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Abstract

Categorical perception is a phenomenon in which people
are better able to distinguish between stimuli along a
physical continuum when the stimuli come from different
categories than when they come from the same category.
In a laboratory experiment with human subjects, we find
evidence for categorical perception along a novel
dimension that is created by interpolating (i.e. morphing)
between two randomly selected bezier curves. A neural
network qualitatively models the empirical results with the
following assumptions: 1) hidden “detector™ units become
specialized for particular stimulus regions with a
topologically structured competitive learning algorithm, 2)
simultaneously, associations between detectors and
category units are learned, and 3) feedback from the
category units to the detectors causes the detectors to
become concentrated near category boundaries. The
particular feedback used, implemented in an “S.0.S.
network,” operates by increasing the learmning rate of
weights connecting inputs to detectors that are neighbors to
a detector that produces an improper calegorization.

Introduction

Models of category learning typically assume that the stimuli
to be categorized can be described in terms of perceptual
features or dimensions, and that concept learning involves
linking these perceptual descriptions to categories (e.g.
Kruschke, 1992). As such, in these “feed-forward” models,
processing starts with a perceptual input, and output is in the
form of a categorization.

Although categorization is clearly dependent on
perceptual input, many researchers have also argued for a
reciprocal influence of concept learning on the development
of percepts (¢.g. Goldstone, 1995). The notion that concepts
can influence perception can be traced back at least as far as
the Sapir-Whorf hypothesis (Whorf, 1941). The current
work explores a version of this hypothesis, and provides a
computational mechanism for simultaneous, reciprocal
influences between perceptual inputs and acquired concepts.
The particular variety of conceptual influence on perception
explored here concerns whether specific regions of a novel
perceptual dimension can become perceptually sensitized if
the region is important for a leamed categorization. Our
modelling approach for accounting for the observed effects is
to develop topologically ordered “detectors” that tend to be
densely clustered at the boundary between categories.

Categorical Perception

The most relevant empirical support for categorical
influences on perceptual sensitivity comes from work on
“categorical perception” (for a review, see Harnad, 1987).

According to this phenomenon, people are better able to
distinguish between physically different stimuli when the
stimuli come from different categories than when they come
from the same category. For example, Liberman, Harris,
Hoffman, and Griffith (1957) generated a set of vowel-
consonant syllables going from /be/ to /de/ to /ge/ by varying
a particular physical value along a dimension. Results
showed that when the physical difference between speech
sounds was equated, subjects were better able to discriminate
between two sounds that belonged to different phonemic
categories such as /be/ and /de/ than they were able 1o
discriminate between two sounds that belonged within the
[be/ category.

Research in our laboratory has explored the
development of categorical perception during an
experimental session (Goldstone, 1994). Goldstone first
trained subjects in one of several categorization conditions in
which one physical dimension (e.g. size or brightness) was
relevant and another was irrelevant. Subjects were then
transferred to same/different judgments (“Are these two
squares physically identical?”). Ability to discriminate
between squares in the same/different judgment task,
measured by Signal Detection Theory's d’, was greater when
the squares varied along dimensions that were relevant
during categorization training. More relevant to categorical
perception effects, regions within a dimension were
selectively sensitized if they occurred at the boundary
between categories. For example, if objects less than 2.5 cm
belonged to Category A and objects greater than 2.5 ¢cm
belonged to Category B during training, then transfer results
indicated heightened sensitivity to this particular region of
the size dimension relative to other size values.

Sensitization versus Construction of Dimensions

The above experiments indicate that laboratory experience
can perceptually sensitize dimensions and local regions
within a dimension. The experimentally explored
dimensions that display categorical perception have been pre-
existing dimensions. For example, although laboratory
training can sensitize size or regions of the size dimension,
nobody doubts that our subjects have a notion of size as a
dimension by the time they participate in the experiment.
Although Goldstone (1994) found categorization-dependent
sensitization within the integral dimensions of color
brightness and saturation, categorical perception for truly
arbitrary dimensions has not yel been found. Such a
demonstration would argue for two levels of perceptual
learning. In the first, particular values of existing dimensions
are sensitized due to categorization demands. In the second,
new dimensions are developed for describing stimuli because
of their diagnosticity, or ability to cover the range of stimuli.
Some rescarchers have speculated that this second type of
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learning has been severely underestimated by the use of
laboratory stimuli that are clearly delineated into preexisting
dimensions such as orientation, number, and size (e.g.
Schyns, Goldstone, & Thibaut, 1995). The current
experiment explores whether learned categories can cause
sensitization of specific values along novel dimensions.

Experiment in Concept Learning Along an
Arbitrary Dimension

In this experiment, a categorization is created that depends on
the value of a stimulus along a new dimension. The new
dimension is created by selecting two similar, arbitrarily
curved objects, and treating these objects as endpoints on a
continuum. Intermediate objects are then created by blending
these endpoints in varying proportions. Thus, a negative
contingency between the proportion of two shapes is formed:
the greater the percentage of Shape A in an object, the less
Shape B will be present. The arbitrary dimension can be
considered as “the proportion of A relative to B” dimension,
although subjects may attend to a small region of the shapes
during categorization.  Subjects learn one of two
categorizations based on different cut-off values along this
dimension, and then are transferred to a task that measures
their perceptual sensitivity at various points along this
dimension.

Method

Subjects, One hundred and forty undergraduate students
from Indiana University served as participants in order to
fulfill a course requirement, not including 12 subjects whose
data was excluded for failing to meet a learning criterion of
70% correct categorizations. Forty-nine students were in the
left split categorization condition, 45 students were in the
right split condition, and 46 students were in the irrelevant
categorization condition.

Materials. Stimuli were bezier curves based on 9 control
points. Bezier curves are constructed by smoothly passing
curves through or near an ordered set of control points. Two
random bezier curves were constructed, and 60 intermediate
curves were generated by linearly interpolating between the
two random endpoints. From these 60 curves, the central 7
curves were selected as the stimuli to be displayed during
categorization. An additional set of 7 other curves, to be

used in the control categorization condition, were created in
the same manner from two different randomly chosen
random curves. In this manner, the 7 curves within a
dimension can be considered as intermediate frames from a
movie that morphs from one arbitrary shape to another. The
7 stimuli used are shown in Figure 1. By choosing only the
central 7 stimuli from the A-to-B continuum, the
categorization and perceptual discrimination tasks are set to a
reasonably high level of difficulty. Each stimulus was
approximately 9 cm wide by 7 cm tall, and was displayed at a
distance of 25 cm from the subject.

Procedure. There were two tasks in the hour-long
experiment - category learning followed by same-different
judgments. There were three categorization conditions: left
split, right split, and irrelevant categorization. As shown in
Figure 1, for the left split group, the first three curves to the
left belonged to Category 1, and the last four curves belonged
to Category 2. For the right split group, the first four curves
to the left belonged 1o Category 1, and the remaining curves
belonged to Category 2. For the irrelevant categorization
group, the first three curves from a dimension with
completely different endpoint shapes belonged to Category 1,
and the remaining curves belonged to Category 2.

During the categorization training, 40 repetitions of
the seven curves were shown in random order. On an
individual trial, a curve was shown in a randomly generated
location on the screen. The curve remained on the screen
until the subject pressed a key corresponding to their guess as
to the curve’s category. Category responses were made by
pressing the keys “1” and “2.” After a response was made,
feedback was given as to the correctness of the response, and
the correct category label was displayed. After 1.5 sec, the
screen was erased, and after another 1 sec, the next trial
began.

All three categorization training groups received the
identical subsequent discrimination experiment, using the
seven curves shown in Figure 1. Subjects were shown pairs
of adjacent curves as ordered in Figure 1, or the identical
curves repeated twice, and responded either “same” or
“different.” Subjects were instructed to press the “S™ key on
the keyboard if they believed the two curves to be physically
identical, and to press the “D” key if they believed the two
curves to differ in any way except location. The interval
between trials was 1500 msec. Subjects made 150
same/different judgments in all.
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Results

The data of principle interest are subjects’ sensitivitics at
discriminating between various pairs of curves, broken down
as a function of their categorization condition. A d' measure
of sensitivity was calculated. A d’ of 0 indicates a complete
lack of sensitivity in distinguishing “Same” from “Different”
trials; d' values increase as sensitivity increases.

O Left Split
3: X Right Split
2.84 M Irrelevant Split

1. 44—

18 B.37 84 4<5 5.8 - 8-7

Tested Stimulus Pair
Figure 2

With 7 curves there are 6 pairs of adjacent curves.
The d’ for each of these 6 pairs in each categorization
condition is shown in Figure 2. Overall, there were main
effects due to both tested pair, F(5, 122) = 4.3, p < .01, and
categorization condition, F(2, 122) = 6.5, p < .01. The
former effect seems to be attributable to subjects’ ability to
discriminate between stimuli 3 and 4 (from Figure 1) more
easily than other pairs. The latter effect is due to subjects in
the left and right split groups having elevated sensitivity
relative to the control groups. This effect is consistent with a
large literature showing that preexposure to stimuli leads to
their heightened discriminability (Hall, 1991).

Most relevant to learned categorical perception, a
significant interaction between categorization condition and
lested pair was found, F(10, 122) =2.9, p < .01. As such, the
categorization training in the first stage of the experiment
altered the discriminabilities of stimuli in the experiment’s
second stage. To better visualize the exact effect of this
influence, Figure 3 plots the sensitivity (d’) obtained from the
right split group minus the sensitivity from the left split
group, for each of the six pairs of adjacent curves. As such,
positive values signify greater sensitivity for the right split
group than for the left split group. Although the effects of
the splits are not symmetric, the general effect of
categorization training seems to be that discriminability is
relatively high for stimuli that fall near the category
boundary. Even if we restrict our attention just to the 3-4 and
4.5 pairs, significantly higher d’s are found when the pair
rests on a boundary that was influential for categorization (d’
= 2.54) than when it does not (d’ =2.08), F(1,122)=2.5,p <
01,
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Discussion

The pattern of sensitivity to regions of the continuum formed
by interpolating between two randomly selected bezier
curves varies across the three categorization groups. This
pattern is most accurately described as follows: ability to
discriminate between two physically different curves is
relatively high when the boundary between laboratory-
trained categories falls relatively close to the pair of curves.
Although there is only a substantial difference between the
categorization groups for three pairs, this generalization
applies to all six pairs in Figure 3 - sensitivity is higher for
the right split categorization group when, and only when, the
tested pair is closer to the right split than the left split.

Modelling Learned Categorical Perception
Along a Novel Dimension

One useful property of neural networks for
modeling leamed categorical perception is that hidden units
that intervene between input and output representations are
capable of creating internal representations that capture
important regularities in the inputted materials. Several
models develop hidden units that can be interpreted as
learned feature detectors (e.g. Schyns, 1992). Our model will
use this technique in order to create topologically ordered
feature detectors that tend to respond to specific values along
a arbitrary continuum.

Empirical and Theoretical Constraints on Modeling

There are several empirical results, with respect to
both categorization and subsequent perceptual sensitivity,
that a model of leamed categorical perception should show
(Harnad, 1987). First, categorization judgments should
rapidly change as the boundary between categories is
crossed. Second, categorization of “caricatured” items
(displaced away from a category's central tendency in the
direction opposite to the boundary between the categories)
should be at least as good, and often times better, than
categorization of the central tendencies of the categories
(Goldstone, in press). Third, sensitivity for discriminating
physically different stimuli should be higher when the items
straddle two categories than when they fall in a single



category. Fourth, the current results suggest that elevated
sensitivity should also extend to the regions next to the
category boundary.

While constrained by the above empirical findings,
our model is also constrained by two theoretical motivations.
First and foremost, we wanted to supplement the
unsupervised leamning of feature detectors with feedback
regarding categorization. The development of input-to-
detector weights is constrained by a competitive leamning
algorithm (Kohonen, 1982) such that detectors become
specialized for particular inputs, but is also influenced by the
category units. In essence, if a detector predicts an incorrect
categorization for an item, then it sends out an “S.0.S.
signal” calling for its neighboring units to quickly move into
the same area as the detector. Because detectors that
incorrectly categorized will attract other units, the boundary
between two categories will be particularly well populated by
feature detectors, and consequently the “S. O. S. network”
can predict flexible, learned categorical perception effects.

The second theoretical motivation for our model is
to develop categorical perception starting from relatively
raw, perceptual inputs. As such, the first stage of our
network converts gray-scale two-dimensional drawings of
curves to Gabor filter representations that describe the inputs
in terms of spatially organized line segments. The detectors
are trained upon these Gabor filter representations.

Details of the S.0.S. Network

The classification part of the model is a neural
network similar to ALCOVE (Kruschke, 1992). The hidden
layer of detectors are radial basis exemplar nodes maximally
sensitive to stimuli at the position of these exemplar nodes.
The output layer consists of nodes that classify the activation
pattern of these exemplar nodes. The crucial differences with
ALCOVE are that the exemplar nodes are topologically
arranged in a one-dimensional lattice, and exemplar nodes
can move their position in input space through competitive
learning. These features allow the model to self-organize the
exemplar nodes along the input dimensions. More
importantly, because the learning rate is set proportional to
the classification error, greater sensitivity near the category
boundary can be predicted.

We used materials of the same type as those used in
the experiment. A morphing sequence of 28 bezier curves
was created, with each picture having 128x128 pixels. Each
stimulus was filtered through Gabor filters (Daugman, 1985)
with overlapping receptive fields to extract local features.
Gabor filters with orientations of 0, 45, 90 and 135 degrees
operated on 6 x 6 overlapping receptive fields that were

regularly spaced over the input picture. In total then, the
Gabor filter output vector a, has 144 components. In figure
4a, one bezier curve is shown. Figures 4b, c, d and e, show
the filtered activations over the receptive fields in the four
orientations for this bezier curve. The transformation from
the stimuli in pixel space to the Gabor filter space preserved
the local similarity relations of the stimulus sequence; the
distance between the Gabor vectors for stimuli k and k+1
was always smaller than the distance of the Gabor vectors for
stimuli k and k+2. The inputs to the network are the
components g; of the filter vector a. The hidden, detector
node activation, aj, is determined by the radial basis
function:
1/2
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The weights, wj; are the positions of the detector nodes in the
input space. The drop off in sensitivity for patterns away
from wj; is determined by c. For each category k, there is an
associated classification node k, with activation, aj given by:
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The weights wy; connect hidden and output layers and f is the
sigmoid discriminant function. The probability of responding
with category k is determined by the Luce choice rule,

ow

a
FeK)l=" @
Xa

The sum of squamd error,
out \2
E=3(t,-a) | @
J

is based on the teacher signal ¢ for node k which is 1 if the
input stimulus belongs to category k, and 0 otherwise,
Gradient descent is used to update the weights. The
weights,wg; , from hidden to output nodes are determined by:
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where A is the learning rate. The position weights, wj; , of the
hidden nodes are updated with a compeu'live leaming rule,
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where the learning rate is proportional to a constant h and
two terms: the neighborhood function A(jj*) , and the
classification error E. In the function A(j j*), j* is the hidden
detector that has the smallest Euclidian distance to the input
pattern. A(jj*) is 1 for j=j* and falls off as a power function
of distance | j-j*I. This learning rule typically leads to a
partial or complete topological ordering of the position
weights wiji in input space (Kohonen, 1982). The important
factor in this model is that the learning rate in the competitive
learning rule is also proportional to the classification error E.
This leads to a distribution of detector positions that is more
dense in regions where classification error is greatest.

Results of Simulation

We performed simulations with 28 input pattemns,
14 hidden detectors, and two output nodes. In one
simulation, the split between the two categories was placed
between patterns 10 and 11 (left split). In another simulation,
it was placed between 18 and 19 (right split). In figures 5a
and b, the probabilities of responding with either category are
shown for the left and right splits, respectively. The
classification probabilities are highest between the extremes
and the prototypes of the categories; thus, the model exhibits
the often observed caricature effect whereby response is
maximal not at the prototype of the category (e.g. the
stimulus 5.5 for the left category in the left split condition)
but at a point displaced from the prototype in the direction
opposite to the other category. In figures Sc and d, the
responses aj for each of the 14 detector nodes are shown for
cach stimulus value. Each curve corresponds to the response
profile for one detector. These figures give some insight into
the distributions of the position weights wji of the hidden
nodes in input space, because activation aj is maximal for
input at the position weight wji. The figures show that the
hidden nodes are more densely distributed around the

categorization boundary as a result of the feedback of
classification error in the learning rule (6). These figures also
show that the detector node responses for patterns
surrounding the maximally responding detector
monotonically decrease with distance from this detector.
This reflects the preservation of the local similarity relations
by the spatial topology of the detectors.

A sensitivity measure for same/different judgements
in the model was constructed by taking the Euclidian distance
between the hidden node activation patterns for the two
patterns to be judged. In figure 5e and f, sensitivity is shown
for comparisons of patterns 1 and 3, 3 and 5, 5 and 7 etc.
The peak sensitivity occurs approximately at the category
boundary. This occurs because slightly different stimuli that
occur near the category boundary will cause substantially
different activation patterns on the detector units, given the
dense concentration of detectors in this region.

Discussion

The experiment and computer simulation support
the possibility that category learning can entail not only the
sensitization of regions of a preexisting dimensions, but can
also sensitize regions of new dimensions. The dimensions
are unlikely to have existed before the experiment because
they were created by interpolating between arbitrary curves.
The dimension is either interpretable as “Proportion of Shape
A relative to Shape B” or in terms of some smaller sub-
component that continuously changes from Shape A to B. As
with standard categorical perception effects, sensitization
relative to the control condition is greatest for stimuli at the
boundary between the categories.

The simulation provides insights into the
phenomenon of categorical perception along new
dimensions. First, Kohonen's self-organizing feature map
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algorithm is typically understood as developing detectors for
specific stimuli. Although this is certainly one way to
understand our network's behavior, it can also be understood
as creating detectors for regions along a dimension. Second,
the network shows how the structure implicit in stimuli that
fall along a new dimension can be captured by the
topological positions of detectors units. The natural
similarity relations between adjacent stimuli (in Figure 1)
leads, without supervision, to the construction of a locally
and globally well-ordered sets of detector units. Once the
network has settled, the detectors on the left and right ends
will be specialized for the two extreme curves, and the
detectors in between will handle the intermediate curves in
proper order.

The final major insight of the network’s treatment of
categorical perception effects, embodied by the S.0.S.
principle, is that these effects can be modelled by creating
relatively dense representations of items at the border
between categories. This treatment of categorical perception
differs from other neural network implementations
(Anderson, Silverstein, Ritz, & Jones, 1977; Hamad, Hanson,
& Lubin, 1994). In these other approaches, each category
has its own attractor, and the stimuli that fall into one
category will all be propelled toward the category’s attractor.
Categorical perception occurs because inputs that are very
close but fall into different categories will be driven to highly
separated attractors. In contrast, in our S.0.S. network,
categorical perception emerges because many detectors will
congregate at the category boundary, and thus small
differences at this boundary will be reflected by different
patterns of detector activity. There are two potential
advantages of our account. First, categorical perception
effects can arise even when there is no demand to categorize
the stimuli, once the detectors have moved toward the
boundary. This fits the requirements of the same/different
task well because physical identity, not category identity, is
the basis for these judgments. Second, our account explains
how stimuli falling on the same side of a category boundary
may also become more discriminable after categorization
training, if they are sufficiently close to the category
boundary. The results from the human experiment suggest
that this is the case for people. In networks that explain
categorical perception by creating different attractors for
different categories, unique items that are close to the
boundary but fall in the same category become more similar
with processing, not more distinctive.

In conclusion, category learning can lead to the
development of new dimensions. Once developed, regions
within these dimensions can be selectively sensitized if they
are important for determining category boundaries. The
qualitative effect of category learning on perceptual
sensitivity can be modeled by a neural network that
simultaneously develops detectors for dimension values and
associations between detectors and categories. Within this
framework, there is a top-down influence of categorization
that gives rise to categorical perception - when a detector
produces an improper categorization, then learning rates for
its neighboring detectors are momentarily increased. In this
manner, the difficult-to-categorize regions of a dimension
will gamer a high density of detectors, thereby permitting
sensitive discriminations at the category boundaries.
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