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Abstract

Increasingly affordable high-throughput molecular profiling technologies have made feasible the measurement of omics-
wide interindividual variations for the purposes of predicting cancer prognosis. While multiple types of genetic, epigenetic 
and expression changes have been implicated in ovarian cancer, existing prognostic biomarker strategies are constrained 
to analyzing a single class of molecular variations. The extra predictive power afforded by the integration of multiple omics 
types remains largely unexplored. In this study, we performed integrative analysis on tumor-based exome-, transcriptome- 
and methylome-wide molecular profiles from The Cancer Genome Atlas (TCGA) for variations in cancer-relevant genes 
to construct robust, cross-validated multiomic predictors for ovarian cancer survival. These integrated polygenic survival 
scores (PSSs) were able to predict 5-year overall (OS) and progression-free survival in the Caucasian subsample with high 
accuracy (AUROC = 0.87 and 0.81, respectively). These findings suggest that the PSSs are able to predict long-term OS in 
TCGA patients with accuracy beyond that of previously proposed protein-based biomarker strategies. Our findings reveal 
the promise of an integrated omics-based approach in enhancing existing prognostic strategies. Future investigations 
should be aimed toward prospective external validation, strategies for standardizing application and the integration of 
germline variants.

Introduction
Of the gynecologic cancers, ovarian cancer remains the most 
lethal, owing, in part, to the advanced clinical stage at presenta-
tion (1). The heterogeneity in disease outcomes, for which there is 
a strong biological component, prompts the need for methods that 
can reliably predict prognosis. Studies in the past have identified a 
number of biomarker strategies with prognostic value. The first and 
best known of these is the serum-based glycoprotein CA125 (1,2),  
which, despite providing limited sensitivity and specificity, is 
generally accepted to have clinical utility in predicting patient 
survival and response to chemotherapy (3,4). Since the 1981 iden-
tification of CA125, a number of other prognostic biomarkers have 
been identified. However, individually, none of these biomarkers 
have been able to surpass CA125 in performance, and the pool of 
clinically useful markers remains pitifully small (1,5). 

As rapidly maturing high-throughput technologies become 
affordable for clinical use, a natural course of action is to look 

for strategies to leverage the prognostic power of combinations of 
molecular markers. While the prognostic value of these markers 
may be weak individually, their integration in the form of marker 
panels may yet improve upon existing single marker-based strat-
egies. A number of studies have been proposed promising serum- 
and tumor-based biomarker panels for ovarian cancer survival 
(2,6–10) (Table  1). However, these investigations were restricted 
to single-type analyses of protein-, mRNA- and methylation-level 
signatures, and the prognostic potential of integrating of multiple 
levels of molecular variation data remains largely unexplored.

In the current study, we construct and evaluate a polygenic 
scoring system, designed to maximize the likelihood of robust 
predictions, for ovarian cancer prognosis based on the inte-
grative analysis of tumor-based exome-, transcriptome- and 
methylome-wide molecular profiles from 488 high-grade ovar-
ian serous cystadenocarcinoma patients in The Cancer Genome 

http://www.oxfordjournals.org/
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Atlas (TCGA). The prognostic performance of our multi-omics 
polygenic survival scores (PSSs) suggests superior predictive 
accuracy compared with previously proposed biomarker-based 
strategies, motivating further investigative efforts toward exter-
nal validation and clinical standardization.

Materials and methods
A workflow of the methods we employed can be found in Figure  1. All 
analyses were performed using SAS (v9.3) (SAS Institute) unless stated 
otherwise.

Ovarian cancer patient characteristics in the TCGA 
database

Our analyses were based on tumor molecular variation, demographic 
and clinical data of 488 high-grade ovarian serous cystadenocarcinoma 
patients who were included for analysis in the original TCGA publication 
(13). This data is hosted by TCGA in an online repository (https://tcga-data.
nci.nih.gov/docs/publications/ov_2011/). Select demographic and clini-
cal characteristics of the patient sample are given in Table 2. Of the 488 
patients, 380 (77.9%) were documented as being of Caucasian descent 
and 82 (16.8%) were documented as being of other races, while 26 (5.3%) 
patients had no data on race. At the time of diagnosis, the average age 
for the overall patient sample was 60.2 and 60.8 years for the Caucasian 
subsample. A total of 268 (54.9%) patients in the overall sample and 221 
(58.2%) patients in the Caucasian subsample had died of any cause by the 
end of follow-up. Three hundred and forty-nine (71.5%) patients in the 
overall sample and 272 (71.6%) patients of the Caucasian subsample were 
identified as having progressed or recurring disease at the end of follow-
up with median follow-up times of 30.26 and 30.05 months, respectively. 
Of the overall sample, 244 (50%) patients experienced disease progression 
or recurrence before death, while 199 (52.4%) of the Caucasian patients 
experienced both progression or recurrence and death. No statistical dif-
ferences between Caucasians and the overall patient population were 
found for any patient characteristics.

TCGA molecular variation data
In addition to clinical and demographic information, the TCGA reposi-
tory hosts data on tumor-specific molecular variations, including som-
atic mutations and variations in DNA methylation, mRNA expression 
and miRNA expression. The details of the biospecimen collection and 
processing and molecular variation measurement processes can be found 
in the Supplementary Information, available at Carcinogenesis Online, of 
the original TCGA publication. In brief, biospecimens were collected from 

patients with newly diagnosed ovarian serous cystadenocarcinoma who 
were undergoing surgical resection and had received no prior chemother-
apy or radiotherapy. Each frozen tumor specimen was paired with a com-
panion ‘normal’ tissue specimen, which could be adjacent normal tissue, 
peripheral lymphocytes or previously extracted germline DNA. Each case of 
ovarian serous adenocarcinoma was histologically confirmed by a board-
certified pathologist. The AllPrep DNA/RNA mini kit (Qiagen) was used to 
isolate DNA and RNA fractions from tissue. Exome sequencing was per-
formed for tumor and matched normal tissues by The Genome Center at 
Washington University, the Broad Institute and the Human Genome Center 
at Baylor College of Medicine. Somatic mutation calls were performed 
using an automated pipeline and subsequently validated and annotated, 
as described in the original TCGA publication. Only functional muta-
tions, defined as missense mutations most likely to generate functional 
changes that enhance tumor proliferation, as identified by the Cancer-
specific High-throughput Annotation of Somatic Mutations (CHASM) 
method, were retained for our analyses. CpG-site methylation variations 
were accessed using the Illumina Infinium HumanMethylation27 plat-
form, as described in the original publication. For the purposes of this 
study, only CpG sites within the promoter region, 5′ UTR, and first exon 
were evaluated. Tumor mRNA expression levels were measured using the 
Agilent 244K Whole Genome Expression, Affymetrix HT-HG-U133A and 
Affymetrix HuEx arrays. Normalized cross-platform expression measure-
ments were combined to create a unified standardized expression set for 
11 864 genes. miRNA expression in tumor tissues was measured using the 
Agilent 8 × 15K Human array and subsequently quantile normalized, and 
log2 transformed using the Subio Platform (v1.18) (Subio).

Selection of candidate genes
In total, we analyzed 451 genes and the miRNAs known to target them 
(Supplementary Table I, available at Carcinogenesis Online). These genes 
were selected from two sources: the original TCGA ovarian cancer report 
(13) and Vogelstein et  al. (14). The TCGA gene set is composed of genes 
with functional somatic mutations, copy number variations or mRNA 
expression that formed a part of a transcriptional signature associated 
with overall survival (OS). The Vogelstein gene set consists of validated 
driver oncogenes and tumor suppressors. miRNAs targeting the TCGA 
and Vogelstein gene sets were identified from experimentally validated 
miRNA–gene interactions cataloged in the starBase (v2.0) noncoding RNA 
interactions browser (http://starbase.sysu.edu.cn). Specifically, miRNA–
gene interactions are considered validated if they are confirmed by two or 
more independent chromatin-linked immunoprecipitation experiments. 
In all, TCGA molecular variation data was available for 451 genes selected 
based on the above-mentioned criteria.

Endpoints
The definitions for OS and progression-free survival (PFS) we used are 
identical to those used in the original TCGA publication (13). In brief, OS 
was defined for each patient as the interval from the date of initial surgi-
cal resection to the date of death or last known contact with the patient. 
Progression-free time was defined as the interval from the date of initial 
surgical resection to the date of progression or recurrence or the date of 
the last known contact. Patients who had died but whose progression 
or recurrence statuses are unknown were excluded from our analyses 
of PFS.

Abbreviations 	
AIC 	 Akaike information criterion
AUC/AUROC 	 area under the receiver operating characteristic
FDR 	 false discovery rate
OS 	 overall survival
PFS 	 progression-free survival
PSSs 	 polygenic survival scores
ROC 	 receiver operating characteristic
TCGA 	 The Cancer Genome Atlas 

Table 1.  Previously proposed prognostic biomarker strategies for ovarian cancer 

Strategy Study Sample size Endpoint(s) Accuracy Validation

Longitudinal serum CA125 Mano et al. (11) 92 1-, 3-, 5-Y OS 0.67, 0.75, 0.73 None
Longitudinal serum CA125 Chiang et al. (12) 218 3-Y OS 0.85 Cross
Panel: tumor baseline CA125, KLKs, 
Spondin-2

Oikonomopoulo et al. (8) 98 1-Y OS 0.65 Cross

Panel: tumor protein signature Riester et al. (10) 1525 5-Y OS 0.62 External
Panel: tumor baseline KLKs Oikonomopoulo et al. (8) 98 1-Y PFS 0.75 Cross
Panel: tumor KLKs + clinical, 
including chemo response

Zheng et al. (9) 259 1-Y, 5-Y PFS 0.80, 0.88 Cross

KLK, kallikrein.

https://tcga-data.nci.nih.gov/docs/publications/ov_2011/
https://tcga-data.nci.nih.gov/docs/publications/ov_2011/
http://academic.oup.com/carcin/article-lookup/doi/10.1093/carcin/bgy055#supplementary-data
http://academic.oup.com/carcin/article-lookup/doi/10.1093/carcin/bgy055#supplementary-data
http://starbase.sysu.edu.cn
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Screening individual variations for survival 
association
Somatic mutation, mRNA expression and promoter DNA methyla-
tion data for the 451 candidate genes and miRNA expression data for 
the miRNAs targeting them were individually evaluated for association 
with patient survival. This was done by individually fitting each vari-
ation into a minimally adjusted Cox regression model with covariates 
for age at diagnosis (continuous), tumor stage, residual tumor size fol-
lowing primary surgical resection and self-reported race. Adjusted haz-
ard ratios were calculated as a measure of association between each of 
the variations and OS or PFS for both the total patient population and 
the Caucasian subsample. As the frequencies of certain somatic muta-
tions are low, rather than regressing individual somatic mutations, an 
ordinal gene-level variable was created that reflects the total number 
of functional mutations each patient has for a particular gene. This 
method enhanced our statistical power and reduced the total number 
of variations to be analyzed. mRNA and miRNA expression were treated 
as continuous variables, and hazard ratios were calculated based on one 
unit increments of normalized microarray signal intensities. Similarly, 
methylation was individually analyzed at each promoter, 5′ UTR, and 

first exon CpG site as a continuous variable with a range from 0 (com-
pletely unmethylated) to 1 (completely methylated). To reduce the num-
ber of potential false positive results stemming from multiple testing 
as well as the number of variations retained for subsequent analyses, 
the Benjamini–Hochberg method for controlling the false discovery rate 
(FDR) (15) was used to generate an FDR-adjusted P-value (q-value) for 
each variation. Only variations exhibiting a q-value < 0.10 were consid-
ered to be associated with survival and retained for further analyses.

Polygenic Cox model construction
We used the model building procedure described by Shtatland et al. (16). 
to select predictors from the pool of survival-associated variations to con-
struct endpoint-specific polygenic Cox models. In brief, this procedure 
consists of four distinct steps designed to reduce estimation bias and gen-
erate models capable of robust predictions, performed using the SAS (v9.3) 
statistical analysis software.

First, we applied endpoint-specific stepwise Cox regression to FDR-
qualified variations from the single variation analyses, as well as age at 
diagnosis, tumor stage and residual tumor size with critical P-values of 

Figure 1.  A workflow of the methods we used to build and evaluate the PSS.
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SLENTRY and SLSTAY close to 1 (0.99 and 0.995, respectively) to build a 
complete stepwise sequence starting with the null model with no predic-
tors and ending with the full model consisting of all potential predictors. 
The models in this sequence were ordered in a way that maximized the 
increment in likelihood at every step. Using this method, in the case of k 
potential predictors, we would have k potential candidate models rather 
than the 2k models in a typical stepwise regression procedure:	

0
1
2

1 1

1 1 2 2

1 1

Null
β
β β

β

x
x x

k x

+
¼ ¼

++ + +β β2 2x xk k  ...

We also obviate the need to choose an arbitrary critical P-value cut-
off. The result is a procedure that generates a list of candidate models 
for model selection (Step 2) without torturing the data, an important step 
toward building robust models when working with a large number of 
potential predictors, as in our case.

The second step involved calculating the Akaike Information Criterion 
(AIC) of each of the k models in the full stepwise sequence. AIC is asymp-
totically equivalent to leave-one-out cross-validation (16,17), but when the 
sample size n is small, AIC can lose its asymptotic optimal properties and 
become severely biased. In such cases, a corrected AIC, the AICc is applied:

AIC AIC
( )

( )c = +
+

- -
2 1

1

k k

n k

Where n is the sample size and k is the number of potential predictors. 
The use of AICc also protects against overfitting, as a penalty is imposed 
on models with higher k. The AICc was applied to our models for OS, 
where the ratio n/k was smaller than the recommended threshold of 
40 (18).

In the third step, we identified a set of the top AIC-optimized models 
for each endpoint. Visually, these ‘model bouquets’ represent the cluster 
of models with the lowest AICs (or AICcs) for each endpoint. As a further 
measure to increase model stability, we built our final endpoint-specific 
polygenic Cox models by retaining all predictors from the endpoint-spe-
cific model bouquets.

In the fourth and final step, a shrinkage factor was imposed to reduce 
the magnitude of the regression coefficients for the polygenic models for 
OS as a further measure against estimation bias:

l
M k

MAIC

AIC AIC

AIC AIC
=

- -
-

( ) ( )
( ) ( )

0
0

Where AIC(M) is the AIC of the full model, and AIC(0) is the AIC of the null 
model.

Table 2.  Select demographic and clinical characteristics of TCGA ovarian cancer patients

Characteristic Total population (N = 488) Caucasians (N = 380) P-value*

Age at diagnosis, mean ± SD 60.22 ± 11.43 60.80 ± 11.31 1.00
Tumor stage, N (%)
  IIA 3 (0.61) 2 (0.53) 0.93
  IIB 4 (0.82) 3 (0.79)
  IIC 17 (3.48) 7 (1.84)
  IIIA 7 (1.43) 6 (1.58)
  IIIB 21 (4.30) 14 (3.68)
  IIIC 353 (72.34) 280 (73.68)
  IV 79 (16.19) 65 (17.11)
  Unknown/missing 4 (0.82) 3 (0.79)
Residual tumor size, N (%)
  No macroscopic disease 90 (18.44) 62 (16.32) 0.61
  1–10 mm 223 (45.70) 192 (50.53)
  11–20 mm 30 (6.15) 20 (5.26)
  >20 mm 89 (18.24) 70 (18.42)
  Unknown/missing 56 (811.48) 36 (9.47)
Progression, N (%)
  Yes 349 (71.52) 272 (71.58) 0.46
  No 137 (28.07) 108 (28.42)
  Unknown/missing 2 (0.41) 0 (0.00)
Vital status, N (%)
  Alive 215 (44.06) 156 (41.05) 0.61
  Deceased 268 (54.92) 221 (58.16)
  Unknown/missing 5 (1.02) 3 (0.79)
Progression-associated survival, N (%)
  Progression + deceased 244 (50.00) 199 (52.37) 0.86
  No progression + alive 112 (22.95) 85 (22.37)
  No progression + deseased 24 (4.92) 22 (5.79)
  Progression + alive 103 (21.11) 71 (18.68)
  Unknown/missing 5 (1.11) 3 (0.79)
Follow-up months, median (IQR) 30.26 (12.10–47.57) 30.05 (12.35–47.47) 1.00
  Chemotherapy, Na 0.85
  Intraperitoneal (IP) 59 50
  Intravenous (IV) 411 331
  Oral 29 27
  Other 2 2
  Unknown/missing 104 72

aSome patients were administered chemotherapy through multiple routes.

*P-values derived from t-test for continuous variables and chi-square test for categorical variables.
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Polygenic survival score
A system was created to score patients based on the molecular and clin-

ical/demographic predictors in the polygenic Cox models. The PSS represents 
a continuous predictor of survival; the higher a patient’s PSS, the poorer the 
predicted survival. Values for the predictors (tumor variations + age, tumor 
stage, residual tumor size) in each polygenic Cox model were first converted 
to z-scores and regressed together in endpoint-specific z-score-standardized 
polygenic Cox models. Afterward, PSSs were calculated by summing the 
products of patients’ z-score-standardized predictor values × their respect-
ive coefficients from the endpoint-specific polygenic Cox models:

PSS , , ,j E
i

n

xij E i Ez= ´
=
å

1

β

Where PSSj,E is the PSS for the jth patient for endpoint E, zxi is the z-score of 
the ith predictor, and βi is the regression coefficient for zxi. In all, four types 
of PSSs were calculated: one for OS in the total patient sample, one for OS 
in the Caucasian subsample, one for PFS in the total patient sample and 
one for PFS in the Caucasian subsample.

Performance evaluation
The ability of the PSSs to predict survival was evaluated by ROC analysis 
using the procedure described by Lu et al. (19). Additional scores were con-
structed from baseline clinical characteristics (age at diagnosis, tumor 
stage, and/or residual tumor size) only or from baseline clinical character-
istics + single molecular variations from the polygenic Cox models. Model 
stability and prediction optimism were evaluated using the bootstrap 
method with 10 000 resamples of the training sets.

Results

Associations between individual variations and 
survival

Each candidate marker was individually fitted into a minim-
ally adjusted Cox proportional hazards model adjusted for 
age at diagnosis, tumor stage and residual tumor size follow-
ing primary resection. A  graphical overview of the molecular 
variations individually associated with OS or PFS following FDR 
adjustment is found in Supplementary Figure  1, available at 
Carcinogenesis Online.

Somatic mutations

Our analysis of somatic mutations was restricted to genes in the 
TCGA dataset with validated mutations predicted to be func-
tional in silico. Mutations in ABCA3 and NIPBL were found to be 
associated with poor OS in both the total TCGA patient popu-
lation and the Caucasian subsample (Supplementary Figure 2A, 
available at Carcinogenesis Online). Only mutations in the tumor 
suppressor CREBBP were linked to PFS. CREBBP mutations were 
associated with decreased survival in both the total patient 
sample and the Caucasian subsample.

mRNA expression

Our analysis incorporated genes that formed a transcriptional 
profile predictive of OS in the original TCGA publication (13). Of 
these, 33 were found to be individually associated with OS in the 
total patient population, and 40 were associated with OS in the 
Caucasian subsample (Supplementary Figures  2B and D, avail-
able at Carcinogenesis Online). Included among these genes are a 
number of canonical oncogenes and tumor suppressors, includ-
ing BRCA2, EGFR and RB1. No genes were identified to be associ-
ated with PFS in the total patient population. Only the expression 
of GALNT6 was found to be associated with PFS in Caucasians.

miRNA expression

Of the miRNAs that target one or more of the protein-cod-
ing genes in our analysis, miR-198 and miR-422a, both putative 
tumor suppressors, were associated with decreased OS in the 
total sample. miR-198 was also associated with decreased OS 
in the Caucasian subsample. miR-519e-5p was associated with 
decreased OS in both the total sample and the Caucasian sub-
sample, while miR-518c-5p was associated with poor OS only 
in the Caucasian subsample (Supplementary Figure  2C, avail-
able at Carcinogenesis Online). Expressions of miR-302-5p and 
the putative tumor suppressor miR-449a were associated with 
PFS in both the total sample and the Caucasian subsample 
(Supplementary Figure 2C, available at Carcinogenesis Online).

DNA methylation

No FDR-adjusted associations with either OS or PFS were identi-
fied for variations in methylation.

Polygenic scores for ovarian cancer survival

A model building procedure, designed to maximize the likelihood 
of robust predictions, was applied to select subsets of variations 
from the total pool of survival-associated variations. These sub-
sets were used in combination with age, tumor stage and residual 
tumor size information to calculate endpoint-specific PSS for each 
patient. The molecular components of the PSSs and the functional 
role of the genes harboring them are given in Supplementary Table 
II, available at Carcinogenesis Online. In addition, a descriptive sum-
mary of the PSSs with regard to their correlation with individual-
level survival, as well as the relative impact of the individual PSS 
components on survival, is given in Figure 2.

We observed a decrease in median OS and PFS dur-
ation with each successive increase in PSS tertile (log-rank 
P < 0.0001) (Figure 3A and Supplementary Figure 3, available at 
Carcinogenesis Online). For OS in the total patient population, we 
observed an 18.9-month decrease in median survival from the 
lowest to the middle tertile (63.8 versus 44.9  months) and an 
additional 18-month decrease going from the middle to high-
est tertile (44.9 versus 26.9 months). This pattern was replicated 
in the Caucasian subsample. We observed the similar tertile-
dependent decline for PFS, although the intertertile decrease is 
less marked (Figure 3A and Supplementary Figure 3, available at 
Carcinogenesis Online).

We performed ROC analysis to evaluate the prognostic per-
formance of the PSSs. The accuracy of the PSSs to predict survival 
beyond a certain timepoint generally increased with respect 
to the duration of time following resection. We observed good 
predictive accuracy for 5-year OS in the total patient sample 
(AUC = 0.80) and the Caucasian subsample (AUC = 0.87) and for 
5-year PFS in the Caucasian subsample (AUC = 0.81) (Figure 3B 
and C). In contrast, hazard scores constructed from baseline clin-
ical characteristics (age, tumor stage and/or residual tumor size) 
alone offered poor predictions (0.60 ≤ AUC < 0.70) at the 1-year 
mark and no predictive value at the 5-year mark (Figure 3B). The 
accuracy of the PSS was poor for PFS in the total sample for all 
timepoints (0.6 ≤ AUC < 0.7) and failed to outperform miR-302c 
at the 5-year mark (Supplementary Figures 4 and 5, available at 
Carcinogenesis Online).

Prediction optimism was quantified for each model using 
bootstrapped resamples of its respective training set. The opti-
mism for predictive accuracy, as measured by Somer’s D, was 
minimal (Supplementary Table IV, available at Carcinogenesis 
Online).

http://academic.oup.com/carcin/article-lookup/doi/10.1093/carcin/bgy055#supplementary-data
http://academic.oup.com/carcin/article-lookup/doi/10.1093/carcin/bgy055#supplementary-data
http://academic.oup.com/carcin/article-lookup/doi/10.1093/carcin/bgy055#supplementary-data
https://academic.oup.com/carcin/article-lookup/doi/10.1093/carcin/bgy055#supplementary-data
http://academic.oup.com/carcin/article-lookup/doi/10.1093/carcin/bgy055#supplementary-data
http://academic.oup.com/carcin/article-lookup/doi/10.1093/carcin/bgy055#supplementary-data
http://academic.oup.com/carcin/article-lookup/doi/10.1093/carcin/bgy055#supplementary-data
http://academic.oup.com/carcin/article-lookup/doi/10.1093/carcin/bgy055#supplementary-data
http://academic.oup.com/carcin/article-lookup/doi/10.1093/carcin/bgy055#supplementary-data
http://academic.oup.com/carcin/article-lookup/doi/10.1093/carcin/bgy055#supplementary-data
http://academic.oup.com/carcin/article-lookup/doi/10.1093/carcin/bgy055#supplementary-data
http://academic.oup.com/carcin/article-lookup/doi/10.1093/carcin/bgy055#supplementary-data
http://academic.oup.com/carcin/article-lookup/doi/10.1093/carcin/bgy055#supplementary-data
http://academic.oup.com/carcin/article-lookup/doi/10.1093/carcin/bgy055#supplementary-data
http://academic.oup.com/carcin/article-lookup/doi/10.1093/carcin/bgy055#supplementary-data
http://academic.oup.com/carcin/article-lookup/doi/10.1093/carcin/bgy055#supplementary-data
http://academic.oup.com/carcin/article-lookup/doi/10.1093/carcin/bgy055#supplementary-data


A.Fu et al.  |  865

Figure 2.  Correlation between PSS and z-scores of the individual PSS components and patient-level survival. As expected, endpoint-specific PSSs were positively cor-

related with the z-scores of protective component prognostic factors and negatively correlated with poor component prognostic factors. Similarly, endpoint-specific 

PSSs were positively correlated with death and progression events and negatively correlated with survival and progression-free duration. The relative impact of the 

component prognostic factors were calculated from the coefficients of z-score-standardized predictors in the endpoint-specific polygenic Cox models.
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Discussion
CA125 serum levels and decay kinetics remain the highest 
performing individual prognostic biomarkers for ovarian can-
cer (1,2). An analysis of 92 ovarian cancer patients diagnosed 
at Coimbra University Hospital in Portugal found successive 

postdiagnosis measurements of serum CA125 to predict 1-, 
3- and 5-year OS with AUROCs of 0.67, 0.75 and 0.73, respect-
ively (11) (Figure  3B and Supplementary Figure  4, available at 
Carcinogenesis Online). A  more recently proposed longitudinal 
model combining serum CA125 levels with tumor stage and 

Figure 3.  (A) Kaplan–Meier curves stratified by PSS tertiles. A decrease in median OS and PFS duration was observed with each successive increase in PSS tertile. 

(B, C) Prognostic performance of our PSSs. We observed good predictive accuracy for 5-year OS in the total (AUC = 0.80) and Caucasian (AUC = 0.87) samples and for 

5-year PFS in the Caucasian subsample (AUC = 0.81). Age, tumor stage, and residual tumor size following primary resection (‘Clinic/demo only’/‘Clin/demo’; red) pro-

vided no predictive advantage for 5-year OS and PFS. The AUCs of single component markers in combination with age, tumor, stage and residual tumor size (‘Single 

markers’/‘S. markers’) are given in gray. The performance of our PSSs appears to be superior to existing CA125- and kallikrein-based biomarker strategies (black mark-

ers) for long-term survival but fall short of a protein panel based primarily on tumor kallikreins combined with select clinical characteristics (‘T. kal. panels + clinic’; 

black diamonds), which included responsiveness to chemotherapy, for PFS. 

http://academic.oup.com/carcin/article-lookup/doi/10.1093/carcin/bgy055#supplementary-data
http://academic.oup.com/carcin/article-lookup/doi/10.1093/carcin/bgy055#supplementary-data
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residual tumor size was able to predict 3-year OS with a cross-val-
idated AUROC of 0.85 in 218 patients (12). Efforts have also been 
made to incorporate serum and tumor protein signatures into 
prognostic marker panels. Protein panels of serum CA125, kal-
likreins and/or Spondin-2 were shown to predict 1-year OS and 
PFS with cross-validated AUROCs of 0.75 and 0.65, respectively, 
based on 98 ovarian cancer patients (8). A recent meta-analysis 
of tumor protein signatures across 13 studies and 1525 patients 
identified an expression signature capable of predicting 5-year 
OS with a cross-validated AUROC of 0.62 (10). Additionally, a pro-
tein panel based primarily on tumor kallikreins combined with 
select clinical characteristics, which included responsiveness to 
chemotherapy, yielded cross-validated AUROCs of 0.80 and 0.88 
for 1- and 5-year PFS in a sample of 259 patients (Figure 3B and 
Supplementary Figure 4, available at Carcinogenesis Online) (9).

The cross-validated AUROCs of our PSSs for long-term OS 
appear to exceed those reported for existing protein-based 
strategies. It is conceivable that our tumor-based PSSs could be 
applied alongside or integrated with existing strategies to help 
refine prognostic accuracy, a scenario that is made more feasible 
by the ready availability of tumor tissues, as tumor debulking 
remains the main first-line treatment for ovarian cancer. While 
meticulous external validation is necessary before more con-
crete inferences on clinical utility can be made, our study offers 
an important first look into the prognostic value of a multi-
omics approach in ovarian cancer prognosis.

Aside from CA125 (MUC16), preoperative HE4 (WFDC2) pro-
tein levels in the serum have also been shown to have independ-
ent prognostic value (20–23). However, we found no associations 
between MUC16 and WFDC2 molecular signatures, including 
mRNA expression, and OS or PFS, and incorporation of these 
signatures into our integrated models failed to improve their 
discriminative performance (Supplementary Table III, avail-
able at Carcinogenesis Online). Given that the prognostic value 
of CA125 and HE4 has been validated in independent samples, 
our findings reveal an interesting if unsurprising disjunction 
between the protein and pretranslational signatures of MUC16 
and MFDC2.

Considering no other study has performed the multilayered 
molecular profiling to the depth achieved by TCGA, true exter-
nal validation of the PSSs is not possible. This limitation is 
not a trivial one, as it is well known that predictor and model 
selection for regression can be unstable and sensitive to small 
changes in data, particularly if the number of predictors is large 
relative to the sample. The underlying cause, data idiosyncrasy, 
also results in what Ioannidis (24) refers to as type B biomarker 
failures—failures of external validation. To offset this disadvan-
tage, we took several precautionary measures to reduce estimate 
bias and increase the likelihood of robust predictions, includ-
ing shunning the use of standard stepwise predictor selection 
in favor of building composite models from ‘bouquets’ of near 
AIC-optimal candidate models and a two-step small sample cor-
rection for overfitting and bias. Bootstrapping the training sets 
revealed minimal optimism bias, suggesting predictive stability 
given subtle changes in the data structure.

An additional roadblock to clinical translation stems from 
the difficulty in developing a standardized protocol for clini-
cal implementation, particularly when working with gene 
expression profiles (24). Our PSSs utilized gene transcriptional 
profiles from a combination of Affymetrix and Agilent micro-
arrays. While Agilent two-channel arrays can be individually 
normalized via the LOWESS method, expression signatures 
from Affymetrix single-channel arrays are normalized across 
arrays, making the analysis of new Affymetrix patient arrays 

using standard normalization methods problematic. To enable 
the prospective analysis of individual single-channel arrays, fro-
zen robust multiarray analysis, which leverages a ‘frozen’ ref-
erence signal distribution from microarray samples in the GEO 
and ArrayExpress repositories, was proposed as an alternative to 
true across-sample normalization (25).

The discordance of gene expression measurements across 
different technologies represents another potential hindrance 
to implementation, with the major concern being whether valid 
comparisons could be made between prospective expression 
measurements and the original measurements used to train 
the PSSs when the platforms are different. The likelihood of 
disagreement, however, is reduced when we take into consid-
eration the concordance measures that were used in generat-
ing the unified TCGA expression set and findings, which suggest 
generally good concordance among commonly used array 
(26,27) and RNA-seq platforms (28).

To our knowledge, our analysis represents the first inves-
tigation of the prognostic potential of an integrative multi-
omics approach in ovarian cancer. Multiple measures were 
taken to maximize the predictive robustness of our integrated 
PSSs, which appear to exceed previously proposed biomarker 
strategies in prognostic performance for long-term OS. Our 
findings warrant further investigative pursuit with regard to 
external validation, the standardization of application, par-
ticularly with respect to the measurement of transcriptional 
profiles, and the predictive benefit of integrating germline 
variations.
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