated, 
and beta cell transcriptomes. Around half (50.18%) of genes repressed in delta cells showed intermediate expression in delta transdifferentiated 
cells, and highest expression in beta cells, validating that delta cells – to a lesser extent than alpha – are also poised to become beta cells, with the 
remainder of genes (49.82%) required for the transition
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Rfx6 [79], MafA [24], Isl1 [80], Kat2b [81], Ldb1 [80], 
and Gata6 [82]—and asked what fraction of open chro-
matin – as defined by our consensus ATAC-Seq peak set 
– contains binding sites for each respective transcription 
factor. Of all open chromatin sites, individual transcrip-
tion factors occupied a significant percent with Foxa2 
(29.07%), Insm1 (28.40%), and Neurod1 (20.09%) show-
ing the highest percentage of ChIP-confirmed binding. 
This provided further support that our ATAC-Seq data 
was of high quality and suggested that open chromatin is 
a reliable indicator of epigenetic regulation (Table-S3A). 
To further explore whether these aggregated transcrip-
tion factor ChIP data correlated with open chromatin, 
we queried what fraction of total ChIP binding sites over-
lapped with ATAC-Seq peaks. Indeed, we observed that 
in several cases, over 50% of transcription factor ChIP 
binding sites overlapped with open chromatin, with the 
transcription factors Nkx2.2 (63.79%), Neurod1 (55.07%), 
and Insm1 (51.49%) showing the greatest degree of over-
lap (Table-S3B). These results supported our findings that 
open chromatin indicates regulation of gene expression 
in alpha, beta, and delta cells, in part through the binding 
of transcription factors.

Transcription factor motif finding suggests genomic 
preferences at differentially enriched chromatin 
between cell types
After observing a strong degree of overlap of known islet 
transcription factor binding on open chromatin, we con-
ducted an unbiased evaluation whether DNA motifs for 
their respective transcription factor proteins were differ-
entially enriched on ATAC peaks in promoter, intronic, 
exonic, downstream, or distal regions. We included only 
transcription factors with known DNA-binding motifs 
to determine if they were more likely to occur at specific 
areas of the genome. We required that the transcription 
factor associated with the DNA sequence motif consid-
ered is expressed (RPKM > 0) in the cell type with chro-
matin-motif association.

Motifs for key transcription factors involved in beta cell 
identity, such as MafA, were present ubiquitously across 
most functional regions we defined (promoter-proximal, 
intronic, exonic, downstream, and distal intergenic) 
(Fig.  8A). In contrast, the motifs for alpha cell-identity 
driver Irx2 [4] were concentrated at the promoter-prox-
imal regions of chromatin peaks associated with genes 
differentially expressed by alpha cells. Insm1 [77] motifs 
were concentrated at the promoter-proximal regions 
of chromatin peaks associated with genes differentially 
expressed by beta cells. In another example, DNA-bind-
ing motifs associated with the ubiquitous islet transcrip-
tion factor Pax6 [83] were concentrated on intronic 
chromatin.

We performed the same transcription factor motif 
enrichment test between alpha and delta cells (Fig.  8B). 
Of note, the motif for Pbx3, a transcription factor driv-
ing Sst expression in delta cells [84], was enriched in 
accessible chromatin at promoter-proximal regions. The 
motif for Stat4, recently implicated in establishing alpha 
cell identity [85] was concentrated in exonic chromatin. 
Lastly, the motif for Ptf1a, a transcription factor identi-
fied in early pancreatic endocrine cell development [86], 
was preferentially associated with areas of open chroma-
tin at distal intergenic regions.

Between beta and delta cells, no single transcription 
factor motif overlapped across all five functional catego-
ries, nor were there any unique to downstream or exonic 
regions, as we observed in the prior alpha and delta com-
parisons (Fig. 8C). Of note, the motif for Smad3, a tran-
scription factor important for islet development [87], as 
well as the negative regulation of insulin secretion in beta 
cells via occupancy of the insulin promoter [88], was con-
centrated in promoter-proximal accessible chromatin. 
Motifs for Insm1 [77] and Nkx6.1 [89], both key beta cell 
identity transcription factors, were preferentially associ-
ated with accessible chromatin at intronic regions. Lastly, 
motifs for Fev – recently identified as important for the 
development and differentiation of the endocrine lineage 
[90]—and Atf3 – linked to enhancer regions in EndoC-
bH1 cells [11]—were enriched in accessible chromatin at 
distal regions.

Validating motif calls against aggregated islet ChIP 
datasets
As we observed motif binding site preferences across 
promoter, intronic, exonic, downstream, or distal 
chromatin regions, we wished to confirm how accu-
rately predictive DNA motif binding sites conveys true 
transcription factor binding. To do so, we once again 
turned to our aggregated pancreatic islet ChIP data-
sets. We applied the same motif detection method 
as above on individual ChIP datasets and on all open 
chromatin – as derived from our ATAC-Seq consensus 
peak set –and assessed how well predicted motif bind-
ing overlapped with true ChIP peaks from our selected 
list of ChIP-Seq data. One transcription factor, Rfx6, 
showed strong (57%) true positive and low (8.34%) 
false negative values for its DNA-motif ’s ability to pre-
dict all Rfx ChIP binding sites (Table-S4A). We then 
limited this same test to Rfx6 ChIP-Seq binding sites 
(35.65%) that were shared across 1.19% of all open 
chromatin ATAC peaks (Table-S3A-B). Notably, when 
comparing DNA-motif predictions for Rfx6 against 
these shared Rfx6 ChIP-Seq binding sites, we observed 
that 65.10% were true positives, while 8.81% were 
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false predictions (Table-S4B). When we expanded this 
analysis to other transcription factors, we observed a 
broad distribution in true positive values across these 
DNA-binding motifs (4.71–65.10%), and also noted a 
relatively low range of false positives (1.68–8.81%). 
This is reflective of a limitation in the ability for DNA-
motifs to consistently predict true transcription factor 
binding.

Determining overlap of differentially enriched chromatin 
with islet ChIP and histone datasets
Given that many of the DNA-motifs associated with 
transcription factors do not have available ChIP-Seq 
datasets derived from mouse pancreatic islets, we sought 
to understand whether differential chromatin between 
cell types could be associated to transcription factors and 
histone markers integral to pancreatic islet cell fate that 

Fig. 8 Evaluating expressed, cell-specific transcription factor motifs on differentially enriched peaks across cell types. A Evaluating cell-specific 
transcription factor motifs associated with differentially enriched peaks for alpha and beta cells, suggesting transcription factor preference for these 
peaks across the functionally annotated genome. Notably, three known transcription factors were predicted to overlap all defined regions of the 
genome, whereas others showed preference for binding at either promoter, exon, intron, or distal regions, suggesting different mechanisms of 
regulation. B Evaluating cell-specific transcription factor motifs associated with differentially enriched peaks for alpha and delta cells, suggesting 
transcription factor preference for these peaks across the functionally annotated genome. No known transcription factor was predicted to bind 
to all defined regions of the genome, with the majority binding to either intronic, distal, or promoter areas. C Evaluating cell-specific transcription 
factor motifs associated with differentially enriched peaks for beta and delta cells, suggesting transcription factor preference for these peaks across 
the functionally annotated genome. No known transcription factor was found predicted to bind to all defined regions of the genome, with the 
great majority showing a preference for distal, intronic, or promoter regions
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do have available ChIP data, as opposed to relying only 
on predictive motifs. As we previously observed strong 
enrichment of transcription factor binding sites across all 
open islet chromatin, we wanted to confirm if this over-
lap is augmented in differentially enriched chromatin 
associated with pancreatic islet transcription factor bind-
ing sites via aggregated islet ChIP data—Pdx1, Nkx6-1, 
Neurod1, Insm1, Foxa2, Nkx2-2, Rfx6, and MafA—and 
select, key histone marks — H3K27ac [91], H3K4me3 
[91], and H3K4me1 [12]. Our intention in integrating 
these data was in anticipation that they may help delin-
eate whether enhancer regions are poised (defined by: 
H3k4me1) [92], or active (defined by: H3k27ac and 
H3k4me1) [93], and whether promoter regions are active 
(defined by: H3k4me3) [94].Indeed, we observed that dif-
ferentially enriched ATAC-Seq peaks within our compar-
isons occurred at much higher rates than random chance 
across a majority of transcription factor ChIP data associ-
ated with islet cell identity (Fig-S7A-C) as well as all pre-
dictive histone marker regions (Fig-S7D-F). This further 
supported our hypothesis that open chromatin, and now 
specifically differentially enriched chromatin, would be 
directly associated with the transcription factors respon-
sible for shaping islet cell-specific gene expression pat-
terns and identity. As differentially enriched chromatin 
is associated with cell-identity regulatory networks, we 
inquired to selectively evaluate these regions for enhanc-
ers that may be relevant to pancreatic islet cell identity.

Identifying and visualizing putative islet cell‑type specific 
enhancers via epiRomics
These transcription factor and histone ChIP datasets 
were then fed into an R package named epiRomics that we 
developed to identify putative enhancer regions involved 
in pancreatic islet cell identity. We defined enhancer 
regions by the co-localization of H3k27ac and H3k4me1 
(activating) histone modifications within islet cell chro-
matin. We narrowed our definition further by requiring 
these regions to also have transcription factor binding 
sites—Pdx1, Nkx6-1, Neurod1, Insm1, Foxa2, Nkx2-
2, Rfx6, MafA, Isl1, Kat2b, Ldb1, or Gata6 – defined 
by islet ChIP data that are either ubiquitously or selec-
tively expressed across the three islet cell types (Fig. 2E-
F; Fig-S2E; Fig-S8A-I). This first pass resulted in 28,645 
putative enhancer regions (Dataset-S3). We then filtered 
this list against chromatin accessible regions from our 
ATAC-Seq data sets of alpha, beta, and delta cells, result-
ing in 16,651 putative active enhancers (Fig. 9A). To fur-
ther increase our confidence in these enhancer calls, we 
crossed our putative enhancer regions against the FAN-
TOM5 curated enhancer database [95]. This resulted in 
a conservative list of 3,535 putative enhancer regions. Of 

these, 3,203 were inaccessible to at least two out of three 
islet endocrine cell types (Fig. 9B) (Dataset-S4).

In both putative enhancer lists, we found that 39.8–
43.2% of the enhancer regions we identified were com-
mon across all cell types, supporting the theory that 
related cell types of a common origin would have a size-
able commonality of similar regulatory regions involved 
in development and maintenance (Fig.  9A-B). Interest-
ingly, between 1.53–10.1% of called enhancers were asso-
ciated with accessible chromatin unique to each cell type. 
Enhancer regions selective to beta cells were identified 
at the highest frequency (~ 10%), while alpha and delta 
enhancers made up ~ 2% of the list.

As a reality check, we cross referenced our putative 
enhancer list with several established enhancer sites 
that were experimentally confirmed. Our approach cor-
rectly predicted an established intronic enhancer on the 
Slc30a8 gene, which was demonstrated to be regulated in 
part by the Pdx1 transcription factor (Fig. 9C) [96]. Our 
approach also correctly predicted a previously identified 
promoter-proximal enhancer region targeting Pdx1, with 
co-occurring binding sites for islet transcription factors 
Insm1, Neurod1, and Foxa2 (Fig. 9D) [77]. This validated 
the use of the epiRomics approach to predict novel, not 
previously identified enhancer regions.

We investigated cell-specific or common putative 
enhancer candidates, starting with those with the high-
est number of transcription factor co-binding sites from 
our list. One of the top predicted beta cell-unique puta-
tive enhancer regions is located on the sixth exon of 
the Slc35d2 gene and aligns with eight different ChIP 
co-localization binding sites (Fig.  10A). An alpha cell-
unique putative enhancer located at a distal-intergenic 
region ~ 30 kb upstream of Dusp10, overlapped precisely 
with six sites of co-binding from various transcription 
factors (Fig. 10B). A delta cell-unique region at a distal-
intergenic enhancer region ~ 21 kb upstream of Gm20745 
aligned closely with no fewer than 12 sites of co-bind-
ing from multiple transcription factors (Fig.  10C). And 
finally, a common enhancer located ~ 32 kb upstream of 
Snap25 – a gene expressed in alpha, beta, and delta cells, 
associated with a total of 17 co-binding sites of aggre-
gated transcription factors (Fig. 10D).

We noted further examples of enhancer regions that are 
inaccessible to beta, but present in both alpha and delta 
(Fig-S9A) cells, or others with chromatin accessibility 
across all cell types with an adjacent, intronic enhancer 
region uniquely available to beta cells alone (Fig-S9B). In 
particular, the Slc2a2 gene shares common open chro-
matin across alpha, beta, and delta cells. However, beta 
cells have a gained accessible chromatin region on the 
first intron identified as a putative enhancer and which 
overlaps with six co-binding sites. Finally, we noted more 
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Fig. 9 Putative enhancer detection overlap between the three cell types. A First-pass overlap of unfiltered putative enhancers called with our novel 
package, epiRomics. Open chromatin regions in at least one cell type were crossed against two informative histone marks—H3k27ac and H3k4me1 
– and transcription factor binding data to call putative enhancer regions. A total of 28,647 regions were identified (Dataset-S3). 39.8% of putative 
enhancer calls had chromatin accessible to all three cell types, suggestive of pancreatic endocrine cell development and maintenance involvement. 
The overlap of enhancer calls with open chromatin between any two cells type was 8.51%—18.9%. Between 1.89%—9.94% of calls were unique 
to one cell type alone. B First-pass enhancer calls were filtered against the curated FANTOM5 database delineating all identified enhancers in the 
mouse genome. This resulted in a much more conservative list of 3,535 regions identified (Dataset-S4). The distribution of enhancers unique or 
common between cell types remained comparable, with 43.2% identified across all three cell types, and 1.53%—10.1% unique to a cell type. C 
Confirming an enhancer on the second intron of Slc30a8, identified in a previous study, with 14 sites of co-binding from multiple transcription 
factors. D Confirming an a promoter-proximal enhancer (~ 1 kb upstream) of the gene that codes for the transcription actor Pdx1, with 9 sites of 
co-binding from multiple transcription factors
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putative regions that were enriched in both alpha and 
beta cells, and present in delta cells as well (Fig-S9C-D).

Discussion
The high quality ATAC-Seq data derived from this study 
is the first dataset of its kind from FACS-purified mouse 
alpha, beta, and delta cells. Moreover, while bulk-ATAC-
Seq data from human alpha and beta cells have previ-
ously been reported, our data are the first to report on 
chromatin accessibility of delta cells and combine these 
cell’s chromatin landscapes to companion transcrip-
tome data. We believe that our data will provide a useful 
resource that complements our companion transcrip-
tome data that we reported previously using the exact 
same combination of reporter strains [6]. Leveraging 
these data allowed us to confirm previous findings in a 
human ATAC-Seq study evaluating alpha and beta cells, 
which suggested that alpha cells are poised but repressed 
from becoming beta cells [5], and present evidence that 
supports that delta cells might be similarly poised to 
adopt a beta cell like gene expression pattern. We also 
now harmonized our ATAC-Seq and RNA-Seq data with 
a wealth of -omics levels data from our colleagues, result-
ing in a comprehensive multi-layered omics overview 
that includes histone modifications and transcription fac-
tor binding sites. Finally, we made these data accessible 
through an intuitive interface that we developed to be 
navigated without any bioinformatics experience (https:// 
www. huisi nglab. com/ epiRo mics_ 2021/ index. html).

In evaluating the chromatin landscape of alpha, beta, 
and delta cells, we noted that over half of accessible chro-
matin in any of the cell types corresponded to promoter-
proximal regions (~ 25%) and intronic regions (~ 32%), 
even though a much smaller fraction of the genome is 
represented by promoter-proximal sites. This under-
scores that a substantial portion of regulatory activity 
occurs directly at genic regions themselves. The enrich-
ment of promoter-proximal and intronic open chroma-
tin we observed in mouse islet cells agrees with previous 
findings in human studies [5, 38]. The strong presence 
of intronic open chromatin supported previously estab-
lished findings of how enhancers on introns can act as 
suppressors [33] or drivers of gene expression [97]. As an 
example, Pdx1 regulates the expression Slc30a8 through 
an intronic enhancer [96] – which suggested that these 

intron regions of accessible chromatin may play a role in 
cell identity (Fig. 9D). Our findings of a large number of 
peaks residing at distal-intergenic regions (~ 35%) agree 
with previous research identifying and emphasizing 
the role of distal intergenic regions acting as enhancers 
(Fig.  10C-D, Fig-S9C-D) in pancreatic islet identity and 
functional beta cell behavior, and through linkage with 
T2D GWAS studies that link these regions to beta cell 
dysregulation [19, 20, 23, 24, 98, 99].

Upon evaluating differences in chromatin accessibil-
ity in pairwise comparisons, we discovered that overall, 
differentially enriched ATAC-Seq peaks in alpha or delta 
cells were more likely to occur at promoter-proximal 
regions adjacent to the TSS, whereas peaks enriched in 
beta cells were often found in distal intergenic or intronic 
regions, suggesting different mechanisms regulating 
alpha and delta cell fate specification (Fig. 5B, F). When 
comparing differentially enriched TSS-associated chro-
matin and respective gene expression, we observed a 
strong association between chromatin accessibility and 
gene expression. However, both alpha and delta cells 
showed an abundance in putatively poised genes when 
either was compared to beta cells. Of note, MafA is a 
key transcription factor enriched in beta cells that shows 
abundant chromatin accessibility in both alpha and delta 
cells (Fig. 2E) but is only expressed in beta cells. Another 
notable example is Pdx1, which shows repressive activ-
ity (poised TSS enrichment) in alpha cells, but is only 
expressed in beta and delta cells (Fig. 2F).

Moreover, a majority of alpha- and delta- repressed 
genes showed intermediate expression in beta cells from 
alpha or delta origin, respectively (Fig.  7A-B), further 
supporting that these are indeed putatively poised. These 
observations are in line with prior data that suggest that 
alpha cells are epigenetically poised to become beta cells, 
but are prevented from assuming beta cell transcrip-
tional programs by repressive regulators at key beta-
specific transcription factors [5, 15]. Our observations 
here also fit reports of adult or juvenile transdifferentia-
tion of alpha-to-beta cells, or delta-to-beta cells, respec-
tively [5, 67, 100], although a meaningful contribution of 
these processes to beta cell regeneration in the absence of 
transgenic interventions is uncertain [101, 102].

After we evaluated motif binding on differentially 
enriched chromatin, we found that Irx2 and Insm1 motifs 

Fig. 10 Visualizing novel, putative enhancer detection between cell types. A Visualizing a beta-unique enhancer region. An exonic enhancer region 
selected from our filtered enhancer call list, with 8 sites of co-binding from various transcription factors relevant to pancreatic islet cell identity 
and maintenance [1]. B Visualizing an alpha-unique enhancer region; a distal-intergenic enhancer region (~ 30 kb upstream of Dusp10) selected 
from our filtered enhancer call list, with 6 sites of co-binding from various transcription factors. C Visualizing a delta-unique enhancer region. A 
distal-intergenic enhancer region (~ 21 kb upstream of Gm20745) selected from our filtered enhancer call list, with 12 sites of co-binding from 
various transcription factors. D Visualizing a non-unique enhancer region common across all three cell types. A distal-intergenic enhancer region 
(~ 32 kb upstream of Snap25) selected from our filtered enhancer call list, with 17 sites of co-binding from various transcription factors

(See figure on next page.)

https://www.huisinglab.com/epiRomics_2021/index.html
https://www.huisinglab.com/epiRomics_2021/index.html
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Fig. 10 (See legend on previous page.)
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are enriched at promoter-proximal regions of cell-spe-
cific alpha peaks when comparing alpha and beta cells, 
suggesting that they directly drive gene expression or 
repression in alpha cells by binding to uniquely accessible 
chromatin [4, 77]. For Irx2, this indicates that it directly 
drives gene expression or repression in alpha cells. For 
Insm1, which is expressed more uniformly in all three 
endocrine cell types, the role that it plays at promoter-
proximal accessible chromatin is more complex and can-
not be as readily inferred.

Between alpha and delta cells, the DNA binding motif 
for Pbx3, a transcription factor implicated in driving Sst 
expression in delta cells, was found preferentially enriched 
in accessible chromatin associated with promoter-proximal 
peaks [84], while the DNA motif for Atf2, identified as an 
enriched alpha cell motif in a previous human study, was 
found to be preferentially enriched on open chromatin 
associated with intronic peaks [5]. Between beta and delta 
cells, Insm1 and Nkx6.1 had motifs enriched at intronic 
chromatin regions [77, 89], while Fev – recently identi-
fied in pancreatic islet development—and Atf3 – linked to 
enhancer regions in EndoC-bH1 cells—were identified as 
preferential to chromatin associated with distal-intergenic 
regions via their DNA binding motifs [11, 90].

Utilizing the R package epiRomics, we were able to derive 
a set of 16,651 putative enhancer peaks. Of these regions, 
16.7% of enhancers were shared between beta and alpha 
cells, and 17.8% were shared between beta and delta cells, 
as opposed to the 8.18% shared between alpha and delta 
cells. Of note, our approach identified previously identi-
fied intronic enhancers, such as the one located on Slc30a8 
that is regulated in part via the binding of the transcrip-
tion actor Pdx1 and a promoter-proximal enhancer region 
upstream of the Pdx1 that is associated with Insm1, Neu-
rod1, and Foxa2 binding, also identified by our approach 
(Fig.  9D) [77]. One final example of an enhancer is situ-
ated on the first intron of Slc2a2. having unique chro-
matin accessibility to beta cells, coupled with multiple 
transcription factor binding sites, including Pdx1, MafA, 
and Nkx6.1, could possibly explain the expression of the 
gene in beta cells while it is near undetectable between 
alpha and delta cells (Fig-S9B). Slc2a2 plays a necessary 
role glucose-stimulated insulin secretion [103], with a 
recent study identifying a downstream enhancer regulat-
ing Slc2a2 requiring the co-occupancy of both MafA and 
Neurod1, but also noting that complex interactions occur 
beyond the scope of this distal region [104].

One limitation of our approach was that we were con-
strained to using ChIP data that had been made available 
by our colleagues in the field. The substantial majority are 
transcription factors associated with beta cells, with the 
results reflective of this limitation. For instance, 10.1% 
of the enhancer regions called were unique to beta cells, 

whereas we were only able to identify 1.53–2.47% unique 
to either delta or alpha cells (Fig-2E-F; Fig-S2E; Fig-S8A-
I). The over-representation of beta cell-specific enhancer 
regions is probably explained by the fact that ChIP data for 
alpha and delta cell-specific enhancers obtained from pure 
populations of primary alpha and delta cells does not exist. 
While the majority of the transcription factors here are 
associated with beta cells, these data are still informative 
as open chromatin in delta and alpha regions without beta-
cell transcription factor binding may be areas regulated 
through other layers of epigenetics, such as methylation, or 
via alpha- or delta- specific transcription factors for which 
no ChIP data is currently available [94]. While further vali-
dation of these regions lays beyond the scope of this study, 
such information would be readily integrated in the future 
in the multi-omics resource we described here.

Conclusion
Here we have established a comprehensive picture of 
chromatin accessibility between major islet endocrine 
cell types and present the novel chromatin landscape of 
delta cells. We identified differential chromatin acces-
sibility at promoter-proximal regions in both alpha cells 
and delta cells, when compared to beta cells. This find-
ing was in line with a previous study in human islets, 
and further builds on previous literature in the field 
suggesting that both alpha and delta cells can transdif-
ferentiate into beta cells. We also identified preferen-
tially binding pattern differences across the annotated 
genome in transcription factor DNA-motifs across 
differentially enriched chromatin. Our evaluation of 
whether chromatin enrichment at the gene body is 
always correlated with gene expression enrichment 
also demonstrated that transcriptional regulation plays 
a role in determining cell fate rather than chromatin 
dynamics alone. Lastly, we devised and provided a sim-
ple approach to utilize and integrate a subset of these 
epigenomic datasets – ChIP and histone—alongside 
our ATAC-Seq chromatin data integrated with our pre-
viously published transcriptome of the FACS-purified 
alpha, beta, and delta cells through the development of 
an R package, epiRomics. This allowed for the visuali-
zation of integrated epigenomic data, and furthermore 
applies a novel approach to identify putative enhancer 
regions, enabling a high-resolution overview of key 
regions that may be responsible for driving cell fate 
decisions in pancreatic islet cell types. We have made 
this an interactive resource publicly available at https:// 
www. huisi nglab. com/ epiRo mics_ 2021/ index. html. We 
believe our data and the tool we developed to visualize 
them to be a valuable resource to our field in pursuit of 
a full understanding of the epigenetic control over islet 
gene expression.

https://www.huisinglab.com/epiRomics_2021/index.html
https://www.huisinglab.com/epiRomics_2021/index.html
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Abbreviations
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Additional file 14: Supplemental Table 1. Quality control metrics across 
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Additional file 15: Supplemental Table 2. Aggregated dataset descrip-
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aggregated to identify enhancer and enhancer regions. B: Pancreatic 
islet histone data aggregated to identify enhancer and enhancer regions. 
The final approach utilized two histone marks deemed most relevant at 
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Additional file 16: Supplemental Table 3. Validating open chromatin 
peaks against known pancreatic islet ChIP binding sites. A: Evaluating the 
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set – contained binding sites for known, pancreatic islet transcription fac-
tors. Percent of open chromatin with associated binding sites ranged from 
0.31-29.07%. The transcription factors Foxa2, Insm1, and Neurod1 had the 
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