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A B S T R A C T

Heterotrophic respiration (Rh), microbial processing of soil organic matter to carbon dioxide (CO2), is a major,
yet highly uncertain, carbon (C) flux from terrestrial systems to the atmosphere. Temperature sensitivity of Rh is
often represented with a simple Q10 function in ecosystem models and earth system models (ESMs), sometimes
accompanied by an empirical soil moisture modifier. More explicit representation of the effects of soil moisture,
substrate supply, and their interactions with temperature has been proposed as a way to disentangle the con-
founding factors of apparent temperature sensitivity of Rh and improve the performance of ecosystem models
and ESMs. The objective of this work was to insert into an ecosystem model a more mechanistic, but still
parsimonious, model of environmental factors controlling Rh and evaluate the model performance in terms of
soil and ecosystem respiration. The Dual Arrhenius and Michaelis-Menten (DAMM) model simulates Rh using
Michaelis-Menten, Arrhenius, and diffusion functions. Soil moisture affects Rh and its apparent temperature
sensitivity in DAMM by regulating the diffusion of oxygen, soluble C substrates, and extracellular enzymes to the
enzymatic reaction site. Here, we merged the DAMM soil flux model with a parsimonious ecosystem flux model,
FöBAAR (Forest Biomass, Assimilation, Allocation and Respiration). We used high-frequency soil flux data from
automated soil chambers and landscape-scale ecosystem fluxes from eddy covariance towers at two AmeriFlux
sites (Harvard Forest, MA and Howland Forest, ME) in the northeastern USA to estimate parameters, validate the
merged model, and to quantify the uncertainties in a multiple constraints approach. The optimized DAMM-
FöBAAR model better captured the seasonal and inter-annual dynamics of soil respiration (Soil R) compared to
the FöBAAR-only model for the Harvard Forest, where higher frequency and duration of drying events sig-
nificantly regulate substrate supply to heterotrophs. However, DAMM-FöBAAR showed improvement over
FöBAAR-only at the boreal transition Howland Forest only in unusually dry years. The frequency of synoptic-
scale dry periods is lower at Howland, resulting in only brief water limitation of Rh in some years. At both sites,
the declining trend of soil R during drying events was captured by the DAMM-FöBAAR model; however, model
performance was also contingent on site conditions, climate, and the temporal scale of interest. While the DAMM
functions require a few more parameters than a simple Q10 function, we have demonstrated that they can be
included in an ecosystem model and reduce the model-data mismatch. Moreover, the mechanistic structure of
the soil moisture effects using DAMM functions should be more generalizable than the wide variety of empirical
functions that are commonly used, and these DAMM functions could be readily incorporated into other eco-
system models and ESMs.
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1. Introduction

Soil heterotrophic respiration (Rh) is an important component of the
global carbon (C) budget; releasing ∼51–57 Pg C year −1 (Bond-
Lamberty and Thomson, 2010; Hashimoto et al., 2015), which is ∼5–6
times greater than anthropogenic emissions (Le Quéré et al., 2014).
Temperature sensitivity of Rh in most biogeochemical models is often
represented with Q10 following Van’t Hoff and Lehfeldt (1899) and
Arrhenius (1889). Representation of empirically derived soil moisture
functions in some models further complicates the matter. Empirical fits
of precipitation and soil moisture effects on Rh generally rely on a
variety of site-specific non-linear (polynomial and parabolic) functions
(Linn and Doran, 1984; Schlentner and Cleve, 1985; Raich and Potter,
1995; Davidson et al., 2000; Savage and Davidson, 2001; Hanson et al.,
2003; Reichstein et al., 2003). By failing to address the underlying
biophysical processes mediated by soil moisture (and temperature);
these empirical functions often have limited applicability to other study
sites (Davidson et al., 2006a).

Soil moisture variation confounds the temperature response of Rh
by affecting the diffusion of soluble-C substrates at low moisture and
diffusion of oxygen (O2) at high moisture contents (Skopp et al., 1990;
Davidson et al., 1998, 2006a). When evapotranspiration exceeds pre-
cipitation under drying events, the reduced soil water film thickness
limits diffusivity of C substrates and extracellular enzymes to active
sites of enzymatic reaction and dampens Rh (Firestone and Davidson,
1989; Borken et al., 2006; Savage and Davidson, 2001; Cisneros-Dozal
et al., 2006). On the other hand, when precipitation follows a drying
event, a transient increase of Rh is often observed (Birch, 1958; Savage
et al., 2009).

The Rh pulse after rewetting of dry soil is known to be sustained by
resumption of microbial activity under favorable biophysical conditions
(Moyano et al., 2013). Easily metabolized substrates (e.g. osmolytes or

intracellular contents of dead microbial cells, photo-degradation pro-
ducts, and root exudates) accumulate during the drying event (Schimel
et al., 2007; Manzoni et al., 2012). Increased accessibility (or greater
mobility) of these substrates through hydraulically connected water-
filled pore space (Lawrence et al., 2009) likely stimulate Rh after a wet-
up event. These responses are often rapid, although they vary in in-
tensity and duration, depending on the duration of the drying event,
and the magnitude and timing of the pulse events that accompany
substrate supply to heterotrophs (Borken et al., 2003; Borken and
Matzner, 2009; Savage et al., 2009).

Substrate supply at the ecosystem-scale can also co-vary with tem-
perature. For example, diffusion of both soluble-C substrates and gases
(O2) increases with temperature and thereby can increase the apparent
temperature sensitivity of soil organic matter (SOM) decomposition
(Moldrup et al., 2000; Gu et al., 2004; Davidson et al., 2006a; Moyano
et al., 2013). Furthermore, seasonality of photosynthesis and below-
ground C allocation can influence the substrate supply to heterotrophs
and soil respiration (soil R) (Craine et al., 1999; Högberg et al., 2001;
Davidson and Holbrook, 2009; Reichstein et al., 2003; Wan and Luo,
2003; Curiel Yuste et al., 2004).

Together, moisture and substrate availability can obscure the tem-
perature response of Rh and may significantly influence the seasonal
and interannual variability of ecosystem C balance (Borken et al., 2006;
Cisneros-Dozal et al., 2006; Davidson et al., 2006b,c). Hence, use of a
more mechanistic module of Rh in ecosystem models and ESMs is
warranted to address important environmental controls that modulate
the apparent temperature sensitivity of Rh across different systems and
among seasons within a system (Davidson and Janssens, 2006; von
Lützow and Kögel-Knabner, 2009; Wieder et al., 2015; Luo et al., 2016).

Our main objective was to assess the impact of substrate supply and
soil moisture on temporal dynamics of Rh, by coupling a biophysical
soil enzyme kinetics model into a parsimonious ecosystem model at two

Fig. 1. Integrating DAMM (Dual Arrhenius and Michaelis-
Menten, Davidson et al., 2012) soil flux model into FöBAAR
(Forest Biomass, Assimilation, Allocation and Respiration,
Keenan et al., 2012) ecosystem flux model. Dashed arrows
represent CO2 fluxes from litter and three SOM Pools (fast,
passive, and slow pools), where we replaced FöBAAR’s algo-
rithms for Rh (Eq. (1)) with those of DAMM (Eq. (3)).
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forest sites in the northeastern USA. To do so, we used the DAMM (Dual
Arrhenius and Michaelis-Menten, Davidson et al., 2012, 2014) enzyme
kinetics model of soil respiration and a forest C cycle model, FöBAAR
(Forest Biomass, Assimilation, Allocation and Respiration, Keenan
et al., 2012) (Fig. 1) within a model-data fusion framework, using a
multiple constraints Markov-chain Monte Carlo algorithm (Raupach
et al., 2005; Williams et al., 2009). The DAMM and FöBAAR models
have overlapping and complementary domains. FöBAAR simulates ca-
nopy processes at high temporal resolution and C storage in vegetation
and soils at a range of short to long time scales. It allocates C to be-
lowground structures, but fast response soil processes depend on the
classic Q10 response functions. In contrast, DAMM mechanistically re-
presents fast responses of soil enzymatic processes, but it depends on
assumptions or inputs from other models regarding soil C turnover and
belowground plant allocation of C.

We have integrated subsurface soil process measurements with
surface chamber fluxes and landscape-scale tower fluxes, leveraging
ongoing eddy covariance and chamber measurements and allowing the
scaling-up of process-based models and soil-flux measurements to the
ecosystem scale in two AmeriFlux sites of northeastern USA (Howland
Forest, ME and Harvard Forest, MA). These two sites allowed us to
compare and contrast the value of the added mechanistic representa-
tion of Rh in each case and to examine how the same model structure
performs when parameterized to different sites. Model-data fusion
analyses have been conducted at both Harvard Forest (Keenan et al.,
2012, 2013) and Howland Forest (Richardson et al., 2010; Carbone
et al., 2016) using the FöBAAR model (or, its predecessor: data assim-
ilation linked ecosystem carbon model, DALEC), demonstrating how
different data streams (i.e. multiple constraints) contribute different
types of information (i.e. about processes operating at different tem-
poral scales) to the optimization, thereby reducing uncertainties. Both,
DAMM and FöBAAR share a common philosophy that model structures
should begin parsimoniously, and that complexity (including the
number of parameters that must be estimated) should be added only
when data are available to support it and when increased predictive
utility can be demonstrated (Keenan et al., 2013).

Here we present a parsimonious but more mechanistic module for
Rh that is readily incorporated into a broader ecosystem model. By
doing so, we intend to demonstrate how other ecosystem models and
ESMs could also adopt this approach. Our analysis is focused on the
following questions: (1) Does the integration of a robust but still par-
simonious model of Rh that explicitly simulates direct and indirect ef-
fects of temperature, moisture, and substrate supply into an ecosystem
model improve the overall model performance?; (2) Can the merged
model capture observed seasonal and interannual dynamics of re-
spiration?; and (3) How sensitive is the merged model and its simula-
tion of annual C budget components to variation in soil moisture, and
does that sensitivity vary by season?

2. Materials and methods

2.1. Site descriptions

We have focused on two AmeriFlux sites in New England region of
northeastern USA: Howland Forest near Howland, Maine, USA (45°12
N, 68°44 W), and Harvard Forest near Petersham, Massachusetts, USA
(42°32 N, 72°11 W). The Howland Forest research site is a mature
temperate-boreal transitional evergreen forest with hummock-hollow
microtopography (i.e. a flat to gently rolling terrain with a maximum
elevation change of lower than 68m within 10 km). This site is owned
by the Northeast Wilderness Trust, which has dedicated the site to
conservation and scientific research. The dominant tree species are red
spruce (Picea rubens Sarg.) and eastern hemlock (Tsuga canadensis (L.)
Carr.), with associated mixed hardwoods. This stand was selectively
logged (not clear-cut) early in the 1900’s, but has been minimally dis-
turbed since that time. The soils have never been cultivated and are

classified as Skerry fine sandy loam, Aquic Haplorthods. Mean annual
temperature is +5.5 °C, and mean annual precipitation is 1000mm. See
Fernandez et al. (1993) and Hollinger et al. (1999, 2004) for more in-
formation.

The Harvard Forest is a mixed deciduous hardwood forest, ap-
proximately 80 years old, with a hilly topography (elevation 340m,
http://harvardforest.fas.harvard.edu/gis-maps) and is owned and
managed by Harvard University. Stands in this forest consist primarily
of red oak (Quercus rubra) and red maple (Acer rubrum). Soils are
classified as Canton fine sandy loam, Typic Distrochrepts. Mean annual
temperature is +8.5 °C and mean annual precipitation is 1026mm. See
Compton and Boone (2000) and Savage and Davidson (2001) for more
information.

2.2. Data

2.2.1. Tower-based fluxes
Tower-based eddy covariance measurements of surface-atmosphere

exchanges of CO2, water, and energy fluxes have been made since 1996
and 1992 in Howland Forest (half-hourly interval) (Hollinger et al.,
1999, 2004) and Harvard Forest (hourly interval) (Wofsy et al., 1993;
Barford et al., 2001; Urbanski et al., 2007), respectively. Uncertainty
estimates for NEE were adopted from Hollinger and Richardson (2005),
where uncertainties were shown to follow a double-exponential dis-
tribution. Quality controlled hourly eddy-covariance observations (not
gap-filled) of NEE and LE (http://ameriflux.lbl.gov/) were used to op-
timize the ecosystem model. Note that half-hourly measurements were
averaged to hourly interval for Howland Forest tower data for a fair
comparison of model performance between both sites.

2.2.2. Soil Respiration (Soil R) Measurements
The same chamber-based system (Savage and Davidson, 2003) was

used for both Harvard and Howland Forests. Automated flux mea-
surement systems have been operational near the main eddy covariance
tower at the Howland Forest since 2004. Three sets of automated soil
respiration (soil R) data are available from near the Environment
Measurement Site tower at the Harvard Forest for 2003, 2010, and
2012–14. Manual flux measurements were available from both sites
since 1996 with approximately six to eight replicates.

While high frequency automated chamber measurements were
conducted during the snow-free growing season, manual flux estimates
were obtained on a weekly to monthly interval for the entire year as
conditions permitted. Both manual and automated measurements were
comparable, but, they provide a trade-off for capturing the temporal vs
spatial heterogeneity. Quality control was conducted using a series of
protocols following Savage et al. (2008). Uncertainties for soil R mea-
surements were characterized with the standard deviation of the flux
where measurement errors increase linearly with the magnitude of the
flux (Savage et al., 2009). See Savage and Davidson (2001, 2003) and
Savage et al. (2009) for further details. More information on Soil R
measurements is in the supplementary information (section, S1).

2.2.3. Root trenching for heterotrophic respiration (Rh)
We used classical root trenching experiment during 2013–15 at the

Howland Forest (Carbone et al., 2016) and during 2013–14 at the
Harvard Forest (Savage et al., 2013) to partition soil R into its auto-
trophic (Ra) and heterotrophic (Rh) components where the trench plot
fluxes provide data for Rh and the difference between trenched and
untrenched (control) plot provide constraints for root respiration (i.e.
Ra). At Howland Forest, triplicate trenches were dug, each with 1 au-
tomated chamber in it, by excavating soils from 1m depth covering an
area of 3m×3m. At Harvard Forest, one trench was dug to 50 cm
depth, with 4 automated chambers in it, covering an area of 5m×5m.
The trench was then lined with a plastic wrap to prevent root growth
back into the plots, and the soil layers were carefully backfilled. We had
three untrenched plots at Howland Forest and four untrenched plots at
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Harvard Forest. The CO2 fluxes measured in the trenched plots were
used to constrain Rh in the DAMM model.

2.2.4. Meteorological observations
Along with all soil R measurements, a soil temperature probe (Type-

T thermocouple) and a soil moisture probe (Campbell Scientific CS616
water content reflectometer probes) were installed in each plot that
recorded measurements half-hourly to hourly at 10 cm depth and stored
the data on a Campbell Scientific CR10X. We used soil temperature and
moisture measurements from the trenched plots for the DAMM model
optimization. For validation of the model, we used soil moisture and
temperature data from control chamber plots. Hourly gap-filled me-
teorological variables that drive the ecosystem model (incident photo-
synthetically active radiation (PAR), air temperature above the canopy,
soil temperature at 10 cm depth, vapor pressure deficit (VPD), and at-
mospheric CO2 concentration) were also obtained from site PIs. See
supplementary information (section, S2) for explanation of filling
missing data.

2.2.5. Ancillary data
Measurements of leaf area index (LAI), litterfall, woody biomass,

observer-based estimates of bud-burst and leaf senescence, and soil
organic C content were used as biometric constraints in the model.
Biometric measurements were taken from Harvard Forest data re-
pository (http://harvardforest.fas.harvard.edu/harvard-forest-data-
archive) and Richardson et al. (2010) along with a few recent mea-
surements from Howland Forest (personal communication, Holly
Hughes and John Lee). Soil C pool turnover rates were constrained
following Gaudinski et al. (2000) for Harvard Forest and Carbone et al.
(2016) for Howland Forest. Uncertainties for ancillary data were re-
presented as the standard deviation of all the available measurements.

2.3. Modeling approach

The FöBAAR model runs at a hourly time step, and is characterized
by about 35 parameters and 7 C pools (wood, foliage, roots, litter, and
three SOM pools), each with its own turnover rate varying in time from
days to decades (Keenan et al., 2012). Both evergreen and deciduous
plant trait versions of FöBAAR have been developed; the latter features
an additional 6 parameters that control the phenology of canopy de-
velopment and senescence. The model structure reflects a compromise
between the competing objectives of minimizing complexity (so that
the model is tractable, and only a limited number of observational data
are required as constraints) and including sufficient detail to represent
the major C cycling processes (canopy photosynthesis, allocation and
growth, litterfall, decomposition, and autotrophic and heterotrophic
respiration), and their relationships to climatic drivers.

FöBAAR calculates photosynthesis from two canopy fractions (sun
and shade; Sinclair et al., 1976, Wang and Leuning, 1998) using a
Farquhar/Ball-Berry approach (Farquhar et al., 1980; Ball et al., 1987;
Baldocchi, 1994), and then allocates C to autotrophic respiration, Ra
(growth and maintenance components), growth (leaves, wood, and
roots), and storage (nonstructural C). SOM dynamics are modeled using
a three-pool approach, with separate fast, slow, and passive pools
(Jenkinson et al., 1987; Parton et al., 1987). Litter and root C are
progressively transferred to the fast pool, then to the slow pool, and
finally to the passive pool; soil R is the aggregate of root respiration
(Ra) plus heterotrophic respiration (Rh) from the litter, fast, slow, and
passive SOM pools. Water fluxes are coupled to photosynthesis through
stomatal conductance, and feed back to soil water content through a
simple bucket model. Key drivers for the FöBAAR model include air
temperature, soil temperature, solar radiation, vapor pressure deficit,
precipitation, and atmospheric CO2 concentration. When constrained
with field measurements, the model has been used to simulate forest C
cycling on both fast (e.g. hours to days) and slow (decade+) time scales
(Keenan et al., 2012, 2013). In the FöBAAR model, Rh of litter and three

SOM pools are based on a simple temperature function like Q10:

Rhi=Rh0,i × Ci× f(T)× Δt (1)

f(T)= 0.5× exp. (βi × T) (2)

Where, Rh0 (i.e. base rate) and βi are parameters that vary among
pools, Ci (i represent litter, fast, slow, and passive SOM pool, respec-
tively). T is either air temperature (for litter pool) or soil temperature
(for SOM pools) and t stands for time. We have replaced these equations
with DAMM functions by introducing a reverse Michaelis-Menten (M-
M) equation (Eq. (3)), where bulk enzyme (EnzPool) in soil is diffused
to substrate through the water film and the amount of enzyme diffused
(i.e. active enzyme concentration for reaction, [Enzav]) depends on the
thickness of soil water film (Eq. (5)). Thus, we employed a water lim-
itation factor on top of the temperature limitation for Rh as follows:

Rhi=Vmaxi×Ci× ([Enzav]/(KmEnz+ [Enzav]))× ([O2]/
(KmO2 + [O2])) (3)

Vmaxi= αi× exp. (−Ea/(R× soil temperature)) (4)

[Enzav]=EnzPool×Diffusivity coefficient in liquid media× (soil
moisture, v v−1)3 (5)

[O2]=O2×Diffusivity coefficient in air× (air-filled porosity)4/3 (6)

The DAMM model simulates soil enzymatic processes using these M-
M, Arrhenius, and diffusion equations to account for both temperature
and substrate supply controls of Rh. It is a parsimonious simplification
that is somewhat analogous to early “big leaf” canopy process models
(Sellers et al., 1997), in that it simulates soil reactions as a “big mi-
crosite” in the soil. Consistent with the “big microsite” approach ar-
ticulated for the DAMM model structure (Davidson et al., 2014), we
assume that the majority of extracellular enzymes can be represented
by similar kinetic parameters, such as Ea and Km. Obviously, this is not
universally true (Tang, 2015; Tang and Riley, 2013), just as all leaves
simulated in “big leaf” models do not behave identically (Baldocchi and
Meyers, 1998), but representing soil microbial metabolism at a “big
microsite” permits model parsimony, and we test here its effectiveness.

The backbone of the DAMM model for aerobic soil R of a soluble C
substrate is a simple M-M equation with two substrates, soluble organic
C and O2 (Eq. (3)). The Vmax (maximum velocity of a reaction) and Km
(Michaelis-Menten half-saturation constant) are then linked to Ar-
rhenius functions, which builds temperature sensitivity into the model
(Eq. (4)). Diffusion equations simulate supply of the soluble C substrates
and extracellular enzymes through water films (approximated by the
cube of the volumetric water content, see Eq. (5) and Papendick and
Campbell et al., 1981) and O2 through air-filled pore spaces (as a power
function of air-filled pore space, see Eq. (6) and Davidson and
Trumbore, 1995). Thus, it adds soil moisture and air-filled porosity as
controllers of process rates in addition to temperature and substrate
supply. By combining M-M and Arrhenius kinetics, DAMM mechan-
istically demonstrates that the temperature dependency inherent in the
Arrhenius function for predicting Vmax is not always an important
controller of Rh when substrate concentrations (soluble C or O2) are
near their respective Km’s. Key drivers for the DAMM model include
soil temperature and soil moisture.

The effects of soluble-C substrate limitations at the enzyme reaction
site were explicitly represented in Davidson et al. (2012) using a soil
moisture-based diffusion equation combined with a forward M-M
equation. The authors noted that extracellular enzymes also diffuse
through soil water films to substrates, that enzyme diffusion has a si-
milar effect as substrate diffusion, and that both are implicitly re-
presented in the model by the same diffusion function. Moreover, we
have no a priori knowledge nor any direct constraining measurements
of microsite concentrations of either substrates or enzymes, so there is
no strong theoretical basis in this circumstance for choosing between
forward or reverse M-M kinetics. However, the reverse M-M equation
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(Eq. (3)) and explicit simulation of diffusion of extracellular enzymes to
substrates provides an advantage of maintaining a more parsimonious
model structure, because it avoids the need to simulate and para-
meterize functions for four separate soluble-C substrate pools that
correspond to the litter and three SOM pools of FöBAAR. In this case,
diffusion of substrates is implicitly represented by this function as well,
but we apply enzyme concentrations at the reaction site to the reverse
M-M equation. The heterotrophic CO2 production rates calculated by
the modified DAMM structure are added to aboveground and below-
ground autotrophic processes simulated by FöBAAR, which provide
estimates of total soil R, total ecosystem respiration, and net ecosystem
exchange of C.

Prior distributions for all parameters in the combined DAMM-
FöBAAR model are assumed to be uniform (non-informative or vague
prior, in a Bayesian context). Prior values for FöBAAR model para-
meters that represent canopy processes and autotrophic components of
soil R were directly obtained from Keenan et al. (2012). We had little a
priori knowledge for the parameters related to the maximum velocity,
Vmax of Rh in the DAMM module. Thus, prior ranges of pre-exponent
or base rate (αi) for litter and three SOM pools and activation energy
(Ea) were obtained by providing a reasonable bound to the best fit
model parameters from Davidson et al. (2012). Our prior range for half-
saturation constant of the enzyme (KmEnz) and enzyme pool (EnzPool)
brackets the estimates from Schimel and Weintraub (2003). A broad
prior range was assumed for half-saturation constant of O2 (KmO2)
where the upper bound was set to atmospheric concentration of O2

(21%, v v−1).
Estimates of bulk density and particle density, parameters that de-

termine total porosity, needed for the DAMM model were available in
Fernandez et al. (1993), Davidson and Trumbore (1995), and Davidson
et al. (2006a); we used these measurements made for the 0–10 cm soil
depth for this modeling work. Following Davidson et al. (2012), we also
set the diffusivity coefficient of soluble C substrate through water film
and O2 through air-filled pore space assuming two boundary condi-
tions. In saturated soil, all soluble C substrates are available at the re-
action site and under the perfectly dry condition; O2 concentration in
soil is identical to air-fraction. In the combined DAMM-FöBAAR model,
αi is a unitless (Log10) quantity, which is multiplied with Ci (g C m−2)
at each time step (i.e. hour) such that the model calculates Rhi for litter
and three SOM pools in the unit of g C m−2 hr−1 (see Eq. (3), note that
units for rest of the parameters on the RHS will cancel out).

We treated the initial size of all model pools as optimized

parameters. A chi-square test of acceptance or rejection was used to
determine which parameter sets were consistent with the observational
data at 90% confidence (Press et al., 1993), which has also bench-
marked by Fox et al. (2009). Our data uncertainty characterization
follows that of Richardson et al. (2010) where data streams with greater
confidence are accorded more weight in the cost function, thus, we
have assigned an uncertainty-weighted RMSE multiplier of 5 for hourly
NEE (Carbone et al., 2016).

For Howland Forest we ran the evergreen version of the model
(Carbone et al., 2016) and for Harvard Forest we ran the deciduous
version (Keenan et al., 2012) of the model. We optimized the model
using the period when we had Rh constraints for the DAMM module
from the trenching experiments along with the total soil R measure-
ments (from control plots) using automated chambers and eddy-cov-
ariance measurements from tower (2013–2015 for Howland Forest and
2013–2014 for Harvard Forest). Model validations were conducted for
decadal-scale soil R data as far back in as we have soil moisture mea-
surements within the tower footprint. Thus, we compared the perfor-
mance of DAMM-FöBAAR vs FöBAAR model for 2000–2012 in the case
of Howland Forest (both automated and manual soil flux) and
1996–2010 (manual soil flux) for Harvard Forest. These decadal-scale
datasets allowed us to evaluate if the DAMM-FöBAAR model can re-
produce the observed inter-annual variability in soil R better than the
FöBAAR-only version. We further assessed the sensitivity of the DAMM
module for annual soil R budget by altering soil moisture content by
0.5× and 2× times and soil temperature by +5 °C and −5 °C, re-
spectively.

3. Results and discussion

3.1. Overall agreement between data and model

3.1.1. Model calibration
DAMM-FöBAAR model calibration yielded lower cost functions for

the control plots (soil R) and the trenched plots (Rh) than the FöBAAR
model when optimized with 2013–15 dataset from Howland Forest
(Table 1). Peak soil R fluxes were generally a little higher in the Fö-
BAAR model than in the DAMM- FöBAAR model. For this reason, the
FöBAAR model tended to better capture the unusually high fluxes (both
soil R and Rh) in 2014 than the DAMM-FöBAAR model, but at the ex-
pense of a poor performance for a low flux year like 2015 (Fig. 2a,c).

DAMM-FöBAAR model calibration also yielded lower cost functions

Table 1
Overall performance of DAMM-FöBAAR vs FöBAAR model.

Optimization Validation

FöBAAR DAMM-FöBAAR FöBAAR DAMM-FöBAAR

Cost Func.a R2 Cost Func.a R2 Cost Func.a R2 Cost Func.a R2

Harvard multiyear (2013–2014) optimization Harvard multiyear (1996-2010) validation
Soil R 5.333 0.85 3.420 0.86 12.31 0.66 7.04 0.77-
Rh 6.325 0.81 4.560 0.83 – – – –

Howland multiyear (2013-2015) optimization Howland multiyear (2000–2012) validation
Soil R 5.418 0.55 3.060 0.57 5.48 0.64 5.36 0.66
Rh 6.385 0.59 4.011 0.62 – – – –

Harvard individual year validation for Soil R
2003 – – – – 1.89 0.73 1.36 0.83
2010 – – – – 16.92 0.39 3.28 0.64
2012 – – – – 4.12 0.74 3.17 0.81

Howland individual year optimization for Soil R Howland individual year validation for Soil R
2002 2.48 0.74 0.86 0.91 3.63 0.65 1.62 0.80
2010 3.53 0.51 2.65 0.62 4.07 0.33 3.11 0.38

Cost functions for long-term validation (2000–2012) in Howland Forest is calculated from automated dataset, but cost functions for manual fluxes are also similar. All goodness of fit
statistics (R2) values are significant at 5% (α=0.05) level of significance.

a Cost function is calculated as the average uncertainty-weighted model-data mismatch as follows: ∑ = = =(datat i ― modelt i) / data uncertaintyt i)2

Number of data points
.
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than the FöBAAR model when optimized with 2013–14 dataset from
Harvard Forest (Table 1). There was a general tendency for the DAMM-
FöBAAR model to follow the soil moisture dynamics in the summer,
which also coincides with a declining trend of Rh (and soil R) followed
by an increasing trend, particularly evident in late summer (August) of

2013 (Fig. 2b,d). The FöBAAR model at Harvard Forest typically fol-
lowed the seasonal trend of soil temperature, but did not capture the
drying down or wet-up events.

Although R2 values were only slightly improved in the DAMM-
FöBAAR vs the FöBAAR model for both forests during optimization, R2

Fig. 2. Model performance during optimization in Howland Forest (a,c,e,g) and Harvard Forest (b,d,f,h) for soil R (a,b) and Rh (c,d). Model outputs represent daily integrated values. Red
and turquoise lines in top two panels (a–d) represent output of DAMM-FöBAAR and FöBAAR model, respectively. Red and turquoise shading represent 90% CI based on a chi-square test
of acceptance or rejection for DAMM-FöBAAR and FöBAAR, respectively. Black circles are measured fluxes and dark grey whiskers are uncertainty of the measured fluxes. Light grey
shadings at the back represent summer months (June 1– September 30) for all years. Third panels (e,f) represent daily average soil temperature (°C). Daily integrated precipitation (cm,
dotted), and daily average soil moisture (%, volumetric, solid) are represented in the bottom panels (g,h). The horizontal dashed line in bottom panels (g,h) represents the threshold soil
moisture below which soil R is generally sensitive in these sandy soils (see text). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article).
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values were generally higher for Harvard Forest than at Howland Forest
(Table 1). Relatively lower R2 values at Howland Forest compared to
Harvard Forest can be attributed to sources of unknown variation not
accounted for (e.g. microsite variation between chambers due to
hummock-hollow microtopography in Howland Forest) in either model.
Additionally, the larger range of soil moisture in the Harvard Forest
than the Howland Forest may have captured larger variation by having
stronger effects of soil moisture at the Harvard Forest, an emergent
property of the Rh module in the DAMM-FöBAAR model. DAMM-Fö-
BAAR model in Harvard Forest also yielded lower cost functions during
optimization for nighttime NEE, but not in Howland Forest (Table S1).
In general, DAMM parameters were well-constrained, i.e. the spreads of
the accepted parameters were less than one-half the width of the prior
ranges, given uniform prior distributions. See Supplementary informa-
tion (section, S4) for discussion on the uncertainty of DAMM para-
meters.

3.1.2. Model validation using long-term dataset
Performance of the calibrated DAMM-FöBAAR model from Howland

Forest was marginally improved as compared to the FöBAAR-only
version when validated with decadal scale soil R dataset (both auto-
mated and manual fluxes; Table 1). In contrast, at the Harvard Forest,
the performance of the DAMM-FöBAAR model was markedly improved
compared to the FöBAAR-only version for the decadal scale validation,
as evident by the data-model mismatch and goodness of fit statistics
(Table 1). Further, residuals (i.e. observed-simulated Soil R) were
considerably negative at lower soil moisture and higher temperature
ranges for both sites for the FöBAAR-only model. Consequently, re-
siduals for the FöBAAR model were statistically significantly correlated
with soil moisture (positive) and soil temperature (negative), whereas
there was no significant correlation of residuals for the DAMM-FöBAAR
model (see Fig. S4 for more information).

Previously, Savage and Davidson (2001) observed a better fit of a
coupled temperature-moisture regression model in the Harvard Forest
compared to the Howland Forest, where a temperature-only model
generally captured the dynamics of soil R from multiple years. Simi-
larly, better performance of the DAMM-FöBAAR model in the long-term
run using the Harvard Forest dataset is likely due to its hilly topography
that frequently induces drying of soil moisture below an empirical
threshold value of 12% (v v−1) in summer, which previous work has
shown to simultaneously decrease soil R rates at these sites (Savage and
Davidson, 2001). In contrast, the generally flat, hummock-hollow
micro-topography and the nearness of the water table to the soil surface
at the Howland Forest may buffer the system from severe drying in
most years (Hollinger et al., 1999). Within this context, the number of
instances when≥ 14 consecutive days with<1mm precipitation in
the summer (June 1 to September 30) in last 20 years (1996–2015) was
more than three times more common in the Harvard Forest (14 in-
stances) than in the Howland Forest (4 instances). Although these two
sites are located within the northeastern USA New England region,
different site properties in these two forests explain why the moisture-
induced substrate supply effect in the DAMM-FöBAAR model was more
subtle at Howland Forest than at Harvard Forest for a longer time scale.

On a decadal scale (2000–2012), the time series of simulated soil R
for DAMM-FöBAAR and FöBAAR diverged (see Fig. 3a insets) whenever
volumetric soil moisture dropped below 12% for a brief period (e.g.,
2001, 2002, 2007, and 2010; Fig. 3c), but was almost similar for most
other times. Soil R dynamics were markedly altered due to drying-
wetting cycle only in two (2002, 2010) out of these four drying events.
Drying of soil in 2001 was too brief to induce severe water stress for Rh.
On the other hand, the 2007 drying event occurred in early autumn
which did not dampen the soil R rate much due to an accompanied
trend of decreasing soil temperature. Overall, the seasonal trend of soil
temperature dominantly controlled soil R fluxes in Howland Forest
which outweighs the moisture-induced substrate limitation effect of
DAMM-FöBAAR model on a decadal time scale.

Soil moisture at Harvard Forest was very dynamic where soil
moisture dropped below an apparent threshold value (12%, v v−1) in
response to summer drying events in eight out of fifteen years of vali-
dation period (Fig. 4c). There was a general tendency for the FöBAAR
model to over-estimate the peak soil R rates in dry summers (e.g. 1997,
1999, and 2001) and underestimate peak soil R in wet summers (2003,
2004, and 2008) (see Fig. 4a insets). The DAMM-FöBAAR model, on the
other hand, more accurately simulated these dynamics by modulating
the substrate/enzyme diffusion through water film. During dry sum-
mers, DAMM-FöBAAR model lowered peak soil R by limiting soluble C
substrates at the reaction site and during wet summers, DAMM-FöBAAR
model triggered peak R by increasing diffusion of soluble C substrate at
the reaction site. The effects of soil moisture variation during synoptic
drying events within individual dry years for both Howland Forest and
Harvard Forest are explored further in the supplementary information
(section S3).

Annual estimates of soil R based on linear interpolation between
manual sampling points shown in Fig. 3 and 4, following Davidson et al.
(1998) and Savage et al. (2008), are higher than annual sums from
either simulation model (Fig. 5). This disagreement could be due to
either overestimation of fluxes caused by interpolation or under-
estimated simulation fluxes during wetting events as discussed in the
supplementary information (Section, S3). More importantly for this
analysis, the combined DAMM-FöBAAR model produces a similar range
between max and min and a similar standard deviation among years as
the interpolated observations, whereas FöBAAR-alone simulated much
smaller inter-annual variation (Fig. 5), which appears to be largely due
to interannual variation of drying events and associated substrate
supply effects on Rh.

As was the case for calibration, decadal-scale validation using the
DAMM-FöBAAR model also better captured ecosystem respiration (i.e.
night-time NEE) for the Harvard Forest run as compared to the FöBAAR
model (cost function: 5.832 vs 7.195 in DAMM-FöBAAR vs FöBAAR
model, respectively), but not in the Howland Forest run. Previous stu-
dies at Harvard Forest by Barford et al. (2001) and Urbanski et al.
(2007) also indicated that ecosystem respiration was sensitive to soil
moisture during late summer in dry years that corresponds to a rela-
tively low rate of net ecosystem exchange of C. Lower ecosystem re-
spiration during the dry season is a common observation in other
ecosystems as well (Saleska et al., 2003; Xu et al., 2004). As soil R is a
significant component (40–80%) of the ecosystem respiration in our
study sites (Wofsy et al., 1993; Goulden et al., 1996; Phillips et al.,
2010; Davidson et al., 2006b), a better representation of soil fluxes may
translate into a better characterization of ecosystem C balance, and
thus, net ecosystem exchange of CO2 at the biosphere-atmosphere in-
terface. Given that both models were optimized using identical datasets,
but DAMM-FöBAAR outperformed FöBAAR in reproducing long-term
dynamics of soil and ecosystem respiration, it indicates that improved
functional forms of relationships between important processes and
drivers can improve overall model performance by reducing the
structural error of the model (Keenan et al., 2011).

3.1.3. Moisture effects across different ecosystems
In our temperate and boreal transition forests, substrate/enzyme

diffusion effects can be secondary to the seasonal effect of temperature
but more pronounced during drying and wetting events. Thus, the
combined DAMM-FöBAAR model should afford more confidence in
quantifying soil R dynamics in other ecosystems where episodic and
stochastic nature of precipitation events primarily drives seasonal cycle
of soil R (e.g. semi-arid, arid, and Mediterranean-type climate). To
improve simulation of wet-up events, Oikawa et al. (2014) applied the
DAMM model in a hot arid agricultural environment after adding a
third substrate pool that represented a proxy of transient labile-C pool,
which accumulated C substrate during the dry period and was released
upon rewetting of soil. Freeze-thaw cycle may also exert substrate
limitation on aerobic soil R by strongly limiting diffusion of soluble C
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and O2 across a narrow temperature range where soil water alters be-
tween ice and liquid water in soil pore space. Tucker, (2014) modified
the DAMMmodel to account for these structural and functional changes
in the soil during freeze-thaw events and was able to simulate large
swings in substrate/enzyme diffusion in liquid water near 0 °C, thus
explaining otherwise unrealistically large Q10 of soil R often reported at
temperatures spanning seasonally frozen soil conditions.

It is important to note that intrinsic temperature sensitivity (e.g. the
activation energy: “Ea” in Eq. (4)) remains constant but becomes less
important in DAMM when moisture limits substrate/enzyme supply at
the reaction site. In contrast, optimization of the FöBAAR model for dry
years (e.g., 2002 and 2010 in Howland Forest) resulted in lowering the
Q10 of litter and fast SOM pools, thus explicitly changing intrinsic
temperature sensitivity represented by the model structure (Fig. S5,
i–j). Alternatively, drying effects on Rh can be compensated by low-
ering the base respiration rate (or increasing the turnover time) of litter
or soil C pool in a Q10-styled model. This implies that an optimized

model with an inadequate structure for belowground processes, like
that in FöBAAR, may be able to provide the right answer but for the
wrong reason. Because the M-M equations in the DAMM-FöBAAR
model down-regulate the soil temperature effect on Rh from being fully
observed under substrate/enzyme-limited conditions, the intrinsic ac-
tivation energy does not need to change. We believe that this me-
chanistic linkage between Arrhenius and M-M kinetics makes the
DAMM-FöBAAR model more generalizable than model structures with a
variety of empirically derived soil moisture modifier(s) on Q10s.

3.2. Sensitivity analysis

We demonstrated how temperature sensitivity of annual soil R in-
teracts with substrate/enzyme diffusion using the DAMM-FöBAAR
model by modifying the soil temperature regime by +5 °C and−5 °C. It
is important to emphasize that once the model is optimized, the acti-
vation energy (Ea) of Rh was kept constant so that we can distinguish

Fig. 3. Model validation in Howland Forest using long-term dataset (2000–2012). Model outputs represent daily integrated values. Red and turquoise lines in the top panel (a) represent
output of DAMM-FöBAAR and FöBAAR model, respectively. Red and turquoise shading represent 90% CI based on a chi-square test of acceptance or rejection for DAMM-FöBAAR and
FöBAAR, respectively. Closed circles (automated) and open squares (manual) are measured fluxes. Dark grey whiskers are uncertainty of the measured fluxes. Light grey shadings at the
back represent summer months (June 1–September 30) for all years. Inset graphs represent soil R for two dry summers. Middle panel (b) represents daily average soil temperature (°C).
Daily integrated precipitation (cm, dotted), and daily average soil moisture (%, volumetric, solid) are represented in the bottom panel (c). The horizontal dashed line in bottom panel (c)
represents the threshold soil moisture below which soil R is generally sensitive in these systems in these sandy soils (see text). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article).
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Fig. 4. Model validation in Harvard Forest using long-term manual dataset (1996–2010). Model outputs represent daily integrated values Red and turquoise lines in the top panel (a)
represent output of DAMM-FöBAAR and FöBAAR model, respectively. Red and turquoise shading represent 90% CI based on a chi-square test of acceptance or rejection for DAMM-
FöBAAR and FöBAAR, respectively. Open squares are measured fluxes (manual) and dark grey whiskers are uncertainty of the measured fluxes. Light grey shadings at the back represent
summer months (June 1– September 30) for all years. Inset graphs represent soil R for dry (solid arrow) and wet (dashed arrow) summers, respectively. Middle panel (b) represents daily
average soil temperature (°C). Daily integrated precipitation (cm, dotted), and daily average soil moisture ((%, volumetric, solid) are represented in the bottom panel (c). The horizontal
black line in bottom panel (c) represents the threshold soil moisture below which soil R is generally sensitive in these systems in these sandy soils (see text). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article).

Fig. 5. Inter-annual variation in annual soil R for (a)
Howland Forest and (b) Harvard Forest. Boxes re-
present annual soil R of observed data, DAMM-
FöBAAR, and FöBAAR model, respectively.
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between intrinsic (i.e. due to inherent kinetic properties) and measured
(or ‘apparent’) temperature sensitivity of annual soil R as modulated by
substrate/enzyme variability at different soil moisture regimes. An in-
crease or decrease of soil temperature by 5 °C had less of an effect on Rh
in dry years than in wet years (Fig. 6a–b), because the diffusion of
soluble substrates/enzymes through disconnected water-filled pore
space primarily limits enzymatic reaction rates in dry years. In contrast,
when soluble substrate/enzyme availability at the reaction site was
high during wet years, significant increases and decreases of annual soil
R were observed at higher and lower temperatures, respectively. We
then calculated the apparent Q10 of annual soil R by taking the ratios of
simulated annual soil R at +5 °C and −5 °C for all years.

Apparent Q10 of annual soil R was only slightly greater than one in
dry years when substrate (soluble C) and enzyme availability was
limited, indicating very little apparent temperature sensitivity under
those conditions. The apparent Q10 was> 2 in wet years when sub-
strate (soluble C) and enzyme availability was significantly enhanced
(Fig. 6a–b), suggesting that the intrinsic temperature sensitivity
(Ea=70; equivalent to a Q10 of about 2.8 in this temperature range)
was nearly fully expressed. This sensitivity analysis offers a mechanistic
explanation of why apparent Q10 of Soil R often deviates from the in-
trinsic temperature sensitivity due to other environmental constraints
that dictate substrate/enzyme availability.

Varying soil moisture by 0.5× and 2× of the observed values fur-
ther sheds light on the importance of representing dual substrates (i.e.
soluble-C/enzyme and O2) using double M-M equations (see Eq. (3)) for
aerobic respiration in the DAMM model (Fig. 6c,d). For instance, there
was a general trend to decrease soil R with decreasing soil moisture
(0.5× of original) for dry years and increasing soil R for wet years.
Conversely, an increase of soil moisture (2× of original) tended to
increase soil R in dry years and decrease soil R for wet years. Soluble-C
substrate generally limits soil R in a dry summer, thus, lowering soil
moisture further limits the diffusion of soluble-C substrates/enzymes to
the reaction site. An increase in soil moisture, on the other hand, re-
lieves the constraints of diffusion through water films and increases soil
R. In a wet summer, however, solute diffusion may not be limiting, as
the soil water content may be sufficiently close to field capacity so that
solute diffusion is not strongly limited by soil water content. Instead, a
further increase in soil moisture would reduce soil R in wet summers by

limiting O2 diffusion into the soil when soil moisture exceeds field ca-
pacity and the pore spaces become mostly water-filled. A decrease in
soil moisture for a wet summer may not dry out the soil enough to limit
significantly soluble-C diffusion but could favor more diffusion of O2

through the soil air phase and ultimately increase aerobic respiration.
Thus, these patterns are consistent with our general understanding that
the peak soil R is observed at intermediate water contents (Linn and
Doran, 1984; Skopp et al., 1990). In this sensitivity analysis, the 2×
simulation resulted in some extended periods with soil moisture re-
maining above field capacity, which is unrealistic, so the sensitivity to
high soil moisture contents may be overestimated.

3.3. Scope for future improvements of the DAMM-FöBAAR model

In the present version of DAMM-FöBAAR, the bulk soil enzyme
concentration remains constant, but its concentration at the reaction
site varies due to diffusional limitations related to soil moisture.
Recently, Abramoff et al. (2017) incorporated the DAMM model in a
microbial physiology-based soil organic matter decomposition model,
MCNiP (Microbial Carbon and Nitrogen Phyisology), in which enzyme
production and turnover vary temporally through linkages between
carbon and nitrogen cycling processes and assumptions of carbon use
efficiency (CUE). The DAMM-MCNiP model reproduced frequently
observed seasonal hysteresis in the temperature-respiration relation.
Incorporation of similar MCNiP algorithms into DAMM-FöBAAR or
other ecosystem models and ESMs may provide further improvements,
although it adds more parameters and reduces parsimony. Because it
simulates both variation in enzyme production and diffusional con-
straints of substrate supply, DAMM-MCNiP was also able to apply
equilibrium chemistry approximation (ECA) kinetics, which may be
superior to using forward or reverse M-M approaches when enzyme and
substrate concentrations can be simulated or measured independently
(Tang, 2015; Tang and Riley, 2013). Similarly, incorporating microbial
CUE could be valuable, as it largely dictates the uncertainty in long-
term soil C stocks (Sihi et al., 2017), but also requires additional
parameterizations that remain challenging due to variation in its fun-
damental definitions and measurement techniques.

Fig. 6. Sensitivity analysis for (a, c) Howland
Forest and (b, d) Harvard Forest using and
+5 °C−5 °C of observed soil temperature (a,
b) and 0.5× and 2× of observed soil
moisture (c, d) for all data points using the
DAMM-FöBAAR model. Apparent Q10 values
are calculated using the ratio of annual soil R
between +5 °C and −5 °C of observed soil
temperature in both Howland and Harvard
Forest. Change in annual Soil R fluxes are
plotted on primary Y-axis and apparent Q10

values are plotted on secondary Y-axis (in a,
b) against observed precipitation in summer
months (June 1-Sept 30) for all years.
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4. Summary and conclusions

Soil moisture and substrate supply interact with temperature effects
on respiratory processes.

Empirically fitted Rh models with soil temperature and moisture
from a given study (or site) often fail to capture the full range of spatial
and temporal variation in soil R as these models mask the mechanistic
effect of substrate/enzyme supply on the enzymatic reaction rates. We
added a mechanistic representation of Rh within an ecosystem model
by combining the DAMM soil flux model with the FöBAAR model with
relatively little additional model complexity. Our combined DAMM-
FöBAAR model improved predictive capacity at one site (Harvard
Forest) in most years and at another site in two dry years (Howland
Forest).

Additionally, high frequency soil chamber measurements allowed us
to evaluate how the peaks and drops in soil R followed the trajectories
of soil moisture on seasonal and synoptic time scales at both sites. This
indicated that substrate/enzyme supply as affected by diffusion through
soil water films can be equally or more important during drying events
than the intrinsic temperature sensitivity on a synoptic time scale.
Sensitivity analyses by varying soil thermal and moisture regimes fur-
ther demonstrated that the combined model can explain much of the
observed variability in apparent temperature sensitivity of soil R often
reported from different studies across various ecosystems.

Our findings show that the mechanistic representation of Rh in the
combined DAMM-FöBAAR model appears to be robust across years and
for two different forests, despite their differing frequency of drying
events. Finally, the parsimonious structure of the DAMM module may
allow its application to a wider range of sites and could be implemented
into ecosystem and ESMs that focus on terrestrial-biosphere C ex-
change.
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