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ABSTRACT OF THE THESIS

Increased hydrophobic surface exposure in the cataract-related G18V variant of human
γS-crystallin

By

Eric Wong

Master of Science in Chemical and Material Physics

University of California, Irvine, 2017

Professor Douglas Tobias, Chair

The objective of this study was to determine whether the cataract-related G18V variant of

human γS-crystallin has increased exposure of hydrophobic residues that could explain its

aggregation propensity and/or recognition by αB-crystallin. We used an ANS fluorescence

assay and NMR chemical shift perturbation to experimentally probe exposed hydrophobic

surfaces. These results were compared to flexible docking simulations of ANS molecule to the

solution-state NMR structures of γS-WT and γS-G18V. γS-G18V exhibits increased ANS

fluorescence, suggesting increased exposed hydrophobic surface area. The specific residues

involved in ANS binding were mapped by NMR chemical shift perturbation assays, revealing

ANS binding sites in γS-G18V that are not present in γS-WT. Molecular docking predicts

three binding sites that are specific to γS-G18V corresponding to the exposure of a hy-

drophobic cavity located at the interdomain interface, as well as two hydrophobic patches

near a disordered loop containing solvent-exposed cysteines, all but one of which is buried

in γS-WT. Characterization of changes in exposed hydrophobic surface area between wild-

type and variant proteins can help elucidate the mechanisms of aggregation propensity and

chaperone recognition, presented here in the context of cataract formation.
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Chapter 1

Introduction

The solution-state NMR structure of wild-type γS-crystallin has been determined [16], re-

vealing a double Greek key architecture for each of the two domains, consistent with the

structures of other βγ-crystallins [13, 21]. The childhood-onset cataract variant G18V (γS-

G18V) is structurally similar to γS-WT, but it has dramatically lower thermal stability

and solublity [3, 19], as well as strong, specific interactions with αB-crystallin, the holdase

chaperone of the lens [16]. Despite the well-documented aggregation propensity and reduced

stability of γS-G18V, the particular intermolecular interactions leading to its aggregation

are as yet unknown. Protein self-aggregation leading to cataract can occur due to an in-

crease in net hydrophobic interactions, as previously shown in the congenital Coppock-type

cataract variant D26G γS-crystallin [15], the cerulean cataract variant P23T γD-crystallin

[25], acetylation of the G1 and K2 residues in γD-crystallin [6], and the lamellar cataract

variant D140N αB-crystallin [18]. All of these mutations introduce altered conformations

that produce lowered solubility by exposure of hydrophobic patches on the surface, even

though the structural differences from their wild-type counterparts are relatively subtle. γS-

G18V is no exception; the mutation does not cause large-scale unfolding or rearrangement

into a misfolded conformation, but rather produces altered intermolecular interactions with
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itself and with αB-crystallin [16].

The fluorescent probe 1-anilinonaphthanlene-8-sulfonate (ANS), which has both negatively

charged and hydrophobic moieties, is often used to quantify exposed hydrophobic surface

patches in proteins by introducing known concentrations of ANS into a protein solution

and measuring its emission spectrum [25, 1, 2]. Two types of protein-ANS interactions are

required for fluorescence enhancement: hydrophobic interactions between the conjugated

ring system of ANS and the protein surface [20], and electrostatic interactions between the

sulfonate group and positively charged side chains at the binding site [24]. An increase in

fluorescence intensity indicates that either more ANS is binding to the protein surface, or

that it is bound more tightly, correlating with higher surface hydrophobicity. This method

has been used to characterize exposed hydrophobic surface in a number of protein systems,

including the mitochondrial chaperone protein Atp11p, which recognizes its client proteins

via hydrophobic interactions [28], and aggregation-prone variants of superoxide dismutase-1

(SOD1), an essential cellular enzyme whose aggregation is associated with amyotrophic lat-

eral sclerosis (ALS) [4, 32]. Despite the utility of ANS binding as a probe of hydrophobic

surface exposure, and the sensitivity afforded by using fluorescence as a reporter, this assay is

limited by the lack of detailed information about which amino acid residues, or even general

regions of the protein, are taking part in the dye-binding interaction. NMR chemical shift

perturbation (CSP) mapping can forge a link between fluorescence enhancement upon dye

binding and the corresponding changes in the local chemical environment of specific residues

in the protein.

Nuclear Magnetic Resonance (NMR) is an analytical technique where structural information

is gathered based on the nuclear spin characteristics of the protein of interest. By using a

2-D correlation experiment such as 1H-15N HSQC, chemical shifts are assigned that repre-
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sent each N-H correlation within the protein, thereby identifying each residue or sidechain.

Of course, there must be an existing protein structure to use the HSQC assignments. The

addition of a ligand allows for determination of binding sites within the protein [38]. Using

ANS titration experiments, comparisons between wild-type and variant proteins can then

be used to compare differences in exposure of hydrophobic residues on the surface under

particular solution conditions. CSP mapping is a commonly used technique for investigating

protein-protein or protein-ligand interactions and interfaces [38], and is the basis of the “SAR

by NMR” methodology that is indispensable in the identification of active pharmaceutical

agents [29].

Molecular docking, a computational technique used widely to model the conformation of

protein-ligand complexes, enables experimental perturbations to be analyzed in atomistic

detail. Bound ligand conformations, or poses, are ranked using an empirical scoring function

designed to evaluate intermolecular interactions using minimal computational time. Conven-

tionally, knowledge of the active site is used to guide the pose generation, often in the context

of screening large libraries of compounds against known protein structures [31, 10, 30, 34].

However, docking protocols without prior knowledge of the active site (blind docking) [9],

have successfully identified putative allosteric binding sites of drugs, leading to the design

of novel allosteric modulators [12], and fluorescent dyes [17, 1]. Bis-ANS binding sites found

by docking, validated with steady-state and time-resolved fluorescence assays, have been

used to identify hydrophobic patches in a lipase from Bacillus subtilis [14]. Using ANS

binding mapped by NMR in conjunction with molecular docking, we focus on determining

whether the cataract-related G18V variant of human γS-crystallin has increased exposure

of hydrophobic residues that could explain its aggregation propensity and/or recognition by

αB-crystallin.
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Chapter 2

Materials and Methods

2.1 ANS fluorescence assay

Wild-type and G18V γS-crystallins were expressed and purified as previously described [3].

Fluorescence spectra were collected as a function of ANS binding for γS-WT and γS-G18V

with a F4500 Hitachi fluorescence spectrophotometer. The excitation and emission wave-

lengths were 390 nm and 500 nm, respectively, with slits set to 5 nm. Protein concentrations

for both γS-WT and γS-G18V were approximately 1 mg/mL in 10 mM sodium phosphate

buffer and 0.05% sodium azide at pH 6.9. ANS concentrations ranged from 5 µM to 2 mM

were measured using ε= 4.95 mM−1 cm−1 at 350 nm [37].

2.2 NMR sample preparation

Purified protein with the 6x-His tag removed was concentrated and supplemented with 2 mM

TMSP, 10% D2O, and 0.05% sodium azide. The final concentration of all γS-WT and γS-

G18V samples was 0.3 mM. ANS was titrated into the protein samples to give final molar
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Center 1H: 799.8056964 MHz 13C: 201.1282461 MHz 15N: 81.0504078 MHz
Offset 1H: -294.932 Hz (4.8 ppm) 13C: -9863.17 Hz (43 ppm) 15N: 2400 Hz (116.7 ppm)

Table 2.1: Final concentrations of γS-WT and γS-G18V

ratios of 1:0, 1:0.5, 1:1, and 1:2 of γS:ANS. Spectra were acquired at 25 ◦C.

2.3 NMR experiments

Experiments were performed on a Varian UnityINOVA spectrometer (Agilent Technologies)

operating at 800 MHz and equipped with a 1H–13C–15N 5 mm tri-axis PFG triple-resonance

probe, using an 18.8 Tesla superconducting electromagnet (Oxford instruments). Decou-

pling of 15N nuclei was performed using the GARP sequence [27]. 1H chemical shifts were

referenced to TMSP, and 15N shifts were referenced indirectly to TMSP. NMR data were

processed using NMRPipe [5] and analyzed using CcpNMR Analysis [35]. Center operating

frequencies and (unless otherwise stated) center frequency offsets were as follows:

2.4 Calculation of chemical shift perturbations

1H-15N HSQC spectra of γS-WT and γS-G18V were collected in the presence and absence

of ANS at concentration ratios of 1:0, 1:0.5, 1:1, and 1:2 of γS:ANS, and resonances were

identified and assigned based on chemical shift data previously collected by our group. Res-

onances showed perturbations that are indicative of ANS binding. The change in chemical

shift for each peak in the 2D spectrum upon ANS binding was calculated using the following

chemical shift perturbation (CSP) equation:

∆δavg =

√
(∆δN/5)2 + (∆δH)2

2
(2.1)
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A strong-binding threshold for each set of conditions was set at two times the root mean

square (RMS) of the calculated CSP, while the weak-binding threshold was set at half the

RMS to determine which residues had strong or weak binding with ANS. The values used

for each threshold appear in Supplementary Table A.1.

2.5 Binding site search by rigid receptor docking

Protein coordinates were obtained from the NMR structures of γS-WT and γS-G18V crys-

tallins (PDB ID: 2M3T and 2M3U) [16]. Autodock Tools [23] was used to prepare both the

receptor (crystallin) and ligand (ANS) by merging non-polar hydrogens atoms into united

heavy atoms. Gasteiger charges[8] were added to each atom. The sulfonic acid group of

ANS was deprotonated before processing by Autodock Tools. Molecular docking was per-

formed using Autodock Vina [33]. In order to ensure good coverage of the protein binding

surface, 27 search spaces were placed in an overlapping 3 x 3 x 3 grid around the protein

(Supplementary Figure A.1). Since Autodock Vina works optimally with search spaces with

at most a 27,000 Å3 volume, a 30 x 30 x 30 Å search space was chosen. The exhaustiveness

parameter was set to 20 (over the default value of 8) in order to ensure an extensive search

of the protein surface. Docking was performed over each one of twenty solution-state NMR

conformations for either γS-WT or γS-G18V. The resulting poses were screened to ensure

that both electrostatic and hydrophobic interactions required for ANS fluorescence enhance-

ment upon binding were present. Docked poses that did not include both interactions within

the first coordination shell of the ANS-protein radial distribution function were considered

non-fluorescent and removed from the docked set. The screened docked set covers most of

the protein surface (see Supplementary Figure A.2).
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2.6 Calculation of residue contacts

To compare the screened docked set with the residue-based CSP data, ANS-residue contact

frequencies were calculated by summing the Boltzmann weights of all the poses in contact

with a given residue. The Boltzmann weight of a given docked pose was calculated according

to

wi =
exp(−Ei/kBT )∑
i exp(−Ei/kBT )

(2.2)

where i is the index of the docked pose, Ei is the pose binding energy, kB is the Boltzmann

constant, and T is the absolute temperature. The residue contact frequencies for each

protein are shown in Supplementary Figure S3. Following the CSP analysis, to determine

which residues had strong or weak binding with ANS, a strong-binding threshold was set

at two times the RMS of the calculated ANS-residue contact frequency, while the weak-

binding threshold was set at the RMS value. The values used for each threshold appear in

Supplementary Table A.1.

2.7 Flexible refinement of binding sites

A flexible docking refinement was performed near all the highly perturbed residues identified

using the strong-binding cutoff on the CSP data described in the previous section. Docking

search spaces were defined by clustered conformations of ANS from the screened docked set

used to calculate the ANS-residue contact frequencies. Using a root-mean-square deviation

cutoff (RMSD) of 5.0 Å, clustered poses were grouped into potential binding sites near

the experimentally perturbed residues (see Supplementary Figure A.2). Search spaces were

defined as boxes surrounding the clustered ligands with an 8 Å padding. The padding

was necessary to include flexible side chains within the search space. Residues with an
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experimental CSP above the low-binding cutoff were considered as flexible. A total of five

potential binding sites were used to dock ANS to either flexible γS-WT or γS-G18V. The

resulting poses were clustered again, and the location and interactions of each pose were

compared visually.
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Chapter 3

Results and Discussion

3.1 ANS fluorescence indicates that the relative sur-

face hydrophobicity of γS-G18V is higher than that

of γS-WT

Dye-binding assays were performed on γS-WT and the aggregation prone variant, γS-G18V.

The ANS fluroscence measurements for γS-WT and γS-G18V, shown in Figure 3.1, indicate

more exposed hydrophobic surface in γS-G18V compared to its wild type counterpart. These

data also allow determination of the lowest ANS concentration required to produce the

maximum emission before saturation, which was 1.5 mM for γS-WT and 1 mM ANS for

γS-G18V. The lower concentration required to saturate γS-G18V is consistent with the

observation that it binds ANS more readily than wild-type.
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Figure 3.3: Average chemical shift perturbation (CSP) of γS-WT (green) and γS-G18V
(blue). Nonspecific binding, with maximum perturbation in the N-terminal domain, is ob-
served in both proteins. However, in γS-G18V, more of the CSPs are localized to the
N-terminal domain. Particularly between residues 15 to 50, in the cysteine loop near the
mutation site. Inspection of the structures confirms that this region is exposed to solvent in
γS-G18V but not in γS-WT

3.2 Chemical shift perturbation mapping reveals the

residues involved in ANS binding and the relative

strengths of the interactions

Binding interactions between ANS and γS-WT or γS-G18V were measured at concentration

ratios of 1:0, 1:0.5, 1:1, and 1:2 of γS:ANS, using CSP mapping via 1H-15N HSQC spectra.

Selected regions of the NMR spectra where resonances show perturbations indicative of ANS

binding are shown in Figure 3.2. The full NMR spectra can be found in the Supplemental

Information (Supplementary Figures S4 and S5). The change in chemical shift for each peak

in the 2D spectrum upon ANS binding was calculated using Equation 1. Representative CSP

data for γS-WT and γS-G18V upon 1:1 ANS binding is shown in graphical form in Figure

3.3. The complete set of calculated CSP data can be found in the Appendix (Supplementary

Figures A.6 and A.7). As shown in Figure 3.3, although nonspecific binding is observed

throughout the surfaces of both proteins, γS-G18V binds ANS more strongly in the N-

terminal domain (approximately the first 100 residues). The maximum ANS binding occurs
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within residues 15 through 50, close to the mutation site. These observations are mapped

onto the protein structures in Figure 3.4 (left panel) where the residues exhibiting strong

(CSP at least two times the RMS) and weak ANS binding (CSP at least half the RMS)

are highlighted. For γS-WT, strong binding residues are highlighted in bright green and

weak binding residues in pale green. For γS-G18V, strong binding residues are highlighted

in dark blue and weak binding residues in pale blue. Although some strong binding residues

are observed in both proteins near the mutation site, (e.g. G18 in γS-WT and D22 in γS-

G18V), G18V displays more ANS binding, both strong and weak, in the N-terminal domain.

String binding is also seen in the interdomain interface of γS-WT, (residues L62, S82, and

H123), and γS-G18V (residues L62, W73, H87, L88, and G91). These results are consistent

with the observation that αB-crystallin strongly binds near the N-terminal domain and the

interdomain interface in γS-G18V, but not γS-WT[16]. Thus, the ANS-binding data support

the hypothesis that the chaperone may be recognizing an exposed hydrophobic patch in this

region of γS-G18V.

Although both proteins display ANS binding throughout both the N- and C-terminal do-

mains, γS-G18V has additional ANS binding residues, mostly in the N-terminal domain.

Although some strong binding residues exhibited in the N-terminal domain for both pro-

teins near the mutation site, (e.g. G18 in γS-WT and D22 in γS-G18V), G18V displays

more ANS binding, both strong and weak, in the N-terminal domain. Strong binding is also

seen in the interdomain interface of γS-WT, (residues L62, S82, and H123), and γS-G18V

(residues L62, W73, H87, L88, and G91). Similar perturbations at the interdomain inter-

face (residues G65, Y67, S82, S85, and G91) were shown for γS-G18V in the presence of

αB-crystallin, the primary holdase chaperone protein of the eye lens [16]. αB-crystallin only

weakly interacts with γS-WT at the surface of the protein (residues S35, W47, E66, G92,

F122, and H123) [16]. The full list of residues interacting with both ANS and αB-crystallin

for both γS-WT and γS-G18V is tabulated in Table 2 for comparison. Notably, αB-crystallin

strongly binds near the interdomain interface in γS-G18V in but not γS-WT, consistent with

13
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interdomain interface suggesting that this variant has higher surface hydrophobicity localized
to the N-terminal domain near the mutation site and the interdomain interface. Coverage
of both strong and weak binding residues are nearly identical between experimental and
docking results, highlighted in dark green for γS-WT and dark blue for γS-G18V, indicating
that the docking results are in good agreement with the experimental data.
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the hypothesis that the chaperone is recognizing an exposed hydrophobic patch in this region

of γS-G18V.

In order to character the aggregation states of γS-WT and γS-G18V, dynamic light scattering

(DLS) data were acquired for both proteins under the same solution conditions used in the

NMR experiments (data shown in Supplementary Figure A.8). As observed in previous

studies of γS-G18V [16, 3], the γS-WT solution contains only monomers, while γS-G18V

shows a slightly broader range of sizes consistent with transient formation fo dimers and

potentially other small oligomers. However, the NMR spectra rule out the presence of a

significant stable population of large aggregates; the linewidths for representative peaks

in the HSQC spectra are comparable to the corresponding peaks in γS-WT. Linewidth

comparisons for representative peaks in the spectra of γS-WT and γS-G18V are tabulated

in the Supplemental Information (Table A.2). Despite the presence of transient oligomers

in the γS-G18V sample, consistent with its increased aggregation propensity, it is clear

from the linewidth data that the chemical shift changes upon addition of ANS are due

to dye binding rather than a change in aggregation state. Although the oligomerization

states of the starting solutions were not identical, this is accounted for by the chemical shift

differences between γS-WT and γS-G18V in the absence of ANS, while the chemical shift

perturbations reflect binding of each protein to ANS. If stable, large complexes were present

in the NMR samples, the increased aggregation would be expected to cause significant line

broadening and disappearance of signals, as was observed for mixtures of γS-G18V with

αB-crystallin[16],where large complexes were formed and TROSY techniques were required

to observe the NMR signals. Although it is possible to prepare purely monomeric samples

of γS-G18V at low pH, for the current study, neutral pH was chosen in order to investigate

intermolecular interactions under more physiologically realistic conditions

In order to investigate whether ANS changes the oligomerization states of γSαB complexes

and interferes with binding of αB-crystallin to γS-G18V, we performed gel filtration chro-
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Figure 3.5: Gel filtration chromatograms for γS-WT (A) and γS-G18V (B) in the presence
and absence of αB-crystallin and ANS. (A) For γS-WT alone (green), the sample is mostly
monomeric (10 kDa) with a small amount of dimers (22 kDa). Upon addition of αB-crystallin
(orange), a population of larger oligomers (160 kDa) appears, at the expense of the popu-
lations of both the monomeric and dimeric states. Addition of ANS to this mixture (red)
slightly increases the proportion of large aggregates. (B) For γS-G18V alone (blue), much
of the sample is monomeric, although small populations of dimers and large oligomers exist.
The peak at 160 kDa is much broader than in γS-WT, suggesting greater polydispersity. In
the presence of αB-crystallin (cyan), the main effect is a dramatic narrowing of the peak
corresponding to large oligomers, indicating a more uniform population. Addition of ANS to
this mixture (purple) produces both further narrowing and an increase in the population of
monomers, suggesting that interaction with ANS does disrupt the αB-γS complex formation.
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matography (Fig. 5). Sam- ples of γS-WT and γS-G18V were prepared at 1mg/mL and

compared to equivalent samples in the presence of αB-crystallin (1:1) and both αB-crystallin

and ANS(1:1:1). For γS-WTalone, the sample is mostly monomeric with a small amount

of dimers. Upon addition of γB-crystallin, a population of larger oligomers at about 160

kDa appears, at the expense of the populations of both th emonomeric and dimeric states.

Addition of ANS to this mixture slightly increases the proportion of large aggregates. In

the case of γS-G18V, both the initial oligomerization states and the effect of adding ANS is

different. Initially, although much of the sample is monomeric, small populations of dimers

and large oligomers exist. The peak at 160 kDa is much broader than in γS-WT, suggesting

greater polydispersity. In the presence of αB-crystallin, the main effect is a dramatic nar-

rowing of the peak corresponding to large oligomers, indicating a more uniform population.

Addition of ANS to this mixture produces both further narrowing and an increase in the pop-

ulation ofmonomers, suggesting that interaction with ANS does disrupt the αBγScomplex

formation. The full chromatogram including molecular weight standards is provided in the

Supplemental Information (Fig. A.9).

3.3 Docking of ANS on the protein surface predicts

more binding sites on γS-G18V than γS-WT and

allows interpretation of the CSP data

Rigid receptor docking resulted in a total of 4860 docked poses (27 search spaces 20 NMR

conformations 9 poses/search space). After screening for poses consistent with ANS fluo-

rescence enhancement upon binding, 3423 poses and 3367 poses remained for γS-WT and

γS-G18V, respectively (see Supplementary Information Fig. A.2A). Filtered poses covered

nearly the entire surface of the protein and exhibit a broad range of scores (from 2 kcal/mol
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to 7 kcal/mol, with a mean of 4.5 kcal/mol).Due to the pocket-like shape of the interdo-

main interface, ANS preferentially bound to the large hydrophobic pocket between the N-

and C-terminal domains. However, sites were identified near all highly perturbed residues

with comparable binding scores (see Supplementary Information Fig. A.3). Flexible docking

poses located near the highly perturbed residues according to the CSP data had binding

scores between 4.5 kcal/mol and 6.0 kcal/mol, consistent with a stronger preference for ANS

to bind near the perturbed residues. A total of ten binding sites were found for γS-G18V

and nine binding sites for γS-WT using flexible docking.Most of these binding sites were

very similar in both γS-WT and γS-G18V. However, three binding modes were unique to

γS-G18V. The first and most populated binding mode is located in the hydrophobic cavity at

the interface between the N- and C-terminal domains, shown in Fig. 3.6A and 3.6D [7, 22].

Although this binding site was found in both γS-WT and γS-G18V, the presence of the

R84-D153 salt-bridge blocks the exposure of the hydrophobic surface in γS-WT. In contrast,

γS-G18V lacks this salt-bridge interaction, which exposes the interdomain hydrophobic cav-

ity and allows the entry of ANS into the interdomain binding site. This is consistent with

the experimental NMR data,which indicate that chemically perturbed residues, H87 and

L88, located near the interdomain pose, interact strongly with ANS only in γS-G18V (Fig.

3.6). The second and third binding sites are located close to res- idues 2030,which includes

a loop region containing three cysteine residues (C23, C25, and C27). As a result of the

G18V mutation, C23 and C27 become solvent exposed, suggesting possible formation of

intermolecular disulfide bridges, consistent with the observation that an excess of reducing

agents abrogates the formation of small oligomers [22]. Previous studies suggested that the

exposure of these cysteines results from a disruption in secondary structure due to the burial

of the V18 sidechain[16]. As a result of this cysteine exposure and concomitant structural

changes, a new hydrophobic pocket is uncovered as the second ANS binding site. Although

ANS binds this Cys loop in γS-WT after flexible docking refinement, it is not in direct con-

tact with any hydrophobic surface, suggesting that the pose may not be consistent with and
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enhancement in ANS fluorescence (Fig. 3.6B). In contrast, when the hydrophobic pocket is

exposed, as it is inγS-G18V,ANS becomes buried deep within the pocket (Fig. 3.6E). This

conformation provides both the hydrophobic interactions necessary for fluorescence as well

as reduced quenching due to water exposure [20]. In addition to cysteine exposure, the third

binding site shows additional hydrophobic surface exposure due to the cysteine loop sepa-

rating from the main Greek key motif. This binding site was not found in γS-WT using the

same docking search space, indicating that this hydrophobic patch is a unique characteristic

of γS-G18V (Fig. 6F). Additionally, the CSP data shows local perturbation of the backbone

amides of the residues involved in these three binding sites only for γS-G18V. The presence

of these γS-G18V-specific binding sites can ex- plain the higher ANS fluorescence intensity

of the variant protein over WT, and they also identify exposed hydrophobic patches which

may potentially serve as proteinprotein interfaces in crystallin aggregates, and which can be

targeted in future mutagenesis studies.

The CSP data and the ANS-residue contact data from the docking simulations show generally

good agreement in that the same protein regions were observed to bind ANS (see Fig. 4). In

some cases, the specific residues classified as strong binding vary between experimental and

docking results, but coverage of both strong- and weak-binding residues are nearly identical

(highlighted in dark green for γS-WT, and dark blue γS-G18V in the right panel of Fig.

4). This outcome is to be expected because the docking scoring function is more effective

at identifying binding sites than distinguishing more subtle changes in binding energy: the

standard error of the Autodock Vina scoring function [33] is larger than the variation among

scored poses. The agreement between rigid protein docking results and experimental ANS

binding results suggests that there is no major change in protein conformation upon binding

of ANS, supporting the hypothesis that hydrophobic patches on the surface are involved in

intermolecular interactions. Good agreement between the experimental and docking results

further confirms that ANS binding is localized near the mutation site in the N- terminal

domain for γS-G18V, consistent with the CSP data. Experimental and simulation results
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Figure 3.6: Docking poses of ANS bound to a flexible γS-WT and γS-G18V receptor. Three
binding sites were found to be unique to γS-G18V. The protein surface was generated with
MSMS [26]; red, blue, green, and white correspond to negative, positive, polar and hydropho-
bic regions, respectively. ANS is shown in licorice representation. The R84-D153 salt bridge
and cysteine residues (C23, C25, and C27) critical to the hydrophobic patch availability are
shown in space-filling representation. In the left-hand panels, residues defined as strong/weak
binding by CSP data have their backbone amides represented as spheres. Large spheres rep-
resent strongly-binding residues, and small spheres represent weakly-binding residues. Atoms
are colored by element (carbon, cyan; nitrogen, blue; oxygen, red; hydrogen, white; sulfur,
yellow). (A & D) At site 1, the R84-D153 salt bridge separates to expose the hydrophobic
cavity at the interdomain interface. Although a pose is generated in both proteins, the lack
of perturbed residues at the binding site, according to the CSP data, indicates that the
binding site is inaccessible to ANS in γS-WT. (B & E) At site 2, the docked pose of ANS
shifts from a polar surface in γS-WT to inserting into a hydrophobic cavity in γS-G18V. Due
to specific backbone torsions propagating from the G18V mutation site that keep the V18
buried, C23 and C27 become solvent exposed and reveal a hydrophobic cavity. This pose is
located near the largest perturbed residue in γS-G18V according to the CSP data. (C & F)
At site 3, the disordered cysteine loop separates from the Greek key motif of the N-terminal
domain resulting in exposure of an additional hydrophobic patch. No equivalent pose could
be generated on the γS-WT structure.
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are also consistent on the binding of ANS to the exposed interdomain hydrophobic surface

located in the interdomain interface between the two domains due to the breaking of the R84-

D153 salt bridge in γS-G18V. Exposure of this hydrophobic patch facilitates ANS binding

and may be involved in hydrophobic protein-protein interactions.
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Chapter 4

Conclusion

In this study, we have used ANS fluorescence, solution-state NMR chemical shift perturba-

tion mapping, and molecular docking to investigate the differences in exposed hydrophobic

surface between human γS-crystallin and its cataract-related γS-G18V variant. The exper-

imental results indicated that both proteins have a fairly high level of nonspecific binding,

but both the fluorescence and NMR measurements indicate more ANS binding to γS-G18V,

particularly in the N-terminal domain near the mutation site. The docking studies, in agree-

ment with the NMR data, found three binding modes that are unique to γS-G18V that were

not found in γS-WT: one in the exposed hydrophobic patch in the interdomain interface

and two binding modes in the exposed hydrophobic pocket formed when the cysteine loop

becomes solvent ex- posed. Using docking and binding assays, hydrophobic surface patches

were identified that may be responsible for some of the intermolecular interactions between

crystallins that promote aggregation in the lens. The results may also guide the design of

future mutagenesis and drug-binding studies to further investigate the importance of such

intermolecular interactions in mediating γS-crystallin solubility and aggregation resistance

in the healthy eye lens.
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Appendix A

Supplementary Figures

Table A.1: Root mean square (RMS) values used for ANS-residue contact frequency calcu-
lations and CSP calculations. The Boltzmann weighted-contact frequencies had a strong-
binding threshold set at two times the RMS of the calculated ANS-residue contact frequency,
while the weak-binding threshold was set at half the RMS value. Following the CSP calcu-
lations, a strong-binding threshold for each set of conditions of γS:ANS was set at two times
the RMS of the calculated CSP, while the weak-binding threshold was set at half the RMS.

Contact Frequencies 1:0.5 1:1 1:2

WT
strong-binding 0.02699 0.02420 0.02699 0.03382
weak-binding 0.01349 0.00605 0.00675 0.00846

G18V
strong-binding 0.02345 0.02342 0.02345 0.02345
weak-binding 0.01172 0.00586 0.00586 0.00586
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Figure A.1: Search space boundaries used in initial rigid receptor docking to NMR confor-
mations of γS-crystallin. A total of 27 docking runs were performed for each NMR structure.
Search spaces were placed in a 3 x 3 x 3 grid with a 10 (̊A) overlap between search spaces.
Boxes were sized so enough space was available to sample ligand conformations on the entire
surface of the protein.
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A B

Figure A.2: Clustering of rigid docking results to define flexible binding sites (γS-WT shown
as example). (A) Set of poses containing both hydrophobic and electrostatic contacts nec-
essary for fluorescence. The resulting set covers nearly the entire surface of the protein. (B)
Clustering of the pose set resulted in 20 binding sites (several of the clusters were overlap-
ping). Pose clusters near highly perturbed residues (shown with blue VDW spheres) were
picked to define search spaces for flexible docking. Clusters are color coordinated for each
search space.

Table A.2: A table of selected line widths taken at half height for several representative
residues in the HSQC spectra of γS-WT and γS-G18V for the 1:1 γS:ANS mixtures. The
line widths (reported in Hz) are comparable for both proteins.

γS-WT γS-G18V
Residue 1H (Hz) 15N (Hz) 1H (Hz) 15N(Hz)
C37 33.782 36.110 32.238 31.454
L62 36.003 44.881 37.979 35.617
W73ε 32.349 48.174 30.599 37.302
G102 32.392 33.081 32.082 37.695
F122 31.787 34.271 31.279 34.540
A165 29.652 30.582 31.966 28.605
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Figure A.3: ANS-residue contact frequencies for γS-WT (green) and γS-G18V (blue) from
docking simulations. Although non-specific binding is observed for both proteins, the contact
frequencies show more ANS binding for γS-G18V than γS-WT, with maximum binding
localized near the interdomain interface
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Figure A.4: 1H-15N HSQC spectra of 15N labelled γS-WT with increasing concentrations of
ANS. Ratios of γS:ANS were at 1:0, 1:0.5, 1:1, and 1:2 where the concentration of protein
was approximately 0.3 mM. Spectra were acquired at 25 ◦C. Residues were assigned based
on previous assignments of γS-WT [3].
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Figure A.5: 1H-15N HSQC spectra of 15N labelled γS-G18V with increasing concentrations
of ANS. Ratios of γS:ANS were at 1:0, 1:0.5, 1:1, and 1:2 where the concentration of protein
was approximately 0.3 mM. Spectra were acquired at 25 ◦C. Residues were assigned based
on previous assignments of γS-G18V [3].
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Figure A.6: Average chemical shift perturbation (CSP) of γS-WT (green) and γS-G18V
(blue) for 1:0.5 γS:ANS. Maximum perturbation for both proteins is in the N-terminal do-
main and the interdomain interface
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Figure A.7: Average chemical shift perturbation (CSP) of γS-WT (green) and γS-G18V
(blue) for 1:2 γS:ANS. Maximum perturbation for both proteins is in the N-terminal domain.
At this ANS concentration γS-WT exhibits more perturbation, likely because γS-G18V is
already saturated at 1 mM ANS
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Figure A.8: Dynamic light scattering (DLS) data for γS-WT and γS-G18V in 10 mM phos-
phate at pH 6.9 displayed as the distribution of particle size by number. The concentrations
of both proteins were at 0.3 mM, as in the NMR experiments. γS-WT is fully monomeric
under theses conditions, however γS-G18V forms a mixture of transient dimers and small
oligomers, as observed in previous studies.
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Figure A.9: Gel filtration chromatograms for γS-WT (A) and γS-G18V (B) in the presence
and absence of αB-crystallin and ANS. (A) For γS-WT alone (green), the sample is mostly
monomeric (10 kDa) with a small amount of dimers (22 kDa). Upon addition of αB-crystallin
(orange), a population of larger oligomers (160 kDa) appears, at the expense of the popu-
lations of both the monomeric and dimeric states. Addition of ANS to this mixture (red)
slightly increases the proportion of large aggregates. (B) For γS-G18V alone (blue), much
of the sample is monomeric, although small populations of dimers and large oligomers exist.
The peak at 160 kDa is much broader than in γS-WT, suggesting greater polydispersity. In
the presence of αB-crystallin (cyan), the main effect is a dramatic narrowing of the peak
corresponding to large oligomers, indicating a more uniform population. Addition of ANS to
this mixture (purple) produces both further narrowing and an increase in the population of
monomers, suggesting that interaction with ANS does disrupt the αB-γS complex formation.

36



Appendix B

Overview of the Docking Workflow

B.1 Background

Molecular docking can provide important structural information on bound ligands to known

structures of receptors. This method often employs a simple energy function and search

algorithm in order to quickly generate and rank bound conformations, often for the purpose

of processing large libraries of compounds and/or receptors. Though some scoring functions

provide binding energies for their poses, the standard error is too large to be predictive[33,

36]. Furthermore, benchmarks of several docking programs found that the scoring functions

can reproduce co-crystallographic conformations within a set of top ranked poses, but are

unable to identify the correct structure as the top scored pose[36]. Thus, the scoring functions

serves best as a metric to rank the most plausible poses generated from the search algorithm,

rather than pinpointing the exact binding mode. For this purpose, molecular docking serves

as a fast, yet qualitative method to generate sets of top-ranked poses for further inquiry.

In this work, I seek the identify the protein-ligand binding sites. Since virtual screening

efforts usually involve screening a particular active site, care should be taken when blindly
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docking to an entire protein. To address this, I incorporated a docking protocol involving

two stages of docking with two stages of filtering to cluster and remove poses based on prior

knowledge from experiments. An outline of the docking protocol is illustrated in Figure B.1.

B.2 Blind docking

For this docking protocol, Autodock Vina[33] was chosen for its relatively fast operation. In

the first step, docking simulation search spaces were distributed across the protein’s entire

surface. Since the search algorithm becomes much less effective with larger search spaces,

a grid of 27 smaller 30 x 30 x 30 Å search spaces were used. The second step involves

running the docking simulation for each search space, each of the 20 superimposed NMR

conformations, and each protein variant, resulting in 1,080 runs for step 2. Since the goal

of blind docking is to populate the binding sites for clustering, each run was configured to

report the top 20 binding modes, rather than the default top 9 binding modes.

B.3 Define Binding Sites by Clustering

In the third step, the collective pose set is clustered (using RMSD clustering in VMD[11]).

The chosen RMSD cutoff of 5 Å was sufficiently large enough to cluster together poses with

different orientations, but still small enough to distinguish between binding sites. The result-

ing 50+ clusters are then filtered for interactions with strongly binding CSP residues. Clus-

ters with no heavy atoms within 8 Å (the interaction cutoff of the Vina scoring function[33])

of a strong binding residues are removed from the set. The remaining clusters form the new

search spaces for a flexible refinement.
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Figure B.1: Illustration of the docking workflow used to identify ANS binding sites. 1)
The 27 search spaces shown in red outline around 21 superimposed NMR conformations. 2)
Collective set of docked poses to a rigid protein. 3) Resulting pose clusters after filtering for
contacts. Strong binding residues from CSP mapping are shown in blue spheres. 4) Docked
pose set bound to a flexible protein. 5) Docked poses from flexible receptor docking. 6) The
best scored poses for each binding site. These poses are then visually inspected for their
contacts.
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B.4 Flexible Refinement and Post-Filtering

For flexible docking, residues with strong and weak binding CSP values were set as flexible,

and the ligand is redocked to the flexible protein. The pose set is then clustered and refiltered

for contacts with strong binding residues. The set is further filtered for the contacts necessary

for fluorescence. This requires polar interactions with the ANS sulfonate and hydrophobic

interactions with the conjugated rings[20]. The final set of poses include the top ranked poses

for each binding site that satisfies all the criteria for a fluorescent pose that contributes to

the observed CSP. Each pose is then individually inspected for differences in binding modes

between γS-WT and γS-G18V. The three identified binding sites at the site of mutation,

behind the cysteine loop, and at the interdomain interface have stronger binding with γS-

G18V directly resulting from changes in protein conformation linked to the G18V point

mutation.
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