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A B S T R A C T

Forest ecosystems in the American west have long been influenced by timber harvests and fire suppression, and
recently through treatments that reduce fuel for fire management. Precisely quantifying the structural changes to
forests caused by fuel treatments is an essential step to evaluate their impacts. Satellite imagery-derived vege-
tation indices, such as the normalized difference vegetation index (NDVI), have been widely used to map forest
dynamics. However, uncertainties in using these vegetation indices to quantify forest structural changes have not
been thoroughly studied, mainly due to the lack of wall-to-wall validation data. In this study we generated forest
structural changes in aboveground biomass (AGB) and canopy cover as a result of fuel treatments using bi-
temporal airborne light detection and ranging (LiDAR) data and field measurements in a mixed coniferous forest
of northern Sierra Nevada, California, USA. These LiDAR-derived forest structural measures were used to
evaluate the uncertainties of using Landsat-derived vegetation indices to quantify treatments. Our results con-
firmed that vegetation indices can accurately map the extents of forest disturbance and canopy cover changes
caused by fuel treatments, but the accuracy in quantifying AGB changes varied by the pre-treatment forest
densities and treatment intensity. Changes in vegetation indices had relatively weaker correlations (coefficient of
determination < 0.45) to biomass changes in forests with sparse (AGB < 100Mg/ha) or dense biomass
(AGB > 700Mg/ha), than in forests with moderate-density (AGB between 100Mg/ha and 700Mg/ha) before
the disturbances. Moreover, understory treatments (canopy height < 10m) were poorly indicated by changes in
satellite-derived vegetation indices. Our results suggest that when relating vegetation indices to AGB changes,
researchers and managers should be cautious about their uncertainties in extremely dense or sparse forests,
particularly when treatments mainly removed small trees or understory fuels.

1. Introduction

Selective removal of forest fuels (i.e. fuel treatment) is a widely used
forest management and restoration practice with both economic and
ecological goals (Agee and Skinner, 2005; Kerr and Haufe, 2011;
Mitchell et al., 2009; Park et al., 2018). In the Sierra Nevada, California,
forest fuel treatments including logging, thinning, and mastication have
been conducted for many years (Knapp et al., 2013). The United States
Department of Agriculture Forest Service (referred to as USFS hereafter)
spent 52% of its annual budget on wildfire suppression and manage-
ment in fiscal year 2015, and this percentage is expected to increase in
the coming decades (Stephens et al., 2016a, 2018). These long-term and
broad-area treatments have significantly altered tree species and age

composition, as well as forest landscape structures (Agee and Skinner,
2005; Collins et al., 2011a; Mitchell et al., 2009; Parsons and
DeBenedetti, 1979). Consequently, forest ecosystem services and eco-
logical functions have also changed, including forest carbon stock, ve-
getation water use, wildlife habitat, and forest fire frequency and se-
verity (Bales et al., 2011; Battles et al., 2001; Stephens et al., 2009;
Tempel et al., 2014). Because these management practices are so im-
pactful on forest structure, accurate measurement of the changes to
forest structure as a result of fuel treatments is necessary, but doing so
remains challenging.

Accurate and timely quantification of forest changes in abundance,
production, and spatial pattern is a necessary step for forest fuel
treatment evaluation (Huang et al., 2009; Su et al., 2016a). Traditional
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forest fuel treatment evaluation has relied heavily on in-situ measure-
ments of tree height, diameter at breast height (DBH), tree density, and
distribution (Collins et al., 2015; Knapp et al., 2013). Due to the high
cost of field measurements in both time and labor, forest inventory data
were often limited to selected plots or transects. When these local
measures are scaled to landscapes or regions with auxiliary data, large
uncertainties can be introduced (Schroeder et al., 2014).

Remote sensing techniques have been widely used in forestry to
map and monitor forest dynamics (Cohen et al., 2016; Hansen et al.,
2013; Schroeder et al., 2011; White et al., 2016, 2017). The applica-
tions of optical satellite imagery in forestry have increased dramatically
at both temporal and spatial scales, particularly in the recent decade,
with open access to Landsat satellite imagery (Schroeder et al., 2017;
Vogelmann et al., 2017; Wang et al., 2016; White et al., 2017; Wulder
et al., 2012a). A number of satellite imagery-derived vegetation indices,
such as normalized difference vegetation index (NDVI), normalized
difference water index (NDWI), and normalized burn ratio (NBR) have
been developed to monitor forest dynamics. Among them, NDVI has
demonstrated to be a strong indicator of vegetation greenness, biomass
and water use, and has been widely used to quantify forest disturbances
and their recoveries (Gamon et al., 1995; Tucker, 1979; Veraverbeke
et al., 2012; Viedma et al., 1997). NBR, a combination of the near in-
frared and short wave infrared bands, has many applications for forest
disturbance detection, but is mainly emphasized for forest fire severity
mapping (Key and Benson, 2006; Miller and Thode, 2007). The Tas-
seled Cap Transformation (TCT) is another widely applied method for
quantifying the vegetation vigor, coverage, and density by extracting
the greenness, brightness, and wetness of the land surface from multi-
spectral satellite imagery (Crist, 1985; Crist and Cicone, 1984; Huang
et al., 2002). The Tasseled Cap Angle (TCA), calculated from the ratio of
greenness and brightness components in the TCT, has been successfully
used to characterize the spatio-temporal forest dynamics in north-
western Alberta, Canada (Gómez et al., 2011). Although these vegeta-
tion indices were widely used to map forest dynamics, their accuracies
in quantifying change in forest structures, such as canopy cover and
biomass, have not been fully studied. Some issues with these applica-
tions have been reported in previous studies. For example, the satura-
tion effect of vegetation indices, like NDVI, may cause its failure to
indicate the increase or decrease of structure parameters, such as
aboveground biomass (AGB) in forests with extremely high density and
large biomass, and thus may lead to the underestimation of forest
treatment (Gamon et al., 1995; Gao et al., 2000; Mutanga and
Skidmore, 2004). Moreover, shadows in mountainous areas and cloud
cover in satellite imagery may result in the spatio-temporal variations
in vegetation indices, which are unnecessarily related to forest dis-
turbances (Kennedy et al., 2010; Verbyla et al., 2008; Zhu and
Woodcock, 2012). A systematic evaluation of these uncertainties is
necessary to precisely assess the impacts of forest fuel treatments.
However, these evaluations are challenging, mainly due to the lack of
accurate and timely ground reference data for validation.

Light detection and range (LiDAR) is an active remote sensing
technique which can characterize three-dimensional forest structure
parameters with high accuracy (Coops et al., 2007; Kelly and Di
Tommaso, 2015; Næsset and Økland, 2002). Laser pulses emitted by
LiDAR sensor can penetrate through the forest canopy, and therefore,
are less impacted by the shadowing or saturation effects (Ma et al.,
2017a; Su et al., 2016a). Airborne LiDAR data combined with field
measurements have been successfully applied to map tree height
(Næsset, 1997; Næsset and Bjerknes, 2001), large tree density(Kramer
et al., 2016), crown base height (Popescu and Zhao, 2008), canopy
cover (Korhonen et al., 2011; Ma et al., 2017a), leaf area index
(Korhonen and Morsdorf, 2014; Zheng and Moskal, 2009), fire-related
forest stand structure metrics (Blanchard et al., 2011; Jakubowksi et al.,
2013; Kelly et al., 2017; Kramer et al., 2014), and aboveground biomass
(AGB) (Dalponte et al., 2018; Li et al., 2015; Luo et al., 2017; Su et al.,
2016b; Tao et al., 2014; Zhao et al., 2012) from the individual tree to

forest stand scale. LiDAR data have been increasingly used as an al-
ternative or auxiliary data source in forest inventory (Korhonen et al.,
2011; Wulder et al., 2012b). With continued accumulation of LiDAR
data over time and space, studies focusing on detecting and monitoring
forest structure changes from multi-temporal LiDAR data have in-
creased in the recent years (Ma et al., 2017b; McCarley et al., 2017; Su
et al., 2016a; Zhao et al., 2017). These successful applications demon-
strated the strong potential of using airborne LiDAR, combined with
field measurements, to provide a wall-to-wall validation data for eval-
uating the accuracies of satellite imagery-based quantification of forest
structure dynamics.

The objective of this study is to systematically assess the un-
certainties of satellite imagery-based vegetation indices in character-
izing fuel treatment-induced forest structural changes. The uncertainty
analysis focused on the capabilities of Landsat-derived vegetation in-
dices in quantifying the forest structural changes, resulted from fuel
treatments conducted at various intensities over different forest den-
sities. LiDAR data and field measurements derived forest structural
changes, primarily in AGB and canopy cover, were used as ground re-
ferences to evaluate the performances of four widely used Landsat-de-
rived vegetation indices in detecting and quantifying forest fuel treat-
ment in a conifer-dominated forest in the Sierra Nevada, California.
Results from this study can help to understand the effectiveness of and
uncertainties related to Landsat-derived vegetation indices in forest
treatment quantification and to provide guidance for forest manage-
ment and monitoring.

2. Materials and methods

2.1. Study area

The study site (39° 07′ N, 120° 36′ W) covers an area of 99.5 km2

and locates within the Tahoe National forest of the Sierra Nevada,
California. It is a mountainous area with the elevation ranging from
579m to 2184m above sea level (Fig. 1). This forest is dominated by
five major tree species: white fir (Abies concolor), red fir (Pseudotsuga
menziesii), incense cedar (Calocedrus decurrens), sugar pine (Pinus lam-
bertiana), and ponderosa pine (Pinus ponderosa). Broadleaf trees and
chaparral, primarily California black oak (Quercus kelloggii) and man-
zanita (Arctostaphylos spp), co-exist with the conifers, but in smaller
numbers. The climate is Mediterranean with an annual total pre-
cipitation of 1661mm/yr (averaged from water years from 2008 to
2013).

Fuel treatments were implemented in the study area as part of the
Sierra Nevada Adaptive Management Project, which was designed to
study how fuel treatments can affect fire risk, wildlife habitat, and the
water cycle (Hopkinson et al., 2017; Saksa et al., 2017). The majority of
the treatments were conducted between 2008 and 2013 within a
treatment boundary proposed by the USFS (the blue boundary in
Fig. 1). This area of forest was dominated by small to mid-sized conifers
with relatively high density (approximately 67% of canopy cover before
the treatment) as a result of long-term fire suppression before treat-
ments (Tempel et al., 2015). The fuel treatments were designed to re-
duce ladder fuels, or the forest fuels that provide vertical fuel continuity
and can preheat unignited canopy fuels in a fire (Kramer et al., 2016,
2014; Menning and Stephens, 2007). Thus, the treatments concentrated
on mechanical thinning at selected locations (Collins et al., 2011b) and
focused on low and mid-strata of canopy, with small to medium sized
trees removed. The study area and fuel treatments provide a natural
experiment to evaluate the effectiveness of Landsat-derived indices in
quantifying forest structure in two ways. First, the complex terrain and
fine-scale selective thinning likely provided a challenge for Landsat-
derived vegetation indices to quantify structural changes, and second,
the availability of detailed before and after treatment LiDAR data
provided detailed reference data with which to evaluate the accuracies
and uncertainties in measuring structure from Landsat.
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2.2. Data and methods

2.2.1. Field data
A total of 328 plots were surveyed in the field during the summer of

2008 and 2013 to characterize the forest structural changes from pre- to
post-treatment. The plot distribution started from a random point and
covered the entire study area in a 500m spaced grid. The plot density
was intensified (250m or 125m spacing) in two small instrumented
catchments for hydrological studies. Each plot was in circular shape
with an area of 500m2. In the pre-treatment (2008) plot survey, tree
height, diameter at breast height (DBH), species, and height to live
crown base were measured for individual trees in the plot, and the
measurements of trees with a DBH larger than 5 cm were recorded. In
the post-treatment (2013) survey, the DBH and tree height were re-
measured for individual trees in the sampled plots (Table 1).

Plot-level aboveground biomass (AGB) was estimated using the
Jenkins allometric equations (Jenkins et al., 2003) based on tree DBH.
The total aboveground biomass for each individual tree was calculated
following the general form in Eq. (1). Each species has specific equation

coefficient (b0, b1).

= +b b ln DBHACB exp( 0 1 ( )) (1)

The AGB (Mg/ha) in the plot location was the sum of the total
aboveground biomass over all field measured trees, and then divided by
the area of the plot (500m2). Detailed coefficients for each species can
be found in Jenkins et al. (2003). The same equations were applied to
estimate the plot-level AGB for both pre- and post- treatments.

2.2.2. LiDAR data
An Optech GEMINI airborne laser terrain mapper system was used

to acquire both pre- and post-treatment airborne LiDAR data within the
study area. The pre- and post-treatment LiDAR data were collected in
September 2008 and August 2013, respectively. The LiDAR data were
collected with a 67% swath overlap. The flight heights were between
600m and 800m aboveground. The LiDAR sensor has a scanning fre-
quency of 40–60 Hz and a scan angle of 12–14° on either side of nadir. It
collected up to four discrete returns per shot. The final LiDAR point
cloud had a total density of 10 points/m2 and first return density of

Fig. 1. The study area with the boundary of treated area proposed by the USFS. The locations of field measured plots are also shown on the map.

Table 1
A summary of field measurements by tree species. Parameters include the number of trees, DBH, tree height from both pre- and post-treatment. The values are
presented as mean ± standard deviation.

Tree Species No. of trees DBH, cm Tree height, m

Pre Post Pre Post Pre Post

White fir 3013 2250 25.49 ± 17.84 28.25 ± 19.25 12.80 ± 8.44 13.86 ± 9.48
Red fir 304 251 34.12 ± 19.49 33.88 ± 22.89 15.34 ± 10.10 14.99 ± 11.42
Incense cedar 568 452 26.39 ± 20.19 28.63 ± 21.68 10.59 ± 6.99 11.71 ± 7.83
Mountain dogwood 14 12 7.07 ± 1.7 8.17 ± 3.12 4.98 ± 1.07 6.30 ± 1.59
Live oak 53 40 11.63 ± 6.32 11.29 ± 4.37 5.96 ± 2.59 7.89 ± 4.8
Sugar Pine 691 558 38.36 ± 31.58 45.06 ± 33.12 17.49 ± 12.45 20.34 ± 13.36
Western white pine 16 11 24.63 ± 19.22 29.46 ± 21.66 10.3 ± 6.79 11.57 ± 8.38
Ponderosa pine 887 874 27.38 ± 20.33 27.96 ± 20.62 13.20 ± 8.97 13.85 ± 9.2
Douglas fir 1205 1061 28.27 ± 22.27 29.82 ± 22.30 15.25 ± 9.1 16.30 ± 10.05
Black oak 178 127 26.27 ± 18.93 24.18 ± 16.44 12.83 ± 6.21 11.32 ± 6.2
Sequoia 3 2 19.53 ± 15.76 33.8 ± 14.00 7.56 ± 6.88 13.55 ± 6.86
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8.2 points/m2 on average. A total of 800 ground GPS points were col-
lected to calibrate the two airborne LiDAR flights as well as to assess the
spatial accuracy. The spatial accuracy was similar between the two
LiDAR datasets, with around 10 cm in horizontal and 5–35 cm in ver-
tical.

Forest structure parameters, including AGB and canopy cover, were
generated from the LiDAR data and field plot measurements for both
pre-and post-treatment forest. First, The ground returns were classified
from all LiDAR returns using a filter algorithm (Zhao et al., 2016) in
LiDAR360 software. Then a digital terrain model (DTM) was generated
from LiDAR ground returns at 1m spatial resolution using the ordinary
Kriging algorithm (Guo et al., 2010). The digital surface model was
interpolated from the LiDAR first returns using a similar method as the
DTM. The canopy height model (CHM) was then calculated as the dif-
ference between DSM and DTM for both pre- and post-treatment LiDAR
data. The wall-to-wall AGB estimate was generated by applying the
plot-level relationship between field measured AGB and LiDAR CHM
metrics to the whole study area, as suggested in (Li et al., 2015; Ni-
Meister et al., 2010). The details of AGB estimation are introduced in
2.2.3. The canopy cover was calculated directly from LiDAR data as the
ratio of LiDAR first returns that were higher than the tree crown
threshold (Ma et al., 2017a) within each statistic grid. We used the 2m
as the height threshold of tree crowns as it is a commonly used
threshold to separate trees from non-tree vegetation (Ma et al., 2017a,b;
Nilsson, 1996), and also suitable for this study site according to field
measurements. For comparison, both AGB and canopy cover were cal-
culated at the same spatial resolution as Landsat imagery (30m by
30m).

2.2.3. AGB estimations
The wall-to-wall vegetation AGB maps were estimated using plot-

level relationships between LiDAR derived tree height metrics and field
measured AGB. Various methods have been developed for AGB esti-
mation from LiDAR data and field measurements (Valbuena et al.,
2017), including linear regression (Li et al., 2015; Magnussen et al.,
2015), exponential regression (Lim and Treitz, 2004), plot-aggregate
allometry(Asner and Mascaro, 2014), and machine learning (Gleason
and Im, 2012). Among them, the linear regression has advantages of
simplicity and relatively low risk of overfitting, while being able to
predict the majority of the variations in field-measured AGB, according
to a comparison study conducted using the same pre-fire LiDAR dataset
(Li et al., 2015). Therefore, in this study we implemented linear re-
gression following the equation:

= + +aH bH cAGB 2 (2)

where H is the LiDAR-derived the mean tree height (the averaged CHM
value within each plot), as suggested by Li et al. (2015); Ni-Meister
et al. (2010); a, b, and c are coefficients regressed from plot-measure-
ments and LiDAR metrics using the least-squares method. The linear
regression models were generated for pre- and post-treatment in-
dependently and applied to the study area. For comparison, we re-
sampled the AGB maps estimated from LiDAR and field measurements
into 30m resolution (referred as AGB maps, hereafter) and co-regis-
tered them to the satellite imagery. The AGB change was generated by
subtracting post-treatment AGB map from pre-treatment AGB map for
each pixel.

2.2.4. Satellite imagery
The pre- and post-treatment satellite images were obtained from

Landsat-5 TM and Landsat-8 OLI sensors in 2008 and 2013, respec-
tively. These surface reflectance images over the whole growing season
(June 1st to October 1st) were collected from the high-level top-of-at-
mosphere product in Google Earth Engine (Gorelick et al., 2017). The
pixels with cloud or snow cover were excluded from all images using
the mask developed by (Zhu and Woodcock, 2012). A maximum-value
composite (MVC) was applied to the annual images from both pre- and

post-treatments. The MVC method composited the annual images by
mosaicking the land-surface reflectance with the highest NDVI values
for each pixel (Holben, 1986). Comparing to using single-date imagery,
vegetation indices derived from MVC can better present variations in
vegetation greenness and less likely to be influenced by the atmospheric
effects or the difference in solar-sensor-geometry (Delbart et al., 2006).
Moreover, we homogenized surface-reflectance from Landsat-5 TM to
Landsat-8 OLI sensors using the regression-based method introduced in
(Su et al., 2017; Sulla-Menashe et al., 2016). The MVC of Landsat-7
ETM+ surface reflectance images obtained in both pre- (2008) and
post-treatment (2013) were calculated as a reference for sensor
homogenization. We randomly selected 100 samples (1 km by 1 km)
over the study area. Samples located in any black (no Landsat data)
strip were moved 10 km in a random direction to avoid the impacts
from the failed Landsat-7 ETM+ sensor on homogenization. The mean
values of MVC of surface-reflectance images within each sample were
used to build regression equations. These regression equations were
then applied to calibrate the whole MVC images from Landsat-5 TM
(2008) and Landsat-8 OLI (2013) into Landat-7 ETM+ in the corre-
sponding years for better comparison in vegetation indices between
pre- and post-treatment.

2.2.5. Vegetation indices calculation
Four vegetation indices were calculated to quantify structural

changes resulting from fuel treatments. They were: normalized differ-
ence vegetation index (NDVI), normalized difference water index
(NDWI), normalized burn ratio (NBR), and Tasseled Cap Angle (TCA).
NDVI, NDWI, and NBR are based on normalized differences between
two given surface-reflectance bands, which characterized the greenness
(Tucker, 1979), wetness (Su et al., 2017), and the ratio between the
photosynthesis vegetation and the bare ground (Miller and Thode,
2007), respectively (Eqs. (3)–(5)). The TCA was calculated as the angle
formed by the greenness and brightness components (Gómez et al.,
2011) derived from the Tasseled Cap Transformation of six surface-
reflectance bands (Eq. (6)). All the four vegetation indices were gen-
erated from the homogenized MVC Landsat surface-reflectance images
for both pre- and post-treatment. The differences in Landsat-derived
vegetation indices (referred as vegetation indices, hereafter) between
the post-and pre-treatment were compared with AGB changes.

= − +R R R RNDVI ( )/( )nir red nir red (3)

= − +R R R RNDWI ( )/( )nir swir nir swir1 1 (4)

= − +R R R RNBR ( )/( )nir swir nir swir2 2 (5)

= TCT TCTTCA arctan( / )Greenness brightness (6)

where Rnir , Rred, Rswir1, Rswir2 are homogenized MVC surface-reflectance
in near infrared band, red band, shortwave infrared band 1, and
shortwave infrared band 2, respectively. TCTGreenness and TCTbrightness are
the greenness and brightness components from the Tasseled Cap
Transformation (Crist, 1985) of homogenized MVC surface-reflectance.

2.2.6. Comparison between vegetation indices and AGB maps
The accuracies and uncertainties of vegetation indices in quanti-

fying forest biomass disturbances were evaluated by comparing them to
LiDAR-derived AGB maps. First, we compared the changes of vegeta-
tion indices and AGB maps qualitatively, in terms of their spatial ex-
tents and distributions of detected changes. We then quantified the
correlations between changes in vegetation indices and AGB maps at a
pixel-level using the Pearson’s correlation coefficients. The correlations
were evaluated over three different regions: (1) within the USFS pro-
posed treated boundary, (2) in the untreated area outside of the treat-
ment boundary, and (3) over the entire study area, including both
treated and untreated areas. The first two regions represented changes
either driven by human treatment, or caused by natural disturbances,
respectively; and the third region included changes induced by multiple
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potential causes. The comparison among the three regions enabled us to
evaluate the effectiveness of vegetation indices in quantifying changes
induced by different sources.

To assess the capability of vegetation indices in quantifying biomass
disturbances over forests with different densities, we categorized each
region into seven pre-treatment AGB groups, and compared their cor-
relations to AGB and canopy cover changes among groups. In addition
to forest density, the differences in the height level where the treatment
was conducted might also influence the usefulness of vegetation in-
dices. To evaluate this influence, we classified the treated area into four
height classes determined by the level where the majority of forest
structural loss occurred. The four height strata were defined as: 1–5m,
5–10m, 10–20m,> 20m, which represented the small tree/shrub,
small-mid tree, mid-large tree, and large tree, respectively. The selec-
tion of the height strata was made empirically by referring to in-situ
tree height measurements. We identified the height stratum of tree
structure loss from the changes in LiDAR point density for each 30m
pixel: first, we calculated the ratios of LiDAR points in each height
strata according to their aboveground height (z values); then we re-
corded the height stratum where the LiDAR point ratio experienced the
largest reduction from pre- to post-treatment; finally, we labelled the
treatment height level as the recorded height stratum for each pixel in
the treated boundary.

3. Results

3.1. AGB and vegetation indices maps

The plot-level AGB estimation from LiDAR-derived height metrics
showed strong correlations with field measurements in both pre- and
post-treatment datasets (Fig. 2). The correlation coefficients were si-
milar between the two datasets, 0.784 for pre-treatment and 0.783 for
post-treatment. The root-mean-squared-error between simulated and
measured plot total AGB were 4.881Mg and 4.822Mg for pre- and post-
treatment, respectively. Most of the LiDAR simulated AGB matched well
with field measurements, except for one plot where the LiDAR-based
total AGB was 10Mg lower than the field measurement in the pre-
treatment data.

The final LiDAR-derived AGB maps presented a wide range of bio-
mass varying from 0Mg/ha to 1500Mg/ha in the study area (Fig. 3).
Trees with large AGB values mainly clustered in the southwest
(500–1500Mg/ha), whereas the northeast of the study area had smaller
AGB values (0–200Mg/ha) (Fig. 3a and b). Within the USFS proposed

treatment boundaries, the majority of the area (65.11%) observed AGB
reduction after treatment (Fig. 3c). The mean AGB values within the
treatment boundary decreased from 265.64Mg/ha to 220.36Mg/ha,
and the standard deviation of AGB values also dropped from
183.53Mg/ha to 150.82Mg/ha. The AGB values in the remainder of
the proposed treated area (approximately 35%) remained unchanged or
slightly increased during the five-year period. Some areas outside the
treatment boundary (21.86%) also experienced obvious AGB decreases,
potentially up to 100Mg/ha during the past five years.

The NDVI maps and their changes show similar patterns to AGB
maps (Fig. 3), with higher values in the southwest and lower values in
the northeast. A significant drop in NDVI values can be observed within
the proposed treatment boundary, with the mean NDVI values changed
from 0.76 in the pre-treatment to 0.59 after treatment. The mean NDVI
value outside the treatment boundary indicated a marginal decrease in
AGB, which was ten times smaller than that inside the boundary.
Overall, the spatial extent and distribution of NDVI reduction matched
well with AGB changes. However, the NDVI change map failed to
capture some fine-scale isolated changes in forest biomass which were
obvious from the AGB change map.

The histograms of NDVI and AGB show different shapes, both in the
original values (Fig. 4a and c), and in the change values over the treated
areas (Fig. 4b and d). The AGB histograms over the whole area (Fig. 4a)
were right-skewed and peaked at low values (approximately 200Mg/
ha), whereas the NDVI histograms (Fig. 4c) peaked at large values
(approximately at 0.8) for both pre- and post-treatment datasets. Within
the treatment boundary, the histogram of AGB changes had a single
peak (around 0Mg/ha) and a long left-tail (Fig. 4b), but the histogram
of NDVI changes presented double-peak at −0.2 and 0, respectively.

3.2. Overall correlations between changes in AGB and vegetation indices

The correlations between changes in two LiDAR-derived forest
structural metrics (AGB and canopy cover) and Landsat-derived vege-
tation indices were significantly positive among all the four indices
(NDVI, NDWI, TCA, and NBR) (Fig. 5). Pearson’s correlation coeffi-
cients (R) among the four vegetation indices were consistent over the
whole area, varying from 0.42 to 0.43 in AGB and from 0.7 to 0.73 in
canopy cover. Vegetation indices were more sensitive to structural
changes in canopy cover than AGB, as R was 70% higher in canopy
cover than in AGB on average. The four vegetation indices demon-
strated strong linear correlations, particularly between NDWI and NBR
(R=0.97), and between NDVI and TCA (R=0.97).

Fig. 2. Scatter plots of total AGB from LiDAR data against field measurements at plot-level for both pre-treatment (left) and post-treatment (right) datasets. The
dashed line indicates the 1:1 line.
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Fig. 3. LiDAR-derived AGB maps for: (a) pre-treatment (2008); (b) post-treatment (2013); and (c) the difference between post- and pre-treatment. Landsat-derived
NDVI maps for: (d) pre-treatment (2008); (e) post-treatment (2013); and (f the difference between post- and pre-treatment.

Fig. 4. Histograms of AGB values: (a) over the study area from pre-and post-treatment; and (b) AGB changes within and outside the treatment boundary. Histograms
of NDVI values: (c) over the study area from pre-and post-treatment; and (d) NDVI changes within and outside the treatment boundary.
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The correlation matrixes derived from inside and outside the
treatment boundary were generally similar to that over the whole area.
Changes in vegetation indices are more sensitive to canopy cover than
AGB. However, the correlations were the strongest within the treatment
boundary (Fig. 5b), followed by the whole area (Fig. 5a), and were the
weakest outside the treatment boundary (Fig. 5c). On average, the
correlations between vegetation indices and canopy cover within the
treatment boundary were 100% higher than that outside the treatment
boundary. The correlation coefficient between NDVI and AGB was 0.54
inside the treatment boundary, but was as low as 0.11 outside the
boundary, although both correlations were significant at 99.9% level.
Since the four vegetation indices demonstrated similar responses to
forest structural changes, we chose the most widely used vegetation
index, NDVI, to further analyze its sensitives to AGB changes in dif-
ferent scenarios.

3.3. Correlations among various forest densities and treatment levels

Changes in NDVI can partly predict the spatial variations in the AGB
change map, and the strength of the prediction varied substantially
among forests with different biomass densities before treatments

(Fig. 6). Over the whole area, the coefficient of determination (R2)
between NDVI changes and AGB changes increased from low-biomass
forest (R2= 0.21 at 0–100Mg/ha) to medium-biomass forest
(R2= 0.49, 200–300Mg/ha), and the R2 declined between forests with
300–400Mg/ha and forests with 700–2000Mg/ha. A similar trend was
observed among AGB groups in the treated area, but the highest R2 was
achieved in a slightly large AGB group (R2=0.68 at 300–400Mg/ha)
compared to the whole area. More significantly, the NDVI changes in
the treated area demonstrated stronger prediction of AGB changes: the
R2 in the treated area was 81% higher than the whole area, and 500%
higher than the untreated area on average among all pre-treatment AGB
groups. Even in the largest pre-treatment AGB group, the R2 was as high
as 0.37 inside the treated area. Outside the treated area, the sensitivity
of NDVI changes to AGB changes were low in general (R2 < 0.2), and
the correlations were lower in forests with largest biomass. It should be
noted that the area of forests varied among AGB groups, as well as
between treated/untreated areas: the low-to-mid pre-treatment AGB
groups (0–400Mg/ha) occupied larger proportions of the study area
than the large groups (400–2000Mg/ha).

A further examination of the capability of NDVI to represent AGB
and canopy cover over forests of different densities for both pre- and

Fig. 5. Correlation matrices between changes in two LiDAR-derived structural parameters (AGB and canopy cover (CC)) and four vegetation indices (NDVI, TAC,
NDWI, NBR) for (a) the entire study area; (b) within the treatment boundary; and (c) outside the treatment boundary (untreated area).

Fig. 6. Correlations between changes in NDVI and
AGB grouping by pre-treatment AGB values in whole
area (light blue), inside the treatment boundary (dark
blue) and outside the treatment boundary (green).
The numbers on the bar indicate the Landsat pixels in
each group. (For interpretation of the references to
colour in this figure legend, the reader is referred to
the web version of this article.)
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post-treatment are presented in Fig. 7. Before the treatment, NDVI was
barely sensitive to AGB change in the densest forests (i.e. pre-treatment
AGB greater than 600Mg/ha in Fig. 7a), which indicated the saturation
effect of NDVI when relating to AGB in dense forests. The NDVI sa-
turation effect in NDVI was less severe within the treated area, parti-
cularly when relating post-treatment NDVI to AGB values (Fig. 7c). In
contrast, the saturation effect when relating NDVI to canopy cover was
marginal until the forest canopy cover approached full coverage
(100%) for all areas from both pre- and post-treatment datasets (Fig. 7b
and d).

The effectiveness of NDVI in quantifying fuel treatments was also
influenced by the height of the treatments. In this study, as there were
no detailed in-situ records on how forest treatments were conducted, or
what sizes of trees were removed, we used the relative changes in
LiDAR point density to classify treatments into different height strata.
In the highest stratum, most of the tall trees (height > 20m) were
removed; whereas in the lower ones, treatments were mainly focused
on small trees, shrubs, or understory fuels. An example from two typical
sites is shown in Fig. 8 depicting the difference between clear cutting of
large trees in> 20m height class (Fig. 8a and b) and understory fuel
removing in the 5–10m height class (Fig. 8c and d) is apparent from the

LiDAR point clouds. A correlation analysis between changes in NDVI
and AGB among the four treatment classes indicated that the strongest
correlation (R2=0.43) was observed in treated areas where the ma-
jority of LiDAR point density reduction occurred in the highest stratum
(height > 20m). The R2 dropped dramatically when the treatment
occurred in the lower canopy or closer to the ground surface (Fig. 9).
Overall, NDVI changes can better quantify AGB decrease induced by the
removal of larger trees rather than smaller trees or understory treat-
ments.

The sensitivity of NDVI to forest fuel treatments was influenced by
the combined effect of both pre-treatment forest density and treatment
intensity. To illustrate this combined effect, we further categorized the
decreased AGB pixels into four classes with similar pixel numbers but
different pre-treatment biomass densities and examined how NDVI re-
sponded to various amounts of AGB decrease among the four groups
(Fig. 10). Results indicated that in the low pre-treatment AGB group
(0–250Mg/ha) a slight reduction in AGB (40Mg/ha) could lead to
substantial decreased in NDVI (0.2 on average), whereas in the high
pre-treatment AGB groups (400–500Mg/ha and 500–1500Mg/ha), the
mean NDVI changes did not respond to AGB disturbances until the
reduction exceeded 80Mg/ha and 100Mg/ha, respectively. Overall,

Fig. 7. Boxplots comparing: (a) NDVI and grouped AGB over the entire study area pre-treatment; (b) NDVI and grouped canopy cover over the entire study area pre-
treatment; and (c) NDVI and grouped AGB for the treated area post-treatment; (d) NDVI and grouped canopy cover for the treated area post-treatment. The width of
box is proportional to the number of observations in each group.
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the NDVI was barely sensitive to fuel treatments in extremely dense
forests, but tented to be over-sensitive in sparse forests, even to mild
treatments.

4. Discussion

4.1. Comparison between vegetation indices and forest structural changes

Four widely used Landsat-derived vegetation indices were evaluated
regarding their effectiveness in quantifying treatment induced forest
structural changes. We found the difference among them was marginal
(< 10%); this suggests that the high collinearity among them (e.g.
Fig. 5) was partly due to the fact that all indices were generated from
the annual MVC surface reflectance data. MVC removed most of the
seasonal changes in vegetation (Delbart et al., 2006), and consequently
may also reduce the overall variations among the four vegetation in-
dices. NDWI was designed to detect the water availability (Gao, 1996;
Gu et al., 2007), whereas NBR was developed to indicate fire severity
(Key and Benson, 2006; Miller and Thode, 2007). Their applications in
monitoring forest biomass changes induced by treatments have been
less common than NDVI because NDVI is a stronger indicator of forest
greennes and biomass (Gamon et al., 1995; Tucker, 1979; Veraverbeke
et al., 2012; Viedma et al., 1997). The TCA integrated information from
six bands of Landsat data rather than two bands as the other three in-
dices (Gómez et al., 2011). Due to the higher complexity in TCA cal-
culation, the TCA-derived change does require more normalization
from field measurements to enable comparisons among sites (Gómez
et al., 2011), and thus may limit its applications in broad areas. Some
other indices, such as the enhanced vegetation index and reduced
simple ratio have also been used to monitor forest changes (Chen et al.,
2005; Jin and Sader, 2005), but less frequently in previous studies, and
thus their performances were not evaluated in this study. Overall, NDVI
has a longer history and broader usage in representing the forest
greenness, biomass, and leaf area index, and thus is more pervasive in
forest changes monitoring than the other indices (Gamon et al., 1995;
Tucker, 1979; Veraverbeke et al., 2012; Viedma et al., 1997).

Fig. 8. Examples of the changes in LiDAR point clouds after fuel treatments conducted in high canopy levels (Site 1 (a) and (b)) and low canopy levels (Site 2 (c) and
(d)).

Fig. 9. Correlations between changes in NDVI and AGB grouping by treatments
conducted at different height strata. The numbers on each bar indicate the
Landsat pixels in each class.
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Our results indicated that all the vegetation indices showed higher
correlations to changes in canopy cover than AGB (Fig. 5). Similar
conclusions have been suggested in some previous studies (Gamon
et al., 1995; Gao et al., 2000; Mutanga and Skidmore, 2004). Their less
sensitivity to AGB is mainly because vegetation indices often fail to
indicate the further increase of AGB in forests denser than a certain
amount. This phenomenon has been described as the saturation effect
of vegetation indices in a previous study (Mutanga and Skidmore,
2004). Gamon et al. (1995) found that the saturation effect in NDVI
when relating it to AGB and other structural parameters could be in-
fluenced by many factors, including vegetation type, canopy senes-
cence, soil background, and sensor and sun geometry. In this study, the
saturation effect of NDVI was apparent in relation to AGB, particularly
in the forests where pre-treatment AGB was larger than 600Mg/ha
(Fig. 7). In contrast, the saturation effect was marginal in relation to
canopy cover even if the canopy cover approached 100% (Fig. 7). The
stronger saturation effect in AGB might also be due to the larger un-
certainty in AGB estimation comparing to canopy cover. Although one
of the most accurate wall-to-wall AGB estimation methods was adopted
in this study (e.g. regression based on LiDAR-metrics and plot-measured
biomass), uncertainties could have been introduced from bias in field
measurements, as well as the generation of the relationship between
field-measured AGB and LiDAR metrics. The bias in AGB estimation
could be up to 25%, according to a study conducted in the same loca-
tion (Li et al., 2015). The canopy cover map, on the contrary, was
generated directly from LiDAR data, and thus had less sources of un-
certainties (Ma et al., 2017a).

In this study area, the NDVI saturation effect was less severe within
the treated area after the fuel treatment (Fig. 8), mostly due to the

decreased canopy density, and this also explained why the relationships
between changes in NDVI and AGB in treated area were stronger than
that over the whole area. Gamon et al. (1995) mentioned that satellite-
derived vegetation indices, such as NDVI and simple ratio, were
stronger indicators of green-biomass rather than total biomass. It is
possible that the correlations between NDVI and green-AGB could be
stronger than current NDVI and total-AGB relationships. However, due
to the lack of explicit information on whether the sampled trees were
dead or alive, with yellow, red or green leaves, it was difficult to dis-
tinguish green-AGB from total-AGB purely using LiDAR measurements.

4.2. Uncertainties related to forest densities

In this paper we analyzed the uncertainty by comparing responses of
NDVI to AGB and canopy cover changes under different forest densities
and treatment intensities. The uncertainty of using NDVI to quantify the
forest biomass changes was smaller in the medium-biomass groups
(200–300Mg/ha and 300–400Mg/ha) than the extremely low
(0–100Mg/ha) or high (700–2000Mg/ha) pre-treatment AGB groups,
as indicated by the variations in the correlations between changes in
NDVI and AGB in different forest density groups (Fig. 6). The larger
uncertainty can partly be explained by the over-sensitivity of NDVI to
AGB disturbance in sparse forests, and its saturation effect in extremely
dense forest. A minor AGB reduction in sparse forests can lead to sub-
stantial decrease in NDVI, whereas in extremely dense forests, NDVI
might not be responsive even to a decent amount of biomass removal.

Vegetation indices from time series satellite imagery have been used
to map forest treatments and evaluate their hydrological and ecological
impacts through relating changes in vegetation indices to reductions in

Fig. 10. Boxplots of NDVI changes in different AGB change groups. The four boxplots represent (a) pre-treatment AGB in small (0–250Mg/ha); (b) small-mid
(250–400Mg/ha); (c) mid-large (400–500Mg/ha); and (d) large (500–2000Mg/ha) groups. The width of box is proportional to the number of observations in each
group.
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basal area and/or biomass (DeVries et al., 2015; Huang et al., 2010;
Masek et al., 2008). However, our results showed that the robustness of
the relationships varied substantially by the pre-treatment forest den-
sities. In the low AGB areas, a small reduction (< 30Mg/ha) in biomass
could result in decent amount of NDVI decrease (up to 0.4). The re-
moval of some small trees in sparse forests may expose ground surface
and even bare earth, and result in the sharp decrease of NDVI to ex-
tremely low values (close to 0). In contrast, the NDVI values in ex-
tremely dense forests may remain unchanged after fuel treatments be-
cause NDVI is saturated even after removing some large trees.
Therefore, cautions should be paid to the over-sensitivity and saturation
effects in Landsat-derived vegetation indices when using them to
quantify forest biomass changes in either extremely sparse or dense
forests. Due to the limited coverage of LiDAR and field measurement in
this study, we only evaluated the Landsat-derived vegetation indices in
a typical mixed-conifer dominated forest. Results drawn from this forest
stand may be representative of Sierra Nevada mixed-conifer forests, but
not necessarily applicable to other regions with different biomes and/or
climates. More studies are needed to thoroughly evaluate the cap-
abilities and limitations of Landsat-derived vegetation and clarify its
uncertainties in biomass change quantification over large areas.

4.3. Uncertainties related to different treatments

Forest fuel treatments are a common management practice in Sierra
Nevada forests for many reasons, including wildlife habitat protection,
fire risk exclusion, and drought stress release (Knapp et al., 2013, 2017;
Park et al., 2018; Battles et al., 2001; Stephens et al., 2009). Depending
on the purposes, fuel treatments can be achieved in many ways. Some
fuel treatments focused on the removal of overstory trees, particularly
large trees (> 20 in. dbh), in order to reduce overstory canopy cover
and increase sunlight exposure in understory. Increasing the forest
heterogeneity both vertically and horizontally was critically important
for wildlife habitation protection, because spatial variations are desir-
able for sustaining adequate food and biodiversity at different scales
from forest stand to landscape (Franklin et al., 2002). For example, the
spotted owl prefers forests with snags and large trees for prey and
nesting (Stephens et al., 2016b; Tempel et al., 2014). In contrast, fire
suppression often focuses on thinning the surface fuel, tree ladders, or
small understory trees, because they are more likely to cause the spread
of fires, whereas large trees (dbh > 20 in.) are less impacted in forest
fires (Stephens et al., 2009). Responding to different forest management
goals, treatments are often conducted using a range of equipment and
methods, i.e. mechanical treatment, hand thinning, piling, and chain
removing (Knapp et al., 2017). Their impacts on forest structures will
vary accordingly, which could be challenging for treatment mapping
and biomass change quantification at regional scales using remote
sensing techniques.

In this study, we categorized fuel treatment levels by referencing to
the changes in point density over various height strata (Fig. 10) because
we lacked detailed documentation regarding treatment strategies. The
LiDAR data may not fully delineate forest structure changes due to
limitations in point density and laser penetration capability in ex-
tremely dense forests (Jakubowksi et al., 2013). However, by com-
paring the two LiDAR datasets, obtained using similar flight parameters
and in the same season, we considered the comparison of the point
clouds as an appropriate reference to categorize different treatment
strategies. Forest stands that were treated at high strata by removing
most of the tall and big trees were better quantified using vegetation
indices, whereas the biomass reduction caused by understory thinning
on small trees (< 10m) or understory fuels was more difficult to
quantify. Our results suggest that using Landsat-derived vegetation in-
dices to monitor forest fuel treatments or to assess the impacts on forest
structures is most reliable when the objectives were the removal of
overstory trees. Landsat-derived vegetation indices can be used to de-
tect some of the understory thinning or fuel reduction at certain levels,

but the uncertainties can be huge when the major biomass reduction
occurred lower than 10m. Our study characterized treatments merely
based on the changes in LiDAR-point density, more studies with de-
tailed documentation of treatment methods are needed to fully illus-
trate how well Landsat-derived vegetation indices can quantify biomass
changes.

5. Conclusions

Landsat-derived vegetation indices have been widely used to map
and monitor forest ecosystem dynamics over long-term periods from
regional to global scales. Our study evaluated their uncertainties in
indicating the forest biomass loss induced by forest fuel treatments
using wall-to-wall validation data derived from LiDAR and field mea-
surements. The four widely used vegetation indices, NDVI, NDWI, NBR,
and TCA, performed equally well in characterizing canopy cover loss
due to forest fuel treatments, but their capabilities in predicting var-
iations in aboveground biomass loss were less satisfactory. Focusing on
the most widely used vegetation index, NDVI, we found that un-
certainties mainly resulted from the saturation and over-sensitivity of
NDVI in representing the biomass changes at extremely dense or sparse
forests, respectively. In conclusion, vegetation indices like NDVI are
more suitable for quantifying biomass changes in forests with mid-
density ranges rather than extremely sparse or dense forests. The ac-
curacy of NDVI in predicting aboveground biomass changes were also
influenced by the treatment types, which decreased sequentially as the
treatments implemented from the over story to the ground surface.
Overall, vegetation indices from satellite imagery can detect and map
changes in canopy cover and land cover types induced by treatments
and other disturbances. However, when the objectives are to quantify
forest dynamics in carbon stock or water usage, researchers and man-
agers should pay more attention to the potential bias in applying ve-
getation indices over extremely dense or sparse forests. Moreover,
forest fuel treatments, such as surface fuel clearing and understory
thinning, are difficult to monitor precisely from Landsat-derived vege-
tation indices alone.
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