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Abstract
Microflow manipulation via symmetries

Jeremias Gonzalez

Doctor of Philosophy in Physics

University of California, Merced, 2024

Dr. Bin Liu, Advisor

Dr. Kevin Mitchell, Chair

Microfluidic devices present a versatile means of working with microscale objects. Here we present
a new class of microfluidic design and devices that enable control of small objects without the use of traps.
The chosen geometry enables symmetry-protected functionality, separating out 3D directional control from
straining flow. An experimental implementation of this device allows for strainless, arbitrary path generation
both with and without feedback control. Overall, the device provides a new means of micromanipulation to
address experimental needs for precise motion and strain control.

Movie MOV_01.mp4: The manipulation of a few microscale particles (polystyrene beads of 2 µm in diameter)
into an equilateral-triangle pattern is visualized under the microscope (in phase contrast at a 60×
magnification) with a 188 µm × 188 µm view size. Different particle images correspond to different axial
distances of particles to the focal plane. The color shows the trace of a visible particle in time (blue to orange).
Movie MOV_02.mp4: The manipulation of a few microscale particles (polystyrene beads of 2 µm in diameter)
into a square pattern is visualized under the microscope (in phase contrast at a 60× magnification) with a
188 µm × 188 µm view size. Different particle images correspond to different axial distances of particles to
the focal plane. The colored traces show the time-lapse images of all visible particles in time (blue to orange).
Movie MOV_03.mp4: The manipulation of a few microscale particles (polystyrene beads of 2 µm in diameter)
into a circular pattern is visualized under the microscope (in phase contrast at a 60× magnification) with a
188 µm × 188 µm view size. Different particle images correspond to different axial distances of particles to
the focal plane. The colored traces show the time-lapse images of all visible particles in time (blue to orange).
Movie MOV_04.mp4: The manipulation of a few microscale particles (polystyrene beads of 2 µm in diameter)
into a 3D Lissajous pattern is visualized under the microscope (in phase contrast at a 60× magnification) with
a 188 µm × 188 µm view size. Different particle images correspond to different axial distances of particles
to the focal plane. The Lissajous pattern rotates at a period of 8 s in the lateral (𝑥′-𝑦′) plane while doubling
its oscillating frequency (with a period of 4 s) in the axial (𝑧′) axis. The colored traces show the time-lapse
images of all visible particles in time (blue to orange).
Movie MOV_05.mp4: The manipulation of a few microscale particles (polystyrene beads of 2 µm in diameter)
to trace out a microscale “UCM” logo is visualized under the microscope (in phase contrast at a 60×
magnification) with a 188 µm × 188 µm view size. Each particle “hops” between disconnected lines by sinking
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to another lateral plane before reaching the sites for the next “stroke.” Those particles initially close to the
focal plane exhibit individual letters “U”, “C”, and “M” in order (colored in time).
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Chapter 1

Introduction

The capacity of the micro-scale realm for solving problems has increasingly been recognized and utilized for
a multitude of valuable processes[1, 2]. A necessary component of realizing that capacity is control over
micro-objects. Depending on the size of the objects in the micro- and nanoscale range, their composition, and
the containing media, a number of mechanisms have been developed to achieve this control. The invention of
optical tweezers exploited the use of light to apply force to control objects[3], and has since taken intriguing
forms such as using the technique to create micro-hands[4]. Acoustic sources have served as a parallel means
of tweezing even single cells[5]. Electrical fields have been used to orchestrate self-assembly of micro- and
nanoparticles[6], while magnetic fields have likewise proven able to manipulate micro- and nanostructures
with significant dexterity[7].

Still another mechanism has been found in the vast field of microfluidics. Devices within this category
present an environment in which small amounts of fluid are channeled as the shape of the environment creates
a function. Combinations of focusing channels and pumping can be put together to achieve stable droplets of
one fluid inside another[8]. Fluids can be mixed together as they pass through networks of channels[9]. More
sophisticated geometries have been used to separate out components of a fluid mixture through microstructures
and channel shapes[10]. Geometry itself plays a critical role in providing experimentally desired function.
Within the general class of microfluidic devices is a subcategory which uses geometry to enable manipulation
of small objects similar to previously mentioned techniques that use various non-fluidic fields.

Within this subcategory there are again different functions enabled by different choices of geometry.
Devices have been developed using their geometry to mimic the classic four roll mill device[11], able to
impose a strain rate field on the contained objects[12]. Likewise, device geometry possessing the symmetry
of a regular polygon has been able to create traps for particles via stagnation points in the flow that can move
objects in planar view[13]. More recent work allows an extension of control to full 3D[14]. Such innovations
provide a useful version of control over objects using fluid flow fields to complement the existing non-fluidic
field techniques. From such work questions naturally arise.

What can be achieved by microfluidics that differentiates their capacity for doing work from similar
non-fluidic field controls? For each of the cited microfluidic manipulation examples, particle transport can
be achieved, but with that effect comes strain by necessity from the application of flow through the devices.
Thus, such microfluidic devices impose force on particles which is important to specimens such as biological
samples that are sensitive to force. Optical traps, as one example, likewise impose force to achieve control[15],
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and hence this intertwining of positional change and force imposition is a similarity between these examples
of fluidic and non-fluidic field control. In Chapter 2 we present a new microfluidic geometry that separates
3D directional functionality from straining functionality without the use of traps, differentiating it from other
fluidic and non-fluidic field techniques.

What role does symmetry play in microfluidics that can be leveraged in developing a unique capability
for control? Symmetry has been seen to dictate the fluid dynamics of a situation. In the swimming of
microorganisms, we have previously shown that an elongated body can be divided into skeleton curves
corresponding to key geometric features, and a symmetrical arrangement of those slender bodies can provide
an understanding of the resulting fluid dynamics as the abstracted bundle moves through fluid[16]. For the
general microfluidic devices mentioned, too, geometry did lead to specific functionality in achieving a physical
outcome. The devices designed for manipulation in particular have channel geometry that allows for flow,
but the symmetry of those devices requires detailed characterization to determine the resulting flow outcome,
difficult to anticipate in advance. In Chapter 2 we present a symmetry-based analysis of the specific geometry
discussed to show how its symmetry is purpose-selected to allow for the functionality separation. In Chapter 3
we revisit this idea from a basic perspective, using symmetry groups as a fundamental means of understanding
and designing microfluidic devices for physical outcomes. We thus present a new class of microfluidic design
and devices that are symmetry-protected in operation.

Having examined these devices, how do they do in actual experimental use? In Chapter 3 we show
experimental results with a microfluidic manipulator and generating arbitrary 3D paths using its directional-
only functionality. The device is shown while operating without supervision with good adherence to the
prescribed paths, as well as with supervision which tightens up the path traversal. In Chapter 4 we discuss the
digital control developed to operate the device with a variety of path traversal types all without supervision.



Chapter 2

Symmetry-based non-perturbative
micromanipulation in a 3D microfluidic
device

In this chapter, a version of published work[17], we introduce a microfluidic design that is desirable for 3D
micromanipulation, achieved through a set of double-layer channels with embedded symmetries. For the
6-channel configuration, we show that a zero strain rate at the center of the device is protected by these
symmetries, leading to a non-perturbative manipulation flow along any direction in 3D. We visualize such
a non-perturbative flow structure through a finite element simulation and confirm this symmetry-protected
strain-free condition. In addition to such 3D non-perturbative manipulations, we reveal 2 distinct perturbative
flow modes available in this 6-channel device, corresponding to a total of 5 independent modes that agrees
with the degree-of-freedom counting. This symmetry-based micromanipulation is fully compatible with
conventional microscopes and can be easily extended to other channel geometries for rich biological and
physical applications.

2.1 Introduction
Symmetry becomes increasingly important in determining hydrodynamic forces at decreasing length scales.
This importance results from the irrelevance of the inertia of fluids at small scales, as characterized by a
vanishing Reynolds number in the Stokes regime [18]. For instance, a swimming microorganism needs
to exploit non-reciprocal flow structures, e.g., via undulatory or helical motions, that avoid the stagnancy
of kinematic reversibility [19]. Also, the symmetry that persists in their swimming strokes dominates the
hydrodynamic interactions and synchronizations among multiple swimmers [20]. Despite this importance
[21], such roles played by symmetry have been of much less concern in the design of microfluidic devices.
Instead, the performance of such devices is often examined directly through computational fluid dynamics [22,
23, 24]. As another important feature arising from the negligible inertia at microscales, the net force around
any suspended particles must vanish: any non-zero net force will be overdamped by the instantaneous fluid
motion in the limit of the Stokes flow [19, 25]. The perturbation on the suspended particles is thus only due to
the finite stress associated with a non-uniform flow structure. In principle, one can utilize a uniform flow to
achieve a stressless condition that leads to a surprising regime of nonperturbative manipulations of entrained
particles. This regime supplements the available manipulation methodologies, including optical tweezers [26],
fluid stress-based remote manipulation techniques [27, 13] and their combination [28].

A generic way to realize such a nonperturbative manipulation in 3D is through three orthogonal microfluidic
channels that form an intersected zone (Fig. 2.1(a)). A superposition of the flow along all three axes generates
a flow in any direction within this zone. Provided that such a flow is uniform (similar to that in a wind tunnel),
it can be used to move suspended particles without imposing any perturbations in the Stokes regime. However,
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Figure 2.1: Microfluidic designs for 3D non-perturbative manipulations. (a) An orthogonal-channel design
allows flow generation in any direction in the intercepted volume (shaded zone), but interferes with the imaging
axis. (b) A multi-layer based design of the microfluidic channels accounts for 3D flow generation in the centric
region (shaded zone) and is compatible with most microscopes and imaging techniques (along the 𝑧-axis).
(c)-(e) Three different sets of input flows in the multi-layer channels (upper:white, lower:blue) leads to three
orthogonal flows (orange markers) along the 𝑥, 𝑦, and 𝑧 axes, respectively.

most of these designs require bulky working spaces associated with the 3D alignments of the microfluidic
channels [29, 30, 31]. Such design limits their applications to nonperturbative micro-manipulations, especially
to those requiring high spatial and temporal resolutions.

Here, we show a symmetry-based approach to design a 3D nonperturbative manipulation chip that is
compatible with most microscopes and microscale imaging techniques. Different from the aforementioned
orthogonal-channel design, the 3D flow generation is achieved by incorporating multiple layers of microfluidic
channels (Fig. 2.1(b)), which introduce an additional dimension in flow controls. The 6 channels in our
present work lie in the 𝑥-𝑦 plane, intercepted in a center chamber. Relegation of the channels away from the
𝑧-axis makes it fully compatible with most conventional microscopes. As the relatively trivial cases, an 𝑥-
or 𝑦-direction flow can be generated by flushing the fluid in all layers along the 𝑥- or 𝑦- axis, respectively
(Fig. 2.1(c) and (d)). To generate an upward 𝑧-flow (perpendicular to the 𝑥-𝑦 plane), flows are converging in all
lower channels and diverging in all upper channels, leading to an upwelling net flux (Fig. 2.1(e)). In addition
to the generation of flows in any directions, we show both analytically and numerically that the symmetry
persisting in the channel geometry and the controlling flow patterns guarantees a zero strain rate at the center
of the chip, corresponding to 3D nonperturbative manipulations. We also show that the above strain rate can
be manipulated by using the extra degrees of freedom that are available from the design, leading to richer
microfluidic applications.
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2.2 Symmetry-based design of 3D microfluidic manipulations
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Figure 2.2: Symmetry in the 6-channel 3D microfluidic device. (a) In the 𝑥-flow mode, a rotation transformation
of 180◦ about the 𝑦-axis leads to a reversed velocity field, which can be cancelled by a time reversal. (b) The
𝑥-flow mode also contains a reflection symmetry about the 𝑦 = 0 plane. (c) In the 𝑦-flow mode, a rotation
transformation of 180◦ about the 𝑦-axis leads to an identical velocity field. (d) In the 𝑦-flow mode, a reflection
transformation about the 𝑦 = 0 plane leads to a reversed velocity field, which can be cancelled by a time
reversal. (e) and (f), The 𝑧-flow mode and the 𝑥-flow mode contain the same symmetries, shown in (a) and (b).

We explicitly choose the above 6-channel design for useful symmetries, which is sufficient for maintaining
a zero strain rate at the center of the device. Here, we consider a 3D rate of strain tensor γ̇ at the center of the
chamber r = (𝑥, 𝑦, 𝑧) = (0, 0, 0) defined as [18]

γ̇ | (0,0,0) =

⎛⎜⎜⎜⎜⎜⎝
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⎞⎟⎟⎟⎟⎟⎠

|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁
(0,0,0)

, (2.1)

where u = (𝑢, 𝑣,𝑤) is the flow velocity. The symmetries persistent in all three orthogonal (𝑥-, 𝑦-, and 𝑧-) flow
modes are illustrated in Fig. 2.2.

For the case of the 𝑥-flow mode (Fig. 2.1(c)), we consider a sequence of linear transformations to determine
the symmetries of the flow velocity. Setting up our coordinate system relative to the center of the chamber, we
take the original configuration and rotate the flow about the 𝑦-axis by 180◦ (Fig. 2.2(a)). The velocity after
this transformation becomes

u′ (𝑥, 𝑦, 𝑧) =
(︁
−𝑢(−𝑥, 𝑦,−𝑧), 𝑣(−𝑥, 𝑦,−𝑧),−𝑤(−𝑥, 𝑦,−𝑧)

)︁
. (2.2)

As shown in Fig. 2.2(a), such a transformation simply leads to a reverse of the velocity field. As a consequence,
this velocity (Eq. 2.2) can be restored to the original one by applying a time reversal as

−u′ (𝑥, 𝑦, 𝑧) =
(︁
𝑢(𝑥, 𝑦, 𝑧), 𝑣(𝑥, 𝑦, 𝑧),𝑤(𝑥, 𝑦, 𝑧)

)︁
. (2.3)

This pair of identities leads to one set of symmetries of the velocity field in the 𝑥-flow mode, i.e.,⎧⎪⎪⎨⎪⎪⎩
𝑢(𝑥, 𝑦, 𝑧) = 𝑢(−𝑥, 𝑦,−𝑧),
𝑣(𝑥, 𝑦, 𝑧) = −𝑣(−𝑥, 𝑦,−𝑧),
𝑤(𝑥, 𝑦, 𝑧) = 𝑤(−𝑥, 𝑦,−𝑧).

(2.4)
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Also, considering the reflection symmetry of the configuration across the 𝑦 = 0 plane (Fig. 2.2(b)), we obtain
another set of symmetries of the velocity, i.e.,⎧⎪⎪⎨⎪⎪⎩

𝑢(𝑥, 𝑦, 𝑧) = 𝑢(𝑥,−𝑦, 𝑧),
𝑣(𝑥, 𝑦, 𝑧) = −𝑣(𝑥,−𝑦, 𝑧),
𝑤(𝑥, 𝑦, 𝑧) = 𝑤(𝑥,−𝑦, 𝑧).

(2.5)

With these two sets of symmetries persistent in the velocity field, we determine that all components of the rate
of strain tensor vanish at the center of the geometry (r = (0, 0, 0)). For instance, the first identity in Eq.(2.4)
leads to 𝑢(𝑥, 0, 0) = 𝑢(−𝑥, 0, 0) along the 𝑥-axis, giving rise to a vanishing 𝜕𝑢

𝜕𝑥
| (0,0,0) at the center. Also, the

second identity in Eq.(2.4) can be written as 𝑣(0, 𝑦, 0) = −𝑣(0, 𝑦, 0) along the 𝑦-axis, giving rise to a null
𝑣(0, 𝑦, 0), and thus a vanishing 𝜕𝑣

𝜕𝑦
| (0,𝑦,0) along the 𝑦-axis. All other components of the rate of strain tensor

can be determined in the same fashion. After all, the result leads to a null tensor γ̇ | (0,0,0) = 0.
For the case of the 𝑦-flow mode (Fig. 2.1(d)), we again consider a sequence of transformations to determine

the symmetries of the flow velocity. Taking the original configuration, we rotate the flow about the 𝑦-axis by
180◦ (Fig. 2.2(c)). The velocity after the transformation becomes

u′ (𝑥, 𝑦, 𝑧) =
(︁
−𝑢(−𝑥, 𝑦,−𝑧), 𝑣(−𝑥, 𝑦,−𝑧),−𝑤(−𝑥, 𝑦,−𝑧)

)︁
. (2.6)

As shown in Fig. 2.2(c), such a transformation simply leads to the original velocity field. This identity leads
to a set of symmetries of the velocity field in the 𝑦-flow mode, i.e.,⎧⎪⎪⎨⎪⎪⎩

𝑢(𝑥, 𝑦, 𝑧) = −𝑢(−𝑥, 𝑦,−𝑧),
𝑣(𝑥, 𝑦, 𝑧) = 𝑣(−𝑥, 𝑦,−𝑧),

𝑤(𝑥, 𝑦, 𝑧) = −𝑤(−𝑥, 𝑦,−𝑧).
(2.7)

Next, taking the original configuration we mirror the flow about the 𝑦 = 0 plane (Fig. 2.2(d)). The velocity
after the transformation becomes

u′ =
(︁
𝑢(𝑥,−𝑦, 𝑧),−𝑣(𝑥,−𝑦, 𝑧),𝑤(𝑥,−𝑦, 𝑧)

)︁
. (2.8)

As shown in Fig. 2.2(d), such a transformation simply leads to a reverse of the velocity field. As a consequence,
this velocity can be restored to the original one by applying a time reversal as

−u′ (𝑥, 𝑦, 𝑧) =
(︁
𝑢(𝑥, 𝑦, 𝑧), 𝑣(𝑥, 𝑦, 𝑧),𝑤(𝑥, 𝑦, 𝑧)

)︁
. (2.9)

This pair of identities leads to a set of symmetries of the velocity field in the 𝑦-flow mode, i.e.,⎧⎪⎪⎨⎪⎪⎩
𝑢(𝑥, 𝑦, 𝑧) = −𝑢(𝑥,−𝑦, 𝑧),
𝑣(𝑥, 𝑦, 𝑧) = 𝑣(𝑥,−𝑦, 𝑧),

𝑤(𝑥, 𝑦, 𝑧) = −𝑤(𝑥,−𝑦, 𝑧).
(2.10)

As before, these relations show that all components of the rate of strain tensor go to 0 at the center, i.e.,
γ̇ | (0,0,0) = 0. Finally, the same set of symmetries of the 𝑥-flow mode apply to the 𝑧-flow mode (Fig. 2.1(e)),
and thus give rise to the same zero rate of strain tensor at the center (Fig. 2.2(e) and (f)).

2.3 Numerical simulations of 3D non-perturbative manipulations
To validate the above three modes of manipulation in an actual device, we perform a 3D simulation of the flow
field in the 6-channel microfluidic chip by solving an incompressible Stokes equation via the finite element
method (FEM),

∇2u −∇𝑝 = 0,
∇ · u = 0, (2.11)

where 𝑝 is the fluid pressure.
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Figure 2.3: The velocity fields of the three orthogonal flow modes from the finite-element simulation. (a) -
(c) The characteristic streamlines (colored in flow speed) are shown for 𝑥-, 𝑦-, and 𝑧-flow modes, respectively.
Here, the aspect ratio of middle chamber 𝑟/ℎ = 1. The colors on the domain walls indicate the low- (blue)
and high-pressure (orange) regions.

The domain of computation is shown in Fig. 2.3, which is generated by GMSH [32]. A uniform boundary
velocity u𝑏 is prescribed on the opening of each channel and a no-slip boundary condition is applied to all
solid walls. The velocity and pressure fields are then solved by the FEM solver FreeFEM++ [33]. Figure
2.3(a), (b), and (c) show the corresponding streamlines (shown in ParaView [34]) for the 𝑥-, 𝑦-, and 𝑧-flow
modes, respectively. In each of the three modes, streamlines are parallel near the center, which indicate a
uniform manipulation flow along the desired axis.

To quantify the flow velocity at the center u0 (for any nonperturbative manipulation), we perform the
numerical simulation with various radii of the middle chamber and evaluate the corresponding flow speed.
Figure 2.4 shows the center flow speed as a function of the aspect ratio (𝑟/ℎ) for each mode, where 𝑟 and ℎ

are the radius and height, respectively. In all three modes, the center flow speed | |u0 | | (as normalized by the
prescribed boundary speed at the channel opening | |u𝑏 | |) decreases monotonically with the increasing aspect
ratio of the middle chamber. This decreasing speed compensates for the increasing cross section area (normal
to the direction of the flow mode) for larger chamber radius, as required by a fixed net flux.

To validate the above zero rate of strain at the center and show how it varies in space, we compute the
rate of strain tensor within the entire simulation domain. Here, the rate of strain γ̇ is normalized by the
characteristic speed (| |u0 | |) and length (𝑟), i.e., ˜̇γ = γ̇𝑟/| |u0 | |. To avoid the complexity of tracking all 6
independent components of the tensor [18], we characterize the intensity of the rate of strain by its invariants
(𝐼1, 𝐼2, and 𝐼3) [35] that are independent of the choice of coordinate systems,

𝐼1 = Tr
(︁ ˜̇γ

)︁
, (2.12)

𝐼2 =
1
2

(︃(︂
Tr

(︁ ˜̇γ
)︁ )︂2

− Tr
(︂
˜̇γ2

)︂)︃
, (2.13)

𝐼3 = det
(︁ ˜̇γ

)︁
. (2.14)

For our case where the fluid is considered incompressible, 𝐼1 is automatically 0, and 𝐼2 reduces to only its
second term. By considering the magnitude of 𝐼2 (𝐼3 behaves similarly), and taking its square root, we get a
dimensionless quantity that serves as an intrinsic strain rate for assessing the quality of nonperturbation in the
volume of the chamber.

Figure 2.5 shows this intrinsic strain rate |𝐼2 |1/2 in the representative 𝑥- and 𝑧-flow modes. As shown in
Fig. 2.5(a) and (b), 𝐼2 is always zero at the origin (or the center of the chamber). This vanishing 𝐼2 is consistent
with the conclusion from our earlier symmetry-based arguments, where all components of the rate of strain
tensor are strictly zero due to the persistent symmetries. Near this point of zero rate of strain, |𝐼2 |1/2 grows
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Figure 2.4: The center flow speed | |u0 | | normalized by the prescribed speed | |u𝑏 | | at the channel opening is
shown as a function of the aspect ratio of the middle chamber 𝑟/ℎ for 𝑥- (red), 𝑦- (green) and 𝑧-flow (blue)
modes.

gradually as an approximately second order dependency on the distance from the origin (Fig. 2.5(c) and (d)).
To further characterize the geometries of these low-strain zones near the origin, we show the isosurfaces of
these relatively low values of |𝐼2 |1/2. In case of the 𝑥-flow mode, such an isosurface forms an oval shape
with its principal axis lying in the 𝑦 = 0 plane. In case of the 𝑧-flow mode, this isosurface is ellipsoid-like at
relatively low |𝐼2 |1/2, and eventually turns into a double-sided vase that connects the top and bottom boundaries
of the middle chamber. Depending on the tolerance of the perturbations, such a low strain rate zone (enclosed
by an isosurface of a desired |𝐼2 |1/2) provides a working space for effectively nonperturbative manipulations.

2.4 Extra degrees of freedom in flow controls
The above three independent modes of nonperturbative manipulations in our 3D microfluidic device correspond
to only three degrees of freedom in our multi-channel configuration. To explore the full capacity in its 3D
micromanipulation, we examine all degrees of freedom (DOF) that are available in this device. The number
of DOF is in principle equivalent to the number of independent microfluidic channels 𝑁 . Here, the 6-channel
configuration leads to 𝑁 = 6 DOF by considering the fluxes through all channels to be independent. However,
the conservation of fluid volume requires the fluxes from these channels to sum up to zero, which leads to
a constraint. This leads to the total number of DOF = 𝑁 − 1 = 5, exceeding the 3 independent modes of
nonperturbative manipulations corresponding to the 𝑥-, 𝑦-, and 𝑧-flow modes.

Indeed, these two additional DOF correspond to another set of flow manipulations that are embedded with
non-zero strain rate at the center of the microfluidic device. Figure 6 shows these two additional perturbative
modes, which can be achieved by reversing the flows in one of the two layers of the 𝑥- and 𝑦-flow modes. We
term these two additional configurations the opposing 𝑥- and 𝑦-flow modes, respectively (Fig. 2.6(a) and (c)).
Figure 2.6(b) and (d) show the corresponding flow fields obtained by the FEM simulation. In both cases, the
flow domains are visually split into four quadrants by the streamlines, forming a stagnation point at the center
of the middle chamber.

To confirm the orthogonality between these two perturbative modes, we compare the rate of strain tensors
obtained from their velocity fields. By applying symmetry arguments similar to those in the nonperturbative
modes (Fig. 2.2), we can show that the velocity field in both cases satisfy different sets of identities.
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Figure 2.5: Spatial distributions of the intrinsic strain rate |𝐼2 |1/2. (a) The distributions of |𝐼2 |1/2 along all
axes converge to show a zero-strain region at the center in the 𝑥-flow mode (with a zoomed-in view as inset).
(b) Similar convergence of |𝐼2 |1/2 near the center in the 𝑧-flow mode. (c) and (d) Log-log versions of (a) and
(b) show a quadratic increase (indicated by the dashed lines) of |𝐼2 |1/2 away from the center. (e) and (f) The
representative geometries of the low strain rate zones are shown in isosurfaces (with their zoomed-in views as
insets) for the 𝑥- and 𝑧-flow modes, respectively.

In the opposing 𝑥-flow mode, the symmetries in the velocity lead to⎧⎪⎪⎨⎪⎪⎩
𝑢(𝑥, 𝑦, 𝑧) = −𝑢(−𝑥, 𝑦,−𝑧),
𝑣(𝑥, 𝑦, 𝑧) = 𝑣(−𝑥, 𝑦,−𝑧),

𝑤(𝑥, 𝑦, 𝑧) = −𝑤(−𝑥, 𝑦,−𝑧).
(2.15)

and ⎧⎪⎪⎨⎪⎪⎩
𝑢(𝑥, 𝑦, 𝑧) = 𝑢(𝑥,−𝑦, 𝑧),
𝑣(𝑥, 𝑦, 𝑧) = −𝑣(𝑥,−𝑦, 𝑧),
𝑤(𝑥, 𝑦, 𝑧) = 𝑤(𝑥,−𝑦, 𝑧).

(2.16)

Distinct from the nonperturbative flow modes, these identities restrict the center flow velocity to be zero,
i.e., u0 = 0. Additionally, it can be easily shown that these identities give rise to a number of zero
components of the rate of strain tensor at the center of the device, i.e., �̇�𝑦𝑧 = �̇�𝑧𝑦 = 1

2

(︂
𝜕𝑣
𝜕𝑧

+ 𝜕𝑤
𝜕𝑦

)︂
= 0 and

�̇�𝑥𝑦 = �̇�𝑦𝑥 = 1
2

(︂
𝜕𝑢
𝜕𝑦

+ 𝜕𝑣
𝜕𝑥

)︂
= 0, while leaving the rest of the components finite.

Similarly, in the opposing 𝑦-mode, the symmetries in the velocity lead to⎧⎪⎪⎨⎪⎪⎩
𝑢(𝑥, 𝑦, 𝑧) = 𝑢(−𝑥, 𝑦,−𝑧),
𝑣(𝑥, 𝑦, 𝑧) = −𝑣(−𝑥, 𝑦,−𝑧),
𝑤(𝑥, 𝑦, 𝑧) = 𝑤(−𝑥, 𝑦,−𝑧),

(2.17)

and ⎧⎪⎪⎨⎪⎪⎩
𝑢(𝑥, 𝑦, 𝑧) = −𝑢(𝑥,−𝑦, 𝑧),
𝑣(𝑥, 𝑦, 𝑧) = 𝑣(𝑥,−𝑦, 𝑧),

𝑤(𝑥, 𝑦, 𝑧) = −𝑤(𝑥,−𝑦, 𝑧).
(2.18)

In addition to a zero u0, these identities guarantee a distinct set of zero and non-zero components of the rate
of strain tensor at the center from the opposing 𝑥-mode, i.e., �̇�𝑥𝑧 = �̇�𝑧𝑥 = 1

2

(︂
𝜕𝑤
𝜕𝑥

+ 𝜕𝑢
𝜕𝑧

)︂
= 0, �̇�𝑥𝑥 = 𝜕𝑢

𝜕𝑥
= 0,

�̇�𝑦𝑦 = 𝜕𝑣
𝜕𝑦

= 0, and �̇�𝑧𝑧 =
𝜕𝑤
𝜕𝑧

= 0.
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Figure 2.6: Perturbative modes in the 3D 6-channel microfluidic device. (a) Reversing the flows in all lower
channels of the 𝑥-flow mode (Fig. 2.1(c)) yields a hyperbolic flow at the center of the device, as shown by the
corresponding stream lines (b). (c) Reversing the flows in all lower channels of the 𝑦-flow mode (Fig. 2.1(d))
yields another type of hyperbolic flow that is stretched along the 𝑦-axis, as shown by the corresponding stream
lines (d).

These distinct sets of zero components demonstrate the orthogonality between the opposing 𝑥- and opposing
𝑦-flow mode: the rate of strain tensor from one mode cannot be reproduced by the other.

To validate this orthogonality in the actual 3D device, we compute the above characteristic strain-rate
components for various middle chamber geometries. As shown in Fig. 2.7, the normalized component
˜̇𝛾𝑥𝑧 decreases monotonically with increasing aspect ratio of the middle chamber for the opposing 𝑥-flow
mode (Fig. 2.7(a)) while it is consistently zero within the computational resolution for the opposing 𝑦-flow
mode (Fig. 2.7(c)). For the ˜̇𝛾𝑦𝑧 component, this time the opposing 𝑦-flow mode shows a similar geometric
dependency with a monotonic decrease (Fig. 2.7(d)), and the opposing 𝑥 flow mode is consistently zero
(Fig. 2.7(b)). Such binary dependencies of the rate of strain tensor on these two flow modes agree with the
orthogonality predicted from the symmetry arguments. These two distinct sets of rate of strain tensor also
suggests two types of perturbative manipulations that are available in this microfluidic device.

2.5 Discussion
Our study demonstrates that the symmetries in a 6-channel 3D microfluidic device can be exploited to
generate desirable flow structures for nonperturbative micromanipulation. While capable of moving suspended
particles along any direction in 3D (through a superposition of 3 orthogonal flow modes), the manipulation
flow structure is endowed with a vanishing rate of strain tensor at the center of the working zone. This strain
rate also grows quadratically with the distance to the center, which indicates a surprisingly uniform flow as
compared to the linear dependency of a parabolic flow that is found in typical microfluidic transport. In
addition to these non-perturbative manipulation modes, we illustrate two additional manipulation modes that
are accounted for by the degree-of-freedom counting. By analyzing their symmetries, we show that these
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Figure 2.7: Distinct strain-rate characteristics in two perturbative manipulation modes from the FEM
simulations. (a) A non-zero component of the rate of strain tensor at the geometric center in the opposing
𝑥-flow mode, here �̇�𝑥𝑧 | (0,0,0) , is shown as a function of the aspect ratio (𝑟/ℎ) of the middle chamber. (b)
In the same flow mode, the component �̇�𝑦𝑧 at the geometric center is consistently zero within computation
resolutions. (c) The above non-zero �̇�𝑥𝑧 in the opposing 𝑥-flow mode becomes zero in the opposing 𝑦-flow
mode, regardless of 𝑟/ℎ. (d) The above zero �̇�𝑦𝑧 in the opposing 𝑥-flow mode becomes non-zero in the
opposing 𝑦-flow mode, showing a similar dependency on 𝑟/ℎ as in (a). The distribution of �̇�𝑥𝑧 and �̇�𝑦𝑧 over
the 𝑦 = 0 plane at 𝑟/ℎ = 1 in each case is shown in the inset. Here, these components of rate of strain tensors
are made dimensionless by normalizing γ̇ with the same factors used in the corresponding 𝑥- and 𝑦-flow
modes, i.e., ˜̇γ = γ̇𝑟/| |u𝑐 | |.

two manipulation modes are orthogonal by their rate of strain tensor. Overall, our analysis identifies all 5
orthogonal manipulations (3 for non-perturbative and 2 for perturbative manipulations) in this 6-channel chip,
which are potentially useful for different types of microfluidic applications.

So far, only a double-layer chip has been discussed. It is expected that incorporating more layers of
channels will introduce richer designs of symmetries for desired flow structures. Meanwhile, the completeness
in orthogonal modes here is achieved by trying different combinations of flow directions in all channels and
investigating the resultant strain rate through the presented symmetry. A more general approach is desired to
recognize such orthogonal manipulation modes, especially for arbitrary number of channels. Our success in
the symmetry-based analyses suggests that a map of such a 3D multi-channel device to a symmetry group may
lead to all orthogonal modes directly, which will be explored in the future.

The symmetry arguments here are justified by a Stokesian Newtonian fluid. It is expected that such
arguments can not be directly applied to a non-Newtonian fluid, e.g., particle suspensions, where the time
reversal symmetry typically does not hold. For instance, this time reversal symmetry can be easily broken
by the viscoelasticity that emerges in a polymeric suspension [36, 37]. However, from a perturbation-theory
point of view, a symmetry-protected zero strain rate also leads to a vanishing polymer stretch and thus a
negligible polymeric stress. This implies that our non-perturbative manipulations can be potentially extended
to non-Newtonian fluids, especially in the limit of a low concentration of suspended particles.
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This multi-layer microfluidic design is fully compatible with conventional microscopes, and can be realized
by several microfabrication means [38, 39, 40]. This device can thus be applied to direct manipulation of
microparticles that are sensitive to mechanical perturbations, e.g., due to a non-uniform flow [41, 42, 43].
As such, this advanced level of manipulation leads to many biophysical applications in both perturbative and
non-perturbative manners.



Chapter 3

Symmetry-group-protected microfluidics
for multiplexed stress-free manipulations

Modern micromanipulation techniques typically involve trapping using electromagnetic, acoustic or flow
fields that produce stresses on the trapped particles thereby precluding stress-free manipulations. In this
chapter, a version of work accepted for publication[44], we show that by employing polyhedral symmetries in
a multichannel microfluidic design, we can separate the tasks of displacing and trapping a particle into two
distinct sets of flow operations, each characterized and protected by their unique groups of symmetries. By
combining only the displacing uniform flow modes to entrain and move targeted particles in arbitrary directions,
we were able to realize symmetry-protected, stress-free micromanipulation in 3D. Furthermore, we engineered
complex, microscale paths by programming and controlling the flow within each channel in real-time, resulting
in multiple particles simultaneously following desired paths in the absence of any supervision or feedback.
Our work therefore provides a general symmetry-group-based framework for understanding and engineering
microfluidics and a novel platform for 3D stress-free manipulations.

3.1 Introduction
Microfluidics enables the study of the behavior, control, and manipulation of microscale flows typically using
device architectures comprising channels and junctions as their building blocks [45, 46, 47, 48]. Desired flow
structures and microfluidic functions such as transporting and mixing chemicals [49], shaping flow profiles [50,
51], encapsulating multiphase fluids [52, 53], and trapping microparticles [27, 13] are incorporated through
the geometry of these building blocks and the topology of their assemblies [54, 55, 56, 57]. Despite this
increased complexity, our understanding of these microfluidic functions is mostly achieved in a case-by-case
fashion relying on actual experimental measurements or on computational fluid dynamics (CFD) studies using
detailed experimental geometries. A unified framework that allows us to understand how these complex flow
structures emerge from simpler, more fundamental flows would prove extremely useful for the fast, modular
development of rationally designed flow structures and associated microfluidic functions.

Symmetry is a concept that has been used to understand phenomena and structures in disciplines ranging
from fundamental physics to viral structure [58, 59, 60]. In the realm of microscale flows, symmetries are
essential features of representative flow structures, such as the helical symmetry in swimming microorganisms
[61, 25] and the reflection symmetry applicable in many hydrodynamic interactions [62, 20]. These symmetries
have profound implications with helical symmetry giving rise to swimming motility in bacterial species due to
the breaking of kinematic reversibility while the reflection symmetries possessed by a pair of microswimmers
constrain their synchronization and thus their collective motion. Such considerations applied to microfluidic
systems could allow us to uncover very general results independent of system details. Recent work on
multi-channel microfluidic junctions and open-space microfluidics have shown that their main flow structures
can be obtained from the potential flows around charges representing the channels’ ports, without consideration
of detailed channel geometries [13, 63]. This simplification has revealed intriguing flow structures that enable

13
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rich microfluidic applications, such as flow-driven traps for particle manipulation and dynamic confinements
of fluid into multipole-like networks. Additionally, certain combinations of rotation and reflection symmetries
have been applied both analytically and numerically to a multi-port microfluidic junction to eliminate strain
components at the junction center, giving rise to potentially perturbation-free micromanipulations [17]. All
the above implications of symmetries suggest the feasibility of using a more generalized symmetry-based
approach, i.e., the symmetry group, for a more fundamental understanding of the origins of these symmetries
and ways to manipulate them for specific functions.

Figure 3.1: Trap-associated v.s. trap-free manipulations of microscale particle through surrounding flows. (a)
In trap-associated manipulations, a manipulated particle is led by a fluid “trap” or guided by the local flow
director (zoomed-in 2D views (i) and (ii) in the inset, respectively) along the desired pathway (shown in the
thick curve), surrounded by overall divergent flows (with speeds of fluid tracers shown in colors) due to its
trapping nature. The stress distribution around the particle (with dashed circles showing target positions)
is intrinsic to the far-field flow topology (inset), with compression (in red) and extension (in blue) along
orthogonal axes, independent of its relative position to the trap. (b) An ideal perturbation-free manipulation
is achieved by entraining the particle in a uniform flow field. All surrounding fluid flows in parallel paths at
identical velocities and leaves the entrained particle stress-free (in blank color).

One of the most desirable of these microfluidic functions is manipulating flow structures that allow
the displacement of individual microscale objects along arbitrary paths [64]. Typically, micromanipulation
techniques involve trapping particles using electromagnetic, acoustic, or flow fields that produce restoring
forces in the vicinity of the trap [65, 66, 67, 68]. For example, in cases where hydrodynamic flow alone is
used for trapping, previous studies have shown that a Stokes trap can be achieved by managing the locations
of hyperbolic points through multiple channels that intersect at a middle junction [13]. The location of such a
trap can be dynamically adjusted to realize the direct manipulation of trapped particles, which has also been
extended to 3D flows very recently [14].

Computation-assisted feedback-control has also enabled manipulations of particles along local flow fields
without the explicit employment of a hyperbolic point [69, 64]. The displacements of particles can be adjusted
by aligning the local flow field with the moving directions of particles. However, even without the presence
of a local hyperbolic point, trapping and displacement are inextricably coupled. As illustrated in Fig. 3.1a,
flow fields far from these locally hyperbolic-point-free flows can be divergent, leading to inevitable stress
perturbations on any manipulated objects. It is worth noting that the stress distribution on the particle is
intrinsic to the far-field hyperbolic topology [70]. Even for a flow field that appears uniform, e.g., within a
locally trap-free zone in Fig. 3.1a inset, the stress distribution on the entrained particle is identical to that
within the trap, regardless of their relative displacement. These stressful perturbations thus restrict such



3.2. SYMMETRIES IN MICROFLUIDIC SYSTEMS 15

approaches to studying stress-insensitive phenomena. Scaling such approaches with traps or local flow vector
fields to simultaneously manipulate large numbers of particles is also a challenge. Here, we explore the use of
symmetry groups to guide the design of microfluidics that enable multiplexed and stress-free manipulation,
which is characterized by a truly uniform flow field around the manipulated particle(s) [Fig. 3.1b]. Distinct
from the above locally uniform flows (as exemplified in [69]), the instantaneous flow field here is strictly
parallel and straight, avoiding any hyperbolic point in the far field or even outside the microfluidic boundaries
(as depicted through symmetries, shown below). Specifically, we identify and characterize microfluidic
flow structures based on symmetry groups, which allow us to distinguish and robustly realize fundamentally
different microfluidic functions.

3.2 Symmetries in microfluidic systems

3.2.1 2D Microfluidic symmetries
We start with a cross-channel junction for its well-understood microfluidic functions and relatively simple
symmetries. Here, the four ports of identical channels (with flow rates 𝑓𝑖 , 𝑖 = 1, 2, 3, 4) form a square [Fig. 3.2a],
and therefore its flow structures in the plane are restricted by the symmetry of a square. An arbitrary flow
pattern generated by a combination of { 𝑓𝑖} at this junction corresponds to a set of identical flow manipulations
through certain rotations or reflections (Appendix A.2). All such possible rotations or reflections (including
the trivial identity operation) form a dihedral-4 (D4) symmetry group [58], which restricts the possible flow
patterns. This D4 group thus represents the flow manipulation functions in a cross-channel junction. How

Figure 3.2: Functional classification of a cross-channel microfluidic junction. (a) A 2D CFD simulation of the
flow pattern (with streamlines in solid curves and speed |u| in colors) from an arbitrary flux setting ( 𝑓1 - 𝑓4 at
four ports) can be decomposed into three linearly independent flow modes: (b) two orthogonal displacement
flow modes, and (c) one elongation flow mode. (d) The flow pattern in (a) is reproduced by a flow potential 𝜙
associated with fluid sources (or sinks) at the four corners of a square (𝑞1 - 𝑞4). The square symmetry gives
rise to (e) two degenerate dipole modes equivalent to two displacement modes in orthogonal directions, and
(f) one quadrupole mode equivalent to elongation flow.

do the D4 group elements map to the actual flow functions? Analogous to the subgroups contained in one
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symmetry group, these flow manipulation functions are reducible into smaller classes with unique features.
We note first that there are only three independent flow modes, resulting from the number of controls (four
channels) minus the number of constraints (one associated with the conservation of volume, i.e.,

∑︁4
𝑖=1 𝑓𝑖 = 0).

Through inspection, one can readily identify these three modes, forming two classes of flow functions. First,
fluxes with opposite signs through a pair of opposing channels give rise to displacement flows along two
orthogonal directions (𝑥 and 𝑦), corresponding to two fundamental modes [Fig. 3.2b]. Second, fluxes with
same sign through both pairs of opposing channels provide one more fundamental elongation flow mode
[Fig. 3.2c]. Any flow profile produced in this junction [with an example shown in Fig. 3.2a] must be a
combination of these three flow modes. However, none of these fundamental modes can be generated by
combining any of the rest, a consequence of their linear independence. Importantly, the two displacement
modes have a reflection symmetry (along 45◦ from the 𝑥 axis), forming a reflection group D1 or a cyclic group
C2, which is known to be a subgroup of the D4 group [71]. The single elongation flow mode also represents a
trivial subgroup of D4 that contains only the identity operation. In addition to forming different subgroups,

Figure 3.3: Microfluidic devices with 3D symmetries. (a) Fluid sources (or sinks) following a tetrahedral
symmetry (𝑞1 - 𝑞4) can be classified into three degenerate functions, (b) a mix of dipole 𝑝 and quadrupole 𝑄
in each of the three orthogonal directions, representing simultaneous displacement and elongation of the fluid.
(c) Fluid sources (or sinks) following an octahedral symmetry (𝑞1 - 𝑞6) can be classified into two subgroups:
(d) three dipoles along orthogonal directions (𝑥, 𝑦 and 𝑧) and (e) two quadrupoles in orthogonal planes (e.g.,
𝑥-𝑦 and 𝑥-𝑧), contributing to separate displacement and elongation functions.

these two classes of flows also have distinct characteristic functions, here displacement vs. elongation. To
abstract these functions from the detailed flow geometries, we map the cross-channel junction to a square,
where the flux at each channel is mapped to an effective charge at each lattice site (𝑞1, 𝑞2, 𝑞3, 𝑞4), representing
a point-like fluid source (positive) or sink (negative). The flow field is thus well-defined as a potential flow,
with the flow velocity u given by the gradient of the potential 𝜙, i.e., u = ∇𝜙. Since the classes of flow
functions are independent of the choice of coordinates, the candidate quantities for such purposes are the
strain rate invariants [72] that do not change under any rotation of the microfluidic device. The first-order
invariant 𝐼1, which is the trace of the rate of strain tensor �̇�, is trivial and vanishes for incompressible fluids.
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We therefore consider the first non-trivial invariant 𝐼2 = − 1
2Tr(�̇�2). For a 2D potential flow with a total number

of 𝑁 = 4 sources and sinks (with magnitudes {𝑞𝑖}, located at {r𝑖}), the scalar potential can be expressed
as 𝜙(r) =

∑︁4
𝑖=1 𝑞𝑖 ln

(︁
|r − ri |

)︁
. Since the rate of strain is linearly related to the magnitudes of sources (or

sinks), we can show (Appendix A.3) that the invariant 𝐼2 at the center of the junction has a quadratic form
with respect to 𝑞𝑖 , i.e., 𝐼2 =

∑︁4
𝑖, 𝑗=1 𝐿𝑖 𝑗𝑞𝑖𝑞 𝑗 , where 𝐿𝑖 𝑗 is the element of a coupling tensor, depending on the

distance between the pair of 𝑞𝑖 and 𝑞 𝑗 . On a square, there are only two possible types of pairs: pairs along the
lateral sides or along the diagonals. With these considerations, we can show (Appendix A.3) that the L tensor
has the form

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0 𝑎 𝑏 𝑎

𝑎 0 𝑎 𝑏

𝑏 𝑎 0 𝑎

𝑎 𝑏 𝑎 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (3.1)

Elements “a” and “b” are symbolic representations of the above lateral and diagonal couplings, respectively,
forming a symmetric circulant matrix for L. A circulant matrix has all the same rows with each row being
rotated one element to the right relative to the row above. One mutual eigenvector for any circulant matrix
corresponds to the trivial mode where all four charges are identical, i.e., (𝑞1, 𝑞2, 𝑞3, 𝑞4) = (1, 1, 1, 1). This
mode cannot be accessed by a fluid system due to the invalidation of the continuity condition. This leaves
𝑁 − 1 = 3 nontrivial eigenmodes (all satisfying

∑︁4
𝑖=1 𝑞𝑖 = 0), in agreement with the degrees-of-freedom

argument. Every nontrivial mode exhibits a one-to-one map to the fluidic manipulation function as previously
classified through subgroups of the D4 group [Fig. 3.2d]. It is worth noting that a hyperbolic point outside
the original fluid boundary [indicated by dashed lines in Fig. 3.2d] becomes visible through this symmetry
representation of the flow, identifying any potential “trapping” component of a flow pattern. More specifically,
the degeneracy of two orthogonal dipoles corresponds to a common displacement function of the flow along
orthogonal directions [Fig. 3.2e]. The remaining quadrupole-like mode is nondegenerate and maps to the
elongation function [Fig. 3.2f].

3.2.2 3D Microfluidic symmetries
As demonstrated above, the eigenvalue analysis of the stress invariant (𝐼2) provides an automatic strategy of
classifying microfluidic functions, which we now extend to 3D structures to incorporate more sophisticated
symmetries. The potential flow now adopts its 3D form with 𝑁 sources, 𝜙(r) = ∑︁𝑁

𝑖=1 −
𝑞𝑖

|r−r𝑖 | . For relatively
more practical applications in microfluidics, we consider here the 3D symmetries contained in structures with
fewer vertices, namely the tetrahedron (𝑁 = 4) and the octahedron (𝑁 = 6).

A tetrahedron has a permutation S4 symmetry [71], corresponding to an unaltered structure (identical
through rotation and reflection) by permuting all four vertices [Fig. 3.3a]. The eigenvalue analysis shows that
all three eigenmodes for this tetrahedron are degenerate [Fig. 3.3b], due to equivalent neighbors for every
vertex. These three modes together represent a threefold rotation symmetry group (C3) (achieved by 120◦
rotation about any of the face norms), which is a subgroup of S4. Notably, the potential flow of such a mode
exhibits a mixture of dipole and quadrupole moments [upper Fig. 3.3b], leading to a microfluidic function
corresponding to simultaneously displacing and elongating (transverse to the displacement axis) the fluid
within the junction. To obtain a purely displacing flow in 3D, we therefore look to the next available polyhedral
symmetry, i.e., the octahedral symmetry.

An octahedron [Fig. 3.3c] can be formed by the middle points of the six edges of a tetrahedron [Fig. 3.3a].
Its symmetry group is isomorphic to S4×C2, with the additional symmetry arising from an extra 2-fold
rotation symmetry that is absent for a tetrahedron [Fig. 3.3a] [71]. A similar eigenvalue analysis leads to two
groups of degenerate modes, corresponding respectively to dipoles and quadrupoles. The three degenerate
dipole modes (𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧) are orthogonal in direction, corresponding to a C3 group (through 120◦ rotation
about any of the face norms), one subgroup of the octahedral symmetry group [71]. In such dipole modes, a
pair of effective charges along the diagonal (e.g., 𝑞1 and 𝑞2 for 𝑝𝑥) have opposite signs (with the rest of the
charges being neutral), corresponding to the activation of a pair of a source and a sink. The two degenerate
quadrupoles are distributed in two perpendicular planes (here, 𝑥-𝑦 and 𝑥-𝑧 planes), forming a D1 subgroup
(switchable by a reflection along the middle plane between 𝑥-𝑦 and 𝑥-𝑧 plane). In such quadrupole modes, a
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Figure 3.4: Realization of the octahedral symmetry in 3D microfluidics. (a) An octahedron viewed along its
original (1, 1, 1) axis (inset) is converted into a microfluidic junction with all sources (or sinks) distributed at
two planes perpendicular to the imaging axis 𝑧′. (b) The dipole flows in microscope coordinates (𝑥′, 𝑦′, 𝑧′)
are obtained by linear combination of the three orthogonal dipole modes [Fig. 3.3d], with their experimental
realizations shown in c, d, and e, respectively. The axial 𝑧′ positions of the seeding particles are obtained
by correlating their phase-contrast images (projected in the bottoms of volumes) with a calibrated library of
diffraction patterns.

pair of sources and a pair of sinks along two diagonals are activated. It should be noted that an equivalent
quadrupole in the 𝑦-𝑧 plane can be achieved by superimposing the above two quadrupoles, and is thus not
one of the eigenmodes. Analogous to the square symmetry in the 2D case, the octahedral symmetry gives
rise to completely separate displacement and elongation flow functions [Fig. 3.3d and e], classified by distinct
symmetries. The pure-dipole-like potential in the displacements also ensures that the rate-of-strain invariant 𝐼2
is zero in the middle of the junction. Thus, a superposition of these three displacement flow modes generates
3D omnidirectional flows while preserving the stress-free condition (at least in the middle of the junction).

3.3 Realizing 3D Stress-free microfluidic manipulations

3.3.1 Omnidirectional stress-free flows
To realize such a stress-free microfluidic junction while enabling microscope observation, we rotate the
octahedron so that one of its faces (e.g., (1, 1, 1) axis) is aligned along the visualization axis (𝑧′). This rotated
geometry fits well into a double-layer microfluidic design [17]: six channels (0.5 mm wide and 0.3 mm deep in
cross-sections) at two elevations intersecting a middle cylindrical chamber (with radius 𝑅 = 1.0 mm and height
𝐻 = 1.6 mm) along the radial directions, with the locations of intersections matching that of the octahedral
vertices [Fig. 3.4a]. This rotation is also determined by the coordinates of the laboratory frame of reference
(𝑥′, 𝑦′, 𝑧′), with a radial channel (here, 𝑓1) aligned along the 𝑥′ axis. We fabricated the microfluidic channel
part of this device by fusing multiple sheets of laser-etched glass (Citrogene, see Appendix A.1), which was
then mounted on a customized adapter for flow control and microscopy.

To ensure that a displacement flow can be robustly created in all possible directions, we first considered
flows along the three orthogonal axes (𝑥′, 𝑦′, 𝑧′) of the laboratory coordinates forming the basis of the velocity
space. The potential representations (isosurfaces) of these orthogonal flows (along 𝑥′, 𝑦′, and 𝑧′) are shown in
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Figure 3.5: Dynamic stress-free displacement flows in 2D. (a) Stress-free displacement flows were controlled
in a phase space (𝑐1, 𝑐2, 𝑐3), as the components of three orthogonal dipole modes. Traces in the 𝑐1+𝑐2+𝑐3 = 0
plane of this phase space correspond to in-plane flows (in the 𝑥′-𝑦′ plane) in the real space. The dashed lines
correspond to instantaneous transitions between discrete states (dots) of the flow with the arrow showing the
transition directions, forming a triangle, a square, and a circle in the continuous limit. The corresponding
motions of the flow are shown in (b), (c), and (d), respectively, with individual seeding particles shown in
different colors. The periods of these patterns are 3 s, 4 s, and 4 s, respectively.

Fig. 3.4b, which are linear combinations of the above three degenerate dipole modes with their coefficients
(𝑐1, 𝑐2, 𝑐3) being 1√

6
(2,−1,−1), 1√

2
(0, 1,−1), and 1√

3
(1, 1, 1), respectively. In experiments, these effective

charges are realized by independently offsetting the fluid pressure on the corresponding channel using two
4-channel piezoelectric regulators (Elveflow OB1 MK3+), with a positive offset for a positive charge (or
source) and a negative offset for a negative one (or sink). Custom software was programmed to convert the
above flow coefficients into actual pressure settings for flow generation (Appendix A.1). The three orthogonal
flows (𝑥′, 𝑦′, 𝑧′) were successfully generated in our microfluidic device, within the same volume near the
center [Fig. 3.4c-e], as demonstrated by the 3D traces of the seeding particles (Appendix A.1). Despite their
different geometries in flow dipoles [Fig. 3.4b], these flows are all uniform over almost the entire 3D volume
(≈ 200 𝜇m × 200 𝜇m × 150 𝜇m) captured by the microscope, demonstrating the experimental realization of a
robust “stressless” condition that is guaranteed by symmetry.

3.3.2 Dynamic stress-free micromanipulations
To further investigate the experimental capacity of such stress-free microfluidics, we incorporated temporal
dependence in the flow by dynamically varying the pressures on all channels (Appendix A.4). To facilitate this
time-dependent control, we represented each possible configuration of the displacement flow by its coefficients
(𝑐1, 𝑐2, 𝑐3) when expressed in terms of three degenerate dipole modes, which essentially form a 3D phase
space [Fig. 3.5a]. Any time-dependent flow manipulation can thus be generated by a series of points in this
phase space. Noting that an axial (𝑧′) flow is represented by a vector along the 1√

3
(1, 1, 1) direction in the

phase space, all orthogonal flows must satisfy 𝑐1 + 𝑐2 + 𝑐3 = 0, which restricts all horizontal (or in-plane)
displacement flows to a plane in the phase space. Hopping in this plane with equal angular separations and
distances with respect to the origin (0, 0, 0) gives rise to polygon-shaped flow patterns, for instance, a triangle,
a square and a circle in the continuum limit (Fig. 3.5b-d, Movies MOV_01.mp4, MOV_02.mp4, MOV_03.mp4).
Such patterns are almost identical for all seeding particles, with the fluid in the bulk translating like a piece of
solid.

By incorporating phase spaces out of the 𝑐1 + 𝑐2 + 𝑐3 = 0 plane, we also generated time-dependent flows in
3D. For instance, imposing an oscillatory 𝑧′ motion (with doubled frequency) to the above circular mode gives
rise to a 3D flow that represents a Lissajous curve (Fig. 3.6a, Movie MOV_04.mp4). Invariably, individual
seeding particles within the volume of observation trace out the same pattern as desired. demonstrating the
robustness of the stressless condition even under 3D dynamic control.

To assess the flow uniformity, we center the trajectory of every seeding particle within the entire volume
and show them side by side. It is clear that these trajectories overlap with each other very well over a full
period. In perfectly stress-free flows, all trajectories must be identical, leaving no deviation from the mean
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Figure 3.6: 3D stress-free and multiplexed manipulation. (a) A design of the 3D Lissajous pattern (inset, with
3D positions in color and 2D projections in gray) was realized in the flow by incorporating additional axial
motion into the circular pattern [Fig. 3.5d], with all seeding particles in the view tracing out the desired 3D
pattern (in 8 s). (b) Visualized trajectories (gray curves) of seeding particles (11 particles shown) within the
3D view (200 𝜇m × 200 𝜇m × 150 𝜇m in 𝑥′×𝑦′×𝑧′) were overlaid and exhibited a fair degree of uniformity.
(c) A characteristic strain 𝜖 computed along the manipulation path further confirms the uniformity (with 𝜖

bounded by 2%) of the manipulation flows.

path. We thus defined a characteristic strain based on the deviation from the mean trajectory, i.e., 𝜖 (𝑡) =

deformation/size = Δ𝑟 (𝑡)/Δ𝑟 (𝑡), where Δ𝑟 ≡
√︃⟨︁

(r − ⟨r⟩) · (r − ⟨r⟩)
⟩︁

and Δ𝑟 (𝑡) ≡
√︃⟨︁

(r̃ − ⟨r̃⟩) · (r̃ − ⟨r̃⟩)
⟩︁

are the fluctuations of displacements of all particles (r) before (Fig. 3.6a) and that (r̃) after (Fig. 3.6b) centering,
with operators ⟨·⟩ corresponding to spatial averages. As shown in Fig. 3.6c, such characteristic strains are of
the order of 𝜖 ∼ 10−2 for typical 3D manipulations, illustrating the nearly stress-free condition.

The agile flow responses to the controlling pattern in the phase space indicate a direct map of the phase
space to the real velocity space. The previously mentioned control in phase space can thus be generalized to
arbitrary flow motions to realize more sophisticated manipulation capabilities. To demonstrate this concept,
we combine both continuous motions and discrete hops in the phase space (or the velocities) to manipulate, in
a stress-free manner, individual particles for “printing” discrete letters (here, “UCM”) onto the focal plane.
Each letter was traced out by combining motions (along smooth curves) and hops (at the corners of the letter)
in the phase space. The discrete gaps between adjacent letters were achieved by abruptly offsetting the fluid in
the axial direction so that the previously focused particles were moved away from the focal plane before their
reappearance for “printing” the next letter. As shown in Fig. 3.7a, this “printing” task can indeed be achieved in
our stress-free microfluidic channel, which further demonstrates its versatile manipulation capabilities (Movie
MOV_05.mp4).

3.4 Discussion
Our results show a substantial role for symmetry groups in classifying microfluidic functions. These symmetry-
group-protected functions are insensitive to detailed geometries, which we exploited to realize 3D stress-free
flows in a microfluidic device. Such flows are qualitatively different from all available micromanipulation
approaches, where physical traps of certain forms must be present, resulting in stresses on the manipulated
objects. Both the stress-free modes and the stressful modes can be characterized by distinct subgroups of a
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Figure 3.7: More complex 3D flow manipulations were demonstrated by rapidly imprinting the “UCM” (with
its design shown in the inset) onto the focal plane by seeding particles, which are color-coded in time (over 23
s). Some of those particles initially out of the focal plane imprint the connecting lines (blue segments in the
inset) between letters. The scale bar shows 20 𝜇𝑚.

group of polyhedral symmetry (possessed by the microfluidic device), suggesting independent transport and
trapping in microfluidic manipulations.

From our experimental observations, these stress-free flows are demonstrated by extremely parallel
trajectories of the manipulated particles, regardless of the detailed curvatures of the trajectories. This enables
us to achieve truly multiplexed stress-free manipulations, a significant challenge for trap-based approaches. It
is worth noting that our trajectories inevitably deviate from the ideal geometries due to the absence of feedback
controls. Meanwhile, any potential differences (e.g., different flow resistances) among the six channels
lead to channel-sensitive responses to applied pressures, which ultimately modifies our time-dependent flow
patterns. Remarkably, these “defects” in manipulations do not alter the uniformity in the flows (with all
particle trajectories remaining parallel), suggesting the robustness in the symmetry-protected flows.

Our work therefore opens up new avenues of experiments on microscopic phenomena that occur in truly
stress-free flows. Combinations of the above subgroups easily lead to other subgroups with higher orders (e.g.,
the C4 subgroup of the D4 group), associated with flow characteristics more than the strain invariants at the
center. Flow patterns belonging to these subgroups maybe coordinated in time to form a mutual impact on the
manipulated flow, e.g., creating a “mean” vortex that is absent from steady potential flows. These advanced
symmetry features and flow manipulation functions will be explored in our future work.



Chapter 4

Digital control of a symmetry-protected
microfluidic manipulator

4.1 Introduction
The prevalence of microfluidic devices in research continues to grow as their applications grow and are
refined[73]. An especially intriguing field, spurred on by the need not just for preparing an environment to be
occupied but to be organized in space, is that of microfluidic manipulation[74]. Many excellent methods have
been devised to achieve this goal, such as the Stokes trap[75] for flow-based control, nanogenerators[76, 77]
for electrical control, or optical traps[78] for light-based control.

However, the nature of some methods of control require a level of ongoing involvement. For example, in
some methods a position (or set of positions) may be specified by the user, leading to the controlling software
physically adjusting the mechanisms of manipulation, checking the outcome of the physical adjustment, and
restarting the cycle based on the difference in desired and expected outcomes. These closed loop devices
based on position control have led to high precision control of microobjects[79]. Different feedback systems,
of varying levels of complexity as needed during experiment, have been employed to meet these and similar
experimental outcomes[80, 81]. However, by necessity these feedback systems require time to be invested
during each control cycle to receive, analyze, and instruct based on available collected data.

Here, we discuss the technical implementation of digital control of a 6 channel symmetry-protected
microfluidic manipulator[17]. (See Appendix B for a discussion of work done with a 4 channel device) By
exploiting the large working zone available in this device, along with the separated directional and stressful
modes, we achieve successful supervisor-free control of microobjects. The velocity based control used in
the device allows for prescription of paths of arbitrary complexity in position and velocity without requiring
a feedback loop. We first discuss the architecture of the controlling program to achieve full control of the
hardware stack used with the device. Then we present a derivation of the pressure activation strategy using
an abstraction of the device details to just fluid sources and sinks. Finally, we review path traversal choices
included as features in the current pressure pump control program to achieve different physical outcomes.
Overall, the software and hardware suite allows for supervisor-free microfluidic manipulation that allows for
experimental implementation of different physical flow properties.

4.2 Pressure pump controller program
We make use of custom Python 3 code to control our experimental setup, with a GUI (Fig. 4.1), written using
the tkinter Python package for developing with the Tcl/Tk GUI toolkit[82], acting as a front end to control
two major backends, camera control and pressure pump control, as well as frame display, extraneous data
management, and control of a Prior ProScan III stage.

22
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Figure 4.1: Pressure pump controller graphical user interface. Top left: Pressure pump readouts of port
pressures and applied mode amounts. Top right: Various controls including image viewing and stage control.
Middle: Individual mode controls and custom path generation inputs. Bottom: Various controls including
port selection and manual port pressure settings.

4.2.1 Camera control
We make use of FLIR Grasshopper3 (GS3-U3-41C6M-C) and Andor Zyla (ZYLA-4.2P-USB3) cameras for
imaging the interior of the microfluidic device. One or more FLIR Grasshopper3 cameras are connected by
USB3 to the computer, and when used in plural are synchronized via the Python program for simultaneous
frame capture. Frames are stored to a memory buffer which can be accessed by the frame display backends.
For image storage, every frame is sent to a PyTorch Python package[83] queue backed by shared memory
which can then be saved to a file on an SSD drive.

4.2.2 Pressure pump control
A variety of pressure pump controls are exposed to the user via the GUI, including raw access to pressures on
each of the ports as an additive baseline, manipulation of the resistive matrix elements that perform the mapping
from physical velocities to applied pressures, application of the pressure configurations that correspond to the
modes of the 6-channel microfluidic device, custom time-dependent application of the directional 𝑥-,𝑦-, and
𝑧-modes, custom time-dependent application of raw port values, and custom time-dependent planar motion.

All custom time-dependent modules take raw text in sympy Python package[84] function syntax that is
then parsed for use according to its structure. A supplementary Python 3 program was written to take a basic
language of path components, including time and 3D spatial instructions, that is human-friendly to write and
translate it into the precise array sympy syntax needed for operation. When the sympy form is a path function,
then its derivative is taken analytically and the velocity components are passed to conversion to the necessary
pressures. When the sympy form is for raw port control, the form as a vector representing the 6 ports is parsed
and the calculations directly applied as pressures on the ports. When the sympy form is for planar motion,
such as a complex-valued function for conformal mapping, the real and imaginary values are taken and sent to
the pressure pump.

The numpy Python package[85] is used both for direct computation stemming from all basic user input as
well as a module for sympy to accelerate custom expressions from the user, and the numba Python package[86]
is used for further acceleration of simpler portions of the pressure computation. These values are then sent to
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the two Elveflow pressure pumps (Elveflow OB1 Mk3+) via USB3 as input. The pressure values are also read
via USB3 off of the pressure pumps and displayed in the GUI. Both values sent to the pressure pumps as well
as values read from the pressure pumps can be saved as a file. The amounts of each of the modes being sent to
the pump from all user-input are displayed in the GUI in real time.

Testing the Elveflow pressure boxes under a wide variety of conditions, slow and rapid variation of
pressures, has revealed a correspondingly varying adherence (Fig. 4.2, top) to the prescribed pressures (Fig.
4.2, middle) after including a noise term to overcome an issue when the boxes receive identical input pressure
values over a period of time. An appreciable difference in set and read pressures is present but empirically
of minor impact, with the major contribution to path deviation coming from the response-and-settling-time
under rapid switching. We have found that while the expected mode dominates in what is applied to the
microfluidic device (Fig. 4.2, bottom), that dominant mode does not necessarily stay applied with the desired
time dependence, and can be accompanied by the other modes available for use on the microfluidic device.

4.2.3 Frame display
Two backends for frame display run for each attached camera. One backend displays the raw frame obtained
by the camera from the relevant shared memory buffer. The second backend displays a composite image
for aiding the visualization of the captured frames over time, such as when viewing a traced polygon. A
user-controlled number of previous images are stored in a stack in memory on an Nvidia GPU using the
cupy Python package[87] interface to CUDA. At each iteration of user-specified duration, the stack of images
has the maximum intensity value found through all frames and the final image of those maximum values is
displayed to the user. The OpenCV 2 Python package[88] is used to display all images at high frame rate.

4.3 Source and sink activation strategy derivation
We can approximate the flow configuration with a series of 𝑛 point sources and sinks arranged with a geometry
similar to the microfluidic device. In doing so we can determine the mandatory activation strategy for the
ports on the actual experimental device with 6 channels to achieve a given velocity and strain rate outcome.
(See Appendix B for an accompanying derivation of activation strategies for the 4 channel case in line with
the work presented here)

The flow within the region in experiment bounded by the glass chamber with its center as the origin is
approximated in the unbounded case by[18]

u(r) =
𝑛∑︁
𝑖=1

𝑚𝑖

4𝜋
r − r′

𝑖|︁|︁r − r′
𝑖

|︁|︁3 , (4.1)

where 𝑚𝑖 are the strengths, including sign, of the point sources and sinks located at positions r′
𝑖
. Volume

preservation is maintained by the condition
∑︁𝑛

𝑖=1 𝑚𝑖 = 0. The rate of strain tensor is then
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where I is the identity matrix.
At the center of the chamber for point sources and sinks placed equidistant from the origin, Eq.s 4.1 and

4.2 reduce to

u(0) =
𝑛∑︁
𝑖=1

−𝑚𝑖

4𝜋
r′
𝑖|︁|︁r′
𝑖

|︁|︁3 , (4.3)

γ̇ (0) =
𝑛∑︁
𝑖=1

−3𝑚𝑖

4𝜋
r′
𝑖
r′
𝑖|︁|︁r′

𝑖

|︁|︁5 . (4.4)
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Figure 4.2: Analysis of pressures on the Elveflow boxes for an up/down (+𝑦/−𝑦) recurring pattern. Top
(middle): Pressure read from (sent to) the Elveflow pressure boxes. Each line represents the pressure on a
given port on the box. Bottom: Mode decomposition of received pressures in terms of the modes available to
the 6 channel Stokes Wind Tunnel. All plots occur over the same 10 s period.
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4.3.1 6 channel case
A symmetric simplification can be made by assuming every point source or sink of strength 𝑚 𝑗 at position r′

𝑗

has a point source or sink at a position mirrored across the center of the chamber. Then, the field and rate of
strain at the center for any such pair of sources and sinks 𝑚𝑎 and 𝑚𝑏, without assuming sign, can be written as

u𝑎𝑏 (0) = − (𝑚𝑎 − 𝑚𝑏)
4𝜋

r′𝑎
|r′𝑎 |3

(4.5)

= − 1
4𝜋

r′𝑎
|r′𝑎 |3

(1,−1) · (𝑚𝑎,𝑚𝑏) (4.6)

γ̇𝑎𝑏 (0) = − 3
4𝜋

r′𝑎r′𝑎
|r′𝑎 |5

(1, 1) · (𝑚𝑎,𝑚𝑏), (4.7)

linear in the strengths. Since the phase space of choices of strength can be rewritten from two individual
activation choices to a superposition of pair activations with the same strengths, including sign, and pair
activations with opposite strengths, i.e.

(𝑚𝑎,𝑚𝑏) = 𝑚𝑎 (1, 0) + 𝑚𝑏 (0, 1) = 𝑚′
𝑎 (1, 1) + 𝑚′

𝑏 (1,−1), (4.8)

we may consider separately the cases with the point sources and sinks conjoined as described.
For any equidistant configuration, substitution of Eq. 4.8 into Eq.s 4.6 and 4.7 shows reductions for the

two choices of pair activation. In the case where every point source of strength 𝑚 𝑗 at r′
𝑗

has a mirrored point
sink, the direction of velocity at the center is determined by

uopp pairs (0) ∝
∑︁

𝑗∈pairs
−𝑚 𝑗r′𝑗 , (4.9)

while the rate of strain vanishes at the center,

�̇�opp pairs (0) = 0. (4.10)

The trivial choice for achieving 3D flow control would necessitate a regular octahedron of exactly 6 point
sources and sinks, arranged such that each pair aligns with the 3 Cartesian directions, i.e.

r′𝑖 ∝ ±𝑥,±�̂�,±𝑧. (4.11)

Assigning a nonzero strength to any single pair would lead to a strainless flow along the axis of the pair at
the center of the chamber. Then, to match our experimentally compatible device, that regular octahedron
would be deformed such that no point would impede a view into the chamber along the vertical axis. This new
octahedron would still maintain opposing points in pairs, with

r′𝑖 = 𝑎

(︂
cos

(︁
60◦ (𝑖 − 1)

)︁
𝑥 + sin

(︁
60◦ (𝑖 − 1)

)︁
�̂�

)︂
± 𝑏𝑧 (4.12)

with upper sign for 𝑖 odd and lower for even, where 𝑎 and 𝑏 are some positive lengths. Choosing r′2, r′4, and r′6
to be representative of the pairs W.L.O.G., condition Eq. 4.9 for some flow direction 𝑢𝑑𝑥 + 𝑣𝑑 �̂� + 𝑤𝑑𝑧 yields
the flow strengths

(𝑚2,𝑚4,𝑚6) ∝ 𝑢𝑑

(︃
1
3𝑎

)︃
(−1, 2,−1) + 𝑣𝑑

(︄√
3

3𝑎

)︄
(−1, 0, 1) + 𝑤𝑑

(︃
1

3𝑏

)︃
(−1,−1,−1) (4.13)

and hence the full set of strengths can be written as

(𝑚1,𝑚2,𝑚3,𝑚4,𝑚5,𝑚6) ∝ 𝑢′𝑑 (−2,−1, 1, 2, 1,−1) + 𝑣′𝑑 (0,−1,−1, 0, 1, 1) + 𝑤′
𝑑 (1,−1, 1,−1, 1,−1) (4.14)
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where the constants 𝑢′
𝑑

are proportional to the original 𝑢𝑑 and share the same sign. The relative strengths of
this set, including sign, correspond to the port conditions for the 𝑥-, 𝑦-, and 𝑧-flow modes presented in our
previous work[17].

We now consider the second case for any equidistant configuration, where substitution of Eq. 4.8 into Eq.s
4.6 and 4.7 shows reductions for the next choice of pair activation. In the case where every point source of
strength 𝑚 𝑗 at r′

𝑗
has a mirrored point source, the velocity vanishes at the center,

usame pairs (0) = 0, (4.15)

while the rate of strain at the center is determined by

�̇�same pairs (0) ∝
∑︁

𝑗∈pairs
−𝑚 𝑗r′𝑗r

′
𝑗 . (4.16)

Choosing r′2, r′4, and r′6 to be representative of the pairs W.L.O.G., condition Eq. 4.16 for some strain rate
tensor

γ̇𝑥𝑥𝑑𝑥𝑥 + γ̇𝑥𝑦𝑑𝑥�̂� + γ̇𝑥𝑧𝑑𝑥𝑧 + γ̇𝑦𝑥𝑑 �̂�𝑥 + γ̇𝑦𝑦𝑑 �̂� �̂� + γ̇𝑦𝑧𝑑𝑥𝑧 + γ̇𝑧𝑥𝑑𝑧𝑥 + γ̇𝑧𝑦𝑑𝑧�̂� + γ̇𝑧𝑧𝑑𝑧𝑧 (4.17)

yields the flow strength relations

−𝑎2
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4
+ 𝑚4 +
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4
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−
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4
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2
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= γ̇𝑥𝑧𝑑 (4.20)

−3𝑎2

4
(𝑚2 + 𝑚6) = γ̇𝑦𝑦𝑑 (4.21)

−𝑏2 (𝑚2 + 𝑚4 + 𝑚6) = γ̇𝑧𝑧𝑑 (4.22)

−
√

3𝑎𝑏
2

(𝑚2 − 𝑚6) = γ̇𝑦𝑧𝑑 , (4.23)

where use is made of the symmetric property of the tensor to omit repetitive quantities. Combining Eq.s 4.19
and 4.23 because of their similarity and then rearranging we have

𝑚2 − 𝑚6 = −γ̇′
𝑥𝑦𝑑 − γ̇′

𝑦𝑧𝑑 = γ̇′
𝐴, (4.24)

where we use primes to denote quantities proportional to their unprimed counterparts, including the same sign,
and then denote the final expression as a single 𝐴 quantity. We further rearrange Eq. 4.20 to have

𝑚2

2
− 𝑚4 +

𝑚6

2
= −γ̇′

𝑥𝑧𝑑 = γ̇′
𝐵, (4.25)

following the same labeling convention as before. Finally, we combine Eq.s 4.18, 4.21, and 4.22, and utilizing
the traceless property of the strain rate tensor we have

𝑚2 + 𝑚4 + 𝑚6 = 0, (4.26)

prompting us to note as an aside the trivial result of Eq. 4.22 vanishing on the left side, preventing any
activation strategy from resulting in γ̇𝑧𝑧𝑑 at the center.

Summarizing the reductions, we have

𝑚2 − 𝑚6 = γ̇′
𝐴 (4.27)

𝑚2

2
− 𝑚4 +

𝑚6

2
= γ̇′

𝐵 (4.28)

𝑚2 + 𝑚4 + 𝑚6 = 0, (4.29)
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giving the solution

(𝑚2,𝑚4,𝑚6) =
γ̇′
𝐴

2
(1, 0,−1) +

γ̇′
𝐵

3
(1,−2, 1) . (4.30)

From this we see already mutually exclusive strain rate components, and referring back to Eq.s 4.18-4.23 we
further see the two source activation choices lead to additional strain rate tensor components: Substituting
in the 𝐴 source activation choice (i.e. (𝑚2,𝑚4,𝑚6) ∝ (1, 0,−1)) has the immediate monopoly on γ̇𝑥𝑦𝑑 and
γ̇𝑦𝑧𝑑 (c.f. Eq. 4.24), but substituting in the 𝐵 source activation choice (i.e. (𝑚2,𝑚4,𝑚6) ∝ (1,−2, 1)) has
the immediate monopoly on γ̇𝑥𝑧𝑑 (c.f. Eq. 4.25) as well as γ̇𝑥𝑥𝑑 (c.f. Eq. 4.18) and γ̇𝑦𝑦𝑑 (c.f. Eq. 4.21).
Visualizing these respective strain rate tensor components in matrix form, we have for the 𝐴 and 𝐵 activation
choices respectively

[𝑚]𝐴 →
⎛⎜⎜⎝

0 X 0
X 0 X
0 X 0

⎞⎟⎟⎠ , [𝑚]𝐵 →
⎛⎜⎜⎝
X 0 X
0 X 0
X 0 0

⎞⎟⎟⎠ , (4.31)

where X’s represent components allowed to be finite when not made null by symmetry protection. These
results are in agreement with our symmetry analysis presented in Chapter 2 and Appendix C.

4.4 Time dependent path formulation
Having presented an activation strategy for strainless 3D manipulation, we now consider the movement of
microobjects in space. As our device is based on velocity control, it is concerned with the necessary velocities
which can be obtained from the time-dependent path formulation.

We begin with a straightforward formulation of paths that is linear in time, requiring 2 constraints to match
the start position and end position. A line segment between start and end locations r𝑖 , r 𝑓 , respectively, with
start and end times 𝑡𝑖 , 𝑡 𝑓 , respectively, has the representation

r(𝑡) =
𝑡 𝑓 − 𝑡

𝑡 𝑓 − 𝑡𝑖
r𝑖 +

𝑡 − 𝑡𝑖

𝑡 𝑓 − 𝑡𝑖
r 𝑓 , (4.32)

with the velocity trivially given by

v(𝑡) =
r 𝑓 − r𝑖
𝑡 𝑓 − 𝑡𝑖

. (4.33)

As an example of a planar square, the set of points (1, 0), (1, 1), (0, 1), (0, 0) traversed in a counterclockwise,
closed fashion with one unit of time per line segment has the representation

r(𝑡) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1 − 𝑡) (1, 0) + (𝑡 − 0) (1, 1) 0 ≤ 𝑡 < 1
(2 − 𝑡) (1, 1) + (𝑡 − 1) (0, 1) 1 ≤ 𝑡 < 2
(3 − 𝑡) (0, 1) + (𝑡 − 2) (0, 0) 2 ≤ 𝑡 < 3
(4 − 𝑡) (0, 0) + (𝑡 − 3) (1, 0) 3 ≤ 𝑡 < 4

, (4.34)

and the corresponding velocity given by

v(𝑡) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(0, 1) 0 ≤ 𝑡 < 1
(−1, 0) 1 ≤ 𝑡 < 2
(0,−1) 2 ≤ 𝑡 < 3
(1, 0) 3 ≤ 𝑡 < 4

. (4.35)

Higher order time dependence can be used, with increasing control over physical aspects for the trajectory.
To eliminate the discontinuity in the velocities at the vertices of two intersecting line segments, which would
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avoid a large transition of pressure from one time step to the next, the formulation between the times 𝑡𝑖 , 𝑡 𝑓 may
be given by

r(𝑡) = 𝑃3,𝑖 (𝑡)r𝑖 + 𝑃3, 𝑓 (𝑡)r 𝑓 , (4.36)

where the quantities 𝑃3 are cubic order polynomial functions of 𝑡 chosen to impose the boundary condition
v(𝑡𝑖) = v(𝑡 𝑓 ) = 0 (two more constraints on top of the original two for position). It can be shown by linear
algebra that the end expression takes the form

r(𝑡) = 𝑃3,fall
(︁
𝑡rise (𝑡)

)︁
r𝑖 + 𝑃3,rise

(︁
𝑡rise (𝑡)

)︁
r 𝑓 , (4.37)

where 𝑃3,fall (𝑡) = 2𝑡3 −3𝑡2 +1 and 𝑃3,rise (𝑡) = −2𝑡3 +3𝑡2 are the relevant cubic polynomials and 𝑡rise (𝑡) = 𝑡−𝑡𝑖
𝑡 𝑓 −𝑡𝑖 .

The piecewise function for position previously given in the linear case (Eq. 4.34) can easily have its time
dependence modified to make use of this imposition of null velocity at the vertices, and the velocity will be
quadratic in form but continuous at the vertices.

A higher order time dependence can still further be derived, next eliminating the discontinuity in the
derivatives of the velocity, and thus further smoothing out the transitions being made by the pressure pumps.
Logically, to add two more constraints, quintic order polynomials would be required,

r(𝑡) = 𝑃5,𝑖 (𝑡)r𝑖 + 𝑃5, 𝑓 (𝑡)r 𝑓 , (4.38)

where the quantities 𝑃5 are quintic order polynomial functions of 𝑡 chosen to impose the boundary condition
v(𝑡𝑖) = v(𝑡 𝑓 ) = 0, v′ (𝑡𝑖) = v′ (𝑡 𝑓 ) = 0. It can be shown by linear algebra that the end expression takes the form

r(𝑡) = 𝑃5,fall
(︁
𝑡rise (𝑡)

)︁
r𝑖 + 𝑃5,rise

(︁
𝑡rise (𝑡)

)︁
r 𝑓 , (4.39)

where 𝑃3,fall (𝑡) = −6𝑡5 + 15𝑡4 − 10𝑡3 + 1 and 𝑃5,rise (𝑡) = 6𝑡5 − 15𝑡4 + 10𝑡3 are the relevant quintic polynomials.
The piecewise function for position previously given in the linear case (Eq. 4.34) can easily have its time
dependence modified to make use of this imposition of null velocity at the vertices and null derivatives of the
velocity, and the velocity will be quartic in form but continuous and differentiable at the vertices.

4.4.1 Constant angular velocity along line segment of path
We next consider paths with a smooth variation of velocity. Choosing, W.L.O.G., a line segment between
planar points (𝑥1, 𝑦1, 0), (𝑥2, 𝑦2, 0), we write down the position vector in the plane r = (𝑥, 𝑦, 0). Combining
the usual expressions for polar coordinates with the standard equations for lines,

𝑥 = 𝑟 cos 𝜃 (4.40)
𝑦 = 𝑟 sin 𝜃 (4.41)

𝑦 − 𝑦1 = 𝑚(𝑥 − 𝑥1) (4.42)

𝑚 =
𝑦2 − 𝑦1

𝑥2 − 𝑥1
, (4.43)

we express the radial coordinate 𝑟 as

𝑟 =
𝑦1 (𝑥2 − 𝑥1) − 𝑥1

(︁
𝑦2 − 𝑦1

)︁
sin 𝜃 (𝑥2 − 𝑥1) − cos 𝜃

(︁
𝑦2 − 𝑦1

)︁ . (4.44)

Thus the final expression of the path in Cartesian vector components but in polar coordinates can be given as
r(𝜃) = (𝑟 cos 𝜃, 𝑟 sin 𝜃, 0) with 𝑟 given by Eq. 4.44.

By expressing this in terms of 𝜃, the angular sweep of, as an example, a regular polygon centered on
the origin can be directly controlled to enforce constant angular velocity 𝜔 while moving along the path, i.e.
𝜃 = 𝜔𝑡. The resulting shape of passive tracer particles can then be imaged (Fig.s 4.3-4.5).
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Figure 4.3: Time lapse image of 2 µm latex tracer particles moved inside microfluidic manipulator tracing out
a square with constant angular velocity. Window size is 188 µm × 188 µm.
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Figure 4.4: Time lapse image of 2 µm latex tracer particles moved inside microfluidic manipulator tracing out
a hexagon with constant angular velocity. Window size is 188 µm × 188 µm.
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Figure 4.5: Time lapse image of 2 µm latex tracer particles moved inside microfluidic manipulator tracing out
a octagon with constant angular velocity. Window size is 188 µm × 188 µm.
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4.5 Conformal mapping path formulation
We next consider another way to map the smooth navigation of pressures in a circular fashion to an arbitrary
collection of line segments creating a closed path, via conformal mapping. In our case, as an example we
choose to map between the unit circle, expressed in complex space by 𝑧 ∝ exp(2𝜋𝑡𝑖/𝑇), 0 ≤ 𝑡 ≤ 𝑇 for some
period 𝑇 , and a closed polygon in complex space 𝑓 (𝑧) with the set of 𝑛 vertices 𝑧𝑘 , with 𝑘 an integer denoting
a given vertex. The polygonal path has as its derivative[89]

𝑓 ′ (𝑧) ∝
∏︂
𝑘

(︃
1 − 𝑧

𝑧𝑘

)︃𝑎𝑘−1
, (4.45)

where 𝑎𝑘𝜋 is the set of interior angles of the polygon. As a geometric consequence,
∑︁

𝑘 (𝑎𝑘 − 1) = −2, and we
have the specific equivalence 𝑎𝑘 −1 = −2/𝑛 in our regular polygon example. Considering the time dependence
of this mapping, we have the time derivative

𝑓 (𝑧) = 𝑓 ′ (𝑧)𝑧 ∝ exp
(︃
2𝜋𝑡𝑖
𝑇

)︃ ∏︂
𝑘

⎛⎜⎜⎝1 −
exp

(︂
2𝜋𝑡𝑖
𝑇

)︂
𝑧𝑘

⎞⎟⎟⎠
−2/𝑛

. (4.46)

From inspection, the derivative can achieve the greatest magnitude when rounding the corners of the polygon.
Choosing the vertices 𝑧𝑘 for a square centered on the origin as an explicit example, up to a constant of
proportionality and a phase, we may substitute 𝑧𝑘 ∝ exp(2𝜋𝑘𝑖/4), 0 ≤ 𝑘 ≤ 3 to arrive at the final expression.
By taking the real and imaginary components of Eq. 4.46, we have the planar components of velocity to then
provide to the pressure pumps. The resulting shape of passive tracer particles can then be imaged to show the
experimentally integrated result of the velocity components (Fig.s 4.6-4.10). As expected, the tracer particles
move most rapidly when rounding the corners of the polygon as revealed by motion between frames of camera
capture. Some waviness is visible in the tracing particles when directing along the side of the shape.

4.6 Discussion
We have presented a digital control suite for achieving supervisor-free microfluidic control over microobjects.
It is able to accommodate the many physically distinguished situations by using symmetry-protected flow
modes within the microfluidic manipulator. We show a general means of deriving those velocity and strain
rate capacities using simple point sources and sinks that can then be used by the program. A number of path
generation techniques have been developed to achieve velocity-based control for arbitrarily complex paths
with the computer program, each with different ways to traverse the points in space.

More work is open for improving the quality of this supervision-free control. For example, due to
imperfections in the pressure application and geometry of microfluidic chip design, small errors are present
that disrupt the theoretically strainless flow while remaining practically so for certain experimental requirements.
The waving visible in, for example, paths such as the square traversed with conformal mapping (Fig. 4.7)
likewise indicates errors due to some mechanical oscillation, perhaps in the path from the pressure pumps
through the air in the plastic tubing down to the fluid reservoirs on the device. Such errors could be approached
in a number of ways. By analyzing the robustness of any waving a cancellation pressure curve could be
calculated and added to the pressure settings of the pump. Additionally, offsets from the prescribed path could
be determined in real time as shown with the optical supervision feedback loop in Chapter 3, albeit at the cost
of slower run times.

Additionally, by improving the pressure application and geometry of design, the extent of precision in
space and time can be increased and better adherence to the generated paths can be obtained. For the
former improvement, alternative pressure sources with different trade-offs between absolute pressure range
and pressure resolution are one place for future investigation. For the latter improvement, alternative means
of fabricating the microfluidic device, such as channels made with standard polydimethylsiloxane (PDMS)
molding techniques[90] or by laser engraving of glass[91], could enable tighter tolerances in desired channel
geometry and thus have better symmetry.
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Figure 4.6: Time lapse image of 2 µm latex tracer particles moved inside microfluidic manipulator tracing out
an experimentally integrated triangle via conformal mapping. Window size is 188 µm × 188 µm.
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Figure 4.7: Time lapse image of 2 µm latex tracer particles moved inside microfluidic manipulator tracing out
an experimentally integrated square via conformal mapping. Window size is 188 µm × 188 µm.
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Figure 4.8: Time lapse image of 2 µm latex tracer particles moved inside microfluidic manipulator tracing out
an experimentally integrated pentagon via conformal mapping. Window size is 188 µm × 188 µm.
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Figure 4.9: Time lapse image of 2 µm latex tracer particles moved inside microfluidic manipulator tracing out
an experimentally integrated hexagon via conformal mapping. Window size is 188 µm × 188 µm.
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Figure 4.10: Time lapse image of 2 µm latex tracer particles moved inside microfluidic manipulator tracing
out an experimentally integrated octagon via conformal mapping. Window size is 188 µm × 188 µm.
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We anticipate the place of our microfluidic system to satisfy the ever increasing need for high throughput
microfluidic systems[92, 93]. By its very nature our system can control large numbers of particles, manipulating
the bulk fluid and hence all particles entrained within, and improvements to the control without implementing
supervision to avoid delays would enhance its use for high throughput applications. Further, adding complexity
with more microfluidic channels too has the potential to increase its usefulness by enabling further fine-tuning
of the properties of the flow, enriching its capability beyond the present symmetry-protected separation of
direction and strain.



Appendix A

Additional information for
Symmetry-group-protected microfluidics
for multiplexed stress-free manipulations

A.1 Experimental Methods
Microfluidic fabrication and its assembly for microscope observations. The microfluidic channel was
fabricated as a stack of glass sheets (0.13 - 1 mm thick), with each containing a special pattern of channels. We
made the design of these sheets through a computer assisted design (CAD) software (Autodesk Fusion 360),
which were then sent to Citrogene for fabrications of these customized sheets in borosilicate glass and their
integration into one single multilayer microfluidic chip (using optically clear adhesives). The overall exterior
dimension of the microfluidic chip is compact, here, 62 mm × 22 mm × 2.7 mm in 𝑥, 𝑦, and 𝑧, comparable to
the footprint of a typical glass slide. The chip was also designed to be self-enclosed, leaving only 6 small pores
(1 mm in diameter) open for accessing the microfluidic flows. A 0.13 mm thick glass sheet at the bottom layer
sealed the microfluidic channels and enabled high optical quality for conventional microscope observations.
Before being connected to a multi-channel pump, the glass chip was mounted to a customized adapter for
better sealing results.

Multiple-channel flow controls. Flows within the multilayer microfluidic channel were generated by
two 4-channel microfluidic flow controllers (Elveflow OB1 MK3+) with each channel’s pressure regulated
independently between −0.9 and 1 bar relative to the atmospheric pressure. A custom program (written in
Python) was used to modulate the pressures on each channel and record the microscope image in real time. To
accommodate the finite resolution of our pressure controllers, here 120 𝜇bar, we used a water-glycerol mixture
to increase the viscosity of the fluid in the microfluidic channel, which maintained the flow speed within a
reasonable range for microscope observations while using a decent fraction of the pressure range.

Microscope imaging and three-dimensional flow reconstructions. The microfluidic flows were
visualized by mixing the fluid with polystyrene beads (2 𝜇m in diameter) as seeding particles, imaged under
an inverted microscope (Nikon Eclipse Ti2) at a 60× magnification, operated in its phase-contrast mode.
These phase-contrast images were recorded by a USB Scientific CMOS (sCMOS) video camera (Andor Zyla
4.2) in full resolution (2048 × 2048 pixels) at 50 frames per second (FPS). The diffraction pattern of each
seeding particle was visible within a range of 160 𝜇m along the optical axis, which were calibrated to restore
the axial positions of all seeding particles in the view [94], forming a sizable (at least 200 𝜇m × 200 𝜇m ×
100 𝜇m) visible zone of the 3D flow field.

40
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Figure A.1: Symmetry in a four-channel microfluidic junction. A total of eight equivalent flow patterns
(regardless of rotation and reflection) are accessible in the same microfluidic junction, representing a D4
symmetry.

A.2 Microfluidic representations of symmetry groups
The possible ways of generating essentially equivalent follow patterns (regarding their functions) define the
symmetry of a microfluidic device. For instance, a random flow (with the same pattern) can be generated
in a total of eight different ways in a 4-channel cross junction (Supplementary Fig. A.1). These eight ways
compose the symmetry group of a dihedral-4 (D4) symmetry [95]. A subset within this group can also be
arranged to form a smaller group of symmetry, a subgroup of the D4 group. For instance, either the upper
or the lower row forms a cyclic-4 (C4) symmetry, with each element accessible through a 4-fold rotation. A
pair of adjacent elements along the vertical or the horizontal direction forms a D1 subgroup (for the reflection
symmetry along the horizontal axis). A pair of the adjacent elements along the diagonals also forms a D1
subgroup, however, for a reflection along a certain 45-degree axis.

A.3 Symmetries in the strain-rate invariant
We consider a junction in a microfluidic device actuated by a set of infinitesimal sources or sinks and ignore
the detailed boundary condition. The flow can thus be characterized by a potential flow set by fluid sources
[18]. For a 2D junction, the flow velocity u can be determined from a potential 𝜙 as [13, 63]

u(r) = ∇𝜙(r), (A.1)

𝜙(r) =
𝑁∑︁
𝑖=1

𝑞𝑖 ln( |r − r𝑖 |), (A.2)

where 𝑞𝑖 and r𝑖 = (𝑥𝑖 , 𝑦𝑖) are the magnitude and location of each source, respectively. Consequently,

u(r) =
𝑁∑︁
𝑖=1

𝑞𝑖
r − r𝑖
|r − r𝑖 |2

(A.3)

The rate of strain tensor of the flow is thus

�̇� =
1
2

[︁
∇u + (∇u)⊤

]︁
(A.4)
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�̇� =

𝑁∑︁
𝑖=1

𝑞𝑖

|r − r𝑖 |2

[︄
I − 2

(r − r𝑖) (r − r𝑖)
|r − r𝑖 |2

]︄
(A.5)

Since a function of a microfluidic device should be independent of the choice of coordinates, we consider
the invariant of the rate of strain tensor [72]. The first non-trivial invariant is its second-order invariant

𝐼2 = −1
2

Tr(�̇�2) (A.6)

From the scaling, it can be shown that the invariant 𝐼2 has a quadratic form of 𝑞𝑖 , i.e.,

𝐼2 (r) = q⊤ · L(r) · q =

𝑁∑︁
𝑖, 𝑗=1

𝐿𝑖 𝑗 (r − r𝑖 , r − r 𝑗 )𝑞𝑖𝑞 𝑗 . (A.7)

where 𝐿𝑖 𝑗 is a function of r − r𝑖 and r − r 𝑗 , which can be obtained explicitly by the above expressions.
Explicit construction of the second-order invariant is straightforward. Squaring Eq. A.5, we find

�̇�2 =
∑︁
𝑖, 𝑗

𝑞𝑖𝑞 𝑗

|r − r𝑖 |2
|︁|︁r − r 𝑗

|︁|︁2
[︄
I − 2

(r − r𝑖) (r − r𝑖)
|r − r𝑖 |2

− 2
(r − r 𝑗 ) (r − r 𝑗 )|︁|︁r − r 𝑗

|︁|︁2
+4

(r − r𝑖) (r − r𝑖) · (r − r 𝑗 ) (r − r 𝑗 )
|r − r𝑖 |2

|︁|︁r − r 𝑗

|︁|︁2
⎤⎥⎥⎥⎥⎦ . (A.8)

Then, taking the trace we conclude:

𝐼2 = −1
2

Tr
(︂
�̇�2

)︂
=

∑︁
𝑖, 𝑗

−
𝑞𝑖𝑞 𝑗

2 |r − r𝑖 |2
|︁|︁r − r 𝑗

|︁|︁2
⎡⎢⎢⎢⎢⎣−1 + 4

[︁
(r − r𝑖) · (r − r 𝑗 )

]︁2

|r − r𝑖 |2
|︁|︁r − r 𝑗

|︁|︁2
⎤⎥⎥⎥⎥⎦ . (A.9)

Finding those independent flow modes (functions) thus becomes an eigenvalue problem. The symmetries of
a microfluidic junction are embedded in the L(r) matrix. We consider here the invariant at the center of the
junction, 𝐼2 (0), where most symmetries in a device must apply.

For fluid sources lying on the four corners of a square, the matrix L(0) complies with the symmetries of a
square, i.e., the 𝐷4 group. The L(0) matrix that satisfies this symmetry group can be represented by

L(0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0 𝑎 𝑏 𝑎

𝑎 0 𝑎 𝑏

𝑏 𝑎 0 𝑎

𝑎 𝑏 𝑎 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(A.10)

Such a matrix belongs to the category of circulant matrices [96], and the eigenvectors are expressed in the
following:

𝑣1 =
1
√

2
(1, 0,−1, 0)

𝑣2 =
1
√

2
(0, 1, 0,−1)

𝑣3 =
1
2
(1,−1, 1,−1)

𝑣4 =
1
2
(1, 1, 1, 1)
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Here, the first two modes are degenerate, corresponding to two dipole moments in orthogonal directions.
The third mode corresponds to a quadrupole. The fourth mode is trivial and is excluded due to its contradiction
with the continuity condition (for incompressible flows). It is worth noting that the diagonal zeros in L(0) can
be replaced by any values, which only offset all eigenvalues by a constant.

The matrix L(0) can be explicitly found. We take as a choice of fluid locations a radial displacement 𝑙/
√

2
(for a square with lateral length 𝑙)

r1 = 𝑙/
√

2𝑥 (A.11)

r2 = 𝑙/
√

2�̂� (A.12)

r3 = −𝑙/
√

2𝑥 (A.13)

r4 = −𝑙/
√

2�̂�. (A.14)

From Eq. A.9, these locations yield

L(0) = − 2
𝑙4

⎡⎢⎢⎢⎢⎢⎢⎢⎣
3 −1 3 −1
−1 3 −1 3
3 −1 3 −1
−1 3 −1 3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(A.15)

= − 2
𝑙4

⎛⎜⎜⎜⎜⎜⎝
3I +

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0 −1 3 −1
−1 0 −1 3
3 −1 0 −1
−1 3 −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎠

, (A.16)

thus matching the anticipated form of Eq. A.10 with an additional constant multiple of the identity matrix.

Figure A.2: Pressure regulations for stress-free microfluidic flows. (a) Six smooth time-dependent pressure
curves 𝑃1 - 𝑃6, normalized by the maximal pressure 𝑃max = 11 mbar, were designed (as functions of time 𝑡)
and applied to a 6-channel microfluidic device (inset). Here, the curves correspond to the ideal ones for
generating a 3D Lissajous flow (with a period 𝑇 = 8 s). (b) The actual pressures monitored (by the pressure
regulator) during the experiment show a consistent pattern.
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A.4 Dynamic stress-free flow generations
To realize a dynamic stress-free flow pattern, we superimpose the three orthogonal dipole-flow modes along
the principal axes of an octahedron [𝑥, 𝑦, and 𝑧 in Fig. 3.4a], with their coefficients (𝑐1, 𝑐2, 𝑐3) determined in
the 3D phase space. On octahedral vertices, the charge assignments for these three orthogonal dipoles are
respectively (−1, 1, 0, 0, 0, 0), (0, 0,−1, 1, 0, 0), and (0, 0, 0, 0,−1, 1), corresponding to the pressure setting on
six microfluidic ports. Since the axes of the microscope observation [𝑥′, 𝑦′, and 𝑧′ in Fig. 3.4a] are along the
unit vectors 1√

6
(2,−1,−1), 1√

2
(0, 1,−1), and 1√

3
(1, 1, 1) respectively in the phase space, the corresponding

pressure settings (P𝑥′ , P𝑦′ , P𝑧′ ) for three orthogonal flow modes along these directions are given by

⎛⎜⎜⎝
P𝑥′

P𝑦′

P𝑧′

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎝
1√
6

0 0
0 1√

2
0

0 0 1√
3

⎞⎟⎟⎟⎠ ·
⎛⎜⎜⎝

2 −1 −1
0 1 −1
1 1 1

⎞⎟⎟⎠ ·
⎛⎜⎜⎝
−1 1 0 0 0 0
0 0 −1 1 0 0
0 0 0 0 −1 1

⎞⎟⎟⎠
=

⎛⎜⎜⎜⎝
1√
6
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⎞⎟⎟⎠ . (A.17)

For a stress-free flow at given velocity v(𝑡) = (𝑣𝑥′ , 𝑣𝑦′ , 𝑣𝑧′ ), the pressures on six ports P(𝑡) = (𝑃1 (𝑡), 𝑃2 (𝑡),
· · · , 𝑃6 (𝑡)) can be expressed as

P(𝑡) = v(𝑡)⊤ ·
⎛⎜⎜⎝
𝜎𝑥′ 0 0
0 𝜎𝑦′ 0
0 0 𝜎𝑧′

⎞⎟⎟⎠ ·
⎛⎜⎜⎝

P𝑥′

P𝑦′

P𝑧′

⎞⎟⎟⎠ , (A.18)

where the middle diagonal matrix is the resistance matrix of the channel at the center region. It can be
easily shown that these diagonal elements (𝜎𝑥′ ,𝜎𝑦′ ,𝜎𝑧′ ) are identical for perfect octahedral symmetries. In
situ, these elements are expected to be subjected to boundary geometries and detailed fluid properties, which
can be calibrated experimentally. In our microfluidic system, these geometries (illustrated in the inset of
Supplementary Fig. A.2) are given by the radius (𝑅 = 1 mm) and height (𝐻 = 1.6 mm) of the middle cylindrical
chamber and the cross section (𝑤 × 𝑑 = 0.5 × 0.3 mm2) of the channels. For the glycerol solution (99.6%)
used in this experiment, the corresponding resistance matrix elements are 𝜎𝑥′ ≈ 0.22 mbar·s/𝜇m, 𝜎𝑦′ ≈ 0.19
mbar·s/𝜇m, and 𝜎𝑧′ ≈ 0.68 mbar·s/𝜇m. We attribute this significantly higher resistance along the axial (𝑧′)
direction to the higher constraints that were applied to the axial flows by the noslip top and bottom surfaces of
the cylindrical chamber.

To demonstrate the capability of such stress-free flows for dynamic manipulations, we use the above
algorithm to determine the pressure setting P(𝑡) for a time-dependent 3D flow velocity v(𝑡). Using the 3D
Lissajous flow as an example, its velocity can be prescribed by v(𝑡) = (𝑎 cos(𝜔𝑡), 𝑎 sin(𝜔𝑡), 𝑏 cos(2𝜔𝑡)).
Given the ratio 𝑏/𝑎 and the angular frequency 𝜔 (here, 𝑏/𝑎 = 1.78 and 𝜔 = 0.79 rad/s), the pressures on
every port are readily computed by the above equation (Eq. A.17), which are shown in Fig. A.2a. These
computed pressure curves are fed into a USB-based multi-channel pressure regulator in real-time (controlled
by a computer) through custom software. The actual pressures applied to the six ports of the microfluidic
device are also measured by the regulator through the same software [Fig. A.2b], shown in great agreement
with the previously computed values [Fig. A.2a].



Appendix B

4 channel Stokes wind tunnel work

The first geometry analyzed was the case of 4 channels, the simplest way to exert control with the two layer
system. It was seen that for modes in plane with the channels, the streamlines extend smoothly through the
center of the chamber (Fig. B.1a), indicating a low amount of shear present for the flow mode. Examining
the change for shape deviations from an aspect ratio of unity, ˜̇𝛾𝑥𝑧 remains fairly uniformly O(1) in the central
region of the chamber (Fig. B.1b, and inset).
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Figure B.1: a) Streamlines from FEM simulations of the 4 channel Stokes wind tunnel. Coloring denotes flow
speed. Scale bar shows the range from 0 (blue) to maximum speed (red). Black lines along the upper side
of the tunnel guide the reader’s eye as to the shape. b) The resulting normalized shear strain rate component
˜̇𝛾𝑥𝑧 at the center of the chamber for the 𝑥-mode, for different aspect ratios. Inset shows relevant geometrical
quantities and a cross section of the 𝑥-𝑧 plane of the tunnel. Scale bar shows ˜̇𝛾𝑥𝑧 for the cross section ranging
from most negative (blue) to most positive (red). Grey arrow shows location of data point corresponding to
center of inset.

Any spreading of flow lines, and hence the amount of shearing, could be controlled by constricting the
region in which they may pass. By introducing cylindrically symmetric depressions to the top and bottom of
the central chamber that preserve a flat surface, such shearing reduction may be achieved while still allowing
for microscope observation (Fig. B.2a,b). Increasing the depth of these depressions does allow for a reduction
in ˜̇𝛾𝑥𝑧 to O(0.1), again for a fairly uniform region in the central chamber (Fig. B.2c).

Another chamber shape that preserves microscope viewability but still confines flow lines is achieved with
partial depressions, here swept out only in line with the channels in the top and bottom layers (Fig. B.3a,b).
Varying the depth leads to ˜̇𝛾𝑥𝑧 in the range of O(0.1 − 1) through a fairly uniform region (Fig. B.3c).
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B.1 4 channel symmetry analysis
We here present symmetry analysis for the 4 channel system in like manner to that in our previous work for
the 6 channel case[17]. Beginning with the 𝑥-flow mode, we derive two sets of flow field equalities. The first
set comes from taking the 4 channel system and performing a reflection about the 𝑥-𝑧 plane, under which no
change is made to the flow field: ⎧⎪⎪⎨⎪⎪⎩

𝑢(𝑥, 𝑦, 𝑧) = 𝑢(𝑥,−𝑦, 𝑧),
𝑣(𝑥, 𝑦, 𝑧) = −𝑣(𝑥,−𝑦, 𝑧),
𝑤(𝑥, 𝑦, 𝑧) = 𝑤(𝑥,−𝑦, 𝑧).

(B.1)

The second set comes from a reflection about the 𝑦-𝑧 plane, followed by time reversal which brings the flow
field back to its original configuration: ⎧⎪⎪⎨⎪⎪⎩

𝑢(𝑥, 𝑦, 𝑧) = 𝑢(−𝑥, 𝑦, 𝑧),
𝑣(𝑥, 𝑦, 𝑧) = −𝑣(−𝑥, 𝑦, 𝑧),
𝑤(𝑥, 𝑦, 𝑧) = −𝑤(−𝑥, 𝑦, 𝑧).

(B.2)

From these two sets of flow field equalities it is found that, for the velocity, only the 𝑢 component survives
at the center while 𝑣 and 𝑤 vanish. For the strain rate tensor, only γ̇𝑥𝑧 survives while all other components
vanish.

Next we analyze the 4 channel 𝑦-flow mode. With a 𝑦-𝑧 plane reflection under which no change is made
to the flow field, we have ⎧⎪⎪⎨⎪⎪⎩

𝑢(𝑥, 𝑦, 𝑧) = −𝑢(−𝑥, 𝑦, 𝑧),
𝑣(𝑥, 𝑦, 𝑧) = 𝑣(−𝑥, 𝑦, 𝑧),

𝑤(𝑥, 𝑦, 𝑧) = −𝑤(−𝑥, 𝑦, 𝑧).
(B.3)

Then, with an 𝑥-𝑧 plane reflection followed by a time reversal under which no change is made to the flow field,
we have ⎧⎪⎪⎨⎪⎪⎩

𝑢(𝑥, 𝑦, 𝑧) = −𝑢(−𝑥, 𝑦, 𝑧),
𝑣(𝑥, 𝑦, 𝑧) = 𝑣(−𝑥, 𝑦, 𝑧),

𝑤(𝑥, 𝑦, 𝑧) = −𝑤(−𝑥, 𝑦, 𝑧).
(B.4)

From these two sets of flow field equalities it is found that, for the velocity, only the 𝑣 component survives
at the center while 𝑢 and 𝑤 vanish. For the strain rate tensor, only γ̇𝑦𝑧 survives while all other components
vanish.

Finally we analyze the 4 channel 𝑧-flow mode. With a 𝑦-𝑧 plane reflection under which no change is made
to the flow field, we have ⎧⎪⎪⎨⎪⎪⎩

𝑢(𝑥, 𝑦, 𝑧) = −𝑢(𝑥, 𝑦, 𝑧),
𝑣(𝑥, 𝑦, 𝑧) = 𝑣(−𝑥, 𝑦, 𝑧),
𝑤(𝑥, 𝑦, 𝑧) = 𝑤(−𝑥, 𝑦, 𝑧).

(B.5)

Then, with an 𝑥-𝑧 plane reflection under which no change is made to the flow field, we have⎧⎪⎪⎨⎪⎪⎩
𝑢(𝑥, 𝑦, 𝑧) = 𝑢(𝑥,−𝑦, 𝑧),
𝑣(𝑥, 𝑦, 𝑧) = −𝑣(𝑥,−𝑦, 𝑧),
𝑤(𝑥, 𝑦, 𝑧) = 𝑤(𝑥,−𝑦, 𝑧).

(B.6)

Finally, with a rotation about the line 𝑦 = 𝑥, 𝑧 = 0 followed by time reversal under which no change is made to
the flow field, we have ⎧⎪⎪⎨⎪⎪⎩

𝑢(𝑥, 𝑦, 𝑧) = 𝑢(𝑦, 𝑥,−𝑧),
𝑣(𝑥, 𝑦, 𝑧) = 𝑣(𝑦, 𝑥,−𝑧),
𝑤(𝑥, 𝑦, 𝑧) = 𝑤(𝑥, 𝑦,−𝑧).

(B.7)

From these three sets of flow field equalities it is found that, for the velocity, only the 𝑤 component survives at
the center while 𝑢 and 𝑣 vanish. For the strain rate tensor, only γ̇𝑥𝑥 and γ̇𝑦𝑦 survive while all other components
vanish.
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B.2 Source and sink activation strategy derivation
For the 4 channel case we use pairs of sources and sinks to derive the activation strategies, but we cannot take
the pairs to be radial opposites of each other because the vertices of the tetrahedral arrangement do not possess
that symmetry as the octahedron had. As such, we must use all point sources/sinks in the calculation rather
than just working with the pertinent half as in Chapter 4. Their locations are taken to be

r′1 = 𝑎𝑥 − 𝑏𝑧 (B.8)
r′2 = 𝑎�̂� + 𝑏𝑧 (B.9)
r′3 = −𝑎𝑥 − 𝑏𝑧 (B.10)
r′4 = −𝑎�̂� + 𝑏𝑧. (B.11)

For the case of point sources having opposing sinks, we take W.L.O.G. 𝑚3 = −𝑚1 and 𝑚4 = −𝑚2. From Eq.
4.3, setting it equal to the direction of flow velocity 𝑢𝑑𝑥 + 𝑣𝑑 �̂� + 𝑤𝑑𝑧, we arrive at the proportionality

(𝑚1,𝑚2) ∝ − 𝑢

2𝑎
(1, 0) − 𝑣

2𝑎
(0, 1). (B.12)

With the same conditions, Eq. 4.4 equated to some strain rate tensor

γ̇𝑥𝑥𝑑𝑥𝑥 + γ̇𝑥𝑦𝑑𝑥�̂� + γ̇𝑥𝑧𝑑𝑥𝑧 + γ̇𝑦𝑥𝑑 �̂�𝑥 + γ̇𝑦𝑦𝑑 �̂� �̂� + γ̇𝑦𝑧𝑑𝑥𝑧 + γ̇𝑧𝑥𝑑𝑧𝑥 + γ̇𝑧𝑦𝑑𝑧�̂� + γ̇𝑧𝑧𝑑𝑧𝑧 (B.13)

gives

(𝑚1,𝑚2) ∝
γ̇𝑥𝑧𝑑

2𝑎𝑏
(1, 0) −

γ̇𝑦𝑧𝑑

2𝑎𝑏
(0, 1). (B.14)

Now we consider the case of point sources having opposing sources, W.L.O.G. 𝑚3 = 𝑚1 and 𝑚4 = 𝑚2.
Following an identical procedure, we arrive first at the result for velocity,

2𝑏(𝑚1 − 𝑚2) ∝ 𝑤𝑑 . (B.15)

We momentarily move on to the strain rate tensor result,

−2𝑚1𝑎
2 = γ̇′

𝑥𝑥𝑑 (B.16)

−2𝑚2𝑎
2 = γ̇′

𝑦𝑦𝑑 (B.17)

−2𝑚1𝑏
2 − 2𝑚2𝑏

2 = γ̇′
𝑧𝑧𝑑 , (B.18)

where the primes denote proportionality to the original unprimed components by an identical factor. Noting
the traceless nature of the strain rate tensor, the sum of all three equations gives

𝑚1 + 𝑚2 = 0, (B.19)

hence Eq. B.18 is trivially null on the left hand side, prohibiting any activation strategy from yielding that
component. The requisite activation strategy by Eq. B.19, (𝑚1,𝑚2) ∝ (1,−1), thus has the components γ̇𝑥𝑥𝑑

and γ̇𝑦𝑦𝑑 (c.f. Eq.s B.16 and B.17). This activation strategy, by Eq. B.15, only activates the 𝑤𝑑 component.



B.2. SOURCE AND SINK ACTIVATION STRATEGY DERIVATION 48

m

h

−1

−0.8

−0.6

−0.4

−0.2

 0

 0.2

 0  0.05  0.1  0.15  0.2  0.25

γ. xz
0

m/h

~

-20

20

γ
.
xz

~
x

z

x

y

z

a) b)

c)

Figure B.2: a) Outline showing the relevant geometric quantities of a cross section of the depressed tunnel.
Black lines show cross section that is symmetric about the vertical grey line axis. Depression depth is measured
from the top of the depression marked by the horizontal grey line. b) 3-dimensional version of the symmetric
depression geometry. The same depression viewed in the top is present in the bottom of the tunnel (not visible).
c) The resulting normalized shear strain rate component ˜̇𝛾𝑥𝑧 at the center of the chamber for the 𝑥-mode, for
different aspect ratios. Inset shows relevant geometrical quantities and a cross section of the 𝑥-𝑧 plane of the
tunnel. Scale bar shows ˜̇𝛾𝑥𝑧 for the cross section ranging from most negative (blue) to most positive (red).
Grey arrow shows location of data point corresponding to center of inset.
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Figure B.3: a) Outline showing the relevant geometric quantities of one cross section of the partially depressed
tunnel. Black lines show a cross section that is partially symmetric about the vertical grey line axis. Depression
depth is measured from the bottom of the depression marked by the horizontal grey line. b) 3-dimensional
version of the symmetric depression geometry. The same depression viewed in the top is present, but rotated
about 90◦, in the bottom of the tunnel (not visible). c) The resulting normalized shear strain rate component
˜̇𝛾𝑥𝑧 at the center of the chamber for the 𝑥-mode, for different aspect ratios. Inset shows relevant geometrical
quantities and a cross section of the 𝑥-𝑧 plane of the tunnel. Scale bar shows ˜̇𝛾𝑥𝑧 for the cross section ranging
from most negative (blue) to most positive (red). Grey arrow shows location of data point corresponding to
center of inset.



Appendix C

Additional 6 channel symmetry
arguments

In addition to the 6 channel symmetry arguments presented in our previous work[17], we present here the
arguments showing the modes are symmetry protected to perform their respective functions, three strainless
modes each having a single component of velocity activated at the center and two strainful modes each having
both no components of velocity and mutually exclusive components of the rate of strain tensor activated at the
center. We refer the reader to our conventions as described in Chapter 2.

We first address the 𝑦-flow mode as it will be useful for further analysis. Restating one set of velocity
relations for the 𝑦-flow mode as derived in our previous work, we have⎧⎪⎪⎨⎪⎪⎩

𝑢(𝑥, 𝑦, 𝑧) = −𝑢(−𝑥, 𝑦,−𝑧),
𝑣(𝑥, 𝑦, 𝑧) = 𝑣(−𝑥, 𝑦,−𝑧),

𝑤(𝑥, 𝑦, 𝑧) = −𝑤(−𝑥, 𝑦,−𝑧).
(C.1)

Trivially, then, at the center of the device, (𝑥, 𝑦, 𝑧) = (0, 0, 0), we have 𝑢(0, 0, 0) = 𝑤(0, 0, 0) = 0. Thus the
𝑦-flow mode is protected by symmetry, only ever allowing the possibility of a nonzero 𝑣 component at the
center.

Having established those relations, we use them to address the 𝑥-flow mode. We note that the 𝑥-flow mode
can be viewed as the superposition of two 𝑦-like modes: One by taking the 𝑦-flow mode rotated by −120◦
about the 𝑧-axis, and one by taking the 𝑦-flow mode mirrored about the 𝑦-𝑧 plane and rotated −60◦ about
the 𝑧-axis. Each of those 𝑦-like modes will possess the same two null flow components, the 𝑤 component
and the relative 𝑢 component after the specified transformations, at the center as the original 𝑦-flow mode.
Respectively, the only nonzero components allowed point in the −60◦ and 60◦ directions in the 𝑥-𝑦 plane.
Hence, the superposition will also have the superposition of those components, perfectly cancelling out the 𝑣

component and leaving behind only the 𝑢 component. Thus the 𝑥-flow mode is protected by symmetry, only
ever allowing the possibility of a nonzero 𝑢 component at the center.

Next we address the 𝑧-flow mode. We assume the 𝑥-𝑦 component of the flow field at the origin points in
an arbitrary direction. Then we rotate the chamber by 120◦ about the 𝑧-axis, thus rotating with it the direction
of the in-plane vector by 120◦. However, under that rotation the flow configuration is identical to the original
position. Hence, there can be no 𝑥-𝑦 component, 𝑢(0, 0, 0) = 𝑣(0, 0, 0) = 0. The 𝑧-flow mode is protected
by symmetry, only ever allowing the possibility of a nonzero 𝑤 component at the center. This completes the
description of symmetry protection for the three directional modes, as the previous work covers their null
strain rate tensor components at the center.

We add one final detail regarding the opposing 𝑥-flow mode. Following identical logic to the above argument
for the null 𝑤 component of the 𝑥-flow mode, we write the opposing 𝑥-flow mode as the superposition of two
opposing 𝑦-like modes: One by taking the opposing 𝑦-flow mode rotated by −120◦ about the 𝑧-axis, and one
by taking the opposing 𝑦-flow mode mirrored about the 𝑦-𝑧 plane and rotated −60◦ about the 𝑧-axis. Because
each of those opposing 𝑦-like modes has a null �̇�𝑧𝑧 component, their superposition, not changing the flow
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fields along the 𝑧-axis under reflection and rotations, must likewise have a null �̇�𝑧𝑧 component. This result
tightens up our symmetry protected components of the strain rate tensor, complementing the abstracted flow
analysis.
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