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Abstract

Background—Levels of lipoprotein(a), Lp(a), a genetically regulated independent 

cardiovascular risk factor present in humans and Old World monkeys, are impacted by the 

apolipoprotein(a), apo(a), gene. Allele-specific apo(a) levels, taking both the apo(a) genotypic and 

phenotypic characteristics into account, are useful markers to determine atherosclerotic 

cardiovascular risk.

Methods—We determined (1) the genetic variability of apo(a), (2) Lp(a) levels, and (3) allele-

specific apo(a) levels in rhesus monkeys (n=95).

Results—Lp(a) levels differed substantially between animals (range: 4–247 nmol/L) with a 

skewed distribution towards lower levels. Lp(a) and allele-specific apo(a) levels were inversely 

related to the number of apo(a) Kringle 4 (K4) repeats. The median apo(a) size was 23 K4 repeats 

and the prevalence of a small size apo(a) (≤22 K4) was 43%.

Conclusions—Distribution of Lp(a) and allele-specific apo(a) levels in rhesus monkeys 

reflected the corresponding human patterns, but with a high prevalence of smaller apo(a) sizes.
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INTRODUCTION

Over the last decades, an elevated level of plasma Lipoprotein (a), Lp(a), has emerged as an 

important clinical risk factor for the development of atherosclerotic cardiovascular diseases 

(CVD) such as coronary heart disease, myocardial infarction, peripheral arterial disease, and 

ischemic stroke [9, 11, 12, 16, 31]. Recent studies using Mendelian randomization design 

have provided support for the causative role of Lp(a) in CVD [7, 14, 15]. Despite these 

advancements and recognition in clinical guidelines [30], the underlying mechanisms for an 

atherogenic role, as well as metabolic properties and any potential physiological functions of 

Lp(a), remain poorly understood.

Lp(a) consists of a cholesteryl-ester rich lipid core and one molecule each of two different 

apolipoproteins, apoB-100 and apo(a). Apo(a) represents an extensive size polymorphism 

(i.e., copy number variation) due to a variable number of repeated loop structures, referred 

to as Kringles (K) [5, 27, 35]. In general, smaller apo(a) sizes with fewer number of K 

repeats are associated with higher Lp(a) levels and considered more atherogenic than larger 

apo(a) sizes [12]. Yet, there is considerable variability in Lp(a) levels for any given apo(a) 

size [25, 26, 28, 33]. To better understand Lp(a) genotype/phenotype relations in humans, 

allele-specific apo(a) levels have been used to gain insights into the risks associated with 

Lp(a) [1, 2, 10, 31–33]. In the majority of individuals, the plasma Lp(a) level represents the 

sum of two different Lp(a) populations with likely different size apo(a) particles. The 

relative contribution of each apo(a) size isoform to the overall Lp(a) level may vary 

substantially depending on the dominance pattern of apo(a), placing individuals at a variable 

degree of risk. Thus, Lp(a)-associated cardiovascular risk for two individuals with the same 

plasma Lp(a) level and carrying the same size apo(a) can differ substantially. For example, 

individuals who have smaller apo(a) alleles as their dominating apo(a) will have more Lp(a) 

particles with atherogenic smaller apo(a) sizes in their plasma (i.e., higher allele-specific 

apo(a) levels with smaller apo(a) sizes) and are consequently at a greater Lp(a)-associated 

CVD risk compared to individuals who have more Lp(a) particles with less-atherogenic 

larger apo(a) sizes (i.e., higher allele-specific apo(a) levels with larger apo(a) sizes).

The apo(a) gene is thought to have evolved from the plasminogen (PLG) gene, which has 

five K domains (K1 through K5), during primate evolution, although the evolutionary 

aspects of the size variability in the apo(a) gene are not well understood. Notably, Lp(a) has 

a limited species distribution, and is exclusively found in humans, apes, and Old World 

monkeys, including rhesus monkey (Macaca mulatta) [23, 35] and in a deviant form in the 

European hedgehog [19]. The human apo(a) contains two K domains, K4 and K5 [27, 36], 

whereas the rhesus monkey apo(a) lacks the K5 domain [34]. The protease domain of the 

PLG gene is preserved in both humans and rhesus monkey apo(a), although considered 

inactive due to a Ser561-Ile562 substitution for Arg561-Val562 [27]. In contrast, apo(a) in the 

European hedgehog consists of multiple K3-like structures with an attached protease domain 
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reflecting its independent evolution from Lp(a) in human and nonhuman primates [19]. 

There is limited knowledge about rhesus monkey Lp(a) and apo(a) properties, one of the few 

species with the potential to serve as a precision model for humans with regard to Lp(a). 

Characterizing size polymorphism, i.e., copy number variation in the nonhuman primate 

apo(a) gene not only will enhance understanding of the evolutionary history of these species, 

but will also help to advance our general knowledge of the potential functional and 

evolutionary significance of human copy number variations. Therefore, in the current study, 

we determined the genetic variability of apo(a) (i.e., number of K4 repeats), expressed as 

apo(a) isoforms together with Lp(a) and allele-specific apo(a) levels in a large number of 

rhesus monkeys within a broad age spectrum.

MATERIALS AND METHODS

Humane Care Guidelines

All animal procedures conformed to the requirements of the current edition of the Guide for 

the Care and Use of Laboratory Animals and the Animal Welfare Act, and protocols were 

approved prior to implementation by the Institutional Animal Care and Use Committee at 

the University of California, Davis. Blood samples (2–3 mL) were collected from rhesus 

monkeys (Macaca mulatta) (n=95) including infants and juveniles (8 months to 3 years, 

n=8), young adults (4 to 6 years, n=14), mature adults (7 to 18 years, n=70) and aged adults 

(19 to 22 years, n=3). Samples were collected from sedated animals (ketamine 

hydrochloride ~10 mg/kg) after an overnight fast and placed into glass tubes with EDTA for 

assay (see below). Activities related to animal care (e.g., diet and housing) were performed 

according to Primate Center standard operating procedures. Animals are fed commercial 

monkey chow twice daily and are supplemented with fruit or vegetables twice weekly. 

Water is provided by automatic lixits and a variety of enrichment options are available daily.

Measurement of plasma Lp(a) level

Plasma samples from rhesus monkeys were separated and stored in aliquots at ≤−80°C prior 

to analysis. Plasma Lp(a) levels were measured by an apo(a) size-insensitive sandwich 

ELISA (Mercodia Inc., Uppsala, Sweden) [8], and the interassay coefficient of variation was 

consistently less than 10%.

Determinations of apo(a) isoform size, apo(a) dominance pattern, and allele-specific apo(a) 
level

Apo(a) isoform sizes were determined by Western blotting technique with sodium dodecyl 

sulfate-agarose gel electrophoresis of plasma samples, followed by immonoblotting as 

previously described [18, 33]. The protein isoform dominance pattern was assessed as 

described [2, 33], where animals with two different apo(a) isoforms were classified into 

three groups (larger isoform dominating, smaller isoform dominating, and co-dominating). 

Allele-specific apo(a) levels in the monkeys were determined as previously reported for 

humans [33]. Briefly, for each of the protein bands, Lp(a) levels were apportioned according 

to the degree of the intensity of the bands on the Western blot, using 10% increments. For 

example, an animal with an apo(a) level of 40 nmol/L, carrying 15 and 31 K4 repeats, with 
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the smaller protein dominating by 90%, had 36 nmol/L apportioned to the 15 and 4 nmol/L 

to the 31 K4 repeat protein.

Statistical analysis

Statistical analysis was performed with SPSS software (SPSS Inc., Chicago, IL). Results 

were expressed as mean ± standard deviation (SD) or median with interquartile range (IQR). 

Lp(a) and allele-specific apo(a) levels were square root transformed to achieve normal 

distributions. Group means were compared using the Student’s t-test. Univariate 

relationships between Lp(a), allele-specific apo(a) levels, and apo(a) size variability was 

assessed by the Pearson correlation coefficients. Both the larger and smaller apo(a) isoforms 

of monkeys expressing two distinguishable bands and one isoform of monkeys with a single 

expressed isoform were considered for statistical analyses. An analysis of variance and post 

hoc analysis with the Bonferroni test were performed for three or more independent 

samples. All analyses were two-tailed, and p-values less than 0.05 were considered 

statistically significant.

RESULTS

Lp(a) level and distribution pattern

Plasma Lp(a) levels in rhesus monkeys ranged between 4 nmol/L to 247 nmol/L with a 

median level of 54 nmol/L (IQR: 22–97 nmol/L) (Table 1). The prevalence of animals with 

Lp(a) levels ≥72 nmol/L (~30 mg/dL), a commonly accepted cut-off point for elevated Lp(a) 

level, was 37%. As seen in Figure 1A, the distribution of plasma Lp(a) level was broad and 

skewed towards the lower level. Analysis of results across the rhesus monkey age groups 

indicated that plasma Lp(a) did not differ significantly between the age groups (Table 2), 

although Lp(a) levels tended to be elevated in the young and mature adult groups. When 

analyzed within each age group, plasma Lp(a) or allele-specific apo(a) levels were not 

correlated with body weight (p>0.3).

Apo(a) isoform distribution and dominance patterns

As shown in Figure 1B, the apo(a) size ranged between 10 to 35 K4 repeats in rhesus 

monkeys with two distinctive frequency peaks at 14 and 24 K4 repeats. The median apo(a) 

size was 23 K4 repeats, and the presence of small apo(a) sizes (≤22 K4 repeats), previously 

shown to be associated with CVD in humans [4], was 43% (Table 1). Furthermore, there 

was no significant difference in the number of K4 repeats between the four age groups 

(Table 2).

To characterize Lp(a) genotype/phenotype relations in more detail, we next analyzed the 

frequency of animals with double, single, or no circulating apo(a) protein isoforms. As noted 

in Table 1, at least one apo(a) isoform was detected in each animal. Thus, there were no 

animals lacking expressed apo(a) protein isoforms. Seventy-one percent of animals 

expressed double protein isoforms on Western blots. The frequency of dominating apo(a) 

isoforms was 9%, 45%, and 47% for larger, co-dominating (as assessed by a similar 

expression level of both protein isoforms) and smaller apo(a) isoforms, respectively. A 
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representative image of a Western blot displaying the apo(a) dominance pattern is shown in 

Figure 2.

Apo(a) size polymorphism and Lp(a) and allele-specific apo(a) levels

Lp(a) levels were significantly higher in rhesus monkeys carrying smaller apo(a) sizes (≤22 

K4 repeats) compared to rhesus monkeys carrying larger apo(a) sizes (>22 K4 repeats) 

(Figure 3A, p<0.001). There was an inverse correlation between apo(a) size (number of K4 

repeats) and allele-specific apo(a) levels (p<0.001) (Figure 3B). Furthermore, variability in 

allele-specific apo(a) levels for any given apo(a) size was observed. The median allele-

specific apo(a) level was 29 nmol/L (IQR: 14–66 nmol/L) in all animals, and the levels did 

not differ significantly across age groups (Table 2).

DISCUSSION

In contrast to humans where a wealth of information on Lp(a) and apo(a) properties can be 

found, limited information is available on Old World monkey Lp(a) and apo(a). In the 

present study, we characterized the distributions of both Lp(a) and allele-specific apo(a) 

levels and apo(a) size heterogeneity as a reference to humans in a relatively large number of 

rhesus monkeys within a broad age spectrum. Our findings therefore contribute to enhance 

our general understanding of Lp(a) and apo(a) evolution across primate populations.

Overall, our findings demonstrated that the rhesus monkey Lp(a) properties and apo(a) 

genetic variability closely reflected the previously reported corresponding patterns in 

humans. Thus, as in humans [5], there was extensive inter-animal variability in plasma Lp(a) 

levels with a broad and skewed distribution towards lower levels. A considerable proportion 

of animals had plasma Lp(a) levels ≥72 nmol/L, a generally accepted cut-off point for 

increased Lp(a) levels in humans. The apo(a) isoform distribution in rhesus monkeys was 

heterogeneous, and similar to humans [31] was inversely associated with allele-specific 

apo(a) levels. In addition, consistent with our previous observations in humans [31], allele-

specific apo(a) levels exhibited a large variability for any given apo(a) size in rhesus 

monkeys. Further, the findings of this study confirm and extend prior observations of Lp(a) 

and apo(a) in this species [23, 24, 29]. An important observation was that the frequency of 

small size apo(a) (≤22 K4) was higher in rhesus monkeys compared to previously reported 

frequency in humans (43% versus 25–35%) [17]. Among humans, this phenotypic pattern 

has been associated with increased cardiovascular risk. A recent meta-analysis of 40 studies 

on Lp(a) indicated a two-fold increased risk of coronary heart disease in subjects carrying 

smaller apo(a) isoforms versus subjects carrying larger apo(a) isoforms [12]. This risk 

estimation indicates that Lp(a) with small size apo(a) is the strongest single genetic risk 

factor for CVD known to date, and a 25% to 35% prevalence of small apo(a) isoforms in the 

population poses high clinical relevance. Given the high frequency of small size apo(a), 

studies in rhesus monkeys can provide a host of opportunities to investigate atherogenic 

properties of apo(a). This provides several advantages over transgenic mice [3, 6, 20, 22] 

and rabbit [13] models representing a single or a very limited spectrum of apo(a) alleles/

isoforms (versus ~40 different isoforms in humans). As apo(a) is a major predictor of 

plasma Lp(a) levels, the variability in Lp(a) concentration in mouse and rabbit models is 

Enkhmaa et al. Page 5

J Med Primatol. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



considerably more limited than in natural settings. In humans, up to 1000-fold difference in 

plasma Lp(a) levels have been reported [5].

In the current study, we were able to detect 24 different sized apo(a) isoforms in rhesus 

monkeys with the largest apo(a) size being 35 K4 repeats (versus >40 K4 repeats in 

humans). A previous study by Neven at al. [29] that included 19 rhesus monkeys with and 

without LDL receptor deficiency identified six apo(a) phenotypes and found a wide 

variation in Lp(a) levels for any given apo(a) phenotype. Furthermore, Makino at el. [24] 

reported at least five different apo(a) isoforms among 13 rhesus monkeys originating from 

the same group described [29]. The prevalence of a single apo(a) protein band was 

approximately 25% in the latter study, which was closely aligned with our findings (29%). 

Lp(a) levels in rhesus monkeys ranged from 1–58 mg/dL, and 42% (8 of 19) exhibited Lp(a) 

levels >30 mg/dL in the study of Neven et al. [29]. In our study, the rhesus monkey Lp(a) 

levels ranged between 4–247 nmol/L (1.7–103 mg/dL), and the prevalence of animals with 

Lp(a) levels >30 mg/dL was 37%. In a smaller study, Makino et al. reported a slightly lower 

prevalence of Lp(a) levels >30 mg/dL (23%, 3 of 13 animals) [24].

Lp(a) is a primary carrier of proinflammatory and proatherogenic oxidized phospholipids 

(OxPL) in the circulation, and Lp(a) particles with smaller apo(a) sizes contain a greater 

amount of OxPL than those with larger apo(a) sizes [4]. Thus, an enhanced content of OxPL 

suggests that small size apo(a) are even more proinflammatory and proatherogenic. A 

previous study by Bergmark et al. [4] reported K5 as the site for OxPL binding in human 

apo(a), and that rhesus monkey apo(a) lacking K5 had no immunoreactivity to an antibody 

specific for the phosphocholine headgroup of OxPL. However, a recent study suggested that 

the presence of the K5 domain was not necessary for OxPL binding, and that an intact 

lysine-binding site on K4 type 10 was crucial for the binding of OxPL to Lp(a) [21].

The current study has some limitations as we did not have apo(a) genotyping data in rhesus 

monkeys and did not assess the prevalence of homozygotes and unexpressed apo(a) allele 

distributions. However, we phenotyped apo(a) in every animal. A relatively large number of 

monkeys within a wide age range allowed us to comprehensively characterize the 

distributions of Lp(a) levels, apo(a) isoform sizes and dominance patterns, as well as the 

prevalence of high Lp(a) levels and small atherogenic apo(a) isoforms to an extent that has 

not previously been reported. In addition, for the first time, we have determined allele/

isoform-specific apo(a) levels in rhesus monkeys. Based on allele-specific apo(a) levels 

among humans, we have previously shown a greater predictive power of Lp(a) levels 

combined with apo(a) isoform sizes for coronary artery disease risk assessment [31]. 

Furthermore, although we did not observe significant differences in both Lp(a) and allele-

specific apo(a) levels across age groups in rhesus monkeys, these levels tended to be lower 

in the younger animals and the more mature adults. We recognize that the number of 

animals in some age groups was relatively modest, thus further studies are needed to explore 

a potential effect of age (or sex) on Lp(a) in rhesus monkeys.

In summary, we determined apo(a) genetic variability, Lp(a), and allele-specific apo(a) 

levels in rhesus monkeys. Our findings demonstrate similarities in Lp(a) and apo(a) 

properties in rhesus monkeys and humans, but also a smaller apo(a) size spectrum and a 
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higher frequency of atherogenic smaller apo(a) in this species. Overall, the findings 

underscore cross-species similarities and support the usefulness of this nonhuman primate 

model for studies to better understand Lp(a) and apo(a) properties relevant to human health 

and disease.
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Figure 1. Distribution of plasma Lp(a) level (A) and apo(a) isoform size (B)
The histogram of plasma Lp(a) level shows a broad and skewed distribution towards lower 

level (Panel A). The histogram of apo(a) sizes shows a range of apo(a) sizes (10 to 35 K4 

repeats) with two distinctive frequency peaks at 14 and 24 K4 repeats (Panel B). Apo(a) 

isoform size was determined using Western blotting technique as described [18, 33].

Abbreviations: K, Kringle; Lp(a), lipoprotein(a)
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Figure 2. Determination of apo(a) dominance pattern by Western blotting
Western blotting was done as described previously [18, 33]. This representative image of 

apo(a) Western blots from four animals demonstrates a varying apo(a) dominance pattern. 

For animals #1 and #3, the smaller apo(a) isoform is dominating (the expression level for the 

smaller allele is greater than that for the larger allele), whereas for animal #4, the larger 

isoform is dominating. For animal #2, both the larger and smaller alleles are expressed at a 

similar level, indicating a co-dominance pattern.

Abbreviations: Apo(a), apolipoprotein(a), K, Kringle number; M, Marker (apo(a) isoform 

size); L, larger allele dominating, S, smaller allele dominating, Co, Co-dominating alleles
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Figure 3. Relationship between Lp(a) (A) and allele-specific apo(a) levels (B) with apo(a) isoform 
sizes
The box plots show the median and interquartile range of the Lp(a) levels for animals 

carrying smaller (≤22 K4 repeats) and larger apo(a) sizes (>22 K4 repeats), respectively 

(Panel A). The median Lp(a) level was significantly elevated in animals carrying smaller 

apo(a) sizes compared to animals carrying larger apo(a) sizes. The relationship between the 

number of K4 repeats and square root transformed allele-specific apo(a) levels are described 

by Pearson’s correlation coefficients (Panel B). Allele-specific apo(a) levels were inversely 

associated with the number of K4 repeats (i.e., apo(a) sizes).

Abbreviations: K, Kringle; SqRt, square root

Enkhmaa et al. Page 12

J Med Primatol. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Enkhmaa et al. Page 13

Table 1

Lp(a) levels and apo(a) isoform distribution and dominance patterns

Characteristics Number/Relative frequency

Number, n 95

Females, n (%) 83 (87%)

Lp(a), nmol/L

 25th percentile 22

 50th percentile (median) 54

 75th percentile 97

 Prevalence of Lp(a) level ≥72 nmol/L1 35 (37%)

Apo(a) distribution and dominance patterns2

 No isoform, n (%) 0 (0%)

 Single isoform, n (%) 28 (29%)

 Double isoform, n (%) 67 (71%)

  Larger dominating 6 (9%)

  Co-dominating 30 (45%)

  Smaller dominating 31 (47%)

 Prevalence of small size apo(a) ≤22 K4 43%

1
Lp(a) levels in nmol/L can be converted to mg/dL by use of a conversion factor of 2.4 nmol/L = 1 mg/dL [3]. A concentration 72 nmol/L 

corresponds to approximately 30 mg/dL.

2
Apo(a) isoform sizes were determined using Western blotting technique as described in Methods. Apo(a) isoform dominance pattern was assessed 

as previously described [16].
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Table 2

Characteristics of rhesus monkeys across age groups

Characteristics
Infants/Juveniles Adults

Young Mature Aged

Number, n (%) 8 (8%) 14 (15%) 70 (74%) 3 (3%)

Female, n (%) 5 (63%) 13 (93%) 63 (90%) 2 (67%)

Age (years) 2.0 ± 1.1 5.1 ± 0.4 11.0 ± 3.2 20.1 ± 1.3

Body weight (kg) 3.0 ± 1.5 6.6 ± 2.2 8.5 ± 2.2 8.1 ± 1.4

Lipoprotein(a), nmol/L 32 (23–82) 58 (29–72) 55 (23–108) 21 (11–49)

Allele-specific apo(a), nmol/L 18 (13–36) 34 (9–57) 32 (14–73) 15 (6–27)

Kringle 4 repeats 23 (15–25) 22 (14–25) 24 (14–26) 26 (21–28)

Data are reported as mean ± SD for age and body weight, and median (IQR) for Lp(a), allele-specific apo(a), and K4 repeats. Relative frequencies 
are shown in parentheses for numbers and females. Infants/Juveniles (8 months to 3 years), Young adults (4 to 6 years), Mature adults (7 to 18 
years), and Aged adults (19 to 22 years). Allele-specific apo(a) level reflects the amount of Lp(a) associated with each individual protein isoform as 
described in the Methods section.
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