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ABSTRACT OF THE DISSERTATION

Estimation and Inference

in High-dimensional Models

by

Mojtaba Sahraee Ardakan

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2022

Alyson K. Fletcher, Chair

A wide variety of problems that are encountered in different fields can be formulated

as an inference problem. Common examples of such inference problems include estimating

parameters of a model from some observations, inverse problems where an unobserved signal

is to be estimated based on a given model and some measurements, or a combination of the

two where hidden signals along with some parameters of the model are to be estimated jointly.

For example, various tasks in machine learning such as image inpainting and super-resolution

can be cast as an inverse problem over deep neural networks. Similarly, in computational

neuroscience, a common task is to estimate the parameters of a nonlinear dynamical system

from neuronal activities. Despite wide application of different models and algorithms to

solve these problems, our theoretical understanding of how these algorithms work is often

incomplete. In this work, we try to bridge the gap between theory and practice by providing

theoretical analysis of three different estimation problems.

First, we consider the problem of estimating the input and hidden layer signals in a

given multi-layer stochastic neural network with all the signals being matrix valued. Various

problems such as multitask regression and classification, and inverse problems that use deep

generative priors can be modeled as inference problem over multi-layer neural networks. We

consider different types of estimators for such problems and exactly analyze the performance
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of these estimators in a certain high-dimensional regime known as the large system limit.

Our analysis allows us to obtain the estimation error of all the hidden signals in the deep

neural network as expectations over low-dimensional random variables that are characterized

via a set of equations called the state evolution.

Next, we analyze the problem of estimating a signal from convolutional observations

via ridge estimation. Such convolutional inverse problems arise naturally in several fields

such as imaging and seismology. The shared weights of the convolution operator introduces

dependencies in the observations that makes analysis of such estimators difficult. By looking

at the problem in the Fourier domain and using results about Fourier transform of a class of

random processes, we show that this problem can be reduced to analysis of multiple ordinary

ridge estimators, one for each frequency. This allows us to write the estimation error of

the ridge estimator as an integral that depends on the spectrum of the underlying random

process that generates the input features.

Finally, we conclude this work by considering the problem of estimating the parameters

of a multi-dimensional autoregressive generalized linear model with discrete values. Such

processes take a linear combination of the past outputs of the process as the mean parameter

of a generalized linear model that generates the future values. The coefficients of the linear

combination are the parameters of the model and we seek to estimate these parameters under

the assumption that they are sparse. This model can be used for example to model the

spiking activity of neurons. In this problem, we obtain a high-probability upper bound for

the estimation error of the parameters. Our experiments further support these theoretical

results.
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Chapter 1

Introduction

Estimation and inverse problems where one is interested to make inference about unknown

parameters or unobserved signals from a set of observations are widely encountered in various

fields. Even though a wide variety of models and algorithms to solve such estimation problems

are used in practice with great success, very often our theoretical understanding of why they

work is limited. In this work we focus on three different estimation and inverse problems that

are inspired by problems in machine learning and computational neuroscience, even though

they are applicable to other areas as well.

The first problem we consider is to estimate the input in hidden signals in a given

multi-layer neural network where all the signals are matrix valued. Next, we consider

the inverse problem of estimating a signal from convolutional measurements which is also

known as deconvolution. And finally we look at the problem of estimating parameters of an

autoregressive generalized linear model. Our goal is to gain a better theoretical understanding

of how different estimators perform in these problems. These theoretical results can help us

understand different phenomena such as the now well-known double descent curve [Belkin

et al., 2018,Belkin et al., 2019b,Mei and Montanari, 2019,Nakkiran et al., 2021] that we have

observed empirically, aid us in model selection and hyper-parameter tuning, as well as guide

us towards designing better models and learning algorithms.
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In this chapter, we briefly discuss some background material on estimation problems

and the statistical regimes in which the theoretical results are established. Then we briefly

introduce the problems that we study in the subsequent chapters.

1.1 Estimation Problems

Estimation is the problem of making inference about an unknown signal based on some

observations. Typical examples include:

• Parameter estimation problems: we are given a parametric model, e.g. a distribution

Pθ parameterized by θ along with some samples from this distribution or a dynamical

system with dynamics parameterized by θ along with a trajectory of the states, and

the goal is to estimate the true parameter θ.

• Inverse problems: we have an unknown signal x that goes through a (stochastic)

model M and we observe y “ Mpxq and the goal is to recover x from y. Famous

examples of inverse problems include compressed sensing where x is an unknown sparse

signal that we would like to reconstruct from y “ Ax ` w where A is known matrix

and w is noise with known distribution or known moments up to a sufficient order.

• Joint parameter and unknown signal reconstruction: This is a combination

of the above two problems where we have an unknown signal x that goes through a

stochastic model Mθ parameterized by θ and we aim to recover x as well as estimate

the parameters θ from the observations y “ Mθpxq. Examples of this problem include

system identification where we want to jointly estimate the parameters of a system

as well as the unobserved hidden states or the compressed sensing problem discussed

above when the noise or signal x come from a parameterized family of distributions

with unknown parameters.

In Chapters 3 and 4 we discuss two inverse problems whereas in Chapter 5 we consider a
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parameter estimation problem.

1.2 Estimators

Even though we have classified estimation problems into different categories, they can all be

modeled similarly. Here we discuss the inverse problem but the same formulation applies to the

estimation problem and joint estimation and inverse problem with only slight modifications.

Consider an unknown parameter θ that we want to estimate from the observation y. The

relation between θ and y can be modeled by a likelihood function ppy|θq. In Bayesian

inference, we further assume that the unknown signal θ has a prior distribution ppθq. From

a frequentist point of view, we only assume that θ belongs to some set Ω. Here for simplicity,

we have assumed that all distributions have densities with respect to an underlying measure.

Given the statistical models, we can form different kinds of estimators and analyze their

properties. Of particular importance are three estimators discussed below.

Maximum likelihood estimator (MLE): This estimator recovers the unknown signal

by maximizing the likelihood function

pθMLE “ argmax
θ

ppy|θq.

Bayesian estimators: Bayesian estimators are obtained via the posterior distribution

ppθ|yq. From Bayes rule the posterior can be written as

ppθ|yq “
ppy|θqppθq

ppyq
,

where ppyq “
ş

θ
ppy|θqppθqdθ. Common examples of Bayesian estimators are mode of the

posterior which is known as the maximum a posteriori estimator pθMAP “ argmaxθ ppθ|yq

and mean of the posterior known as the minimum mean squared error (MMSE) estimator

3



pθMMSE “ Erθ|ys. More generally, given a loss Lpθ, pθq, one can consider the minimizer of

posterior loss

pθ “ pfpyq, pf “ argmin
fPF

ErLpθ, fpyqq|ys,

where F is the class of all measurable functions of y. pθMMSE is a special case of this estimator

with Lpθ, pθq “

›

›

›
θ ´ pθ

›

›

›

2

2
.

M-estimators: Given a loss function Lpθ,yq and possibly a regularizer Rpθq, an M-

estimator is defined as

pθM “ argmin
θ

Lpθ,yq ` Rpθq.

Both MLE and MAP estimators are special kinds of M-estimators with Lpθ,yq “ ´ log ppy|θq

and Rpθq “ ´ log ppθq for MAP and Rpθq “ 0 for MLE.

1.3 Statistical Regimes

Assume that we would like to estimate a parameter θ P Rp from n observations. Once we

choose an estimator, we can ask about the performance of the estimator. Denoting the

estimated θ by pθ, the performance is usually measured in terms of a risk Rpθq “ Lpθ, pθq

where L is a loss that measures how close the estimated parameter is to the true parameter.

Common loss examples include Lpθ, pθq “ }θ ´ pθ}22 and Itθ ‰ pθu -where It¨u denotes the

indicator function- corresponding to the squared error and 0-1 loss respectively. In the

Bayesian setting, one is usually interested in the average risk EθRpθq where the expectation

is taken with respect to the randomness of the parameter, i.e. the prior distribution, as well as

the randomness of the data, whereas in a frequentest approach we might be interested in the

worst case risk supθPΩ ERpθq where Ω is the parameter space and expectation is only taken

with respect to randomness of the data. These average or worst case risks are a function of

the number of observations n. Except in very simple problems, in most problems of interest

deriving the exact value of risk as a function of n cannot be done. Therefore, we usually

4



either resort to computational approaches such as Markov Chain Monte Carlo (MCMC)

methods or bootstrapping to estimate the risk curve, we obtain only bounds on the risk of

the estimators, or we study them in more simplified settings.

Classically, estimators were studied in the setting where the number of parameters p is

fixed, but the number of samples n is going to infinity. Properties of an estimator can then

be studied under the limit of n Ñ 8. This framework is usually called the asymptotic theory

or the large sample theory. In the large sample limit, one can study asymptotic properties of

estimators such as consistency, asymptotic risk of an estimator, or even better the asymptotic

distribution of the estimator among others. The idea is that even though these results only

hold in the limit of n Ñ 8, the results might be approximately valid even for large enough

sample sizes. At the same time, in this limit, we can take advantage of many tools such as

laws of large numbers or central limit theorem (CLT) that are not available to us in the finite

sample regime. Such tools makes the analysis of properties of estimators much easier, and

looking at the asymptotic behavior of an estimator is usually the first thing that is done,

but unfortunately, the results of large sample theory might not be a good predictor of their

behavior in the finite sample regime.

In most problems of interest, the number of samples is comparable to the number of

parameters, or even worse it could be far fewer than the number of parameters as is the case

for example in compressed sensing sensing [Donoho, 2006]. If we plot a figure where one

axis corresponds to the number of samples and the other to the number of parameters as

in Figure 1.1, the regime where we are actually interested in corresponds to the green box

where both the number of samples and number of parameters are finite. Unfortunately, in

this regime, as mentioned earlier, it is usually not possible to obtain exact characterization

of the performance of estimators. Therefore, instead of looking at the exact behavior, we

are usually satisfied with high probability bounds on the risk. Obtaining such results are

usually very difficult and require using tools such as concentration of measure. One example

of this approach is discussed in Chapter 5 where we consider the problem of estimating the

5



Figure 1.1: Different statistical regimes based on the number of parameters and the
number of samples.

parameters of a nonlinear multi-dimensional autoregressive process.

More recently, a new regime has gained interest in which the number of samples is going

to infinity, but at the same time the number of parameters is also going to infinity. In most

of the works, both n and p go to infinity at a fixed ratio, i.e. n Ñ 8, n{p Ñ δ P p0,8q which

we call the proportional asymptotics. But more generally, we can consider the case where

n Ñ 8 and p “ fpnq for some function f which represents the rate at which the number

of parameters is going to infinity. The most common form of f is p “ nα for some fixed

α P R but other rates of convergence can also be considered. The hope is that this regime

might be the sweet spot between the classical large sample theory and the finite sample

theory, where the number of samples being comparable to the number of parameters is more

realistic for most modern machine learning tasks, but as we take the limit certain convergent

behavior emerges from the problem that makes the analysis a lot easier. Therefore, the results

are hopefully approximately correct even in the finite sample regime if both the number of

parameters and sample are large enough as is the case in many machine learning problems.

Examples of such convergent behavior are convergence of spectrum of large random matrices

to known distributions among other results in random matrix theory. The results of the

problems considered in both Chapter 3 and 4 are derived in the proportional asymptotic

regime.
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1.4 Organization of This Work

In this work, we consider three different problems that are presented in separate chapters.

For each problem, we derive theoretical guarantees for the performance of specific estimators.

To obtain such theoretical results, we use tools from high-dimensional statistics as well

as approximate message passing. These background materials are reviewed in Chapter

2 and are used extensively throughout the subsequent chapters. We start by reviewing

now-classic results in compressed sensing where we seek to solve linear inverse problems

under the assumption of sparsity. We then review a general framework to analyze high-

dimensional M-estimators. We conclude Chapter 2 by presenting two more recent algorithms:

approximate message passing (AMP) and vector approximate message passing (VAMP).

These algorithms analyze the performance of estimators in linear inverse problems in the

proportional asymptotics regime. Then main problems are presented in Chapters 3 to 5.

Each chapter is self-contained and can be read at any order or skipped altogether.

In Chapter 3 we consider the problem of estimating the input and hidden layer signals

in a given multi-layer stochastic neural network with all the signals being matrix valued.

This work is a generalization of our previous work [Pandit et al., 2020] where we considered

the vector valued problem. We show that there are several interesting problems that can

be modeled by the matrix valued generalization. We rigorously show that the estimated

signals and the true signals jointly converge in a certain sense to some random variables the

distribution of which we can compute through a set of recursive equations. These results

hold in the proportional asymptotics regime where the number of hidden units in each layer

as well as the output dimensions go to infinity at a fixed ratio and when all the weights and

biases of the network are random as precisely defined in the next chapter. This enables us to

exactly compute different types of losses between the true signals and the estimated signals

such as the mean squared error.

Next, in Chapter 4, we consider the linear inverse problem of estimating a signal via

convolutional measurements. Such convolutional inverse problems arise naturally in many

7



different fields such as signal processing. Similar to previous chapter, we show that if we use

ridge regression to estimate the signal, the mean squared error can be calculated using a

scalar integral that depends on the spectral properties of the true signal. This result also

holds in a certain proportional asymptotic regime where the number of channels of the input

signal and measurement signal are going to infinity at a fixed ratio. Here, channel denotes the

definition that is widely accepted in machine learning community when using convolutional

layers in neural network architectures. See Chapter 4 for the precise definition.

Finally, in Chapter 5, we consider the problem of estimating the parameters of a multi-

dimensional autoregressive generalized linear model (GLM) where the data is discrete valued

and the parameters are sparse. This model can be used for example to model the network of

neurons in the brain and their spiking activity over time. Autoregressive (AR) GLMs are

similar to the widely used Gaussian AR processes except that the distribution of the next state

given the current state of the process is derived via a GLM rather than a Gaussian distribution.

In this work, we bound the estimation error of ℓ1-regularized maximum likelihood estimator

under the assumption that the parameters of the model are sparse. The results of this chapter

are obtained in the finite sample, finite parameter regime.

8



Chapter 2

Background on Sparse Inverse Problems

Before presenting the problems that are considered in this work and our contributions, it is

worth spending some time reviewing a few of the main theoretical results in sparse inverse

problems. Such problems were a very hot area of research in the late 90s and early 2000s

and sparse recovery approaches were commonly used for a wide range of tasks such as

signal compression, denoising, image super-resolution, and compressed sensing to name a few.

Nowadays, with improvements in hardware, availability of very large labeled and unlabeled

datasets, as well as high-level deep learning libraries like PyTorch [Paszke et al., 2019] and

TensorFlow [Abadi et al., 2015], deep learning methods have become the state of the art in

most tasks and have replaced simple sparse recovery approaches in most cases. Nevertheless,

much of the theory behind sparse recovery methods and the intuition that can be gained by

studying them are still applicable to many of the problems we face today, and studying them

would give us the tools that we will frequently use in the next few chapters.

In this chapter we first review some of the sparse recovery results for linear inverse

problems using square loss in the noiseless and noisy settings. Next, we briefly mention the

extension of these results to other loss functions which allows us to look at other M-estimators

such as maximum likelihood estimator. Finally, we conclude this chapter by looking at a

different approach to these inverse problems using approximate message passing. These

9



approaches include the approximate message passing framework as well as the closely related

vector approximate message passing method.

2.1 Sparse linear inverse problems in high dimensions

Let θ˚ P Rp be the true parameter vector and consider the problem of estimating θ˚ from

linear observations

yi “ xxi,θ˚
y ` ξi, i “ 1, . . . , n. (2.1)

Here, xi P Rp is the feature vector or the vector of covariates for the ith data point and ξi

corresponds to the noise. This observation model can be rewritten in matrix form as

y “ Xθ˚
` ξ, (2.2)

where X P Rnˆp is the data matrix with xi as its i th row, and y, ξ P Rn are vectors of

observations and noise respectively. Our goal is to estimate θ˚ from the data tpxi, yiquni“1.

We would like to characterize the estimation error, often in the form of the squared error

}pθ ´ θ˚}22 or the mean squared error }pθ ´ θ˚}22{p. Here, pθ denotes the estimated parameters.

This characterization is either of the form of high-probability upper bounds for the error or

the exact value of the error in certain high-dimensional asymptotics.

2.1.1 Estimation in the Noiseless Setting

First consider the simpler case of Equation (2.2) where there is no noise in the observation

model

y “ Xθ˚. (2.3)

When, the number of samples, n, is greater than or equal to the number of parameters, p,

so long as the data points are linearly independent, this equation has a unique solution and

we could estimate θ˚ exactly. However, when n ă p, we have an underdetermined system
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of linear equations which leads to a whole subspace of solutions. It is clear that without

making further assumption about θ˚, consistent estimation is no longer possible. Therefore,

we need to assume that the true vector of parameters have some structure. A very common

assumption is to assume that this vector is sparse (or approximately sparse), i.e. the support

set of this vector defined as

S “ ti|θ˚
i ‰ 0u (2.4)

has cardinality s “ |S| ! p. This assumption is justified by the observation that many signals

can be sparsified by looking at them in an appropriate basis or frame. As an example, it is

now well-known that natural images have an approximately sparse representation in discrete

Fourier transform basis or certain wavelet bases. Assuming that the true parameter vector is

at most s-sparse, we could look for the sparsest solution of the equation y “ Xθ. Defining

the ℓ0 norm as }θ}0 “
řp

i“1 Itθi ‰ 0u, where I denotes the indicator function of a set, we can

write the problem of finding the sparsest solution to a set of linear equations as

min
θ

}θ}0 s.t. y “ Xθ. (2.5)

Due to non-smoothness and non-convexity of this problem, the direct approach to solve

this problem consists of exhaustively searching over the column span of all the combination

of columns of X with cardinality less than s and see if the constraints can be satisfied in

the subspace. Unfortunately, the number of such subspaces grow exponentially in s which

makes this approach computationally infeasible. As is the case in many other optimization

problems, a natural strategy here would be to look at the convex relaxation of this problem

and replace the ℓ0 norm with the closest convex norm among ℓq norms. We would then obtain

the problem

min
θ

}θ}1 s.t. y “ Xθ. (2.6)

This problem, known as the basis pursuit program [Chen and Donoho, 1994], is a convex

problem and can be solved using various convex optimization methods. The main question
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then would be: when can the solution to (2.5) be recovered by solving (2.6)?

Through the years, many sufficient conditions have been proven to establish this equiv-

alence such the pairwise incoherence condition for the columns of X. Here, we present a

generalization of this condition known as the restricted isometry property (RIP) [Candes and

Tao, 2005].

Definition 1 (Restricted isometry property). A matrix X P Rnˆp satisfies the restricted

isometry property of order s with constant δspXq if

}XJ
SXS{n ´ IS}2 ď δspXq for all subsets S of dimension at most s, (2.7)

where XS is the n ˆ s consisting of the columns of X with indices in S, and Is is the s ˆ s

identity matrix.

In other words, the RIP condition guarantees that the norm of all the vectors, θ, with at

most s nonzero entries is almost preserved under the linear transformation corresponding to

the matrix X
`

1 ´ δspXq
˘

}θ}
2
2 ď }Xθ}

2
2 ď

`

1 ` δspXq
˘

}θ}
2
2. (2.8)

The RIP condition guarantees exact recovery of the sparsest solution as stated below.

Proposition 1 (Exact recovery in noiseless setting [Candes and Tao, 2005]). If the matrix X

satisfies RIP condition of order 2s with constant δspXq ď 1
3
, then the unique solution of the

basis pursuit program in (2.6) satisfies pθ “ θ˚ for any θ˚ with }θ˚}0 ď s.

2.1.2 Estimation in the Noisy Setting

Next, we focus on the linear estimation with noisy observations as in (2.2). In this case, a

widely used estimator is the Lasso [Tibshirani, 1996]

pθ “ argmin
θ

1

2n
}y ´ Xθ}

2
2 ` λn}θ}1, (2.9)

12



where the first term corresponds to fidelity of the model with the observations, the second

term is a regularization that encourages sparseness of the estimated parameters, and λn ą 0

is the regularization parameter that can be tuned to adjust the importance of each term. By

Lagrangian duality, the Lasso program is equivalent to

min
θ

1

2n
}y ´ Xθ}

2
2 s.t. }θ}1 ď R, (2.10)

min
θ

}θ}1 s.t.
1

2n
}y ´ Xθ}

2
2 ď b2, (2.11)

for appropriate values of R and b. Therefore, here we solely focus on the Lasso program in

(2.9).

In presence of noise, exact recovery would no longer be possible and hence we seek to

bound the ℓ2 error of the Lasso estimator.

It is worth spending some time here to gain some intuition about what makes it so hard

to bound the estimation error in such high-dimensional problems where the number samples

could be much smaller than the number of parameters in the model. Consider the constrained

optimization in (2.10) with R “ }θ˚}1 such that the true parameter vector becomes feasible.

The objective function in (2.10) is an average of the errors for all the data points for a given θ.

As the number n increases, we expect the θ˚ to be near minimizer of this objective, i.e. if we

define Lpθq “ 1{2n }y ´ Xθ}
2
2, we expect to have Lppθq « Lpθ˚q. What makes it possible to

control the error pθ ´ θ˚ based on the value of the objective function in such convex programs

is the curvature of the objective function around its minimizer. The curvature of the function

is captured by the eigenvalues of the hessian matrix evaluated at the minimizer. As the

objective function here is a quadratic, the Hessian is H “ XJX{n P Rpˆp which (assuming

the data is centered) is the empirical covariance matrix of the data. This matrix has rank

at most n which means that the the Hessian is flat in many directions if n ! p. Therefore,

the closeness of Lppθq to Lpθ˚q alone is not enough to control the error. Figure 2.1 shows an

example of flatness of the objective function in high dimensions. What comes to the rescue

13



Figure 2.1: Curvature of the objective function in high-dimensional problems where the
number of samples is fewer than the number of parameters [Wainwright, 2019]

then, is the regularization term which restricts the solution to lie in a set of the form

CαpSq “ t∆ P Rp
|}∆Sc}1 ď α}∆S}1u, (2.12)

where S is a set of indices, Sc is its complement, and ∆s corresponds to a vector formed by

picking the entries of ∆ with indices in S (and similarly for ∆Sc) [Negahban et al., 2012]. If

we can show that the objective function is curved over this set, we would be able to control

the error based on how close the objective function is at θ˚ and pθ. Towards that end, let us

define the restricted eigenvalue (RE) condition.

Definition 2 (Restricted eigenvalue condition). A matrix X satisfies the restricted eigenvalue

condition over S with parameters pκ, αq if

1

n
}X∆}

2
2 ď κ }∆}

2
2 , for all ∆ P CαpSq. (2.13)

The following result gives us a bound on the square error for the Lasso estimator.

Proposition 2 (Error of the Lasso estimator [Bickel et al., 2009]). Let θ˚ P Rp be s-sparse,

i.e. }θ˚}0 “ s. Assume that the design matrix X satisfies the restricted eigenvalue condition

with parameters pκ, 3q. Then, any solution of the Lasso estimator in (2.9) with regularization
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parameter λn ě 2
›

›

›

XJξ
n

›

›

›

8
satisfies the bound

›

›

›

pθ ´ θ˚

›

›

›

2
ď

3

κ

?
sλn. (2.14)

Note that this result is a deterministic result and not a high-probability bound. The

source of high-probability bounds come from showing that the restricted eigenvalue condition

holds for different data ensembles. See Chapter 7 of [Wainwright, 2019] for a more detailed

treatment of the subject of this section.

2.2 M-estimation with Decomposable Regularizers

In previous section, we focused on sparse linear problems with square error. Here, we

summarize an extension of those results to general M-estimators. Please refer to Chapter

9 of [Wainwright, 2019] for more details. These results will be used extensively in Chapter

5. Let tziuni“1 be n samples where zi takes values in some space Z. Each sample could be

an input output pair pxi, yiq or simply of the form xi. The latter case happens for example

when we have samples from a parametric family of distributions and aim to estimate the

parameters. Let Ω be the parameter space. Given a loss function Ln : Ω ˆ Zn ÞÑ R, define

the population loss and the target parameter as

Lpθq “ ErLnpθ, tziun1 qs, θ˚
“ argmin

θ
Lpθq, (2.15)

Where the expectation is with respect to the dataset tziuni“1. We seek to bound the estimation

error of the regularized M-estimator

pθ P argmin
θ

Lnpθ, tziun1 q ` λnRpθq, (2.16)
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where R : Ω ÞÑ R is a regularizer. In practice, the loss function often has an additive form

Lnpθ, tziun1 q “
1

n

n
ÿ

i“1

L1
pθ, ziq. (2.17)

Here, we consider regularizers that define a norm and are decomposable as defined below.

Definition 3. Given a pair of subspaces M Ď sM, a norm-based regularizer R is decomposable

with respect to pM, sMq if

Rpθ1 ` θ2q “ Rpθ1q ` Rpθ2q for all θ1 P M,θ2 P sMK. (2.18)

Many of the widely used regularizers in high-dimensional problems are decomposable. For

example, if θ˚ is s-sparse with support in a set of indices S, then ℓ1 norm is decomposable

with respect to the subspaces

M “ tθ|θi “ 0 for alli P Sc
u, (2.19)

and sM “ M. Similarly, one can show that group Lasso regularizers [Yuan and Lin, 2006,Kim

et al., 2006], the overlapping group Lasso regularizer [Jacob et al., 2009], as well as many

other regularizers are decomposable. See [Wainwright, 2019] for more details.

As was the case for the ℓ1 norm regularization discussed in the previous section, decom-

posability of a regularizer along with a suitable choice of regularization parameter λn enforces

the estimated parameters to lie in a very restricted set. Therefore, if we can show that the

loss function is curved enough over this set, we will be able to obtain error bounds for the

estimator using the bounds on the loss function.

If we define the dual norm of R via the variational formula

R˚
pu˚

q “ sup
Rpuqď1

xu,u˚
y, (2.20)
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Figure 2.2: The set Cθ˚ for Rp∆q for ∆ P R3. Here, M “ sM “ t∆|∆1 “ ∆2 “ 0u. When
θ˚ P M (left), the set is a cone. Otherwise, the set would not be a cone but would still be a
star-shaped set (right) [Wainwright, 2019].

we have the following result.

Proposition 3. If Ln is convex with respect to θ, and R is a norm which is decomposable

over the pair of subspace pM, sMKq, then if λn ě R˚p∇Lnpθ˚qq, the error ∆ “ pθ ´ θ belongs

to the set

Cθ˚ “ t∆ P Ω|Rp∆
sMKq ď 3Rp∆

sMq ` 4Rpθ˚
MKqu. (2.21)

Here, for a subspace V , we are using the notation ∆V to denote the projection of ∆ onto

V . Observe that if θ˚ P M, then the second term on the right-hand side of (2.21) vanishes

and the set would actually represent a convex cone. This set is illustrated in Figure 2.2 for

the case of Rp∆q “ }∆}1.

Next, assuming that the loss is differentiable, if we consider the error of its first order

Taylor expansion around θ˚

Enp∆q :“ Lnpθ˚
` ∆q ´ Lnpθ˚

q ´ x∇Lnpθ˚
q,∆y, (2.22)

we can define a property analogous to restricted eigenvalue property.

Definition 4 (Restricted strong convexity). The cost function Ln satisfies restricted strong

convexity (RSC) condition with curvature κ ą 0 and tolerance τ 2n with respect to a norm } ¨ }
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and regularizer Rp¨q if

Enp∆q ě
κ

2
}∆}

2
´ τ 2nR2

p∆q, for all ∆ P Cθ˚ . (2.23)

Finally, if we for a norm } ¨ }, a regularizer Rp¨q, and a given subspace S we define the

subspace Lipschitz constant as

ΨpSq “ sup
uPSzt0u

Rpuq

}u}
, (2.24)

we have the following bound on the error of the regularized M-estimator in (2.16).

Proposition 4 (Error of M-estimators [Negahban et al., 2012]). Assume that the loss function

is convex and satisfies the RSC condition with parameters pκ, τ 2nq. Further, assume that the

regularizer decomposes over the pair of subspaces pM, sMq. Then for any λn ě R˚p∇Lnpθ˚qq,

if τ 2nΨp sMq ď κ
64

we have

›

›

›

pθ ´ θ˚

›

›

›

2

ď 9
λ2n
κ2

Ψ2
pMq

looooomooooon

estimation error

`
8

κ
rλnRpθ˚

MKq ` 16τ 2nR2
pθ˚

MKqs
loooooooooooooooooomoooooooooooooooooon

approximation error

. (2.25)

Similar to Proposition 2, this is also a deterministic result. Probabilities come into play

when one tries to prove that some value of λn satisfies the bound λn ě R˚p∇Lnpθ˚qq, and to

show that the loss function satisfies the RSC condition in (2.23).

There are two terms on the right hand side of (2.25). The first term corresponds to the

statistical error incurred in the estimation, and the second error corresponds to approximation

error of estimating the true parameter in a subspace in which it does not exactly belong.

Indeed, if θ˚ P M, we have θ˚
MK “ 0 and the approximation error would be zero and we

would only have the estimation error. As an example, for the ℓ1 regularizer and s-sparse θ˚,

taking M to be the s-dimensional subspace that contain the s-sparse vectors with the same

support as θ˚, we would have ΨpMq “
?
s, and we recover the result for the Lasso estimator

in Proposition 2.

The result in Proposition 4 gives us a general framework to bound the error of many
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high-dimensional estimators. The difficulty of proving such results often lies in proving that

the cost function satisfies the RSC condition with high-probability for the class of problems

in mind. We will use this framework to derive error bounds for estimating parameters of a

class of discrete multi-dimensional autoregressive processes in Chapter 5.

2.3 Approximate Message Passing

In previous sections, we reviewed some standard results in high-dimensional statistics when

applied to sparse recovery problems. These results were all finite sample results in the sense

that so long as the number of samples were large enough -as determined by the size and

other properties of the problem- we obtained error bounds that hold with high probability.

Unfortunately, as discussed in Chapter 1, the analysis of problems in this regime is quite

hard. As a result, in recent years, a new asymptotic regime has emerged in which both the

number of samples and the number of parameters are going to infinity at a certain rate. This

has allowed researchers to analyze new problems. Even though the analysis is done in an

asymptotic regime, the results that are obtained in this regime often closely match what we

observe in problems with finite size so long as the problems are large enough. The models

that we utilize in practice seem to be large enough to agree quite well with the theoretical

results derived in this regime. As opposed to high probability error bounds, in this asymptotic

regime, we are able to derive formulae that allow us to exactly compute the error in different

metrics.

In this section we briefly describe the approximate message passing (AMP) algorithm for

linear inverse problems [Bayati and Montanari, 2011a]. This is one of the first works that has

studied an algorithm in the proportional regime. Consider the problem of estimating x0 from

linear observations

y “ Xθ˚
` ξ, (2.26)

where X P Rnˆp is a known matrix and ξ is i.i.d. zero-mean Gaussian noise with variance σ2.
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Figure 2.3: The factor graph corresponding to the linear model in (2.26)
[Montanari et al., 2012].

Here for simplicity, we consider the case were θ˚ has a prior with i.i.d. distribution for its

components with density (with respect to Lebesgue measure) pθp¨q. The interested reader can

refer to [Bayati and Montanari, 2011a] to see how these assumptions can be relaxed. With

these assumptions, the posterior distribution of θ˚ given y factorizes as

ppθ˚
|yq9

p
ź

i“1

ppθ˚
i q

n
ź

j“1

exp

ˆ

´
1

2σ2
pyj ´ xjJ

θ˚
q
2

˙

. (2.27)

This factorized structure can be represented by a graphical model shown in Figure 2.3. This is

a bipartite graph where each variable is represented by a variable node i P rps corresponding

to the prior ppθ˚
i q (represented by a circle), and each observation yj is represented by a factor

node j P rns (solid squares).

Similar to (2.9), many methods use regularized least squares to solve this inverse problem

pθ “ argmin
θ

1

2n
}y ´ Xθ}

2
2 ` λnRpθq. (2.28)

We can also consider Bayesian estimators such as the Maximum a posteriori (MAP) estimator

by taking Rpθq “ ´ logppθpθqq with an appropriate choice of λn, or the minimum mean

squared error (MMSE) estimator by considering the mean of the posterior distribution.
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Approximate message passing is an iterative algorithm to solve this problem

θt`1
“ ηtpX

Tzt ` θt
q (2.29)

zt “ y ´ Xθt
`

1

δ
zt´1

xη1
t´1pX

Tzt´1
` θt´1

qy
looooooooooooooooomooooooooooooooooon

Onsager correction

, (2.30)

where ηtp¨q is a denoiser that acts component-wise, η1
tp¨q is its component-wise derivative, x¨y

is the empirical averaging operator defined for a P Rn as xay “ 1{n
řn

i“1 ai, and δ “ n{p. This

algorithm was first proposed by Donoho et al. in [Donoho et al., 2010b] and later rigorously

analyzed in [Bayati and Montanari, 2011a]. Different choices of η allow us to implement

different types of estimators. For example,

ηtprq “ argmin
θ

Rpθq `
γt

2
}θ ´ r}

2
2 (2.31)

with a fixed value of γt (i.e. with no dependence on t) that can be derived from λn would

solve the problem in (2.28). Observe that if one removes the Onsager correction term from

the AMP algorithm, the algorithm is equivalent to the proximal gradient descent method of

optimization for solving (2.28). For example, for Rp¨q “ } ¨ }1, the proximal gradient descent

algorithm is known as the iterative soft thresholding algorithm (ISTA) [Wright et al., 2009].

It is not hard to show that with an appropriate choice of γt, the fixed points of the AMP

algorithm are the same as the fixed points of (2.28) and the Onsager correction term would

not change the fixed points.

Similarly, taking Rpθq “ ´ logppθpθqq with a suitable choice of γt for each iteration would

yield the MAP estimator. For the MMSE estimator, one can define a density

pθpθ|rq “
1

Z

„

Rpθq `
γt

2
}θ ´ r}

2
2

ȷ

, (2.32)

where Z is a normalizing factor and take ηprq to be the mean of this distribution. Again, a
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specific choice of γt should be used to obtain the MMSE estimate.

Therefore, AMP gives us a flexible algorithm that can be adapted to different types of

estimators. The algorithm can be derived in many different ways, for example by approxi-

mating the messages in the loopy belief propagation algorithm on the factor graph in Figure

2.3 by Gaussian messages.

However, the key property of AMP algorithm is that when the sensing matrix X is large

with i.i.d. sub-Gaussian entries, the behavior of the algorithm at each iteration can be exactly

characterized via a scalar recursive equation called the state evolution (SE)

τ 2t`1 “ σ2
`

1

δ
E
“

pηtpθ0 ` τtZq ´ θ0q
2
‰

, (2.33)

where θ0 „ pθ0 independent of Z „ N p0, 1q. Here pθ0 is the distribution to which the

components of θ0 are converging empirically. See Appendix B.2 for background on empirical

convergence of sequences and some definitions we would use in this work. In particular, as

p, n Ñ 8 with fixed ratio δ :“ n{p we have

»

—

–

θ0

pθt

fi

ffi

fl

PLp2q
“

»

—

–

θ0

ηt´1pθ0 ` τt´1Zq

fi

ffi

fl

, (2.34)

where as in the state evolution we have θ0 „ pθ0 independent of Z „ N p0, 1q. Define the

joint empirical distribution of the components of θ and pθt as

Pn “
1

p

p
ÿ

i“1

δppθt
i ,θ

˚
i q, (2.35)

where δ denotes the Dirac measure. If we denote the distribution of the right hand side

of (2.34) by P, the PL(2) convergence is equivalent to weak convergence of Pn to P plus

convergence of the second moments with respect to these distributions. It is also equivalent

to convergence of Pn to P in Wasserstein-2 distance. See appendix B.2 for more details.
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This convergence allows us to compute the estimation error in many separable metrics as

an expectation. A loss function ℓ : Ω ˆ Ω ÞÑ R is separable if we have

ℓppθ,θ˚
q “

1

p

p
ÿ

i“1

ℓppθi,θ
˚
i q (2.36)

for some function ℓp¨, ¨q. Under the PL(2) convergence in (2.34), we can compute the error

at any iteration of the AMP algorithm, for any such separable metric so long as ℓp¨, ¨q is

bounded above by some quadratic function

1

p

p
ÿ

i“1

ℓppθt
i ,θ

˚
i q “ Eθ0,Zℓpηt´1pθ0 ` τt´1Zq, θ0q almost surely, (2.37)

where θ0 „ pθ0 independent of Z „ N p0, 1q. For example, the mean squared error of the

estimate at iteration t defined as MSE “ 1{p }θ˚ ´ θt}
2
2 in the large system limit is

MSE “ E
“

pηt´1pθ0 ` τt´1Zq ´ θ0q
2
‰

almost surely, (2.38)

where the expectation is over θ0 and Z.

It is worth spending some time here to compare the results of approximate message passing

algorithms with those of Sections 2.1 and 2.2 obtained using methods from high-dimensional

statistics. Unlike AMP results, those results are high-probability upper bounds that hold so

long as the number of samples are large enough. Yet, the number of samples and parameters

need not go to infinity and could remain finite. There are often unknown constants in those

upper bounds that could be very large, therefore, such bounds are often interpreted as rates of

convergence. On the other hand, the results that we obtain from AMP are exact, in the sense

that we could exactly compute the estimation error, but they only hold in the asymptotic

regime where the number of samples and number of parameters are both going to infinity at

a fixed ratio. These results describe the behavior of models in large system limit by looking

at them at macroscopic level. The behavior of the systems at this macroscopic level can be

23



described using distributions on low-dimensional random variables. This distributions are

characterized by a set of equations called the state evolution which makes the interpretation

of such results rather difficult.

The results of this section are used in Chapter 4 to derive the estimation error of ridge

estimators in convolutional inverse problems.

2.4 Vector Approximate Message Passing

Vector approximate message passing (VAMP) is an algorithm that addresses some of the

shortcomings of the AMP algorithm. As mentioned in the previous section, the AMP

algorithm when applied to linear inverse problems that have large design matrices with i.i.d.

sub-Gaussian entries, has the key property that at each iteration of the algorithm its behavior

can be exactly characterized by a scalar state evolution equation. However, for generic design

matrices, the AMP algorithm can fail completely and cause the iterates to diverge.

Vector AMP is an algorithm that uses similar ideas to AMP, but can succeed for a much

larger class of design matrices. If the design matrix has the singular valued decomposition

X “ UΣVJ, the VAMP algorithm is guaranteed to converge so long as Σ has bounded

singular values and V has a rotationally invariant distribution, i.e. for any orthogonal matrix

O, VO has the same distribution as V. This happens when V is Haar distributed, i.e.

uniform measure over the group of orthogonal matrices.

The VAMP iterations are shown in Algorithm 1. The algorithm requires two denoisers

g` and g´. Here, g` plays the same role as the denoiser η in the AMP iterations in (2.29).

g´ is a linear denoiser

g´
pr`

k , γ
`
k q “

`

σ2XJX ` γ`
k I

˘´1 `
σ2XJy ` γ`

k r
`
k

˘

, (2.39)

which can be recognized as the minimum mean squared error denoiser under the prior

θ „ N pr`
k ,

1
γ`
k

Iq and observation model y “ Xθ ` ξ where ξ „ N p0, σ2Iq.
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Algorithm 1 Vector Approximate Message Passing (VAMP)
Require: Estimators g` and g´ and number of iterations Nit

1: Set r´
0 “ 0 P Rp and initialize γ´

0 ą 0.
2: for k “ 0, 1, . . . , Nit ´ 1 do
3: // Denoising
4: pθ`

k “ g`pr´
k , γ

´
k q

5: λ`
k “ γ´

k {

〈
Bg`

Br´
k

pr´
k , γ

´
k q

〉
,

6: γ`
k “ λ`

k ´ γ´
k

7: r`
k “ pλ`

k pz
`
k ´ γ´

k r
´
k q{γ`

k

8: // LMMSE estimation
9: pθ´

k “ g´pr`
k , γ

`
k q

10: λ´
k “ γ`

k {

〈
Bg´

Br`
k

pr`
k , γ

`
k q

〉
,

11: γ´
k “ λ´

k ´ γ`
k

12: r´
k “ pλ´

k pz
´
k ´ γ`

k r
`
k q{γ´

k

13: end for

The VAMP iterations as presented in Algorithm 1 show an elegant symmetry. This is

due to the fact that VAMP uses vector valued variable nodes along with variable splitting.

More specifically, recall that the posterior in (2.27) factorized into two groups of terms on

the right-hand side corresponding to the prior and likelihood models respectively. Let us

rewrite this posterior in a more abstract form

ppθ|yq9p`
pθqp´

py|θq. (2.40)

Next, we can introduce a copy of θ as

ppθ´,θ`
|yq9p`

pθ´
qδpθ´

´ θ`
qp´

py|θ`
q, (2.41)

where δp¨q represents the Dirac measure. The graphical model corresponding to this fac-

torization of the posterior is shown in Figure 2.4. Unlike AMP which uses scalar valued

variable nodes, VAMP uses vector valued variable nodes. The algorithm still uses Gaussian

approximation of loopy belief propagation on this factor graph, but the factor graph here

does not have any loops as opposed to the loopy bipartite graph of the AMP algorithm. A

25



Figure 2.4: The graphical model corresponding to the factorization of the posterior in
VAMP.

detailed derivation of the VAMP algorithm using this approach can be found in [Rangan

et al., 2019a]. It should be noted that VAMP can also be derived using expectation consistent

minimization of the Gibbs free energy. Please refer to [Fletcher et al., 2016] for details of this

derivation under general prior and likelihood models.

As was the case for AMP, VAMP also enjoys the nice property that at each iteration of

the algorithm, the estimates that it outputs can be exactly characterized by low-dimensional

random variables that can be obtained through the state evolution equations. In particular,

under certain conditions in the large system limit, as n, p Ñ 8 with fixed ratio δ :“ n{p, at

each iteration t of the algorithm we have the following convergence

»

—

—

—

—

–

θ˚

pθ`
t

r´
t

fi

ffi

ffi

ffi

ffi

fl

PLp2q
“

»

—

—

—

—

–

θ˚

pθ`
t

R´
t

fi

ffi

ffi

ffi

ffi

fl

, (2.42)

where

R´
t “ θ˚

` Pt, Pt „ N p0, τ´
t q (2.43)

pθ`
t “ g`

pR´
t , γ

´
t q. (2.44)

Here, γ´
t and τ´

t are parameters that are obtained using the state evolution equations. These

equations are omitted here for brevity. The interested reader can refer to [Rangan et al.,

2019b] to find the details of these equations as well as the technical conditions that are

required for this convergence to hold.

Note that even though these equations seem hard to parse at first glance, they have a
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rather simple interpretation: the estimated parameter at iteration t can be thought of as the

true parameter that has been perturbed by some Gaussian noise Pt and gone through the

denoiser g`p¨, γ´
t q. As such, the VAMP algorithm can be interpreted as an algorithm that

is iteratively denoising the a noisy version of the true parameter to get better and better

estimates until the statistical error bound for the considered estimator is reached.

To summarize, the vector approximate message passing algorithm is an efficient algorithm

to solve linear inverse problems. Similar to AMP, it has rigorous theoretical guarantees for

the statistical error of the estimates that it generates at each iteration of the algorithm, and it

converges for a much larger class of design matrices where AMP could easily fail. In Chapter

3, the VAMP algorithm is extended to estimation in multi-layer networks with matrix valued

unknowns.
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Chapter 3

Matrix Inference and Estimation in

Multi-Layer Models

3.1 Introduction

Consider an L-layer stochastic neural network given by

Z0
ℓ “ WℓZ

0
ℓ́ 1 ` Bℓ ` Ξ0

ℓ , ℓ “ 1, 3, . . . , L´1, (3.1a)

Z0
ℓ “ ϕℓpZ

0
ℓ́ 1,Ξ

0
ℓq, ℓ “ 2, 4, . . . , L, (3.1b)

where, for ℓ “ 0, 1, . . . , L, we have true activations Z0
ℓ P Rnℓˆd, weights Wℓ P Rnℓˆnℓ́ 1 , bias

matrices Bℓ P Rnℓˆd, and true noise realizations Ξ0
ℓ . The activation functions ϕℓ : Rnℓ́ 1ˆd Ñ

Rnℓˆd are known non-linear functions acting row-wise on their inputs. See Fig. 3.1 (TOP).

We use the superscript 0 in Z0
ℓ to indicate the true values of the variables, in contrast to

estimated values denoted by pZℓ discussed later. We model the true values Z0
0 as a realization

of random Z0, where the rows zT
0,i: of Z0 are i.i.d. with distribution p0: ppZ0q “

śn0

i“1 p0pz0,i:q.

Similarly, we also assume that Ξ0
ℓ are realizations of random Ξℓ with i.i.d. rows ξT

ℓ,i:. For odd

ℓ, the rows ξℓ,i: are zero-mean multivariate Gaussian with covariance matrix N´1
ℓ P Rdˆd,

whereas for even ℓ, the rows ξℓ,i: can be arbitrarily distributed but i.i.d.

28



W1,B1 ϕ2p¨q W3,B3 ϕ4p¨q
Z0

0 Z0
1 Z0

2 Z0
3 Y

Ξ1 Ξ2 Ξ3 Ξ4

G`
0 p¨q G˘

1 p¨q G˘
2 p¨q G˘

3 p¨q G´
4 p¨q

Y

pZ`
k0 R`
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Figure 3.1: (TOP) The signal flow graph for true values of matrix variables tZ0
ℓu3ℓ“0, given

in eqn. (3.1) where Z0
ℓ P Rnℓˆd. (BOTTOM) Signal flow graph of the ML-MVAMP

procedure in Algo. 2. The variables with superscript + and - are updated in the forward and
backward pass respectively. ML-MVAMP (Algorithm 2) solves (3.2) by solving a sequence of
simpler estimation problems over consecutive pairs pZℓ,Zℓ́ 1q.

Denoting by Y :“ Z0
L P RnLˆd the output of the network, we consider the following matrix

inference problem:

Estimate Z :“ tZℓu
Ĺ 1
ℓ“0 given Y :“ Z0

L and tW2k´1,B2k´1,ϕ2ku
L{2
k“1. (3.2)

A key feature of the problem we consider here is that the unknowns, Zℓ, are matrix-valued with

d columns with statistical dependencies between the columns. As we will see in Section 3.2,

the matrix-valued case applies to several problems of broad interest such as matrix imputation,

multi-task and mixed regression problems, sketched clustering. We also show that via this

formulation we can analyze the learning in two layer neural networks under some architectural

assumptions.

In many applications, the inference problem can be performed via minimization of an

appropriate cost function. For example, suppose the network (3.1) has no noise Ξℓ for all

layers except the final measurement layer, ℓ “ L. In this case, the Z0
Ĺ 1 “ gpZ0

0q for some

deterministic function gp¨q representing the action of the first L´1 layers. Inference can then
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be conducted via a minimization of the form,

pZĹ 1 :“ g

ˆ

argmin
Z0

HLpY,ZĹ 1q ` H0pZ0q, subject to ZĹ 1 “ gpZ0q

˙

(3.3)

where the term HLpY,ZĹ 1q penalizes the prediction error and H0pZ0q is an (optional)

regularizer on the network input. For maximum a posteriori (MAP) estimation one takes,

HLpY,ZĹ 1q “ ´ log ppY|ZĹ 1q, and H0pZ0q “ ´ log ppZ0q, where the output probability

ppY|ZĹ 1q is defined from the last layer of model (3.1b): Y “ ZL “ ϕLpZĹ 1,ΞLq. The

minimization (3.3) can then be solved using a gradient-based method. Encouraging results in

image reconstruction have been demonstrated in [Yeh et al., 2016,Bora et al., 2017,Hand and

Voroninski, 2017,Kabkab et al., 2018,Shah and Hegde, 2018,Tripathi et al., 2018,Mixon and

Villar, 2018]. Markov-chain Monte Carlo (MCMC) algorithms and Langevin diffusion [Cheng

et al., 2018,Welling and Teh, 2011] could also be employed for more complex inference tasks.

However, rigorous analysis of these methods is difficult due to the non-convex nature of

the optimization problem. To address this issue, recent works [Manoel et al., 2017,Fletcher

et al., 2018,Pandit et al., 2020] have extended Approximate Message Passing (AMP) methods

to provide inference algorithms for the multi-layer networks. AMP was originally developed

in [Donoho et al., 2009, Donoho et al., 2010a, Bayati and Montanari, 2011b, Kabashima,

2003] for compressed sensing. Similar to other AMP-type results, the performance of

multi-layer AMP-based inference can be precisely characterized in certain high-dimensional

random instances. In addition, the mean-squared error for inference of the algorithms match

predictions for the Bayes-optimal inference predicted by various techniques from statistical

physics [Reeves, 2017,Gabrié et al., 2018,Barbier et al., 2019]. Thus, AMP-based multi-layer

inference provides a computationally tractable estimation framework with precise performance

guarantees and testable conditions for optimality in certain high-dimensional random settings.

Prior multi-layer AMP works [He et al., 2017,Manoel et al., 2018,Fletcher et al., 2018,

Pandit et al., 2020] have considered the case of vector-valued quantities with d “ 1. The
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main contribution of this work is to consider the matrix-valued case when d ą 1. To handle

the case when d ą 1, we extend the Multi-Layer Vector Approximate Message Passing

(ML-VAMP) algorithm of [Fletcher et al., 2018,Pandit et al., 2020] to the matrix case. The

ML-VAMP method is based on VAMP method of [Rangan et al., 2019b], which is closely

related to expectation propagation (EP) [Minka, 2001,Takeuchi, 2017], expectation-consistent

approximate inference (EC) [Opper and Winther, 2005,Fletcher et al., 2016], S-AMP [Cakmak

et al., 2014], and orthogonal AMP [Ma and Ping, 2017]. We will use “ML-Mat-VAMP” when

referring to the matrix extension of ML-VAMP.

Summary of Contributions First, similar to the case of ML-VAMP, we analyze ML-Mat-

VAMP in a large system limit, where nℓ Ñ 8 and d is fixed, under rotationally invariant

random weight matrices Wℓ. In this large system limit, we prove that the mean-squared error

(MSE) of the estimates of ML-Mat-VAMP can be exactly predicted by a deterministic set of

equations called the state evolution (SE). The SE describes how the distribution of the true

activations and pre-activations of the network as well as the estimated values generated by

ML-Mat-VAMP evolve jointly from one iteration of the algorithm to the other. This extension

of the SE equations to the matrix case is not trivial and requires considering correlation

across multiple vectors. Indeed, in the case of ML-VAMP, the SE equations involve scalar

quantities and 2ˆ2 matrices. For ML-Mat-VAMP, the SE equations involve dˆd and 2dˆ2d

matrices.

Second, we show that the method can offer precise predictions in important estimation

problems that are difficult to analyze via other means. The ML-VAMP was focused on deep

reconstruction problems [Yeh et al., 2016,Bora et al., 2017]. The matrix version here can

be applied to other classes of problems such as multi-task regression, matrix completion

and learning the input layer of a neural network. Even though these networks are typically

shallow (just L “ 2 layers), there are no existing methods that can provide the same types

of precise results. For example, in the case of learning the input layer of a neural network,
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our results can exactly predict the test error as a function of the noise statistics, activations,

number of training sample and other key modeling parameters.

Notation: Boldface uppercase letters X denote matrices. Xn: refers to the nth row of X.

Random vectors are row-vectors. For a function f : R1ˆm Ñ R1ˆk, its row-wise extension is

represented by f : RNˆm Ñ RNˆk, i.e., rfpXqsn: “ fpXn:q. We denote the Jacobian matrix of

f by Bf
Bx

pxq P Rmˆk, so that r
Bf
Bx

pxqsij “
Bfi
Bxj

pxq. For its row-wise extension f , we denote by

x Bf
BX

pXqy the average Jacobian, i.e., 1
N

řN
n“1

Bf
BXn:

pXn:q P Rmˆk

3.2 Example Applications

As we describe next, the matrix estimation problem 3.2 is of broad interest and several

interesting applications can be formulated under this framework. We share a few examples

below.

3.2.1 Multi-task and Mixed Regression Problems

A simple application of the matrix-valued multi-layer inference problem (3.2) is for multi-task

regression [Obozinski et al., 2006]. Consider a generalized linear model of the form,

Y “ ϕpXF;Ξq, (3.4)

where Y P RNˆd is a matrix of measured responses, X P RNˆp is a known design matrix,

F P Rpˆd are a set regression coefficients to be estimated, and Ξ is noise. The problem can

be considered as d separate regression problems – one for each column. However, in some

applications, these design “tasks” are related in such a way that it benefits to jointly estimate

the predictors. To do this, it is common to solve an optimization problem of the form

argmin
F

#

d
ÿ

j“1

N
ÿ

i“1

Lpyij, rXFsijq ` λ
p
ÿ

k“1

ρpFk:q

+

, (3.5)

32



where Lp¨q is a loss function, and ρp¨q is a regularizer that acts on the rows Fk: of F to couple

the prediction coefficients across tasks. For example, the multi-task LASSO [Obozinski et al.,

2006] uses loss Lpy, zq “ py ´ zq2 and regularization ρpFk:q “ }Fk:}2 to enforce row-sparsity

in F. In the compressive-sensing context, multi-task regression is known as the “multiple

measurement vector” (MMV) problem, with applications in MEG reconstruction [Cotter

et al., 2005], DoA estimation [Tzagkarakis et al., 2010], and parallel MRI [Liang et al.,

2009]. An AMP approach to the MMV problem was developed in [Ziniel and Schniter, 2012].

The multi-task model (3.4) can be immediately written as a multi-layer network (3.1) by

setting: Z0 :“ F,W0 :“ X,Z1 :“ W0Z0 “ XF,Y “ Z2 :“ ϕpZ1,Ξq. Also, by appropriately

setting the prior ppZ0q, the multi-layer matrix MAP inference (3.3) will match the multi-task

optimization (3.5).

In (3.5), the regularization couples the columns of F but the loss term couples its rows.

In mixed regression problems, the loss couples the columns of F. For example, consider

designing predictors F “ rf1, f2s for mixed linear regression [Yi et al., 2014], i.e.,

yi “ qix
T
i f1 ` p1 ´ qiqx

T
i f2 ` vi, qi P t0, 1u, (3.6)

where i “ 1, . . . , N and the ith response comes from one of two linear models, but which

model is not known. This setting can be modeled by a different output mapping: As before,

set Z0 :“ F, Z1 “ XF and let the noise in the output layer be Ξ1 “ rq,vs which includes

the additive noise vi in (3.6) and the random selection variable qi. Then, we can write (3.6)

via an appropriate function, y “ ϕ1pZ1,Ξ1q.

3.2.2 Sketched Clustering

A related problem arises in sketched clustering [Keriven et al., 2017a], where a massive

dataset is nonlinearly compressed down to a short vector y P Rn, from which cluster centroids

fk P Rp, for k “ 1, . . . , d, are then extracted. This problem can be approached via the
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optimization [Keriven et al., 2017b] minαě0minF

řn
i“1

ˇ

ˇ

ˇ

ˇ

yi ´
řd

j“1 αje
?

´1xT
i fj

ˇ

ˇ

ˇ

ˇ

2

where xi P Rp

are known i.i.d. Gaussian vectors. An AMP approach to sketched clustering was developed

in [Byrne et al., 2019]. For known α, the minimization corresponds to MAP estimation with

the multi-layer matrix model with Z0 “ F, W1 “ X Z1 “ XF and using the output mapping,

ϕ1pZ1,Ξq :“
řd

j“1 αje
?

´1Z1,:j ` Ξ, where the exponential is applied elementwise and Ξ is

i.i.d. Gaussian. The mapping ϕ1 operates row-wise on Z1 and Ξ.

3.2.3 Learning the Input Layer of a Two-Layer Neural Network

The matrix inference problem (3.2) can also be applied to learning the input layer weights

in a two-layer neural network (NN). Let X P RNˆNin and Y P RNˆNout be training data

corresponding to N data samples. Consider the two-layer NN model,

Y “ σpXF1qF2 ` Ξ, (3.7)

with weight matrices pF1,F2q, componentwise activation function σp¨q, and noise Ξ. In (3.7),

the bias terms are omitted for simplicity. We used the notation “Fℓ” for the weights, instead

of the standard notation “Wℓ,” to avoid confusion when (3.7) is mapped to the multi-layer

inference network (3.2). Now, our critical assumption is that the weights in the second layer,

F2, are known. The goal is to learn only the weights of the first layer, F1 P RNinˆNhid , from a

dataset of N samples pX,Yq.

If the activation is ReLU, i.e., σpHq “ maxtH , 0u and Y has a single column (i.e. scalar

output per sample), and F2 has all positive entries, we can, without loss of generality, treat

the weights F2 as fixed, since they can always be absorbed into the weights F1. In this case,

y and F2 are vectors and we can write the ith entry of y as

yi “

d
ÿ

j“1

F2jσprXF1sijq ` ξi “

d
ÿ

j“1

σprXF1sijF2jq ` ξi (3.8)
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Thus, we can assume, without loss of generality, that F2 is all ones. The parameterization

(3.8) is sometimes referred to as the committee machine [Tresp, 2000]. The committee machine

has been recently studied by AMP methods [Aubin et al., 2018] and mean-field methods [Mei

et al., 2018] as a way to understand the dynamics of learning.

To pose the two-layer learning problem as multi-layer inference, define Z0 :“ F1, W1 :“

X, Z1 :“ XF1 Ξ2 :“ Ξ, then Y “ Z2, where Z2 is the output of a 2-layer inference

network of the form in (3.1):

Y “ Z2 “ ϕ2pZ1,Ξ2q :“ σpZ1qF2 ` Ξ2. (3.9)

Note that W1 is known. Also, since we have assumed that F2 is known, the function ϕ2 is

known. Finally, the function ϕ2 is row-wise separable on both inputs. Thus, the problem of

learning the input weights F1 is equivalent to learning the input Z0 of the network (3.9).

3.2.4 Model-Based Matrix completion

Consider an observed matrix Y “ ZL P RNLˆd with missing entries Ωc P rNLs ˆ rds. The

problem is to impute the missing entries of Y. This is an important problem in several

applications ranging from recommendation systems, genomics, bioinformatics and more

broadly analysis of tabular data. There have been several approaches to solving this data

imputation problem, right from 0 imputation and mean imputation to more sophisticated

techniques based on generative models.

Consider a generative model based on a multi-layer perceptron as in (3.1) such that the

output ZĹ 1 models the uncorrupted data matrix. Then the imputation problem can be

posed as the solution of the MAP optimization problem:

minimize
tZℓuLℓ“0

}Y ´ ZĹ 1}
2
Ω ´ logPpZĹ 1,ZĹ 2, . . . ,Z0q (3.10)
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where }Y ´ ZĹ 1}
2
Ω “

ř

pi,jqPΩppYqij ´ pZĹ 1qijq
2. One can also similarly construct Bayes

estimators such as ErZĹ 1|ZLs.

Traditional approaches to matrix completion have looked at regularized convex minimiza-

tion schemes just like (3.10) where ´ logPpZĹ 1q “ }ZĹ 1}
˚
, which is the nuclear norm, or

some other structure inducing convex norms. While the term ´ logPp. . .q in (3.10) can be

thought of as a more general regularization term, this formulation allows for more general

application problems with heterogeneous variables.

For example, in imputation of tabular data, it is often the case that some columns

correspond to continuous valued variables, whereas other variables are discrete valued modeling

Yes/No answers or count data. In such scenarios the ´ logPpZĹ 1, . . .q allows more flexibility

towards modeling using GLMs and other exponential family distributions for every column

separately. One simple instance of (3.10) would be a generative model ´ logPpZĹ 1, . . . ,Z0q

which is trained on some fully observed data ZĹ 1 using unsupervised learning methods such

as Variational Autoencoders (VAE) and Generative Adversarial Networks (GAN).

3.3 Multi-layer Matrix VAMP

3.3.1 MAP and MMSE inference

Observe that the equations (3.1) define a Markov chain over these signals and thus the

posterior ppZ|ZLq factorizes as ppZ|ZLq9ppZ0q

L´1
ź

ℓ“1

ppZℓ|Zℓ́ 1q ppY|ZL´1q. where recall the

notation Z from (3.2). The transition probabilities ppZℓ|Zℓ́ 1q above are implicitly defined in

equation (3.1) and depend on the statistics of noise terms Ξℓ. We consider both maximum a

posteriori (MAP) and minimum mean squared error (MMSE) estimation for this posterior:

pZmap “ argmax
Z

ppZ|ZLq pZmmse “ ErZ|ZLs “

ż

Z ppZ|ZLq dZ (3.11)
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3.3.2 Algorithm Details

The ML-Mat-VAMP for approximately computing the MAP and MMSE estimates is similar

to the ML-VAMP method in [Fletcher et al., 2018,Pandit et al., 2019]. The specific iterations

of ML-Mat-VAMP algorithm are shown in Algorithm 2. The algorithm produces estimates by

a sequence of forward and backward pass updates denoted by superscripts ` and ´ respectively.

The estimates pZ˘
ℓ are constructed by solving sequential problems Z “ tZℓu

Ĺ 1
ℓ“0 into a sequence

of smaller problems each involving estimation of a single activation or preactivation Zℓ via

estimation functions tG˘
ℓ p¨qu

L´1
ℓ“1 which are selected depending on whether one is interested

in MAP or MMSE estimation.

To describe the estimation functions, we use the notation that, for a positive definite

matrix Γ, define the inner product xA,ByΓ :“ TrpATBΓq and let }A}Γ denote the norm

induced by this inner product. For ℓ “ 1, . . . , L ´ 1 define the approximate belief functions

bℓpZℓ,Zℓ́ 1|R´
ℓ ,R

`
ℓ́ 1,Γ

´
ℓ ,Γ

`
ℓ́ 1q9ppZℓ|Zℓ́ 1qe

´ 1
2}Zℓ´R´

ℓ }
2

Γ´
ℓ

´ 1
2}Zℓ́ 1´R`

ℓ́ 1}
2

Γ`
ℓ́ 1 , (3.12)

where Zℓ,R
˘
ℓ P Rnℓˆd and Γ˘

ℓ P Rdˆd for all ℓ “ 0, 1, . . . L. Define b0pZ0|R
´
0 ,Γ

´
0 q and

bLpZL´1|R
`
L´1,Γ

`
L´1q similarly. The MAP and MMSE estimation functions are then given by

the MAP and MMSE estimates for these belief densities,

G˘
ℓ,map “ppZ`

ℓ ,
pZ´
ℓ́ 1q “ argmax bℓpZℓ,Zℓ́ 1q G˘

ℓ,mmse “ppZ`
ℓ ,

pZ´
ℓ́ 1q “ ErpZℓ,Zℓ́ 1q|bℓs (3.13)

where the expectation is with respect to the normalized density proportional to bℓ. Thus,

the ML-Mat-VAMP algorithm reduces the joint estimation of the vectors pZ0, . . . ,ZL´1q to

a sequence of simpler estimations on sub-problems with terms pZℓ́ 1,Zℓq. We refer to these

subproblems as denoisers and denote their solutions by G˘
ℓ , so that pZ`

ℓ “ G`
ℓ and pZ´

ℓ́ 1 “ G´
ℓ

corresponding to lines 9 and 20 of Algorithm 2. The denoisers G`
0 and G´

L , which provide

updates to pZ`
0 and pZ´

L´1, are defined in a similar manner via b0 and bL respectively.
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Algorithm 2 Multilayer Matrix VAMP (ML-Mat-VAMP)

Require: Estimators G`
0 , G´

L , tG˘
ℓ u

L´1
ℓ“1 .

1: Set R´
0ℓ “ 0 P Rnℓˆd and initialize tΓ´

0ℓu
L´1
ℓ“0 P Rdˆd

ą0 .
2: for k “ 0, 1, . . . , Nit ´ 1
3: // Forward Pass
4: pZ`

k0 “ G`
0 pR´

k0,Γ
´
k0q

5: Λ`
k0 “

〈
BG`

0

BR´
0

pR´
k0,Γ

´
k0q

〉´1

Γ´
k,0,

6: Γ`
k,0 “ Λ`

k,0 ´ Γ´
k,0

7: R`
k,0 “ ppZ`

k,0Λ
`
k,0 ´R´

k,0Γ
´
k,0qpΓ`

k,0q´1

8: for ℓ “ 1, . . . , L´1 do
9: pZ`

kℓ “ G`
ℓ pR´

kℓ,R
`
k,ℓ́ 1,Γ

´
kℓ,Γ

`
k,ℓ́ 1q

10: Λ`
kℓ “

〈
BG`

ℓ

BR´
ℓ

p. . .q
〉´1

Γ´
kℓ,

11: Γ`
kℓ “ Λ`

kℓ ´ Γ´
kℓ

12: R`
kℓ “ ppZ`

kℓΛ
`
kℓ ´ R´

kℓΓ
´
kℓqpΓ`

kℓq
´1

13: end for

14: // Backward Pass
15: pZ´

k,Ĺ 1 “ G´
LpR`

k,Ĺ 1,Γ
`
k,Ĺ 1q

16: Λ´
k,Ĺ 1 “

〈
BG´

L

BR`
Ĺ 1

pR`
k,Ĺ 1,Γ

`
k,Ĺ 1q

〉´1

Γ`
k,Ĺ 1,

17: Γ´
k,Ĺ 1 “ Λ´

k,Ĺ 1 ´ Γ`
k,Ĺ 1

18: R´
k̀ 1,Ĺ 1 “ ppZ´

k,Ĺ 1Λ
´
k,Ĺ 1´R`

k,0Γ
`
k,0qpΓ´

k,0q´1

19: for ℓ “ L´1, . . . , 1 do
20: pZ´

k̀ 1,ℓ́ 1 “G´
ℓ pR´

k̀ 1,ℓ,R
`
k,ℓ́ 1,Γ

´
k̀ 1,ℓ,Γ

`
k,ℓ́ 1q

21: Λ´
k̀ 1,ℓ́ 1 “

〈
BG´

ℓ

BR`
ℓ́ 1

p¨ ¨ ¨ q

〉´1

Γ`
k,ℓ́ 1,

22: Γ´
k̀ 1,ℓ “ Λ´

kℓ ´ Γ`
kℓ

23: R´
k̀ 1,ℓ́ 1 “ ppZ´

kℓΛ
´
kℓ ´ R`

kℓΓ
`
kℓqpΓ´

k̀ 1,ℓq
´1

24: end for
25: end for

The estimation functions (3.13) can be easily computed for the multi-layer matrix network.

An important characteristic of these estimators is that they can be computed using maps

which are row-wise separable over their inputs and hence are easily parallelizable. To simplify

notation, we denote the precision parameters for denoisers G˘
ℓ in the kth iteration by

Θ`
kℓ :“ pΓ´

kℓ,Γ
`
k,ℓ́ 1q, Θ´

kℓ :“ pΓ´
k`1,ℓ,Γ

`
k,ℓ́ 1q, Θ`

k0 :“ Γ´
k0, Θ´

kL :“ Γ`
k,L´1. (3.14)

Non-linear layers: For ℓ even, since the rows of Ξℓ are i.i.d., the belief density bℓpZℓ,Zℓ́ 1|¨q

from (3.12) factors as a product across rows, bℓpZℓ,Zℓ́ 1q “
ś

n bℓprZℓsn:, rZℓ́ 1sn:q. Thus, the

MAP and MMSE estimates (3.13) can be performed over d-dimensional variables where d is

the number of entries in each row. There is no joint estimation across the different nℓ rows.

Linear layers: When ℓ is odd, the density bℓpZℓ,Zℓ́ 1|¨q in (3.12) is a Gaussian. Hence,

the MAP and MMSE estimates agree and can be computed via least squares. Although

for linear layers rG`
ℓ ,G

´
ℓ spR´

ℓ ,R
`
ℓ́ 1,Θℓq is not row-wise separable over pR´

ℓ ,Rℓ́ 1q, it can
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be computed using another row-wise denoiser rrG`
ℓ ,

rG´
ℓ s via the SVD of the weight matrix

Wℓ “ Vℓ diagpSℓqVℓ́ 1 as follows. Note that the SVD is only needed to be performed once.:

rG`
ℓ ,G

´
ℓ spRℓ,Rℓ́ 1,Θℓq “ argmax

Zℓ,Zℓ́ 1

}Zℓ ´ WℓZℓ́ 1 ´ Bℓ}
2
Nℓ

`
›

›Zℓ ´ R´
ℓ

›

›

2

Γ´
ℓ

`
›

›Zℓ́ 1 ´ R`
ℓ́ 1

›

›

2

Γ`
ℓ́ 1

paq
“ argmax

Zℓ,Zℓ́ 1

›

›VT
ℓ Zℓ ´ diagpSℓqVℓ́ 1Zℓ́ 1 ´ VT

ℓ Bℓ

›

›

2

Nℓ
`
›

›VT
ℓ Zℓ ´ VT

ℓ R
´
ℓ

›

›

2

Γ´
ℓ

`
›

›Vℓ́ 1Zℓ́ 1 ´ Vℓ́ 1R
`
ℓ́ 1

›

›

2

Γ`
ℓ́ 1

pbq
“ rVT

ℓ
rG`

ℓ ,Vℓ́ 1
rG´

ℓ spVT
ℓ Rℓ,Vℓ́ 1Rℓ́ 1,Θℓq

where (a) follows from the rotational invariance of the norm, and (b) follows from the

definition of denoiser rrG`
ℓ ,

rG´
ℓ sprR´

ℓ ,
rR`

ℓ́ 1,Θℓq given below

rrG`
ℓ ,

rG´
ℓ s :“ argmax

rZℓ,rZℓ́ 1

›

›

›

rZℓ ´ diagpSℓqrZℓ́ 1 ´ rBℓ

›

›

›

2

Nℓ

›

›

›

rZℓ ´ rR´
ℓ

›

›

›

2

Γ´
ℓ

`

›

›

›

rZℓ́ 1 ´ rR`
ℓ́ 1

›

›

›

2

Γ`
ℓ́ 1

(3.15)

Note that the optimization problem in (3.15), is decomposable accross the rows of variables

rZℓ and rZℓ́ 1, and hence rrG`
ℓ ,

rG´
ℓ s operates row-wise on its inputs.

Fixed Points: We note that the fixed points of the ML-Mat-VAMP algorithm can be

shown to be KKT points of the variational formulations of (3.11), omitted here due to lack

of space. This is a direct extention of results from Section 3 of [Pandit et al., 2020]. In

particular, we can show that the ML-Mat-VAMP in the MAP inference case is a preconditioned

Peaceman-Rachford splitting ADMM type algorithm [Themelis and Patrinos, 2020].

3.4 Analysis in the Large System Limit

We follow the analysis framework of the ML-VAMP work [Fletcher et al., 2018, Pandit

et al., 2019], which is itself based on the original AMP analysis in [Bayati and Montanari,

2011b]. This analysis is based on considering the asymptotics of certain large random

problem instances. We essentially show that under certain assumptions, as the dimension

goes to infinity the behavior of the ML-Mat-VAMP algorithm can be characterized by a set
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of equations that describe how the distribution of rows of hidden matrices evolve at each

iteration of the algorithm for all the layers. Specifically, we consider a sequence of problems

(3.1) indexed by N such that for each problem the dimensions nℓpNq are growing so that

limNÑ8
nℓ

N
“ βℓ P p0,8q are scalar constants. Note that d is finite and does not grow with

N .

Distributions of weight matrices: For ℓ “ 1, 3, . . . , L ´ 1, we assume that the weight

matrices Wℓ are generated via the singular value decomposition, Wℓ “ Vℓ diagpSℓqVℓ́ 1 where

Vℓ P Rnℓˆnℓ are Haar distributed over orthonormal matrices and Sℓ “ psℓ,1, . . . , sℓ,mintnℓ,nℓ́ 1uq.

We will describe the distribution of the components Sℓ momentarily.

Assumption on Denoisers: We assume that the non-linear denoisers G˘
2k act row-

wise on their inputs pR´
2k,R

`
2k´1q. Further these operators and their Jacobian matrices

BG`
2k

BR´
2k

,
BG´

2k

BR`
2k´1

,
BG`

0

BR´
0

,
BG´

L

BR`
L´1

are uniformly Lipschitz continuous, the definition of which is provided

in A.2.

Assumption on initialization, true variables: The distribution of the remaining vari-

ables is described by a weak limit: For a matrix sequence X :“ XpNq P RNˆd, by the

notation X
2
ùñ X we mean that there exists a random variable X in Rd with E}X}2 ă 8

such that lim
NÑ8

1
N

řN
i“1 ψpXi:q “ EψpXq almost surely, for any bounded continuous function

ψ : Rd Ñ R, as well as for quadratic functions xJPx for any P P Rdˆd
ľ0 . This is also referred

to as Wasserstein-2 convergence [Montanari et al., 2019]. For e.g., this property is satisfied

for a random X with i.i.d. rows with bounded second moments, but is more general, since it

applies to deterministic matrix sequences as well. More details on this weak limit are given

in A.2.

Let Bℓ :“ VT
ℓ Bℓ, and Sℓ P Rnℓ be the zero-padded vector of singular values of Wℓ, and let

τ´
0ℓ P Rdˆd

ą0 . Then we assume that the following empirical convergences hold.pΞℓ,R
´
0ℓ ´Z0

ℓq
2
ùñ

pΞℓ, Q
´
0ℓq for even ℓ and pSℓ,Bℓ,Ξℓ,V

J
ℓ pR´

0ℓ ´ Z0
ℓqq

2
ùñ pSℓ, Bℓ,Ξℓ, Q

´
0ℓq, for odd ℓ. Here
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Sℓ P Rě0 is bounded, Bℓ P Rd is bounded, Ξ2ℓ́ 1 „ N p0,N´1
2ℓ́ 1q, and Q´

0ℓ „ N p0,Γ
´

0ℓq, for

ℓ “ 0, 1, . . . , L ´ 1 are all pairwise independent random variables. Additionally, we assume

that Z0
0

2
ùñ Z0 and that the sequence of initial matrices tΓ´

0ℓu satisfies the following pointwise

convergence

Γ´
0ℓpNq Ñ Γ

´

0ℓ, ℓ “ 0, 1, . . . , L ´ 1 (3.16)

3.4.1 Main Result

The main result of this work concerns the empirical distribution of the rows rpZ˘
ℓ sn:, rR

˘
ℓ sn:

of the iterates of Algorithm 2. It characterizes the asymptotic behaviour of these empirical

distributions in terms of d-dimensional random vectors which are either Gaussians or functions

of Gaussians. Let G˘
ℓ denote maps R1ˆd Ñ R1ˆd, such that (3.13), i.e., rG˘

ℓ pR´
ℓ ,R

`
ℓ́ 1,Θqsn: “

G˘
ℓ prR´

ℓ sn:, rR
`
ℓ́ 1sn:,Θq. Having stated the requisite definitions and assumptions, we can now

state our main result.

Theorem 1. For a fixed iteration index k ě 0, there exist deterministic matrices K`
kℓ P R2dˆ2d

ą0 ,

and τ´
kℓ,Γ

`

kℓ and Γ
´

kℓ, P Rdˆd
ą0 such that for even ℓ:

ˆ

Z0
ℓ́ 1,Z

0
ℓ ,
pZ´
k,ℓ́ 1,

pZ`
kℓ

˙

2
ùñ

ˆ

A, rA, G´
ℓ pC ` rA,B ` A,Γ

´

kℓ,Γ
`

k,ℓ́ 1q, G`
ℓ pC ` rA,B ` A,Γ

´

kℓ,Γ
`

k,ℓ́ 1q

˙

where pA,Bq „ N p0,K`
k,ℓ́ 1q, C „ N p0, τ´

kℓq, rA “ ϕℓpA,Ξℓq and pA,Bq,C are independent.

For ℓ “ 0, the same result holds where the 1st and 3rd terms are dropped, whereas for ℓ “ L,

the 2nd and 4th terms are dropped. Similarly, for odd ℓ:

ˆ

VT
ℓ́ 1Z

0
ℓ́ 1, VT

ℓ́ 1Z
0
ℓ , Vℓ

pZ´
k,ℓ́ 1, Vℓ

pZ`
kℓ

˙

2
ùñ

ˆ

A, rA, G´
ℓ pC ` rA,B ` A,Γ

´

kℓ,Γ
`

k,ℓ́ 1q, G
`
ℓ pC ` rA,B ` A,Γ

´

kℓ,Γ
`

k,ℓ́ 1q

˙

where pA,Bq „ N p0,K`
k,ℓ́ 1q, C „ N p0, τ´

kℓq, rA “ Sℓ A`Bℓ`Ξℓ and pA,Bq,C are independent.
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Furthermore for ℓ “ 0, 1, . . . L ´ 1, we have

pΓ˘
kℓ,Λ

˘
kℓq

a.s.
ÝÝÑ pΓ

˘

kℓ,Λ
˘

kℓq.

The parameters in the distribution, tK`
kℓ, τ

´
kℓ,Γ

˘

kℓ,Λ
˘

kℓu are deterministic and can be

computed via a set of recursive equations called the state evolution or SE. The SE equations

are provided in A.1 The result is similar to those for ML-VAMP in [Fletcher et al., 2018,Pandit

et al., 2020] except that the SE equations for ML-Mat-VAMP involve d ˆ d and 2d ˆ 2d

matrix terms; the ML-VAMP SE only requires scalar and 2 ˆ 2 matrix terms. The result

holds for both MAP inference and MMSE inference, the only difference is implicit, i.e., the

choice of denoiser Gℓp¨q from eqn. (3.13).

The importance of Theorem 1 is that the rows of the iterates of the ML-Mat-VAMP

Algorithm (pZ´
k,ℓ́ 1,

pZ`
kℓ in Algorithm 2) and the rows of the corresponding true values, Z0

ℓ́ 1,Z
0
ℓ ,

have a simple, asymptotic random vector description of a typical row. We will call this

the “row-wise" model. According to this model, for even ℓ, the rows of Z0
ℓ́ 1 converge to a

Gaussian A P Rd and the rows of Z0
ℓ converge to the output of the Gaussian through the

row-wise function ϕℓ, rA “ ϕℓpA,Ξℓq. Then the rows of the estimates pZ´
k,ℓ́ 1,

pZ`
kℓ asymptotically

approach the outputs of row-wise estimation function G´p¨q and G`p¨q supplied by A and rA

corrupted with Gaussian noise. A similar convergence holds for odd ℓ.

This “row-wise" model enables exact an analysis of the performance of the estimates at

each iteration. For example, to compute a weighted mean squared error (MSE) metric at

iteration k, the convergence shows that,

1
nℓ

›

›

›

pZ`
kℓ ´ Z0

ℓ

›

›

›

2

H

a.s.
ÝÝÑ E}G`

ℓ pC ` rA,B ` A,Θkℓq ´ rA}
2
H,

for even ℓ and any positive semi-definite matrix H P Rdˆd. The norm on the left-hand

above acts row-wise, }Z}2H :“
ř

i }Zi:}
2
H. Hence, this asymptotic MSE can be evaluated via

expectations of d-dimensional variables from the SE. Similarly, one can obtain exact answers
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Figure 3.2: Test error in learning the first layer of a 2 layer neural network using
ADAM-based gradient descent, ML-Mat-VAMP and its state evolution prediction.

for any other row-wise performance metric of tppZ˘
kℓ,Z

0
ℓquℓ for any k.

3.5 Numerical Experiments

We consider the problem of learning the input layer of a two layer neural network as described

in Section 3.2.3. We learn the weights F1 of the first layer of a two-layer network by solving

problem (3.9). The large system limit analysis in this case corresponds to the input size nin

and number of samples N going to infinity with the number of hidden units being fixed. Our

experiment take d “ 4 hidden units, Nin “ 100 input units, Nout “ 1 output unit, sigmoid

activations and variable number of samples N . The weight vectors F1 and F2 are generated

as i.i.d. Gaussians with zero mean and unit variance. The input X is also i.i.d. Gaussians with

variance 1{Nin so that the average pre-activation has unit variance. Output noise is added

at two levels of 10 and 15 dB relative to the mean. We generate 1000 test samples and a

variable number of training samples that ranges from 200 to 4000. For each trial and number

of training samples, we compare three methods: (i) MAP estimation where the MAP loss

function is minimized by the ADAM optimizer [Kingma and Ba, 2014] in the Keras package

of Tensorflow; (ii) Algorithm 2 run for 20 iterations and (iii) the state evolution prediction.

The ADAM algorithm is run for 100 epochs with a learning rate “ 0.01. The expectations in

the SE are estimated via Monte-Carlo sampling (hence there is some variation).

Given an estimate pF1 and true value F0
1, we can compute the test error as follows: Given
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a new sample x, the true and predicted pre-activations will be z1 “ pF0
1q

Tx and pz1 “ pFT
1x.

Thus, if the new sample x „ N p0, 1
Nin

Iq, the true and predicted pre-activations, pz1,pz1q, will

be jointly Gaussian with covariance equal to the empirical 2d ˆ 2d covariance matrix of the

rows of F0
1 and pF1:

K :“ 1
Nin

řNin

k“1 u
T
kuk, uk “

”

F1,k:
pF1,k:

ı

(3.17)

From this covariance matrix, we can estimate the test error, E|y´py|2 “ E|FT
2 pσpz1q ´σppz1q|2,

where the expectation is taken over the Gaussian pz1,pz1q with covariance K. Also, since

(3.17) is a row-wise operation, it can be predicted from the ML-Mat-VAMP SE. Thus, the

SE can also predict the asymptotic test error. The normalized test error for ADAM-MAP,

ML-Mat-VAMP and the ML-Mat-VAMP SE are plotted in Fig. 3.2. The normalized test

error is defined as the ratio of the MSE on the test samples to the optimal MSE. Hence, a

normalized MSE of one is the minimum value.

Note that since ADAM and ML-Mat-VAMP are solving the same optimization problem,

they perform similarly as expected. The main message of this work is not to develop an

algorithm that outperforms ADAM, but rather an algorithm that has theoretical guarantees.

The key property of ML-Mat-VAMP is that its asymptotic behavior at all the iterations

can be exactly predicted by the state evolution equations. In this example, Fig. 3.2 shows

that the normalized test MSE predicted via state evolution (plotted in green) matches the

normalized MSE of ML-Mat-VAMP estimates (plotted in orange).

3.6 Conclusions

We have developed a general framework for analyzing inference in multi-layer networks with

matrix valued quantities in certain high-dimensional random settings. For learning the input

layer of a two layer network, the methods enables precise predictions of the expected test

error as a function of the parameter statistics, numbers of samples and noise level. This

analysis can be valuable in understanding key properties such as generalization error, for
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example using ML-VAMP, Emami et al. [Emami et al., 2020] characterizes the generalization

error of GLMs under a variety of feature distributions and train-test mismatch. Future work

will look to extend these to more complex networks.
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Chapter 4

Asymptotics of Ridge Regression in

Convolutional Models

4.1 Introduction

Increasingly powerful hardware along with deep learning libraries that efficiently use these

computational resources have allowed us to train ever larger neural networks. Modern neural

networks are so over-parameterized that they can perfectly fit random noise [Zhang et al.,

2016,Li et al., 2020]. With enough over-parameterization, they can also achieve zero loss over

training data with their parameters moving only slightly away from the initialization [Allen-

Zhu et al., 2018,Soltanolkotabi et al., 2018,Du et al., 2018a,Du et al., 2018b,Li and Liang,

2018,Zou et al., 2020]. Yet, these models generalize well on test data and are widely used

in practice [Zhang et al., 2016]. In fact, some recent work suggest that it is best practice

to use as large a model as possible for the tasks in hand [Huang et al., 2018]. This seems

contrary to our classical understanding of generalization where increasing the complexity

of the model space to the extent that the training data can be easily interpolated indicates

poor generalization. Most statistical approaches explain generalization by controlling some

notion of capacity of the hypothesis space, such as VC dimension, Rademacher complexity, or
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metric entropy [Anthony and Bartlett, 2009]. Such approaches that do not incorporate the

implicit regularization effect of the optimization algorithm fail to explain generalization of

over-parameterized deep networks [Kalimeris et al., 2019,Oymak and Soltanolkotabi, 2019].

The so-called double descent curve where the test risk starts decreasing again by over-

parameterizing neural networks beyond the interpolation threshold is widely known by

now [Belkin et al., 2019a, Nakkiran et al., 2019]. Interestingly, such phenomenon is not

unique to neural networks and have been observed even in linear models [Dobriban et al.,

2018]. Recently, another line of work has also connected neural networks to linear models.

In [Jacot et al., 2018], the authors show that infinitely wide neural networks trained by

gradient descent behave like their linearization with respect to the parameters around their

initialization. The problem of training such wide neural networks with square loss then turns

into a kernel regression problem in a RKHS associated to a fixed kernel called the neural

tangent kernel (NTK). The NTK results were later extended to many other architectures such

as convolutional networks and recurrent neural networks [Li et al., 2019,Alemohammad et al.,

2020,Yang, 2020]. Trying to understand the generalization in deep networks and explaining

such phenomenon as the double descent curve has attracted a lot of attention to theoretical

properties of kernel methods as well as simple machine learning models. Such models, despite

their simplicity, can help us gain a better understanding of machine learning models and

algorithms that might be hard to achieve just by looking at deep neural networks due their

complex nature.

Double descent has been shown in linear models [Dobriban et al., 2018, Belkin et al.,

2019b,Hastie et al., 2019], logistic regression [Deng et al., 2019], support vector machines

[Montanari et al., 2019], generalized linear models [Emami et al., 2020], kernel regression [Liang

et al., 2020], random features regression [Mei and Montanari, 2019,Hastie et al., 2019], and

random Fourier feature regression [Liao et al., 2020] among others. Most of these works

consider the problem in a doubly asymptotic regime where both the number of parameters

and the number of observations go to infinity at a fixed ratio. This is in contrast to classical
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statistics where either the number of parameters is assumed to be fixed and the samples

go to infinity or vice versa. In practice, the number of parameters and number of samples

are usually comparable and therefore the doubly asymptotic regime provides more value

about the performance of different models and algorithms. In this work we study the

performance of ridge estimators in convolutional linear inverse problems in this asymptotic

regime. Unlike ordinary linear inverse problems, theoretical properties of the estimation

problem in convolutional models has not been studied, despite their wide use in practice, e.g.

in solving inverse problems with deep generative priors [Ulyanov et al., 2018].

Beyond machine learning, inverse problems involving convolutional measurement models

are often called deconvolution and are encountered in many different fields. In astronomy,

deconvolution is used for example to deblur, sharpen, and correct for optical aberrations in

imaging [Starck et al., 2002]. In seismology, deconvolution is used to separate seismic traces

into a source wavelet and an impulse response that corresponds to the layered structure of

the earth [Treitel and Lines, 1982,Mueller, 1985]. In imaging, it is used to correct for blurs

caused by the point spread function, sharpen out of focus areas in 3D microscopy [McNally

et al., 1999], and to separate neuronal spikes for calcium traces in calcium imaging [Friedrich

et al., 2017] among others. In practical applications, the convolution kernel might not be

known and should either be estimated from the physics of the problem or jointly with the

unknown signal using the data.

Summary of Contributions. We analyze the performance of ridge estimator for con-

volutional models in the proportional asymptotics regime. Our main result (Theorem 2)

characterizes the limiting joint distribution of the true signal and its ridge estimate in terms

of the spectral properties of the data. As a result of this theorem, we can provide an exact

formula to compute the mean squared error of ridge estimator in the form of a scalar integral

(Corollary 1). Our assumptions on the data are fairly general and include many random

processes as an example as opposed to i.i.d. features only. Even though our theoretical
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results hold only in a certain high dimensional limit, our experiments show that its prediction

matches the observed error even for problems of moderate size. We show that our result can

predict the double descent curve of the estimation error as we change the ratio of number of

measurements to unknowns.

Prior Work. Asymptotic error of ridge regression for ordinary linear inverse problems (as

opposed to convolutional linear inverse problem considered in this work) is studied in [Dicker

et al., 2016] for isotropic features. Asymptotics of ridge regression for correlated features

is studied in [Dobriban et al., 2018]. Error of ridgeless (minimum ℓ2-norm interpolant)

regression for data generated from a linear or nonlinear model is obtained in [Hastie et al.,

2019]. These works use results from random matrix theory to derive closed form formulae

for the estimation or generalization error. For features with general i.i.d. prior other than

Gaussian distribution, approximate message passing (AMP) [Donoho et al., 2010b,Bayati and

Montanari, 2011a] or vector approximate message passing (VAMP) [Rangan et al., 2019a] can

be used to obtain asymptotics of different types of error. Instead of a closed form formula,

these works show that the asymptotic error can be obtained via a recursive equation that is

called the state evolution. In [Deng et al., 2019], the authors use convex Gaussian min-max

theorem to characterize the performance of maximum likelihood as well as SVM classifiers

with i.i.d. Gaussian covariates. In [Emami et al., 2020], the problem of learning generalized

linear models is reduced to an inference problem in deep networks and the results of [Pandit

et al., 2020] are used to obtain the generalization error.

Notation. We use uppercase boldface letters for matrices and tensors, and lowercase

boldface letters for vectors. For a matrix A, its ith row and column is denoted by Ai˚ and

A˚i respectively. A similar notation is used to show slices of tensors. The submatrix formed

by columns i through j ´ 1 of A is shown by A˚,i:j. Standard inner product for vectors,

matrices, and tensors is represented by x¨, ¨y. N p0, 1q and CN p0, 1q denote standard normal

and complex normal distributions respectively. Finally, rns “ t1, . . . , nu.
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4.2 Problem Formulation

We consider the inverse problem of estimating X from Y in the convolutional model

Y “ K ˚ X ` Ξ, (4.1)

where X P CnxˆT , Y P CnyˆT , K P Cnyˆnxˆk with Ki˚˚ P Cnxˆk being the ith convolutional

kernel of width k, and Ξ is a noise matrix with the same shape as Y and i.i.d. zero-mean

complex normal entries CN p0, σ2q. See Appendix B.1 for a brief overview of complex normal

distribution. The circular convolution in equation (4.1) is defined as

Yi˚ “ Ki˚˚ ˚ X ` Ξi˚ (4.2)

Yit “ xKi˚˚,X˚,t:t`ky ` Ξit, i P rnys, t P rT s (4.3)

Note that in (4.3) we are not using the correct definition of the convolution operation where

the kernel (or the signal X) is reflected along the time axis, but rather we are using the

common definition used in machine learning.

We consider the inference problem in the Bayesian setting where the signal X is assumed

to have a prior that admits a density (with respect to Lebesgue measure) ppXq. Further, we

assume that rows of Xi are i.i.d. such that this density factorizes as

ppXq “

nx
ź

i“1

ppXi˚q. (4.4)

The convolution kernel K is assumed to be known with i.i.d. entries drawn from CN p0, 1{pnykqq.

Given this statistical model, the posterior is

ppX|Yq9ppX,Yq “ ppXqppY|Xq, (4.5)

where with some abuse of notation, we are using pp¨q to represent the densities of all random

variables to simplify the notation. From the Gaussianity assumption on noise we have

Yi˚|X „ CN pKi˚˚ ˚ X, σ2Iq, (4.6)

where I is the identity matrix of size T ˆ T .

Given the model in (4.5), one can consider different types of estimators for X. Of particular
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interest are regularized M-estimators

pXm-est “ argmin
X

LpX,Yq ` RpXq, (4.7)

where L is a loss function and R corresponds to the regularization term. Taking negative

log-likelihood as the loss and negative log-prior as the regularization we get the maximum a

posteriori (MAP) estimator

pXMAP :“ argmin
X

´ log ppY|Xq ´ log ppXq, (4.8)

which selects mode of the posterior as the estimate.

In this work we are interested in analyzing the performance of ridge-regularized least

squares estimator which is another special case of the regularized M-estimator in (4.7) with

square loss and ℓ2-norm regularization

pXridge “ argmin
X

}Y ´ K ˚ X}
2
F ` λ }X}

2
F , (4.9)

where λ is the regularization parameter. By Gaussianity of the noise, this can also be thought

of as ℓ2-regularized maximum likelihood estimtor. Given an estimate pX, one is usually

interested in performance of the estimator based on some metric. In Bayesian setting, the

metric is usually an average risk (averaged over the prior and the randomness of data)

R “ EℓpX, pXq, (4.10)

where ℓ is some loss function between the true parameters and the estimates. The most

widely used loss is the squared error where ℓpX, pXq “ }X ´ pX}2F. Our theoretical results

exactly characterize the mean squared error (MSE) of ridge estimator (4.9) in a certain

high-dimensional regime described below.

4.3 Main Result

Similar to other works in this area [Bayati and Montanari, 2011a,Rangan et al., 2019a,Pandit

et al., 2020], our goal is to analyze the average case performance of the ridge estimator in
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(4.9) for the convolutional model in (4.1) in a certain high dimensional regime that is called

large system limit (LSL).

4.3.1 Large System Limit

We consider a sequence of problems indexed by T and nx. We assume that k :“ kpT q and

ny :“ nypnxq are functions of T and nx respectively and

lim
nxÑ8

nypnxq

nx

“ δ P p0,8q, lim
TÑ8

kpT q

T
“ β P p0, 1s.

This doubly asymptotic regime where both the number of parameters and unknowns are going

to infinity at a fixed ratio is sometimes called proportional asymptotic regime in the literature.

We assume that the entries of the convolution kernel K and the noise Ξ converge empirically

with second order to random variables K and Ξ, with distributions CN p0, σ2
K{pknyqq and

CN p0, σ2q respectively. See Appendix B.2 for definition of empirical convergence of random

variables.

Assumptions on Xi˚

Next, based on [Peligrad et al., 2010], we state the distributional assumptions on the rows of

X that we require for our theory to hold. Let tξtutPZ be a stationary ergodic Markov chain

defined on a probability space pS,F , P q and let πp¨q be the distribution of ξ0. Note that

stationarity implies all ξts have the same marginal distribution. Define the space of functions

L2
0pπq :“

␣

h|Eπrhpξ0qs “ 0,Eπrh2pξ0qs ă 8
(

. (4.11)

Define Fk :“ σptξtutďkq, the σ-algebra generated by ξt up to time k and let xt “ hpξtq for

some h P L2
0pπq. We assume that the process txtutPZ satisfies the regularity condition

Erx0|F´8s “ 0, P ´ almost surely. (4.12)

The class of processes that satisfy these conditions is quite large and includes i.i.d. random

processes as an example. It also includes causal functions of i.i.d. random variables of the
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form Xn “ fpξk, k ď nq where ξk is i.i.d. such as autoregressive (AR) processes and many

Markov chains. See [Peligrad et al., 2010] for more examples satisfying these conditions.

We assume that each row Xi˚ of X, is an i.i.d. sample of a process that satisfies the

conditions mentioned. Let rXipωq be its (normalized) Fourier transform (defined in (4.18)).

and define gpωq :“ limTÑ8 E|rXipωq|2. As shown in [Peligrad et al., 2010], since the rows are

i.i.d., this limit is the same for all the rows. Also, gpωq is proportional to the spectral density

of the process that generates the rows of X

gpωq “
1

2π

8
ÿ

t“´8

cn expp´iωtq, ct “ ErXi0Xits. (4.13)

As we will see in the next section, gpωq plays a key role in characterization of estimation error

of ridge estimator in convolutional linear inverse problems that have such processes as inputs.

4.3.2 Asymptotics of Ridge Estimator

The main result of this chapter characterizes the limiting distribution to which the the Fourier

transform of the true signal rX0pωq and Fourier transform of the estimated signal p

rXridgepωq

converge. The proof can be found in Section 4.4. In the following B and µ represent Borel

σ-algebra and Lebesgue measure respectively.

Theorem 2. Under the assumptions in Section 4.3.1, as nx, ny, T, k Ñ 8, over the product

space pr0, 2πs ˆ Snx ,B ˆ Fnx , µ ˆ P nxq the Ridge estimator satisfies
»

—

–

rX0pωq

p

rXridgepωq

fi

ffi

fl

d,PLp2q
“

»

—

–

a

gpUqZ0

αp
a

gpUqZ0 ` τpgpUqqZ1q

fi

ffi

fl

,

where U „ unifpr0, 2πsq, Z0, Z1 „ CN p0, 1q where CN p0, 1q is the standard complex normal

distribution, U,Z0 and Z1 are independent of each other, α is the smaller root of the quadratic

equation

λ “
p1 ´ αqp1 ´ α{δq

α
, (4.14)
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and

τ 2pgpUqq “
σ2 ` p1 ´ α2qgpUq{δ

1 ´ α2{δ
. (4.15)

The convergence in this theorem is weak convergence for ω and PL(2) for rX0pωq and
p

rXridgepωq. This convergence result allows us to find the asymptotic mean squared error of

ridge estimator for the convolutional model as an integral.

Corollary 1. Under the same assumptions as in Theorem 2, ridge estimator satisfies

lim
nxÑ8

lim
TÑ8

1

nxT
}
p

rXridge ´ rX}
2
F “

ż 2π

0

`

pα ´ 1q
2gpωq ` α2τpgpωqq

˘

dω. (4.16)

Remark 1. As shown in the proof Lemma 6, for λ ě 0, the quadratic equation (4.14) always

has two real positive solutions the smaller of which determines the error.

Remark 2. The 1{
?
T scaling in our definition of Fourier operator in Section 4.4.2 makes

it a unitary operator, i.e. ℓ2 norm is preserved under the Fourier transform and its inverse.

This implies

}pXridge ´ X}F “ }
p

rXridge ´ rX}F. (4.17)

Therefore, the result of Corollary 1 also holds in time domain.

Remark 3. If rows Xi˚ have zero mean i.i.d. entries, then the correlation coefficients ct in

(4.13) are all zero except for c0. Therefore, gpωq “ g where g is constant. Hence, in this case,

the integrand in (4.16) would be a constant and the estimation error across all the frequencies

would be the same as the estimation error in the ordinary ridge regression as in Lemma 6,

i.e. the error vs. δ would be exactly the same as the double descent curve in ordinary ridge

regression with i.i.d. priors. In other words, the double descent curve for ordinary ridge

regression carries over to the convolutional ridge regression for i.i.d. priors (see Figure 4.1).
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4.4 Proof

In this section we present the proof of Theorem 2. Before presenting the details of the proof,

it is helpful to see an overview of the proof.

4.4.1 Proof overview

We first show that convolutional models turn into ordinary linear models for each frequency

in Fourier domain. We then show that ridge estimators in time domain can also be written

as ridge estimators in frequency domain. This uses the fact that Fourier transform matrix,

with appropriate normalization is a unitary matrix, and ℓ2 norm is preserved under unitary

transformation, i.e. it is an isometry. Next we use properties of Fourier transform of random

processes to show that under certain conditions, they asymptotically converge to a Gaussian

process in frequency domain that is independent across different frequencies for almost every

frequency. These together allow us to turn the ridge estimation in time domain into multiple

ridge estimators in frequency domain, one for each frequency. We then use theoretical

properties of ridge estimators to derive estimation error for each of these ridge estimators

and integrate them over frequencies to derive our main result.

Our proof is based on previous results for asymptotic error of ridge estimators for ordinary

linear inverse problems. This has been studied in many works [Dicker et al., 2016,Dobriban

et al., 2018, Hastie et al., 2019] where the authors take advantage of the fact that ridge

estimators have a closed form solution that can be analyzed, e.g. using results from random

matrix theory. In this work we use approximate message passing [Donoho et al., 2010b,Bayati

and Montanari, 2011a] to derive the asymptotic error of ridge estimators.

4.4.2 Main Technical Lemmas

In order to prove Theorem 2, we need several lemmas. We first characterize the convolutional

model in (4.1) in Fourier domain. For ω P t0, 1 ¨ 2π
T
, . . . , pT ´ 1q ¨ 2π

T
u “: Ω, let rXjpωq be the
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discrete (circular) Fourier transform (DFT) of Xj˚

rXjpwq “
1

?
T

T´1
ÿ

t“0

Xjt expp´iωtq. (4.18)

If we let F to denote the T -point unitary DFT matrix, i.e. Fmn “ 1{
?
T expp´i2πmn{T q,

then this equation can be written in matrix form as rXip˚q “ Xi˚F. Define rYipωq, rKijpωq,

and rΞpωq similarly. Note that in these definitions, we have included a 1{
?
T factor which is

usually not included in the definition of Fourier transform, but since this makes the Fourier

matrix unitary, it eases our notation slightly. With this definition we have FT “ F and

F˚F “ I.

Lemma 1 (Convolutional models in Fourier domain). The convolutional model in (4.1) can

be written in Fourier domain as

rYpωq “
?
T rK˚˚pωqrXpωq ` rΞpωq, @ω P Ω. (4.19)

Proof. Taking Fourier transform of Equation (4.2) and using the convolution theorem we get

rYipωq “
?
T

nx
ÿ

j“1

rKijpωqrXjpωq ` rΞipωq. (4.20)

Note that the
?
T factor on the right hand is due to our definition of Fourier transform where

we have used a 1{
?
T factor to make the Fourier operator unitary. Rewriting this equation in

matrix form gives us the desired result.

The next lemma characterizes the ridge estimator in (4.9) in frequency domain.

Lemma 2. The ridge estimator in (4.9) in frequency domain is equivalent to solving separate

ordinary ridge regressions for each ω P Ω:

p

rXridgepωq “ argmin
rXpωq

›

›

›

rYpωq ´
?
T rKpωqrXpωq

›

›

›

2

2
` λ

›

›

›

rXpωq

›

›

›

2

2
. (4.21)

Proof. Since the Fourier matrix is unitary, we have

}X}F “ }XF}F “ }rX}F

}Y ´ K ˚ X}F “ }pY ´ K ˚ XqF}F “ }rY ´
?
T rKrX}F,
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where rKrX is a tensor-matrix product defined as prKrXqpωq “ rKpωqrXpωq. Then, a change of

variable rX “ XF in (4.9) proves the lemma.

Lemma 3. If the kernel K has i.i.d. CN p0, σ2
K{pknyqq entries, then for each ω P Ω,

?
T rKpωq

has i.i.d. complex normal entries CN p0, σ2
K{nyq.

Proof. The DFT of the kernel is

rKijpωq “
1

?
T

k´1
ÿ

t“0

Kijt expp´iωtq. (4.22)

This is a linear combination of complex Gaussian random variables and therefore, rK is a

tensor with jointly complex Gaussian entries. Clearly, EprKq “ 0 and for pi, jq ‰ pi1, j1q, using

independence of Kij˚ and Ki1j1˚ we have

ErKijpωqrKi1j1pω1
q “ 0, ErKijpωqrK˚

i1j1pω1
q “ 0 @ω, ω1,

which proves that for any ω, rKpωq has independent entries and all the dependence in rK is

across different frequencies.

It remains to find the variance and relation of each entry of rKpωq. Let k :“ Kij˚ for some

i and j be a row vector, and let rK :“ rKijp˚q. Then we have rk “ kF and the variance of
?
Trkm is

γ “ TErrkm
rk˚
ms “ TErkF˚mF

˚
˚mk

T
s (4.23)

“ TFm˚ErkTksF˚
m˚ “

Tσ2
K

kny

Fm˚

»

—

–

Ik 0

0 0

fi

ffi

fl

F˚
m˚ (4.24)

“
σ2
K

kny

k´1
ÿ

t“0

expp
2πitm

T
q expp

´2πitm

T
q (4.25)

“
σ2
K

ny

. (4.26)
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Similarly, the relation is

cpmq “ TErrkm
rkT
ms “ TErkF˚mFm˚k

T
s

“ TFm˚ErkTksF˚m “
σ2
K

k
Fm˚

»

—

–

0 0

0 0

fi

ffi

fl

F˚m

“ 0.

Therefore, for each ω, rKijpωq „ CN p0, σ2
K{nyq and they are i.i.d. for all i, j.

Remark 4. Observe that the scaling of variance of entries of K with 1{k is crucial to get a

non-trivial distribution for entries of
?
T rKpωq as we take the limit T Ñ 8.

Lemma 4. If noise Ξ has i.i.d. CN p0, σ2q entries, then rΞ has i.i.d. complex normal entries

rΞijpωq „ CN p0, σ2q, i.e.

Ξijpωq
d
“
σ2

2
Z1 `

σ2

2
Z2, Z1, Z2 „ N p0, 1q, Z1 KK Z2.

Proof. The proof is similar to the proof of Lemma 3 with k “ T .

Lemma 4 is the complex analogue of the fact that distribution of vectors with i.i.d.

Gaussian entries is invariant under orthogonal transformations.

As stated in Appendix B.2, for a Gaussian random sequence, convergence in the first and

second moments implies convergence in Wasserstein distance which is equivalent to PLp2q

convergence. Therefore, Lemma 3 and 4 also imply that the entries of kernel and noise

for each frequency are converging empirically with second order to i.i.d. complex Gaussian

random variables. As shown in the appendix, this convergence is stronger than convergence

in distribution.

Next, we mention a result about Fourier transform of random processes from [Peligrad

et al., 2010].

Lemma 5 (Fourier transform of random processes [Peligrad et al., 2010]). Let tXtutPZ be

a stationary ergodic process that satisfies the assumptions in Section 4.3.1. Let rXpωq be its
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(normalized) Fourier transform and gpωq :“ limTÑ8 E| rXpωq|2. Then on the product space

pr0, 2πs ˆ S,B ˆ F , µ ˆ P q we have

rXpωq
d
“
a

gpUqCN p0, 1q, (4.27)

where U „ unifpr0, 2πsq is independent of CN p0, 1q.

Lemma 5 allows us to characterize the limiting distribution of each row Xi˚ of the input

in the frequency domain, i.e. distribution of rXipωq as T Ñ 8.

All the lemmas so far allow us to look at the convolutional model in the frequency domain.

We need one last lemma to characterize the asymptotics of ridge regression in high dimensions.

Lemma 6 (Asymptotics of ridge regression). Consider the linear model y “ Ax0 ` ξ,

where x P Rnx , ξ P Rny , and A P Rnyˆnx all have i.i.d. components with xi „ N p0, σ2
xq,

ξi „ N p0, σ2q, and Aij „ N p0, 1{nyq. Then the ridge estimator

pxridge “ argmin
x

}y ´ Ax}
2
2 ` λ }x}

2
2 (4.28)

as nx, ny Ñ 8 with ny{nx Ñ δ satisfy
»

—

–

x0

pxridge

fi

ffi

fl

PLp2q
“

»

—

–

X0

αpX0 ` τpσxqZq

fi

ffi

fl

, (4.29)

where X0 „ pX , Z „ N p0, 1q independent of X0, α is the smaller root of the quadratic

equation

λ “
p1 ´ αqp1 ´ α{δq

α
, (4.30)

and

τ 2pσ2
xq “

σ2 ` p1 ´ α2qσ2
x{δ

1 ´ α2{δ
. (4.31)

Therefore, we almost surely have

lim
nxÑ8

1{nx }xridge ´ x0}
2
2 “ pα ´ 1q

2σ2
X ` α2τ 2pσxq.

Proof. This is a consequence of using approximate message passing (AMP) algorithm to solve

(4.28). See Section 2.3 for an introduction to AMP algorithm. Here we briefly mention the
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sketch of the proof for this lemma. In Appendix B.3.1 we show how the AMP algorithm

can be used to solve the ridge regression problem. In particular, we show that in order to

perform the ridge regression, the denoiser in AMP algorithm should be a linear denoiser

of the form ηpxq “ αx. The correct value of α to perform ridge regression depends on

the regularization parameter λ and can be obtained by analyzing the fixed points of AMP

algorithm and matching them to the ridge regression solution which can be found in closed

form. Once we have found the exact form of the denoiser that solves the ridge regression

problem, we can use the AMP state evolution to obtain its statistical error in the large system

limit.

As shown in the appendix, the AMP recursions to solve ridge regression in (4.28) are

xt`1
“ αpATzt ` xt

q, (4.32)

zt “ y ´ Axt
`
α

δ
zt´1, (4.33)

where α is the smaller root of the quadratic equation in (4.30). In Appendix B.3.2, we prove

that for λ ě 0, the roots of this equation are real and positive, and only for the smaller root

the AMP algorithm converges. Finally, using the state evolution, we obtain that the ridge

estimator and true values of x jointly converge as in (4.29), and τ 2pσxq in (4.31) is the fixed

point value of state evolution recursion in (B.22).

This lemma allows us to find asymptotics of ridge regression for real linear inverse problems.

Even though the τ in (4.31) depends also on α, δ, and noise variance, we have only made the

dependence on σx explicit, as all the other parameters will be fixed for the ridge regression

problem for each frequency, but σx could change as a function of frequency.

Remark 5. The exact same result holds for complex valued ridge regression mutatis mutandis,

i.e. by changing normal distributions N p0, ¨q to complex normal distributions CN p0, ¨q.

Remark 6. The requirements of Lemma 6 can be relaxed. Rather than requiring x,A, or ξ

to have i.i.d. Gaussian entries, we only need them to converge PL(2) to random variables

with these distributions.
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4.4.3 Proof of Theorem 2

We now have all the ingredients to prove Theorem 2. Lemma 2 allows us to find Fourier

transform of Ridge estimator in 4.9 using a series of ridge regressions in Fourier domain.

Lemmas 3 and 4 show that the Fourier transform of the convolution kernel and the noise and

the signal asymptotically have complex Gaussian distributions with i.i.d. components for

each frequency. Then, Lemma 5 shows that

rXipωq
d
“
a

gpUqCN p0, 1q, (4.34)

where gp¨q is defined in the Lemma.

Next, the complex version of Lemma 6 would give us the asymptotic error of ridge

estimator on the product space pr0, 2πs ˆ S,B ˆ F , λ ˆ P q in the limit
»

—

–

rX0pωq

rXpωq

fi

ffi

fl

PLp2q
“

»

—

–

a

gpUqZ0

αp
a

gpUqZ0 ` τpgpUqqZ1q

fi

ffi

fl

, (4.35)

where U „ unifpr0, 2πsq, and Z0, Z1 „ CN p0, 1q, and τp¨q is the function in (4.31). Note that

the variance of rX0pωq is gpωq, hence the term τpgpUqqZ1. As mentioned earlier, this variance

is the only variable that changes with frequency while all the other parameters are the same

for all frequencies. Using this convergence, in the limit, the error is

lim
nxÑ8

lim
TÑ8

1

nxT
}
p

rXridge ´ rX}
2
F “

ż 2π

0

`

pα ´ 1q
2gpωq ` α2τpgpωqq

˘

dω. (4.36)

As mentioned in Section 4.4.2, our scaling of the Fourier operator makes it a unitary operator.

Therefore, ℓ2 norm is preserved under our definition of Fourier transform and its inverse.

This implies that the same result as in (4.36) also holds in time domain.

4.5 Experiments

In this section we validate our theoretical results on simulated data. We generate data using a

ground truth convolutional model of the form (4.3). We use i.i.d. complex normal convolution

kernel and noise with different variances. For the data matrix X, we consider two different
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models: i) i.i.d. complex normal data; and ii) a non-Gaussian autoregressive process of order

1 (an AR(1) process). In both cases we take T “ 256, ny “ 500 and use different values of nx

to create plots of estimation error with respect to δ “ ny{nx.

AR(1) process is a process that evolves in time as

xt “ axt´1 ` ξt, (4.37)

where ξt is some zero mean random noise and a is a fixed constant. Note that our assumptions

on the process require it to be a stationary and ergodic process. These assumptions are only

satisfied when the noise is i.i.d. and |a| ă 1. The parameter a controls how fast the process

is mixing. The case were a “ 0 results in an i.i.d. process, whereas values with magnitude

close to 1 would result in a process that has strong correlations over a long period of time.

This process has the form of one of the examples given in Section 4.3.1 and hence satisfies all

the assumptions required for our theory to hold.

If the noise ξt has zero mean Gaussian distribution, the process will be a centered Gaussian

process which is completely characterized by an auto-correlation function

Rrts “ Erxt1`txt1s, (4.38)

where we have used the fact that stationarity of the process implies this auto-correlation only

depends on the time difference and not on the actual time. Since for Gaussian processes, the

Fourier transform is another Gaussian process, we do not need to use the results of [Peligrad

et al., 2010] to analyze them. As such, a more interesting example would be to use a non-

Gaussian noise ξ. Therefore, besides the Gaussian AR process, we also take ξt „ unifpt´s, suq

where s is an step size that controls the variance of the process. The variance and auto-

correlation of a univariate AR(1) process can be found as follows. Squaring both sides of

(4.37) and taking the expectation we obtain

Erx2s “
Erξ2s

1 ´ a2
. (4.39)
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Figure 4.1: Log of normalized error for i.i.d. Gaussian features with respect to δ “ ny{nx

for three different values of λ. Solid lines show the predictions of our theory whereas the dots
show the observed error on synthetic data.

Similarly, it is also easy to show that the auto-correlation of this process is

Rrts “
Erξ2s

1 ´ a2
a|t|. (4.40)

The auto-correlation function of the AR process only depends on the variance of the noise

and not its distribution. Our main result, Theorem 2, shows that the asymptotic error of

ridge estimator depends on the the underlying process only through the function gpωq which

as stated earlier, is proportional to the spectral density of the process, i.e. norm of Fourier

transform of the auto-correlation function. Therefore, so long as the zero mean noise has

the same variance, irrespective of its distribution, we expect to see the same asymptotic

error in the convolutional ridge regression when the rows of X are i.i.d. samples of such

processes. To show this, we use both a Gaussian AR(1) process with varpξ2t q “ 0.1 as well

as ξt unifpt´s, suq with s “
?
0.1 to match the variances. In both cases we take a “ 0.9 and

measurement noise variance σ2 “ 0.1.

We first present the results for the i.i.d. Gaussian covariates. In this case the variance

of signal and noise are 0.004 and 1 respectively. Figure 4.1 shows the log of normalized

estimation error with respect to δ “ ny{nx for three different values of the regularization
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Figure 4.2: Log of normalized error for the AR(1) features with the process noise
unifpt´s, suq, with respect to δ “ ny{nx for three different values of λ. Solid lines show the
predictions of our theory and the dots show the observed error on synthetic data. The plots
for Gaussian AR process is essentially identical. to this plot.

parameter λ. Normalized estimation error is defined as

NMSE “
E}pXridge ´ X0}22

E }X0}
2
2

. (4.41)

The solid curves correspond to what our theory predicts and the dots correspond to what we

observe on synthetic data. Even though our results hold in the limit of nx, ny, k, T Ñ 8 at

proportional ratio, we can see that already at this problem size, there is an almost perfect

match between our predictions and the error that is observed in practice. This suggests that

the errors concentrate around these asymptotic values. The figure also shows the double

descent phenomenon where as the number of parameters increases beyond the interpolation

threshold, the error starts decreasing again. It can be seen that regularization helps with

pulling the estimation error down in vicinity of the interpolation threshold. The interpolation

threshold is where we have just enough parameters to fit the observations perfectly. This

happens at δ “ 1, i.e. nx “ ny.

As mentioned in Remark 3 an i.i.d. process has a white spectrum in frequency domain,

meaning that gpωq is a constant. Therefore, for these processes, the integral in Corollary

1 would be proportional to the integrand. The integrand in turn is the asymptotic error

of an ordinary ridge regression problem with i.i.d. Gaussian features. As such, this figure
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is essentially the same as the figures in papers that have looked at asymptotics of ridge

regression, some of which we have mentioned in the Introduction and prior work.

Figure 4.2 shows the same plot for the case where the rows of X are i.i.d. samples of

an AR(1) process with process noise unifpt´s, suq. The asymptotic error for processes that

have dependencies over time can be significantly different from i.i.d. random features. The

red curve is similar to the red curve in Figure 4.1, but the other curves show very different

behavior. The double descent phenomenon is still present here. The plot for AR(1) process

with Gaussian noise is essentially identical to Figure 4.2 and we have moved it to the appendix

(Figure B.1). This supports our theoretical result that error in this asymptotic regime only

depends on the spectral density of the process.

4.6 Conclusion

Summary. We characterized the performance of ridge estimator for convolutional models

in proportional asymptotics regime. By looking at the problem in Fourier domain, we showed

that the asymptotic mean squared error of ridge estimator can be found from a scalar integral

that depends on the spectral properties of the true signal. Our experiments show that our

theoretical predictions match what we observe in practice even for problems of moderate size.

Future work. The results of this work only apply to ridge regression estimator for convo-

lutional linear inverse problem. The key property of ridge regularization is that it is invariant

under unitary transforms, and hence we could instead solve the problem in frequency domain.

Proving such result for general estimators and regularizers allows us to extend this work to

inference in deep convolutional neural networks similar to [Pandit et al., 2020]. Such work

would allow us to obtain the estimation error inverse problems use of deep convolutional

generative priors.
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Chapter 5

Generalized Autoregressive Linear

Models for Discrete High-dimensional

Data

5.1 Introduction

We consider the problem of learning a p-lag autoregressive (AR) generalized linear model (GLM)

for a multivariate time series involving N -variables: xt “ pxtiq P RN , where xti P Xi Ď R for

all i P rN s, t P Z. A particular case of the model we consider is of the form,

xti | zti „ Qip ¨ | ztiq, zti “ fi
`

xΘ˚
i ,X

t´1
y
˘

, (5.1)

where the inner product corresponds to RNˆp, for t “ 1, 2, . . . and i “ 1, 2, . . . , N where

Xt´1 “ rxt´1 xt´2 . . . xt´ps P RNˆp is the p-lag history of the process up to time t ´ 1, and

Qip ¨ | ztiq is a probabilistic link function. The problem is to estimate the unknown parameters

Θ˚
i P RNˆp for i “ 1, 2, . . . , N , given observations of n time samples xt, t “ 1, . . . , n. The

conditional distributions Qip ¨ | ztiq and link functions fi are assumed to be known.

Modeling problems of this form appear in a wide-range of applications with time-series
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data. For example, in neural modeling, xt can represent a vector of spike counts or some

other measure of activity from N neurons or brain regions. In this case, estimation of the

tensor Θ˚ in (5.1) can provide insight into the neural connectivity. Other applications include

genomics, econometrics [De Mol et al., 2008], data science, sociology, business management,

financial markets [Timmermann, 1996,DeJong and Whiteman, 1991] and natural language

processing.

A key challenge in estimating the multivariate AR(p) models is the large number of

unknown parameters to estimate, particularly as the dimension of the process, N , and number

of time lags, p, grows. However, in many cases, one can assume some sparsity constraint in

the connectivity tensor Θ˚. For example, in neural modeling, there are physically limited

numbers of direct connections between brain regions. Under a sparsity assumption, it is

common to estimate Θ˚ via an ℓ1-regularized M-estimator of the form,

pΘ :“ argmin
ΘPRNˆNˆp

1
n

N
ÿ

i“1

n
ÿ

t“1

Lit

`

xti ; xΘi,X
t´1

y
˘

` λn }Θ}1,1,1 ,

(5.2)

where Lit : XiˆR Ñ R are loss functions and λn|||Θ|||1,1,1 is an ℓ1 regularizer (precise definitions

will be given in the Section 5.2 below). The broad goal of this work is to analyze the sample

complexity of such ℓ1-regularized M-estimators. That is, given a sparsity constraint on Θ˚,

and the number of measurements, n, how well can we estimate Θ˚?

Summary of Contributions We consider the case where tXiu
N
i“1 are bounded countable

subsets of R. We analyze the ℓ1-regularized M-estimator (5.2) when the loss functions

v ÞÑ Litpu; vq are strongly convex, for all u P Xi. We assume that the connectivity tensor

can be approximated by a sparse tensor with at most smax non-zero values in each slice Θ˚
i .

Under these assumptions, our main result in Theorem 3 establishes the consistency of the

regularized M-estimator (5.2) in the high-dimensional regime of n “ poly
`

smax logpN2pq
˘

under some regularity conditions.

In proving our main result, we establish the so-called restricted strong convexity (RSC) [Ne-
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gahban et al., 2012] for a large class of loss functions, for a dependent non-Gaussian discrete-

valued multivariate process. Our proof of the RSC property requires showing a restricted

eigenvalue condition, which is nontrivial due to the non-Gaussian and highly-correlated nature

of the design matrix. What makes the problem more challenging is the existence of feedback

from more than just the immediate past (the case p ą 1).

We establish the RSC for general p ě 1 using the novel approach of viewing the p-block

version of the process as a Markov chain. The problem becomes significantly more challenging

when going from p “ 1 to even p “ 2. The difficulty with this higher-order Markov chain is

that its Dobrushin contraction coefficient is trivially 1. We develop techniques to get around

this issue which could be of independent interest (cf. Section 5.7). Our techniques hold for

all p ě 1.

Much of the previous work towards proving the RSC condition has either focused on

the independent sub-Gaussian case [Raskutti et al., 2011,Zhang et al., 2008] or the depen-

dent Gaussian case [Basu et al., 2015,Raskutti et al., 2019] for which powerful Gaussian

concentration results such as the Hanson–Wright inequality [Rudelson et al., 2013] are still

available. Our approach is to use concentration results for Lipschitz functions of Markov

chains over countable spaces, and strengthen them to uniform results using metric entropy

arguments. In doing so, we circumvent the use of empirical processes which require additional

assumptions for estimation [Rakhlin et al., 2015]. Moreover, our approach allows us to identify

key properties of the model that allow for sample-efficient estimation.

Although discrete time series are often modeled using the specific link functions such as

logit or softmax, our result allows more flexibility to choose the link functions. For example

in the Bernoulli AR(p) and Truncated-Poisson AR(p) cases discussed in Section 5.3.2, any

Lipschitz continuous, log-convex link function can be used. The analysis also brings out

crucial properties of the link function, and the role it plays in determining the estimation

error and sample complexity.

Our model also allows for each individual time series xti to lie in distinct spaces Xi which
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is desirable in practical applications with heterogeneous types of data.

5.1.1 Previous work

There is a vast literature on recovering sparse vectors in under-sampled settings [Candes and

Tao, 2006,Candes et al., 2006,Donoho, 2006,Eldar and Kutyniok, 2012]. The generic results

show that if a vector θ is s-sparse in a p-dimensions, it can be estimated in n “ Ωps logppqq

measurements. However, these results typically do not have feedback as in the AR process

considered here.

The estimation of sparse Gaussian VAR(p) processes with linear feedback has been

considered only more recently [Basu et al., 2015,Cai et al., 2016,McMurry et al., 2015,Mei

and Moura, 2017,Ahelegbey et al., 2016]. For these models, a restricted eigenvalue condition

can be established fairly easily, by reducing the problem, even in the time-correlated setting, to

the concentration of quadratic functionals of Gaussian vectors for which powerful inequalities

exist [Rudelson et al., 2013]. These techniques do not extend to non-Gaussian setups.

In the non-Gaussian setting, Hall et al. [Hall et al., 2018, Zhou and Raskutti, 2018]

recently considered a multivariate time series evolving as a GLM driven by the history of

the process similar to our model. The Bernoulli AR(1) and Poisson AR(1) with p “ 1 lags

were considered as special cases of this model. They provide statistical guarantees on the

error rate for the ℓ1 regularized estimator. More importantly, their results are restricted to

the case p “ 1 which does not allow the explicit encoding of long-term dependencies. More

recently, Mark et al. [Mark et al., 2018,Mark et al., 2017] considered a model closer to ours

for multivariate AR(p) processes with lags p “ 1 or p “ 2.

A key contribution of ours is to bring out the explicit dependence on p in the AR(p)

models, allowing for a general p ě 1. In the special cases we consider: the Bernoulli AR(p)

and the Truncated-Poisson AR(p), we show how the scaling of the sample complexity and

the error rate with p can be controlled by the properties of the link function fi and a certain
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norm of the parameter tensor.

Our results improve upon those in [Hall et al., 2018,Mark et al., 2018] when applied to the

Bernoulli AR(p) and Truncated-Poisson AR(p). Due to the key observation that an AR(p) over

a countable space can be viewed as a higher order Markov chain, our analysis relaxes several

assumptions made by [Hall et al., 2018,Mark et al., 2018]. In doing so, we achieve better

sample complexities with explicit dependence on p. Our analysis borrows from martingale-

based concentration inequalities for Lipschitz functions of Markov chains [Kontorovich et al.,

2008].

The univariate Bernoulli AR(p) process for p ě 1 was considered by Kazemipour et.

al. [Kazemipour, 2018,Kazemipour et al., 2017] where they analyzed a multilag Bernoulli

process for a single neuron. Their analysis does not extend to the N ą 1 case. Even for

N “ 1, their analysis is restricted to the biased process with Ppxt1 “ 1|Xt´1q ă 1
2

for all t.

Mixing times of the Bernoulli AR(1) have been considered in [Katselis et al., 2018]. However,

their discussion is again limited to p “ 1.

The rest of this chapter is organized as follows. In Section 5.2, we introduce the generalized

discrete VAR(p) model and the associated class of regularized M-estimators. Section 5.3

presents our main result, Theorem 3, on the consistency of the regularized M-estimator and

discusses its assumptions and implications. Applications of Theorem 3 to the special cases of

Binomial and Truncated-Poisson processes are detailed in Section 5.3.2. In Section 5.4, we

provide simulation results corroborating our theoretical predictions. Section 5.5 provides an

overview of the proof of Theorem 3. In Section 5.7, we present new techniques for deriving

concentration inequalities for dependent multivariate processes. We conclude with a discussion

and point to some open problems and directions for solving them in Section 5.8.

Notation. For two sequence tanu and tbnu, we write either of an Á bn or bn À an or

bn “ Opanq or an “ Ωpanq to mean that there is a constant C ą 0 such that an ě Cbn for

all n. We write an — bn if both an Á bn and bn Á an. We write an " bn or bn ! an or
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bn “ opanq if bn{an Ñ 0 as n Ñ 8. We use rN s to denote the set t1, 2, . . . , Nu. For a subset

X of a vector space, we write Xˆp for the set of matrices with p columns from X . Formally

Xˆp :“ tpx1, x2, . . . , xpq | xi P X , i P rpsu. For example, pRNqˆp is the same as the set of

real-valued N ˆ p matrices. In addition, Table C.1 in the Appendices provides a list of all

notations used in this chapter.

5.2 Models and methods

To state our results in their full generality, we consider a slightly more general model than

(5.1). We assume that the multivariate time series xt “ pxtiq P X Ă RN evolves as,

xti | zti „ Qip ¨ | ztiq (5.3a)

zti “ fi
`

xΘ˚
i ,X

t´1DyRN L̂

˘

(5.3b)

xti KK xtj | xt´1,xt´2, . . . (5.3c)

for t “ 1, 2, . . . and i “ 1, 2, . . . , N . The key difference here is that we have added a matrix

D “ rd1 d2 . . . dLs P RpˆL, a known dictionary of filters tdℓu
L
ℓ“1. When D “ Ipˆp, we obtain

the special case (5.1). The role of this dictionary will be explained below. To model the

discrete-valued nature of the states, we assume that xt P X :“
śN

i“1Xi where each Xi is a

bounded countable subset of R. The matrix Xt´1 “ rxt´1 xt´2 . . . xt´ps P RNˆp is the p-lag

history of the process up to time t´ 1, and Qip ¨ | zq is a distribution on Xi parameterized by

z. For example an exponential family distribution with mean parameter z. The matrices

Θ˚
i P RN L̂, i P rN s are the (unknown) model parameters and x¨, ¨yRN L̂ is the inner product.

A process of this form will be denoted GVARppq.

The distribution Qip ¨ | ztiq represents the conditional distribution of xti given the past

xt´1,xt´2, . . .. Functions fi : R Ñ R are similar to the inverse-link functions in GLMs, and

can be nonlinear in general. It is worth noting that Xi and Qi can vary for every variable

i P rN s making the model extremely flexible to include heterogeneous types of discrete data.
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The inner product x¨, ¨yRN L̂ in (5.3) is the Hilbert-Schmidt inner product on RN L̂, and

can be expanded as:

xΘ˚
i ,X

t´1DyRN L̂ “

N
ÿ

j“1

L
ÿ

ℓ“1

Θ˚
ijℓxx

t´˚
j ,dℓyRp (5.4)

where xt´˚
j :“ rxt´1

j xt´2
j . . . xt´p

j s is the p-lag history of variable j up to time t ´ 1, i.e.,

the jth row of Xt´1. Note that pXt´1Dqjℓ “ xxt´˚
j ,dℓyRp . The parameter pΘ˚

i qjℓ “ Θ˚
ijℓ P R

captures the dependence of variable xti on the past activity of variable j, via xt´˚
j . The vectors

dℓ P Rp act as filters that modulate the mean of variable xti based on the past activity of all

the variables, that is, xkj for j P rN s, and t ´ p ď k ă t.

5.2.1 Dictionary and network interpretations

The filters tdℓu serve two main purposes: (i) interpretability and (ii) dimension reduction. For

example, in neuroscience applications where the types of spiking behaviors are limited, the

presence of a dictionary causes the model to favor specific forms of interactions between the

spiking activities of two neurons. We refer to [Weber and Pillow, 2017] which explores these

filters for various interactive behaviors among neurons such as bursting, tonic spiking, phasic

spiking, etc. The dictionary increases the interpretability of the parameter Θ˚
i —one interprets

pΘ˚
i qjℓ as measuring the effect of the activity of neuron i on neuron j, as explained by

interaction type ℓ. Thus, the sparsity of Θ˚
i is more meaningful in the presence of a dictionary.

An earlier version of this work [Pandit et al., 2019a] considered modeling the interaction with

the past as xΘ˚
i ,X

t´1y where Θ˚
i lies in RNˆp, corresponding to taking D “ Ipˆp, the identity

matrix, in (5.3c). The formulation with a general dictionary D has the added advantage of

potentially reducing the number of free parameters from Np to NL. When L ! p, this leads

to a massive dimension reduction. The bilinear term xΘ˚
i ,X

t´1DyRN L̂ “ xΘ˚
iD

J,Xt´1yRNˆp

can also be thought of as a low-rank approximation to the parameter, forcing one factor to be

fixed by D. By adding pre-existing knowledge of temporal interactions between variables, the

dictionary allows for a rich model with fewer parameters, leading to more (sample) efficient
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estimators for Θ˚.

The parameter Θ˚ can be interpreted as representing a network among variables xti, i P rN s.

A slice Θ˚˚ℓ can be thought of as an adjacency matrix for the influence network explained by

coupling behaviour ℓ. If neurons i and j are not connected, then Θijℓ “ 0 for all ℓ P rLs. For

example, in the neural spike train application, one can reveal a latent network among the

neurons (i.e., who influences whose firing) just from the observations of patterns of neural

activity, a task which is of significant interest in neuroscience [Okatan et al., 2005,Smith and

Brown, 2003,Brown et al., 2004]. Similarly, in the context of social networks, one might be

interested in who is influencing whom [Raginsky et al., 2012].

5.2.2 Examples

The GVAR(p) process of the form (5.3) can be applied in a wide range of applications.

For example, letting Qip ¨ | zq “ Berpzq and fipuq “ p1 ` e´uq´1 recovers the Bernoulli

autoregressive process in [Pandit et al., 2019a]. Similarly, Qip ¨ | zq “ BinomialpKi, zq and

fipuq “ p1 ` e´uq´1 models a Binomial process with Ki trials (for coordinate i) and success

probability z. Such a model can be suitable for modeling count data. Another common

model for point processes in neuroscience [Smith and Brown, 2003] is the Truncated-Poisson

autoregressive process given by Qip ¨ | zq “ PpminpMi, Zq P ¨ q where Z „ Poipzq, and

fipuq “ exppuq or fipuq “ logp1` euq for some integer Mi [Hall et al., 2018,Mark et al., 2018].

Although we focus on single-parameter discrete distributions in this work, the ideas can be

easily extended to distributions with multiple parameters. For example, one can construct a

categorical or multinomial process, by allowing zti to be vector-valued and taking fi to be the

softmax function.
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5.2.3 Regularized M-Estimation

We are primarily interested in parameter estimation in the high-dimensional regime where

n ! N . To make the estimation feasible, we assume that the activity of each variable i

depends on the past activity of only a few number of variables, si ! N. We refer to si as the

in-degree of variable i. Our main result provides sufficient conditions under which parameter

Θ˚ can be estimated in the high-dimensional setting where n “ polyptsiu
N
i“1, logpNLpqq.

Given a collection of loss functions Lit : Xi ˆ R Ñ R, for i P rN s and t P Z, we consider

the following ℓ1-regularized M-estimator

pΘ :“ argmin
ΘPRN N̂ L̂

N
ÿ

i“1

LipΘiq ` λn}Θ}1,1,1.

LipΘiq :“
1
n

n
ÿ

t“1

Lit

`

xti ; xΘi,X
t´1Dy

˘

(5.5)

where we use the notation

}M}p,q,r :“

˜

a
ÿ

i“1

" b
ÿ

j“1

´

c
ÿ

k“1

|Mijk|
r
¯

q
r

*

p
q

¸

1
p

(5.6)

to denote a norm of a a ˆ b ˆ c tensor M (when p, q, r ą 1). We also use a similar norm

notation for matrices }M}p,q :“
řa

i“1p
řb

j“1 |Mij|
qq

p
q . For p “ q “ r “ 2, we denote the norm

subscript by F .

Since both the loss function and the ℓ1 penalty are decomposable, we can solve each of

the N problems in (5.5) indexed by i separately,

pΘi :“ argmin
ΘiPRN L̂

LipΘiq ` λn}Θi}1,1 @ i P rN s. (5.7)

The possible dependence of Lit on t in the M -estimator (5.5) allows for the incorporation

of time-discounting factors such as γt for some γ ă 1. We consider a large class of loss

functions later stated explicitly in assumptions (A2) and (A3). This class always includes

the negative-log likelihood function for exponential family distributions Qip ¨ | fipvqq with

log-concave link fi, and pseudo-likelihood functions in some cases. When Lit are chosen

to be convex, the whole problem (5.5) is unconstrained, convex, with a coercive objective
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function, whereby the solution pΘ is unique. Furthermore, the estimator (5.5) can be solved

efficiently using any non-smooth convex optimization solver, such as the subgradient methods

or proximal gradient descent methods [Bertsekas, 2011]. An implementation for the general

problem in (5.5) is available at [Sahraee-Ardakan et al., 2020] which implements both the

subgradient method as well as the proximal gradient method.

Each iteration of both of these methods involve computation of the gradient of the loss

function followed by finding the sub-gradient or proximal mapping for the regularization.

Computing the gradient of the loss is the most expensive step. The gradient of the loss is

∇LpΘiq “
1

n

n
ÿ

t“1

L1
it

`

xti ; xΘi,X
t´1Dy

˘

Xt´1D, (5.8)

where in L1
itp¨ ; ¨q the derivative is with respect to the second argument. To compute the

gradient, Xt´1D can be precomputed once by multiplying X :“ txtunt“´p`1 and D. Hence,

the complexity of obtaining the gradient ∇LpΘiq at each iteration is dominated by that of

computing xΘi,X
t´1Dy for all i, that is, OpnNLq. To solve the optimization problem, one

can then use the subgradient method with a provable convergence rate of 1{
?
k after k steps.

This relatively slow rate is due to the non-smoothness of the objective function. Alternatively,

we can use the proximal gradient method that converges at a rate of 1{k. Then, the overall

computational complexity of obtaining an ε-optimal solution is OpnNL{εq. The parallel

implementation in (5.7) allows for massive speed-ups in computation when using GPUs. The

main result of this work concerns the statistical complexity of the estimator and is agnostic

to the choice of the optimization solver.

Our main result establishes the statistical properties of estimator (5.5) such as consistency,

sample complexity and error rate. Our analysis also highlights desirable properties of the

loss functions Lit and the nonlinearities fi for achieving consistency. The result also shows

the effect of the dictionary D in increasing the sample-efficiency of the estimator.
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5.3 Main Results

Our main result concerns the estimation error of the parameters tpΘiu
N
i“1, obtained by

solving (5.7). We implicitly assume Θ˚
i to be approximately si-sparse. This assumption is

encoded via the ℓ1-approximation errors

ωi :“ min
βPRN L̂

t}β ´ Θ˚
i }1 | }β}0,0 ď siu. (5.9)

We also impose the following assumptions:

(A1) The process is wide-sense stationary and stable, i.e., the power spectral density matrix

exists:

X pωq :“
8
ÿ

ℓ“´8

Covpxt,xt´ℓ
qe´jωℓ

P CNˆN ,

min
ωPr´π,πq

λmin pX pωqq ě C2
X ą 0.

(A2) The loss function v ÞÑ Litpu, vq is twice differentiable and strongly convex for all u,

with curvature κi ą 0, i.e., B2
vLitpu; vq ě κi for all u P Xi, v P R, i P rN s, t P N`.

(A3) |BvLitpu, vq| ď CL, and for all v P R, i P rN s, t P N` we have

U „ Qip ¨ | fipvqq ùñ E
“

BvLitpU ; vqs “ 0.

Assumption (A3) guarantees that Θ˚ is the minimizer of the population loss, and is necessary

for the consistency of the M -estimator. The second half of the assumption is generally

satisfied if the loss is taken to be the log-likelihood function. The next example verifies this

for single-parameter exponential families.

Example 1. Assume that Qip ¨ | zq is an exponential family with density x ÞÑ exppxz´ϕpzqq,

for all i. Here, z is the so-called natural parameter of the family and ϕ is the log-partion

function. Let U „ Qp ¨ | fipvqq and take Litpx, vq to be the log-likelihood of this model, that

is,

Litpx; vq “ ´xfipvq ` ϕpfipvqq.
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This class includes Bernoulli, Poisson, and Gaussian (with known variance) AR processes

among others. We have

BvLitpU ; vq “ ´Uf 1
ipvq ` ϕ1

pfipvqqf 1
ipvq.

By a standard property of the exponential family ErU s “ ϕ1pfipvqq, hence ErBvLitpU ; vqs “ 0

verifying the second half of (A3). If, in addition, the family has bounded support and both ϕ

and fi are Lipschitz, then the entire (A3) holds. Distributions such as Poisson and Gaussian

violate the boundedness assumption. However, the truncated version of these distributions

belong to the exponential family and satisfy the boundedness condition.

Example 2. Under the same exponential family distribution as in Example 1, the second

half of (A3) also holds for the squared error loss

Litpx; vq “
“

x ´ ϕ1
pfipvqq

‰2
.

To verify this, it is enough to observe that

BLitpU ; vq “ 2
“

U ´ ϕ1
pfipvqq

‰

¨ ϕ2
pfipvqqf 1

ipvq,

and use ErU s “ ϕ1pfipvqq.

These two examples show that (A3) is satisfied for commonly used loss functions. As

for (A2), we recall that in an exponential family with the natural parameterization, the log-

partition function ϕp¨q is convex. Assumption (A2), however, requires the map v ÞÑ Litpu, vq

to be strongly convex. Extra care should be taken in choosing the loss and fip¨q to ensure

that this assumption is satisfied. The stability assumption (A1) is further discussed in the

remarks following the main result.

Let us now define a few constants necessary to state our main result. Let

CD :“ max
ℓ

}dℓ}1 ,

G “ GpΘ˚
q :“ 64C4

DB
4
´

1 ` p2ψ
`

τ1pΘ˚
q
˘

¯

,

(5.10)
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where ψpxq “ p1 ´ x´1q´2 and

τ1pΘ
˚
q :“ sup

z,yPXˆp

}Pz ´ Py}TV ă 1,

Pz :“ PpXt`p
“ ¨ | Xt

“ zq, z P Xˆp.

(5.11)

Here, Xˆp Ă RNˆp denotes the set of matrices consisting of p columns, each from X . Note

that Pz is t-invariant. Fix U Ă rN s and let us write

smax :“ max
iPU

si, s` :“
ÿ

iPU
si, κ :“ max

iPU
κi

κ :“
C2

X

8
min
iPU

κi, and rω` :“
ÿ

iPU
κ
ω2
i

si
` 4ωi,

(5.12)

where κi and CX are specified in (A2) and (A1). We are now ready to state the main result:

Theorem 3. Suppose that txtunt“´p`1 are samples from process (5.3), with each Xi being a

countable subsets of r´B,Bs for some B ą 0, and satisfying (A1). Fix a subset U Ď rN s and

let tpΘiuiPU be the solutions of (5.7) with loss functions Lit satisfying (A2)-(A3). Fix c1 ą 2

and let c “ c1{2 ´ 1. If

λn “ 2BCLCD

a

c1 logp|U |NLq{n, and

n Á
G

C6
X

s3max logpNLq,

then, with probability at least 1 ´ pNLq´Csmax ´ p|U |NLq´c,
ÿ

iPU
}pΘi ´ Θ˚

i }
2
F ď

9

κ2
s`λ

2
n `

rω`

κ
λn. (5.13)

where C “ OpC´2
X q only depends on CX .

The error bound in (5.13) can be written, up to constants, as:
ÿ

iPU
}pΘi ´ Θ˚

i }
2
F À

s` logpNLq

n
` rω`

c

logpNLq

n
. (5.14)

The two terms in the bound correspond to the estimation and approximation errors, re-

spectively. The estimation error scales at the so-called fast rate logpNLq{n, while the

approximation error scales at the slower rate
a

logpNLq{n. For the exact sparsity model,

where ωi “ 0 for all i, the approximation error vanishes and the estimator achieves the fast

rate. For simplicity, assume that CL, CD À 1 À CX . Then, the overall (excess) sample
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complexity for consistent estimation is

n " max
␣

Gs3max, s`, prω`q
2
(

logpNLq. (5.15)

By consistency, we mean that the estimator converges to the true parameter when n grows

to infinity, as long as the above condition holds, even when the rest of the parameters s, p, L

and N grow to infinity alongside n. We discuss the meaning of the “excess” qualification for

the sample complexity in the remarks below.

Bound (5.14) has a logarithmic dependence on N , the number of variables in the process,

which is a notable feature of our work. Compared to some of the previous work [Kazemipour

et al., 2017], we overcome the N ą 1 barrier for the BAR model while allowing for p ą 1

dependence on the past. The bound also depends logarithmically on L. This means that

dictionary D can be overcomplete, allowing for Θ˚ to be sparse, for nearly no additional cost.

5.3.1 Remarks on Theorem 3

Let us make a few comments on the various choices in Theorem 3:

Choice of the loss L Theorem 3 holds for any loss function satisfying conditions (A2) and

(A3). For the Bernoulli AR process, the negative log-likelihood Li,tpu, vq “ ´u log fipvq ´

p1 ´ uq logp1 ´ fipvqq satisfies these assumptions for any log-concave fi; see [Pandit et al.,

2019a]. For the Truncated-Poisson AR process, the negative log-likelihood takes the form

Litpu, vq “ fipvq ´ u log fipvq ` logpu!q and satisfies the assumptions for fipvq “ exppvq or

fipvq “ logp1 ` evq.

Choice of U The result in Theorem 3 has been stated for a general U Ď rN s. Taking

U “ rN s, gives a bound on the Frobenius norm of the entire tensor
›

›

›

pΘ ´ Θ˚

›

›

›

2

F
. On the other

extreme, we can take U “ tiu to obtain bounds on each slice of the tensor with better scaling

with sparsity. For example, in the exact sparsity setting, we obtain }pΘi´Θ˚
i }2F À si logpNLq{n,
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avoiding the extra price of p
ř

j‰i sjq logpNLq{n that we pay for the entire tensor.

Scaling with sparsity Considering the exact sparsity setting, the scaling of the sample

complexity (5.15) with sparsity is n “ Ωps` _ s3maxq. In the worst case, s` “ smax and we get

a cubic dependence on sparsity which is not ideal. However, when s` Á s3max, Theorem 3

requires n “ Ωps`q which is the optimal scaling with sparsity. (This can be seen by noting

that in the linear independent setting, one cannot do better than n “ Ωps`q.) Our result

also holds for the more general case of ωi ‰ 0. For example, for the ℓq ball sparsity with

q P p0, 1q, we have ωi “ Ops
1´1{q
i q hence ω2

i {si ` wi “ Opωiq “ Opsiq and rω` “ Ops`q and

the same sample complexity as the exact sparsity case holds.

It is not clear if the worst-case cubic dependence on the sparsity can be improved without

imposing restrictive assumptions. It is worth noting that in our proof, the additional s2i

factor comes from concentration inequality (5.33) in Lemma 11. This additional factor can

be removed if one were able to show sub-Gaussian concentration for deviations of the order of

}β}2F instead of }β}
2
1,1, in Lemma 11. It remains open whether such concentration is possible

and under what additional assumptions. Section 5.7 provides a more detailed discussion on

this concentration inequality. Figure 5.4a in Section 5.4 suggests a superlinear dependence

on s, hinting that the situation may not be as simple as the i.i.d. case.

For p “ 1, a sample complexity of ρ3 logpNq was reported in [Hall et al., 2018, Cor. 1].

One can verify that ρ in their model is equal to smax in ours, hence they obtain the same

s3max dependence on sparsity. Similarly for p “ 2, the result in [Mark et al., 2018, Thm 4.4]

requires ps{r2ρq logpNq samples where s and rρ are sparsity parameters defined therein and rρ

is inversely related to smax in the worst case, yielding a similar cubic dependence on sparsity

as ours. Furthermore, it appears that their analysis only holds for smax “ Op1q, whereas we

make no such assumption. In short, to our knowledge, no prior work has broken the s3max

barrier in the non-Gaussian AR setting.
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Scaling with lag p Our result is the first to provide sufficient conditions for a sample

complexity logarithmic in p in the case of the identity dictionary, for any value of N . As will

be discussed in Section 5.3.2, the dependence of the (excess) sample size n on p could be as

good as OplogLq for a general dictionary, under certain tail and normalization conditions.

In these cases, one could obtain an Op1q growth of n as function of p in the best case

(when L “ Op1q) and an Oplog pq growth in the worse case (the identity dictionary). In

contrast, [Kazemipour et al., 2017, Thm. 1] requires s2{3p2{3 logppq samples, for the identity

dictionary, and their proof relies heavily on N “ 1.

Our bound scales with p through G which is defined in terms of the contraction coefficient

τ1pΘ
˚q in (5.11). The contraction coefficient only depends on Θ˚ and is always less than 1.

Intuitively, if Θ˚ is too large, then for two different initializations z and y, the distributions

PpXt`p “ ¨ | Xt “ yq and PpXt`p “ ¨ | Xt “ zq may significantly differ. A clear sufficient

condition for G “ Op1q is to have τ1pΘ˚q “ Opp´1q as well as CD À 1. The challenge is to

control τ1pΘ˚q in terms of the size of Θ˚. Section 5.3.2 further discusses sufficient conditions

under which G “ Op1q. There, we show that for certain exponential families, the scaling

depends on the behavior of the tail of k ÞÑ |pdℓqk|, that is, how fast the influence from the

past dies down in the filters tdℓu.

A subtle point worth noting here, which does not arise in ordinary M -estimation with

i.i.d. measurements, is that n is in fact the excess sample-size one needs beyond the p initial

samples. It is clear that at least p initial samples are needed for estimating a p-lag process.

Examples discussed in Section 5.3.2 provide conditions that guarantee that the excess sample

size, n, needed for consistent estimation is OplogLq as p grows, the smallest order one could

hope for.

Stability assumption (A1) We use assumption (A1) to guarantee that the strong convexity

holds for the population loss Θ ÞÑ ELpΘq. This is key in guaranteeing that any parameter

tensor pΘ that maximizes the regularized loss function in (5.5) does not deviate far from the
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true parameter Θ˚.

Assumption (A1) is by now standard in time-series estimation literature [Raskutti et al.,

2019,Basu et al., 2015,Lütkepohl, 2005]. The quantity CX is fundamental to multivariate

time-series analysis, however, its behavior as a function of the parameters of the model is not

yet fully understood. Intuitively, CX is related to the flatness of the power spectral density

(PSD) X , and the stability of the process. For the N “ 1 case, CX ą 0 implies that the

process does not have zeros on the unit circle in the spectral domain.

In general, CX could potentially depend on N , indirectly via Θ˚. In subsequent discussions

of Theorem 3, we have assumed that CX stays uniformly bounded away from zero as N grows.

This assumption is explicitly stated as CX Á 1. Our main result (Theorem 3), however, holds

for all positive values of CX , regardless of its growth rate. Even if CX “ op1q with respect

to N , Theorem 3 still gives a consistency result, albeit with a worse dependence on N .

The dependence of CX on N occurs through the scaling of the true parameter Θ˚. That

CX is in general bounded below by a constant (or has a slow decay as a function of N) is

part of the folklore of the time series literature. It is reasonable to assume that this holds

for certain structured Θ˚. However, obtaining exact conditions on Θ˚ for CX Á 1 to hold is,

in general, a non-trivial open problem, even for univariate Gaussian AR(p) processes. The

main difficulty is that the relation between the power spectral density of the process and

its parameter is indirect and via the Z-transform. Nevertheless, conditions are known in

special cases. See for example the discussion surrounding Proposition 2.2 in [Basu et al.,

2015], where explicit conditions are given on the parameter matrix of a VAR(1) Gaussian

process, for CX to stay bounded away from zero.

5.3.2 Special Cases

Let us now look at the applications of Theorem 3 to two special cases often considered in

discrete-valued time series modeling — Binomial and Poisson AR processes. We take U “ rN s
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throughout this section. To apply the theorem, we need to upper-bound GpΘ˚q in each case.

Since the ψ function in (5.10) is non-decreasing on r0, 1q, it is enough to control τ1pΘ˚q. In

fact, a sufficient condition for GpΘ˚q “ Op1q is to have τ1pΘ˚q “ Op1
p
q and CD “ Op1q.

The quantity τ1pΘ˚q is the maximum total variation distance between the p-step condi-

tional distributions of the process, starting from two initial states y and z. The Pinsker’s

inequality [Csiszar and Körner, 2011, p. 44] can be used to further control the total variation

distance by the KL divergence, which is the natural choice for comparing two exponential

family distributions with independent coordinates.

Recall X “
śN

i“1Xi Ă r´B,BsN and the notation Pz from (5.11). Pinsker’s inequality

yields

τ 21 pΘ˚
q ď sup

z,yPX p̂

1
2
DKLpPz}Pyq, (5.16)

where DKLp¨}¨q is the KL-divergence. We now state upper bounds on DKLpPz}Pyq for the

two cases of the Binomial and Poisson processes. A quantity of interest is the tail decay of

the dictionary elements tdℓu
L
ℓ“1, measured by

γtℓ :“
p
ÿ

m“t

|pdℓqm|. (5.17)

Let us define the following norm on Θ,

}Θ}
‹
:“

´

ÿ

i,t

L2
i

”

ÿ

j,ℓ

γtℓ|Θijℓ|

ı2¯1{2

where Li is the Lipschitz constant of the link function fi, and the summations run over

pi, t, j, ℓq P rN s ˆ rps ˆ rN s ˆ rLs. One can often establish a bound of the form

DKLpPz}Pyq ď CfB
2

}Θ˚
}
2
‹

(5.18)

where Cf depends on tfiu and Θ˚ is the true parameter generating the samples.

Lemma 7. Consider a Binomial AR process given by (5.3) with Xi “ t0, 1, . . . , Kiu, where

Ki ď B, and Qip ¨ | zq “ BinpKi, zq. Assume that fi is Li-Lipschitz, and for some ε P p0, 1
2
q,

fi : R Ñ rε, 1 ´ εs for all i. Then, (5.18) holds with Cf “ 6{ε.

The case of B “ 1 recovers the result for the Bernoulli Autoregressive Process in [Pandit

83



et al., 2019a].

Lemma 8. Consider a Truncated Poisson AR process given by (5.3) with Xi “ t0, 1, . . . , Kiu

and Qip ¨ | zq “ PpminpKi, Zq P ¨ q where Z „ Poipzq and Ki ď B. Assume that fi is

Li-Lipschitz, and for some ε ą 0, fi : R Ñ rε,8q for all i. Then, (5.18) holds with Cf “ 4{ε.

Combining with (5.16), we have the following corollary.

Corollary 2. Under the assumptions of Lemma 7 or 8,

τ1pΘ˚
q À

B
?
ε

}Θ˚
}

‹
.

In particular, if CL, CD À 1 À CX and }Θ˚}
‹

“ Op1{pq, then G “ Op1q and the following is

sufficient for consistency:

n " max
␣

s3max, s`, prω`q
2
(

logpNLq.

In other words, Corollary 2 provides conditions under which consistent estimation is

possible with (excess) sample complexity that grows at most logarithmically in L.

Let us consider some examples for which }Θ˚}
‹

“ Op1{pq. For the purpose of illustration,

let us separate the tail decay of Θ˚, along the lag dimension, by assuming that

|Θ˚
ijℓ| ď Rijhℓ, @ pi, j, ℓq P rN s ˆ rN s ˆ rLs.

for some sequence thℓu
8
ℓ“1 such that

ř8

ℓ“1 hℓ ă 8 and a matrix R “ pRijq. Assume that Θ˚
ijℓ

is normalized so that }R}2,1 “ Op1q. Moreover, assume that maxi Li “ Op1{pq. Since in

model (5.3), the input to each fi involves terms xxt´˚
j ,dℓyRp , each of which is essentially a sum

of p terms (cf. (5.4)), the aforementioned assumption on the Lipschitz constant is a natural

normalization that prevents the saturation of the nonlinearities fi as p grows. Equivalently,

we can make this condition more explicit by replacing fip¨q in the definition of model (5.3)

with rfip
1
p
¨q and assuming that rfi have Lipschitz constants uniformly bounded by a constant.

Under the above modeling assumptions, consider the following two dictionaries:

Case (a): The identity dictionary, where L “ p and pdℓqm “ 1tm “ ℓu. In this case,
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γtℓ “ 1tt ď ℓu. Then,

}Θ}
‹

À
1

p
}R}2,1

”

p
ÿ

t“1

´

p
ÿ

ℓ“t

hℓ

¯2ı1{2

“ O
´1

p

¯

assuming that
ř8

t“1p
ř8

ℓ“t hℓq
2 ă 8 which holds, for example, if hℓ decays at least as fast as

ℓ´1´α{2 for some α ą 1. Note that in this case CD — 1 is trivially satisfied.

Case (b): A general dictionary, with filters satisfying the decay rate maxℓ |pdℓqm| À m´α´1

for some α ą 1. Then, maxℓ γtℓ À t´α and

}Θ}
‹

À
1

p
}R}2,1

´

p
ÿ

t“1

t´2α
¯1{2

p
ÿ

ℓ“1

hℓ “ O
´1

p

¯

using
ř8

t“1 t
´2α ă 8 and

ř8

ℓ“1 hℓ ă 8. Moreover, since we have CD À
řp

m“1m
´α´1, it

follows that CD “ Op1q as p grows.

Thus in both cases, Corollary 2 guarantees that the excess sample size n needed for

consistency grows at most logarithmically in L. This translates to an Oplog pq growth in the

case the identity dictionary but could be as low as Op1q for a dictionary with the number

of filters L not growing with p. Note that the summability condition on hℓ in case (b) is

milder than that in case (a), showing the trade-off between the tail decay of Θ (along the lag

dimension) and the tail decay of the dictionary filters. Having fast decaying filters relaxes

the decay requirement on the tails of Θ.

5.4 Simulations

In this section, we evaluate the performance of the estimator in (5.5) using simulated data.

We generate the data using the model in (5.3). In all the examples, we first randomly generate

Θ˚ and D. To generate Θ˚, we select the support of Θ˚
i for each i uniformly at random based

on the sparsity si. We then fill the support with i.i.d. draws of the normal distribution, and

finally normalize such that }Θ˚
i }1,1 is a constant.

To report the performance of (5.5), we use the metric normalized squared error (NSE)
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defined as:

NSEpΘ˚, pΘq “
}Θ˚ ´ pΘ}2F

}Θ˚}2F
. (5.19)

to normalize variations in the size of the parameter across independent instances of Θ˚. An

implementation is provided at [Sahraee-Ardakan et al., 2020]. We consider the following 3

processes:

5.4.1 Poisson AR(p) process without dictionary

We evaluate the performance of the regularized maximum likelihood and the regularized

least-squares estimators on a Poisson process with no dictionary, i.e., D “ Ip. For the Poisson

process, we use the inverse link function fipzq “ logp1 ` ezq. Then, these estimators have the

form of (5.5) with

LML
it

`

xti ; z
t
i

˘

“ zti ´ xti logpztiq, (5.20a)

LLS
it

`

xti ; z
t
i

˘

“ pxti ´ ztiq
2, (5.20b)

where zti “ fpxΘ˚
i ,X

t´1yq, since D “ Ip. Note that the M-estimation problem in (5.5)

corresponding to (5.20a) is convex, whereas it is non-convex for (5.20b) (we report a local

minimum). Here, we generate the ground truth parameters as mentioned before with N “ 50

and p “ 20 and we use λn “ 0.05{
?
n. When comparing NSE v/s n, each Θi has sparsity 20.

The results are shown in Figure 5.1. The error shades correspond to one standard deviation

over 5 independent instances of pΘ˚, pΘq. With the NSE metric, the regularized maximum

likelihood estimator appears to perform better for the Poisson AR(p) process, for the random

ensemble of problems generated in these examples.

5.4.2 Poisson AR(p) process with dictionary

We choose D to be entrywise i.i.d. Gaussian with standard deviation σ{p for a constant σ,

so that the ℓ1-norm of all columns of D are close to a constant for large p (the constant
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(a) NSE vs. sample size for a Poisson process
without dictionary.

(b) NSE vs. sparsity for a Poisson process
without dictionary.

Figure 5.1: Poisson AR(p) process without a dictionary (i.e., D “ Ip).

(a) NSE vs. sample size for a Poisson process
with dictionary.

(b) NSE vs. sparsity for a Poisson process with
dictionary.

Figure 5.2: Poisson AR(p) process with dictionary of size L “ 20.

being the mean of a folded normal distribution). The process is generated as in the previous

example using (5.3). We take N “ 50, p “ 200, and L “ 20 such that the process has

very long range dependencies. We again consider the two regularized M-estimators: the

regularized maximum likelihood and the regularized least-squares with the inverse link

function fpzq “ logp1` ezq. These estimators are identical to the ones in (5.20a) and (5.20b),

except that zti “ fpxΘi,X
t´1Dyq with D ‰ Ip.

87



The results are shown in Figure 5.2. They are very similar to Figure 5.1. In accordance

with our theoretical results, these figures suggest that for an AR processes with very long

range dependencies, estimating the parameter is easier in the presence of a dictionary.

5.4.3 Bernoulli AR(p) process without dictionary

Finally, we look at a Bernoulli autoregressive process. We use the sigmoid function, fpzq “

1{p1`e´zq, as the inverse link function. We compare the performance of regularized maximum

likelihood estimator to regularized least-squares estimator. Both of these estimators have the

form of (5.5) with

LML
it

`

xti ; z
t
i

˘

“ ´zti logpxtiq ´ p1 ´ xtiq logp1 ´ ztiq (5.21a)

LLS
it

`

xti ; z
t
i

˘

“ pxti ´ ztiq
2, (5.21b)

where zti “ fpxΘi,X
t´1yq is the mean parameter of the dimension i of the Bernoulli process

at time t. Note that due to inverse link function, despite convexity of square loss with respect

to zti , the optimization problem corresponding to least square estimator is non-convex and

our results do not apply to it. Nevertheless, we observe that its performance is similar to

maximum likelihood estimator.

Figure 5.3 shows different measures of performance of the regularized maximum likelihood

estimator. We have set N “ 50, p “ 20 and λn “ 0.05{
?
n as recommended by Theorem 3, in

these examples. Figure 5.3a shows how the normalized estimation error changes with respect

to the number of training samples.

The sparsity is 20 for each Θi. Note that we are using the same regularization parameter

for both estimators and not the optimal λn, i.e.without any cross-validation. The error shades

correspond to one standard deviation. Figure 5.3b shows the normalized square error for

different sparsity levels. For small values of sparsity, the denominator Θ˚ has a small norm

which causes high normalized error, however for higher values of sparsity, we see the linear

dependence on sparsity as predicted by Theorem 3.
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(a) NSE vs. sample size for sparsity si “ 20 for
all i. (b) NSE vs. sparsity for sample size n “ 10, 000

(c) Accuracy vs. steps predicted in the future for
different n.

(d) Accuracy vs. steps predicted in the future for
different s.

Figure 5.3: Bernoulli AR(p) process without dictionary.

The next two figures correspond to generalization error as opposed to estimation error

in the first two figures. Here, we use the estimated parameters pΘ to predict the process in

the future and calculate the accuracy of prediction. We use 5 MCMC runs of the process to

estimate the accuracy. The plot shows average accuracy over all N variables of the process.

Figure 5.3c shows the accuracy vs. steps in the future for different training sample sizes and
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(a) Average Frobenius norm of the error over
20 runs with N “ 20, p “ 20. Each pixel
corresponds to a pair ps, nq for Θ˚.

a
cc

u
ra

cy

(b) Fraction of support recovered by taking the
largest s entries of pΘ as the estimator of
support. Here N “ 100, p “ 1.

Figure 5.4: Simulation results for Bernoulli AR(p) process.

Figure 5.3d shows it for different levels of sparsity. There is a prominent change in in the

accuracy plots at 21 steps. This corresponds to p “ 20 where the future of the process is

being estimated purely based on simulated samples using the estimated parameter. Prior

to this point, parts of the samples being used to make the predictions are True values and

not estimated ones. As expected, the accuracies improve as the number of training samples

increase with sparsity fixed, and they decrease as sparsity level increases with number of

training samples fixed. Figure 5.4a shows the estimation error for different sample sizes and

sparsity levels.

Finally, we also use the regularized maximum likelihood estimator to perform support

recovery, i.e. assuming that the true parameter tensor is exactly s-sparse, how does the

support estimated from pΘ compare to the support of Θ˚? To do so, we need to estimate the

support from pΘ. If we know the sparsity s, we can estimate the support by taking the indices

corresponding to the s largest entries of pΘ in magnitude. If we do not know the sparsity in

advance, we can estimate the support based on a threshold chosen by cross-validation. Given

a threshold γ, the estimated support would be

zsupppΘq :“ tpj, k, ℓq : |pΘjkℓ| ě γu.
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Note that our theoretical results do not give any guarantees for support recovery. In order to

guarantee support recovery, a stronger result bounding the error uniformly for each entry

of pΘ is required, i.e., we need to control
›

›

›

pΘ ´ Θ˚

›

›

›

8,8,8
with high probability. Therefore,

more work is needed to obtain theoretical guarantees for support recovery. Nevertheless,

our simulations show that the estimator is able to recover the support very well. Figure

5.4b shows the results for a process with p “ 1, N “ 100 and three different sparsities.

For recovering the support, we assumed that the sparsity s is known, and took the indices

corresponding to the s largest entries of pΘ as the recovered support. The fraction of the

correctly recovered indices is plotted against the sample size. Figure 5.4b shows that if the

sample size is below some threshold, no entries of the support are recovered, while above the

threshold, the recovered fraction gradually increases to 1.

5.5 Proof Sketch for Theorem 3

We now outline the proof of Theorem 3. Our analysis applies the framework of Negahban et

al. [Negahban et al., 2012]. Let

Lipβq :“
1

n

n
ÿ

t“1

Lit,px
t
i; xβ,Xt´1Dyq, β P RNˆL.

Fix U Ď rN s and set ΘU :“ pΘiqiPU and similarly Θ˚
U :“ pΘ˚

i qiPU and pΘU :“ ppΘiqiPU , all

tensors in R|U |ˆNˆL. We also write LUpΘUq “
ř

iPU LipΘiq. We have

pΘU “ argmin
ΘU PR|U|ˆNˆL

LUpΘUq ` }ΘU}1,1,1 . (5.22)

In the sequel, ∇LU and ∇2LU are the gradient and Hessian of LU with respect to variable

ΘU . When n ! |U |NL, the empirical Hessian, ∇2LUpΘ˚
Uq, is rank-deficient, hence the loss

function is flat in many directions around Θ˚
U . The approach of Negahban et al. [Negahban

et al., 2012] is to guarantee that LU is positively curved in certain directions, including

p∆U :“ pΘU ´ Θ˚
U .
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In particular, if the regularization parameter λn is large enough, specifically

λn ě 2 }∇LUpΘ˚
Uq}

8,8,8 , (5.23)

then, the error tensor p∆U lies in a small cone-like subset C pS ; Θ˚
Uq—to be defined below—and

on this set, LU is “nearly” strongly convex, i.e., ∇2LUpΘ˚
Uq is uniformly quadratically bounded

below.

For a set S Ď rN s ˆ rLs, let βS denote the projection of β on the subspace of matrices

with support S. For β˚ define:

CpS;β˚
q :“ tβ : }β}1,1 ď 3 }βS}1,1 ` 4 }β˚

Sc}1,1u. (5.24)

Note that this is a cone-like subset of RNˆL around β˚. See [Negahban et al., 2012] for

a visualization. Let S :“
Ť

iPUtiu ˆ Si where Si Ď rN s ˆ rLs for i P U . Equivalently,

S “
Ů

iPU Si using the notation of disjoint union. With some abuse of notation, we write

S c :“
Ť

iPUtiu ˆ Sc
i . The cone-like set C pS ; Θ˚

Uq is defined as follows:

C pS ; Θ˚
Uq :“ tp∆iqiPU : ∆i P CpSi; Θ

˚
i q, @i P Uu . (5.25)

For loss functions Li, i P U , and for δ, β˚ P RNˆL, let

RLipδ;β
˚
q :“ Lipβ

˚
` δq ´ Lipβ

˚
q ´ x∇Lipβ

˚
q, δy, (5.26)

be the remainder of the first-order Taylor expansion of Li around β˚. Following [Negahban

et al., 2012], we say that LU satisfies restricted strong convexity (RSC) at Θ˚
U with curvature

κ ą 0 and tolerance τ 2 if for all ∆ P C pS ; Θ˚
Uq, we have,

ÿ

iPU
RLip∆i; Θ

˚
i q ě κ

ÿ

iPU
}∆i}

2
F ´ τ 2. (5.27)

The left-hand side is the remainder of the first-order Taylor expansion of LU around Θ˚
U , that

is, RLUp∆U ; Θ
˚
Uq—defined similar to (5.26).

Now, assume that (5.23) and (5.27) hold. Then, [Negahban et al., 2012, Theorem 1]

implies that pΘU ´ Θ˚
U P C pS ; Θ˚

Uq, and that

}pΘU ´ Θ˚
U}

2
F ď

9λ2
n

κ2 |S | ` λn

κ
p2τ 2 ` 4 }pΘ˚

UqS c}1,1,1q. (5.28)

92



The above inequality provides a family of bounds, one for each choice of S “
Ů

iPU Si.

Decreasing |S | reduces the first term, but potentially increases }pΘ˚
UqS c}1,1,1. We choose S to

balance the two. Let S˚
i Ă rN sˆrLs be the support of the minimizer in (5.9), so that |S˚

i | “ si.

We take S “ S ˚ “
Ů

iPU S
˚
i . Consequently, |S ˚| “

ř

iPU si and }pΘ˚
UqS ˚c}1,1,1 “

ř

iPU ωi.

For this choice of S , Proposition 5 below shows that (5.27) holds, with high probability. To

state the concentration inequality, recall the definitions (5.12).

Proposition 5. Under assumptions (A1) and (A2), if we have,

n Á
G

C6
X

s3max logpNLq (5.29)

then, the RSC property (5.27) for S “ S ˚ holds with curvature κ “ κ and tolerance

τ 2 “ κ
2

ř

iPU ω
2
i {si, with probability at least 1 ´ pNLq´Csmax where C “ OpC´2

X q.

Lemma 20 in Appendix C.1 shows that Θ˚
U is in fact the minimizer of the expected loss

ELUp¨q. Lemma 21 in Appendix C.1 shows that taking λn “ Op
a

logp|U |NLq{nq is enough

for (5.23) to hold with high probability. Putting the pieces together proves Theorem 3. The

next section sketches a proof of Proposition 5.

5.6 Restricted Strong Convexity: Proof of Proposition 5

Showing the RSC property (5.27) for a particular choice of S is a major contribution of

our work. This is a nontrivial task since it involves uniformly controlling a dependent non-

Gaussian empirical process. Even for i.i.d. samples, the task is challenging since the quantity

to be controlled, ∆ ÞÑ RLp∆;Θ˚q, is a random function that needs to be uniformly bounded

below. Controlling the behavior of this function becomes significantly harder without the

independence assumption.

We proceed by a establishing a series of intermediate lemmas which are proved in Appendix
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C.1. First, we show that β ÞÑ RLipβ; Θ
˚
i q is lower-bounded by the following quadratic form:

Epβ;Xq :“
1

n

n
ÿ

t“1

i`β,Xt´1D
2
, (5.30)

where X :“ txtunt“´p`1.

Lemma 9 (Quadratic lower bound). Under assumption (A2),

RLipβ; Θ
˚
i q ě

κi
2
Epβ;Xq (5.31)

for all β P RNˆL and i P rN s.

Notice that β ÞÑ Epβ;Xq is a random function due to the randomness in X. Importantly,

Ep ¨ ;Xq does not depend on the choice of i. The following set of results establish some

important properties of the random function Ep ¨ ;Xq.

Lemma 10 (Strong convexity at the population level). Under assumption (A1),

E Epβ;Xq ě C2
X }β}

2
F , for all β P RNˆL. (5.32)

Next, we show that for a fixed β, the quantity Epβ;Xq concentrates around its mean.

Section 5.7 provides a sketch of the proof of the following concentration inequality:

Lemma 11 (Concentration inequality). For any β P RNˆL, if X is generated as (5.3), then

with probability at least 1 ´ 2 exp p´nt2{Gq, we have

Epβ;Xq ą EEpβ;Xq ´ t }β}
2
1,1 . (5.33)

Finally, for a fixed i P rN s we use the structural properties of set CpS˚
i ; Θ

˚
i q along with

Lemmas 10 and 11 to give a uniform quadratic lower bound on Epβ;Xq, which holds with

high probability:

Lemma 12. Fix i P U . For constants C1, C2 ą 0, if si ě
C2

X

C1
, then with probability

ě 1 ´ expp C2

C2
X
si logpNLq ´

nC4
X

16Gs2i
q,

Epβ;Xq ě
C2

X

4
}β}

2
F ´ ω2

i {si, @β P CpS˚
i ; Θ

˚
i q.
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The proof of Lemma 12 (cf. Appendix C.2) makes use of a discretization argument. Proving

uniform laws are challenging when the parameter space is not finite. The discretization of the

set CpS˚; Θ˚q uses estimates of the entropy numbers for absolute convex hulls of collections

of points (Lemma 22). These estimates are well-known in approximation theory and have

been previously adapted to the analysis of regression problems in [Raskutti et al., 2011]. The

following technical lemma allows us to put the above results together:

Lemma 13. For all i P U , let ai, bi, di, pi be positive constants, and consider random variables

Xi, Yi P R which satisfy Yi ě aiXi, and PpXi ă bi ´ diq ď pi for all i P U . Then with

probability at least 1 ´ |U |max
iPU

pi, we have,

ÿ

iPU
Yi ą pmin

iPU
aiq

ÿ

iPU
bi ´ pmax

iPU
aiq

ÿ

iPU
di

Proposition 5 follows by taking Yi “ RLip∆i; Θ
˚
i q, Xi “ Ep∆i,Xq, ai “

κi

2
, bi “

C2
X

4
}∆i}

2
F ,

and di “ ω2
i {si.

5.7 Concentration under dependence: Proof of Lemma 11.

In this section, we sketch the proof of Lemma 11 which is a concentration inequality for

β ÞÑ Epβ;Xq, a quadratic empirical process based on dependent non-Gaussian variables with

long-term dependence. For independent sub-Gaussian variables tXt´1u, such a concentration

result is often called the Hanson–Wright inequality [Rudelson et al., 2013, Thm. 1]. Providing

similar inequalities for dependent random variables is significantly more challenging. For

dependent Gaussian variables, the machinery of the Hanson–Wright inequality can still be

adapted to derive the desired result [Basu et al., 2015, Prop. 2.4]. However, these arguments

do not extend easily to non-Gaussian dependent variables and hence other techniques are

needed to provide such concentration inequalities.

Recent results [Fan et al., 2018,Chung et al., 2012] on the concentration of empirical

processes derived from Markov chains could provide improvements on the results we present
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here. However, since we are dealing with a non-Markovian process (when p ą 1), such

results are not directly applicable. A key observation, discussed in Section C.3.2, is that

process (5.3) can be represented as a discrete-space p-Markov chain. This allows us to

use concentration results for dependent processes in countable metric spaces. There are

several results for such processes; see [Kontorovich et al., 2008,Marton et al., 1996,Samson

et al., 2000] and [Kontorovich, 2012] for a review. Here, we apply that of Kontorovich et.

al. [Kontorovich et al., 2008]. These concentration inequalities are stated in terms of various

mixing and contraction coefficients of the underlying process. The challenge is to control the

contraction coefficients in terms of the process parameter Θ˚, which in our case is done using

quantities τ1pΘ˚q and GpΘ˚q. Some results developed in this section hold more generally for

any p´Markov process, even those outside the current autoregressive framework.

We start by stating the result of Kontorovich et. al. [Kontorovich et al., 2008] for a process

tX tutPrns consisting of (possibly dependent) random variables taking values in a countable

space X . For any ℓ ě k ě 1, define the mixing coefficient

ηkℓ
∆
“ sup

w,w1,y

›

›

›
P
`

Xn
ℓ “ ¨ | Xk “ w1, Xk´1

1 “ y
˘

´ P
`

Xn
ℓ “ ¨ | Xk “ w,Xk´1

1 “ y
˘

›

›

›

TV
,

(5.34)

where the supremum is over w,w1 P X and y P X k´1. Here, Xv
u :“ pX t, u ď t ď vq is viewed

either as a member of Xˆpv´u`1q (the set of a matrices with v ´ u ` 1 columns from X ) or

simply as a vector in X v´u`1. Let H P Rnˆn be an upper triangular matrix with entries ηkℓ

for ℓ ě k and zero otherwise. Let |||H|||8 :“ maxk
ř

ℓěk ηkℓ be the ℓ8 operator norm of H.

Proposition 6. [Kontorovich et al., 2008, Theorem 1.1] Let ϕ : X n Ñ R be an Lϕ-Lipschitz

function of tX tunt“1 with respect to the Hamming norm, then for all ε ą 0, with probability at

least 1 ´ 2 expp´ ε2

2nL2
ϕ|||H|||28

q, we have

|ϕptX t
u
n
t“1q ´ EϕptX t

u
n
t“1q| ă ε. (5.35)

We apply the above result to ϕ “ Epβ;Xq by finding an upper bound for the Lipschitz

constant Lϕ of the map X ÞÑ Epβ,Xq with respect to the Hamming distance over Xˆpn`p´1q “
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p
śN

i“1Xiq
ˆpn`p´1q. Lemma 24 in Appendix C.3 shows that Lϕ ď p4B2C2

D{nq }β}
2
1,1 , whereas

Lemma 25 in Appendix C.3 shows that }H}
2
8

ď 2p1 ` p2ψ1pΘ˚qq, where the quantity ψ1pΘ˚q

is defined below equation (5.10). Lemma 25 is a general result that applies to any p-lag

Markov chain, including the GVAR(p) processes considered in this chapter. In Appendix

C.3 we also develop some tools for controlling }H}
8

in terms of the contraction coefficient of

another related Markov chain obtained via a non-standard state augmentation.

Applying Proposition 6 with ε “ t }β}
2
1,1, and using the upper bounds for L and |||mH|||28

concludes the proof.

5.8 Discussion

Fitting autoregressive AR(p) models with multiple lags is of broad interest in multivariate time

series analysis. We consider a large class of multivariate discrete-valued AR(p) processes with

nonlinear feedback. We study statistical properties of a general ℓ1 regularized M-estimator

for this model, and provide sufficient conditions on the model hyperparameters under which

consistent estimation is possible. Under assumptions of approximate sparsity, our result shows

that a sample complexity Ωppolypsq, logpNpqq is achievable. Our experiments validate the

theoretical results on simulated data. Commonly occurring special cases of discrete-valued

processes such as Bernoulli AR(p) and Truncated-Poisson AR(p) are explored in detail. The

proof technique develops concentration inequalities and identifies mixing properties of higher

order Markov chains which may be of independent interest. These techniques were previously

unknown to the best of our knowledge.

Several open questions remain to be uncovered for the general AR(p) model. For example

the current model explores the case of bounded, discrete valued data. Getting around

this assumption requires finding concentration inequalities for random averages of the form

in Lemma 11 for real-valued random processes. Also, it remains unknown whether the

dependence on the sparsity hyperparameter s is optimal, since there is a small gap between
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our upper bound and the naive lower bound. Finally, it would be interesting to study

parameter estimation, and potentially even controls, for the case of partial observability, i.e.,

when we observe gpxtq and not xt fully, akin to partially-observed Markov decision processes

(POMDPs).
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Appendix A

Appendix for Matrix Inference and

Estimation in Multi-Layer Models

A.1 State Evolution Equations

The state evolution equations given in Algo. 3 define an iteration indexed by k of constant

matrices tK`
kℓ, τ

´
kl,Γ

˘

klu
L
ℓ“0. These constants appear in the statement of the main result in

Theorem 1. The iterations in Algo. 3 also iteratively define a few R1ˆd valued random

vectors tQ0
ℓ , P

0
ℓ , Q

˘
kℓ, P

˘
kℓu which are either multivariate Gaussian or functions of Multivariate

Gaussians. In order to state Algorithm 3, we need to define certain random variables and

functions appearing therein which are described below. Let Lodd “ t1, 3, . . . , L ´ 1u and

Leven “ t2, 4, . . . , L ´ 2u.

Define tΘ
˘

kℓu similar to Θ˘
kℓ from equation (3.14) using tΓ

˘

kℓu. Further, for ℓ “ 1, 2, . . . , L´1

define

Ω
`

kℓ :“ pΛ
`

kℓ,Γ
`

kℓ,Γ
´

kℓq, Ω
´

kℓ :“ pΛ
`

k,ℓ´1,Γ
´

k,ℓ´1,Γ
´

k,ℓ´1q,
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Algorithm 3 State Evolution for ML-Mat-VAMP (Algo. 2)

Require: Functions tf 0
ℓ u from (A.2), th˘

ℓ u from (A.3), and tf˘
ℓ u from (A.4). Perturbation

random variables tWℓu from (A.1). Initial random vectors tQ´
0ℓu

L´1
ℓ“0 with Initial covariance

matrices tτ´
0ℓu

L´1
ℓ“0 from Section 4. Initial matrices tΓ

´

0ℓu
L
ℓ“0 from (3.16).

1: // Initial Pass
2: Q0

0 “ W0, τ 0
0 “ CovpQ0

0q and P 0
0 „ N p0, τ 0

0q

3: for ℓ “ 1, . . . , L´1 do
4: Q0

ℓ “ f 0
ℓ pP 0

ℓ́ 1,Wℓq

5: P 0
ℓ „ N p0, τ 0

ℓq, τ 0
ℓ “ CovpQ0

ℓq

6: end for

7: for k “ 0, 1, . . . do
8: // Forward Pass
9: pQ`

k0 “ h`
0 pQ´

k0,W0,Θ
`

k0q

10: Λ
`

k0 “ pEB pQ`
k0

BQ´
0

q´1Γ
´

k,0

11: Γ
`

k0 “ Λ
`

k0 ´ Γ
´

k0

12: Q`
k0 “ f`

0 pQ´
k0,W0,Ω

`

k0q

13: pP 0
0 , P

`
k0q „ N p0,K`

k0q, K`
k0 :“ CovpQ0

0, Q
`
k0q

14: for ℓ “ 1, . . . , L ´ 1 do
15: pQ`

kℓ “ h`
ℓ pP 0

ℓ́ 1, P
`
k,ℓ́ 1, Q

´
kℓ,Wℓ,Θ

`

kℓq

16: Λ
`

kℓ “ pEB pQ`
kℓ

BQ´
kℓ

q´1Γ
´

kℓ

17: Γ
`

kℓ “ Λ
`

kℓ ´ Γ
´

kℓ

18: Q`
kℓ “ f`

ℓ pP 0
ℓ́ 1, P

`
k,ℓ́ 1, Q

´
kℓ,Wℓ,Ω

`

kℓq

19: pP 0
ℓ , P

`
kℓq „ N p0,K`

kℓq, K`
kℓ :“ CovpQ0

ℓ , Q
`
kℓq

20: end for

21: // Backward Pass
22: pP´

k̀ 1,Ĺ 1 “ h´
LpP 0

Ĺ 1, P
`
k,Ĺ 1,WL,Θ

´

k̀ 1,Lq

23: Λ
´

k`1,L “ pEB pP´
k̀ 1,Ĺ 1

BP`
Ĺ 1

q´1Γ
`

kL

24: Γ
´

k`1,Ĺ 1 “ Λ
´

k`1,Ĺ 1 ´ Γ
`

k,Ĺ 1,

25: P´
k̀ 1,Ĺ 1 “ f´

L pP 0
Ĺ 1, P

`
k,Ĺ 1,WL,Ω

´

k̀ 1,Lq

26: Q´
k̀ 1,Ĺ 1 „ N p0, τ´

k̀ 1,Ĺ 1q, τ´
k̀ 1,Ĺ 1 :“ CovpP´

k̀ 1,Ĺ 1q

27: for ℓ “ L´2, . . . , 0 do
28: pP´

k̀ 1,ℓ “ h´
ℓ pP 0

ℓ , P
`
kℓ, Q

´
k`1,ℓ`1,Wℓ,Θ

´

k̀ 1,ℓq

29: Λ
´

k`1,ℓ “ pEB pP´
k̀ 1,ℓ

BP`
k,ℓ

q´1Γ
`

k,ℓ

30: Γ
´

k`1,ℓ “ Λ
´

k`1,ℓ ´ Γ
`

k,ℓ,

31: P´
k̀ 1,ℓ “ f´

ℓ pP 0
ℓ , P

`
kℓ, Q

´
k̀ 1,ℓ`1,Wℓ,Ω

´

k`1,ℓq

32: Q´
k̀ 1,ℓ „ N p0, τ´

k̀ 1,ℓq, τ´
k̀ 1,ℓ :“ CovpP´

k̀ 1,ℓq

33: end for
34: end for
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and Ω
`

k0 and Ω
´

kL. Now define random variables Wℓ as

W0 “ Z0
0 , WL “ pY,ΞLq, Wℓ “ Ξℓ, @ ℓ P Leven,

Wℓ “ pSℓ, Bℓ,Ξℓq, @ ℓ P Lodd.

(A.1)

Define functions tf 0
ℓ uLℓ“1 as

f 0
ℓ pP 0

ℓ́ 1,Wℓq :“ SℓP
0
ℓ´1 ` Bℓ ` Ξℓ, @ ℓ P Lodd,

f 0
ℓ pP 0

ℓ́ 1,Wℓq :“ ϕℓpP
0
ℓ́ 1,Ξℓq, @ ℓ P Leven Y tLu.

(A.2)

and using (3.14) define functions th˘
ℓ , u

L
ℓ“1, h

`
0 and h´

L as

h˘
ℓ pP 0

ℓ´1, P
`
ℓ´1, Q

´
ℓ ,Wℓ,Θ

˘
kℓq “ G˘

ℓ pQ´
ℓ ` Q0

ℓ , P
`
ℓ´1 ` P 0

ℓ´1,Θ
˘
kℓq, @ ℓ P Leven,

h˘
ℓ pP 0

ℓ´1, P
`
ℓ´1, Q

´
ℓ ,Wℓ,Θ

˘
kℓq “ rG˘

ℓ pQ´
ℓ ` Q0

ℓ , P
`
ℓ´1 ` P 0

ℓ´1,Θ
˘
kℓq, @ ℓ P Lodd

h`
0 pQ´

0 ,W0,Θ
`
k0q “ G`

0 pQ´
0 ` W0,Θ

`
k0q,

h´
L

pP 0
L´1
, P`

L´1
,WL,Θ

´
kL

q “ G´
L

pP`
L´1 ` P 0

L´1,Θ
´
kL

q.

(A.3)

Note that rG`
ℓ , G

´
ℓ s and r rG`

ℓ ,
rG´
ℓ s are maps from R1ˆd Ñ R1ˆd such that their row-wise

extensions are the denoisers rG`
ℓ ,G

´
ℓ s and rrG`

ℓ ,
rG´

ℓ s respectively. Using (A.3) define functions

tf˘
ℓ u

L´1
ℓ“1 , f`

0 and f´
L as

f`
ℓ pP 0

ℓ́ 1, P
`
ℓ́ 1, Q

´
ℓ ,Wℓ,Ω

`
kℓq “

“`

h`
ℓ ´ Q0

ℓ

˘

Λ`
kℓ ´ Q´

ℓ Γ
´
kℓ

‰

pΓ`
kℓq

´1,

f´
ℓ pP 0

ℓ́ 1, P
`
ℓ́ 1, Q

´
ℓ ,Wℓ,Ω

´
kℓq “

“`

h´
ℓ ´ P 0

ℓ́ 1

˘

Λ´
k,ℓ́ 1 ´ P`

ℓ́ 1Γ
`
k,ℓ́ 1

‰

pΓ´
k,ℓ́ 1q

´1.

f`
0 pQ´

0 ,W0,Ω
`
k0q “

“`

h`
0 ´ W0

˘

Λ`
k0 ´ Q´

0 Γ
´
k0

‰

pΓ`
k0q

´1,

f´
L pP 0

Ĺ 1, P
`
Ĺ 1,WL,Ω

´
kLq “

“`

h´
L ´ P 0

Ĺ 1

˘

Λ´
k,Ĺ 1 ´ P`

Ĺ 1Γ
`
k,Ĺ 1

‰

pΓ´
k,Ĺ 1q

´1.

(A.4)

A.2 Large System Limit Details

The analysis of Algorithm 2 in the large system limit is based on [Bayati and Montanari,

2011b] and is by now standard in the theory of AMP-based algorithms. The goal is to

characterize ensemble row-wise averages of iterates of the algorithm using simpler finite-

dimensional random variables which are either Gaussians or functions of Gaussians. To that

end, we start by defining some key terms needed in this analysis.
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Definition 5 (Pseudo-Lipschitz continuity). For a given p ě 1, a map g : R1ˆd Ñ R1ˆr is

called pseudo-Lipschitz of order p if for any r1, r2 P Rd we have,

}gpr1q ´ gpr2q} ď C}r1 ´ r2}
`

1 ` }r1}
p´1

` }r2}
p´1

˘

Definition 6 (Empirical convergence of rows of a matrix sequence). Consider a matrix-

sequence tXpNqu8
N“1 with XpNq P RNˆd. For a finite p ě 1, let X P pRd,Rdq be a Rd-

measurable random variable with bounded moment E}X}pp ă 8. We say the rows of matrix

sequence tXpNqu converge empirically to X with pth order moments if for all pseudo-Lipschitz

continuous functions fp¨q of order p,

lim
NÑ8

1

N

N
ÿ

n“1

fpXpNq
n: q “ ErfpXqs a.s. (A.5)

Note that the sequence tXpNqu could be random or deterministic. If it is random, however,

then the quantities on the left hand side are random sums and the almost sure convergence

must take this randomness into account as well.

The above convergence is equivalent to requiring weak convergence as well as convergence

of the pth moment, of the empirical distribution 1
N

řN
n“1 δXpNq

n:
of the rows of XpNq to X. This

is also referred to convergence in the Wasserstein-p metric [Villani, 2008, Chap. 6].

In the case of p “ 2, the condition is equivalent to requiring (A.5) to hold for all

continuously bounded functions f as well as for all fqpxq “ xTQx for all positive definite

matrices Q.

Definition 7 (Uniform Lipschitz continuity). For a positive definite matrix Mn,dp1q, the map

ϕpr;Mn,dp1qq : Rd Ñ Rd is said to be uniformly Lipschitz continuous in r at Mn,dp1q “ Mn,dp1q

if there exist non-negative constants L1, L2 and L3 such that for all r P Rd

}ϕpr1;Mn,d
p1q0q ´ ϕpr2;Mn,d

p1q0q} ď L1}r1 ´ r2}

}ϕpr;Mn,d
p1q1q ´ ϕpr;Mn,d

p1q2q} ď L2p1 ` }r}qρpMn,d
p1q1,Mn,d

p1q2q

for all Mn,dp1qi such that ρpMn,dp1qi,Mn,dp1qq ă L3 where ρ is a metric on the cone of positive

semidefinite matrices.
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We are now ready to prove Theorem 1.

A.3 Proof of Theorem 1

The proof of Theorem 1 is a special case of a more general result on multi-layer recursions

given in Theorem 4. This result is stated in A.4, and proved in A.5. The rest of this section

identifies certain relevant quantities from Theorem 1 in order to apply Theorem 4.

Consider the SVD given of weight matrices Wℓ of the network given by,

Wℓ “ VℓdiagpSℓqVℓ ´ 1

as explained in Section 3.4 of Chapter 3. We analyze Algo. 2 using transformed versions of

the true signals Z0
ℓ and input errors R˘

ℓ ´ Z0
ℓ to the denoisers G˘

ℓ . For ℓ “ 0, 2, . . . L ´ 2,

define

q0
ℓ “ Z0

ℓ q0
ℓ`1 “ VJ

ℓ`1Z
0
ℓ`1 (A.6a)

p0
ℓ “ VℓZ

0
ℓ p0

ℓ`1 “ Z0
ℓ`1 (A.6b)

which are depicted in Fig. A.1 (TOP). Similarly, define the following transformed versions of

errors in the inputs R˘
ℓ to the denoisers G˘

ℓ

q´
ℓ “ R´

ℓ ´ Z0
ℓ q´

ℓ`1 “ VJ
ℓ`1pR

´
ℓ`1 ´ Z0

ℓ`1q (A.7a)

p`
ℓ “ VℓpR

`
ℓ ´ Z0

ℓq p`
ℓ`1 “ R`

ℓ`1 ´ Z0
ℓ`1 (A.7b)

These quantities are depicted as inputs to function blocks f˘
ℓ in Fig. A.1 (MIDDLE). Define

perturbation variables wℓ as

w0 “ Z0
0, wL “ pY,ΞLq, wℓ “ Ξℓ, @ ℓ P Leven (A.8a)

wℓ “ pSℓ,Bℓ,Ξℓq, @ ℓ P Lodd (A.8b)
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Finally, we define q`
ℓ and p´

ℓ for ℓ “ 1, 2, . . . , L ´ 1 as

q`
ℓ “ f`

ℓ pp0
ℓ´1,p

`
ℓ´1,q

´
ℓ ,wℓ,Ωℓq (A.9a)

p´
ℓ́ 1 “ f´

ℓ pp0
ℓ´1,p

`
ℓ´1,q

´
ℓ ,wℓ,Ωℓq, (A.9b)

which are outputs of function blocks in Fig. A.1 (MIDDLE). Similarly, define the quantities

q`
0 “ f`

0 pq´
0 ,Z0,Ω0q and p´

L´1 “ f`
L pp0

L´1,p
`
L´1,Y,ΩLq.

Lemma 14. Algorithm 2 is a special case of Algorithm 4 with the definitions tq0
ℓ ,p

0
ℓ ,q

˘
ℓ ,p

˘
ℓ u

L´1
ℓ“0

given in equations (A.6),(A.7), and (A.9), functions f˘
ℓ are row-wise extensions of f˘

ℓ defined

using equations (A.4) and (A.3).

Lemma 15. Assumptions 1 and 2 required for applying Theorem 4 are satisfied by the

conditions in Theorem 1.

Proof. The proofs of the above lemmas are identical to the case of d “ 1, which was shown

in [Pandit et al., 2019b]. For details see [Pandit et al., 2019b, Appendix F].

A.4 General Multi-Layer Recursions

To analyze Algorithm 2, we consider a more general class of recursions as given in Algorithm 4

and depicted in Fig. A.1. The Gen-ML recursions generates (i) a set of true matrices q0
ℓ and

p0
ℓ and (ii) iterated matrices q˘

kℓ and p˘
kℓ. Each of these matrices have the same number of

columns, denoted by d.

The true matrices are generated by a single forward pass, whereas the iterated matrices

are generated via a sequence of forward and backward passes through a multi-layer system.

In proving the State Evolution for the ML-Mat-VAMP algorithm (Algo. 2, one would then

associate the terms q˘
kℓ and p˘

kℓ with certain error quantities in the ML-Mat-VAMP recursions.

To account for the effect of the parameters Γ˘
kℓ and Λ˘

kℓ in ML-Mat-VAMP, the Gen-ML

algorithm describes the parameter updates through a sequence of parameter lists Υ˘
kℓ. The

parameter lists are ordered lists of parameters that accumulate as the algorithm progresses.
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Figure A.1: (TOP) The equations (3.1) with equivalent quantities defined in (A.6), and f0ℓ
defined using (A.2).
(MIDDLE) The Gen-ML-Mat recursions in Algorithm 4. These are also equivalent to
ML-Mat-VAMP recursions from Algorithm 2 (See Lemma 14) if q˘,p˘ are as defined as in
equations (A.7) and (A.9), and f˘

ℓ given by equations (A.4) and (A.3).
(BOTTOM) Quantities in the GEN-ML-SE recursions. These are also equivalent to
ML-Mat-VAMP SE recursions from Algorithm 3 (See Lemma 14)
The iteration indices k have been dropped for notational simplicity.

The true and iterated matrices from Algorithm 4 are depicted in the signal flow graphs on the

(TOP) and (MIDDLE) panel of Fig. A.1 respectively. The iteration index k for the iterated

vectors qkℓ,pkℓ has been dropped for simplifying notation.

The functions f0ℓ p¨q that produce the true matrices q0
ℓ ,p

0
ℓ are called initial matrix functions

and use the initial parameter list Υ´
01. The functions f˘

kℓp¨q that produce the matrices q`
kℓ and

p´
kℓ are called the matrix update functions and use parameter lists Υ˘

kl. The initial parameter

lists Υ´
01 are assumed to be provided. As the algorithm progresses, new parameters λ˘

kℓ are

computed and then added to the lists in lines 12, 18, 25 and 31. The matrix update functions

f˘
kℓp¨q may depend on any sets of parameters accumulated in the parameter list. In lines 11,

17, 24 and 30, the new parameters λ˘
kℓ are computed by: (1) computing average values µ˘

kℓ of
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row-wise functions φ˘
kℓp¨q; and (2) taking functions T˘

kℓp¨q of the average values µ˘
kℓ. Since the

average values µ˘
kℓ represent statistics on the rows of φ˘

kℓp¨q, we will call φ˘
kℓp¨q the parameter

statistic functions. We will call the T˘
kℓp¨q the parameter update functions. The functions

f0ℓ , f
˘
kℓ,φ

˘
ℓ also take as input some perturbation vectors wℓ.

Similar to the analysis of the ML-Mat-VAMP Algorithm, we consider the following large-

system limit (LSL) analysis of Gen-ML. Specifically, we consider a sequence of runs of the

recursions indexed by N . For each N , let Nℓ “ NℓpNq be the dimension of the matrix signals

p˘
ℓ and q˘

ℓ as we assume that lim
NÑ8

Nℓ

N
“ βℓ P p0,8q is a constant so that Nℓ scales linearly

with N . Note however that the number of columns of each of the matrices tq0
ℓ ,p

0
ℓ ,q

˘
kℓ,p

˘
kℓu

is equal to a finite integer d ą 0, which remains fixed for all N . We then make the following

assumptions. See A.2 for an overview of empirical convergence of sequences which we use in

the assumptions described below.

Assumption 1. For vectors in the Gen-ML Algorithm (Algorithm 4), we assume:

(a) The matrices Vℓ are Haar distributed on the set of Nℓ ˆNℓ orthogonal matrices and

are independent from one another and from the matrices q0
0, q

´
0ℓ, perturbation variables

wℓ.

(b) The rows of the initial matrices q´
0ℓ, and perturbation variables wℓ converge jointly

empirically with limits,

q´
0ℓ

2
ùñ Q´

0ℓ, wℓ
2
ùñ Wℓ, (A.10)

where Q´
0ℓ are random vectors in R1ˆd such that pQ´

00, ¨ ¨ ¨ , Q´
0,Ĺ 1q is jointly Gaussian.

For ℓ “ 0, . . . , L´1, the random variables Wℓ, P
0
ℓ´1 and Q´

0ℓ are all independent. We

also assume that the initial parameter list converges as

lim
NÑ8

Υ´
01pNq

a.s.
ÝÝÑ Υ

´

01, (A.11)

to some list Υ´

01. The limit (A.11) means that every element in the list λpNq P Υ´
01pNq

converges to a limit λpNq Ñ λ P Υ
´

01 as N Ñ 8 almost surely.
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(c) The matrix update functions f˘
kℓp¨q and parameter update functions φ˘

kℓp¨q act row-wise.

For e.g., in the kth forward pass, at stage ℓ, we assume that for each output row n,

“

f`
kℓpp

0
ℓ́ 1,p

`
k,ℓ́ 1,q

´
kℓ,wℓ,Υ

`
kℓq

‰

n:
“ f`

kℓpp
0
ℓ́ 1,n:,p

`
k,ℓ́ 1,n:,q

´
kℓ,n:,wℓ,n:,Υ

`
kℓq

“

φ`
kℓpp

0
ℓ́ 1,p

`
k,ℓ́ 1,q

´
kℓ,wℓ,Υ

`
kℓq

‰

n:
“ φ`

kℓpp
0
ℓ́ 1,n:,p

`
k,ℓ́ 1,n:,q

´
kℓ,n:,wℓ,n:,Υ

`
kℓq,

for some R1ˆd-valued functions f`
kℓp¨q and φ`

kℓp¨q. Similar definitions apply in the reverse

directions and for the initial vector functions f0ℓ p¨q. We will call f˘
kℓp¨q the matrix update

row-wise functions and φ˘
kℓp¨q the parameter update row-wise functions.

Next we define a set of deterministic constants tK`
kℓ, τ

´
kℓ, µ

˘
kℓ,Υ

˘

kl, τ
0
ℓu and R1ˆd-valued

random vectors tQ0
ℓ , P

0
ℓ , Q

˘
kℓ, P

˘
ℓ u which are recursively defined through Algorithm 5, which

we call the Gen-ML-Mat State Evolution (SE). These recursions in Algorithm closely mirror

those in the Gen-ML-Mat algorithm (Algorithm 4). The matrices q˘
kℓ and p˘

kℓ are replaced by

random vectors Q˘
kℓ and P˘

kℓ; the matrix and parameter update functions f˘
kℓp¨q and φ˘

kℓp¨q are

replaced by their row-wise functions f˘
kℓp¨q and φ˘

kℓp¨q; and the parameters λ˘
kℓ are replaced

by their limits λ˘

kℓ. We refer to tQ0
ℓ , P

0
ℓ u as true random vectors and tQ˘

kℓ, P
˘
klu as iterated

random vectors. The signal flow graph for the true and iterated random variables in Algorithm

5 is given in the (BOTTOM) panel of Fig. A.1. The iteration index k for the iterated random

variables tQ˘
kℓ, P

˘
klu to simplify notation.

We also assume the following about the behaviour of row-wise functions around the

quantities defined in Algorithm 5. The iteration index k has been dropped for simplifying

notation.

Assumption 2. For row-wise functions f, φ and parameter update functions T we assume:

(a) T˘
kℓpµ

˘
kℓ, ¨q are continuous at µ˘

kℓ “ µ˘
kℓ

(b) f`
kℓpp

0
ℓ´1, p

`
k,ℓ́ 1, q

´
kℓ, wℓ,Υ

`
kℓq,

Bf`
kℓ

Bq´
kℓ

pp0ℓ´1, p
`
k,ℓ́ 1, q

´
kℓ, wℓ,Υ

`
kℓq and φ`

kℓpp
0
ℓ´1, p

`
k,ℓ́ 1, q

´
kℓ, wℓ,Υ

`
k,ℓ́ 1q

are uniformly Lipschitz continuous in pp0ℓ´1, p
`
k,ℓ́ 1, q

´
kℓ, wℓq at Υ`

kℓ “ Υ
`

kℓ, Υ
`
k,ℓ́ 1 “ Υ

`

k,ℓ́ 1.

Similarly,
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f´
k`1,ℓpp

0
ℓ´1, p

`
k,ℓ́ 1, q

´
k`1,ℓ, wℓ,Υ

´
kℓq,

Bf´
kℓ

Bp`
k,ℓ´1

pp0ℓ´1, p
`
k,ℓ́ 1, q

´
k`1,ℓ, wℓ,Υ

´
kℓq, and φ´

kℓpp
0
ℓ´1, p

`
k,ℓ́ 1, q

´
k`1,ℓ, wℓ,Υ

´
k`1,ℓ`1q

are uniformly Lipschitz continuous in pp0ℓ´1, p
`
k,ℓ́ 1, q

´
k`1,ℓ, wℓq at Υ´

kℓ “ Υ
´

kℓ, Υ
´
k`1,ℓ`1 “

Υ
´

k`1,ℓ`1.

(c) f 0
ℓ pp0ℓ́ 1, wℓ,Υ

´
01q are uniformly Lipschitz continuous in pp0k,ℓ́ 1, wℓq at Υ´

k̀ 1,ℓ “ Υ
´

k̀ 1,ℓ.

(d) Matrix update functions f˘
kℓ are asymptotically divergence free meaning

lim
NÑ8

〈
Bf`

kℓ

Bq´
kℓ

pp`
k,ℓ́ 1,q

´
kℓ,wℓ,Υ

`

kℓq

〉
“ 0, lim

NÑ8

〈
Bf´

kℓ

Bp`
k,ℓ́ 1

pp`
k,ℓ́ 1,q

´
k`1,ℓ,wℓ,Υ

´

kℓq

〉
“ 0

(A.12)

We are now ready to state the general result regarding the empirical convergence of the

true and iterated vectors from Algorithm 4 in terms of random variables defined in Algorithm

5.

Theorem 4. Consider the iterates of the Gen-ML recursion (Algorithm 4) and the corre-

sponding random variables and parameter limits defined by the SE recursions (Algorithm 5)

under Assumptions 1 and 2. Then,

(a) For any fixed k ě 0 and fixed ℓ “ 1, . . . , L´1, the parameter list Υ`
kℓ converges as

lim
NÑ8

Υ`
kℓ “ Υ

`

kℓ (A.13)

almost surely. Also, the rows of wℓ, p0
ℓ́ 1, q0

ℓ , p
`
0,ℓ́ 1, . . . ,p

`
k,ℓ́ 1 and q˘

0ℓ, . . . ,q
˘
kℓ almost

surely jointly converge empirically with limits,

pp0
ℓ́ 1,p

`
i,ℓ́ 1,q

´
jℓ,q

0
ℓ ,q

`
jℓq

2
ùñ pP 0

ℓ́ 1, P
`
i,ℓ́ 1, Q

´
jℓ, Q

0
ℓ , Q

`
jℓq, (A.14)

for all 0 ď i, j ď k, where the variables P 0
ℓ́ 1, P

`
i,ℓ́ 1 and Q´

jℓ are zero-mean jointly

Gaussian random variables independent of Wℓ and with covariance matrix given by

CovpP 0
ℓ́ 1, P

`
i,ℓ́ 1q “ K`

i,ℓ́ 1, EpQ´
jℓq

2
“ τ´

jℓ, EpP`T
i,ℓ́ 1Q

´
jℓq “ 0, EpP 0T

ℓ́ 1Q
´
jℓq “ 0,

(A.15)

and Q0
ℓ , Q

`
jℓ are the random variable in lines 4, 19,i.e.,

Q0
ℓ “ f 0

ℓ pP 0
ℓ́ 1,Wℓq, Q`

jℓ “ f`
jℓpP

0
ℓ́ 1, P

`
j,ℓ́ 1, Q

´
jℓ,Wℓ,Υ

`

jℓq. (A.16)
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An identical result holds for ℓ “ 0 with all the variables p`
i,ℓ́ 1 and P`

i,ℓ́ 1 removed.

(b) For any fixed k ě 1 and fixed ℓ “ 1, . . . , L´1, the parameter lists Υ´
kℓ converge as

lim
NÑ8

Υ´
kℓ “ Υ

´

kℓ (A.17)

almost surely. Also, the rows of wℓ, p0
ℓ́ 1, p

˘
0,ℓ́ 1, . . . ,p

˘
ḱ 1,ℓ́ 1, and q´

0ℓ, . . . ,q
´
kℓ almost

surely jointly converge empirically with limits,

pp0
ℓ́ 1,p

`
i,ℓ́ 1,q

´
jℓ,p

´
j,ℓ´1q

2
ùñ pP 0

ℓ́ 1, P
`
i,ℓ́ 1, Q

´
jℓ, P

´
j,ℓ´1q, (A.18)

for all 0 ď i ď k´1 and 0 ď j ď k, where the variables P 0
ℓ́ 1, P

`
i,ℓ́ 1 and Q´

jℓ are zero-mean

jointly Gaussian random variables independent of Wℓ and with covariance matrix given

by equation (A.15) and P´
jℓ is the random variable in line 32:

P´
jℓ “ f´

jℓpP
0
ℓ́ 1, P

`
j´1,ℓ́ 1, Q

´
jℓ,Wℓ,Υ

´

jℓq. (A.19)

An identical result holds for ℓ “ L with all the variables q´
jℓ and Q´

jℓ removed.

For k “ 0, Υ´
01 Ñ Υ

´

01 almost surely, and the rows tpwℓ,n:,p
0
ℓ´1,n:,q

´
jℓ,n:quNn“1 empirically

converge to independent random variables pWℓ, P
0
ℓ´1, Q

´
0ℓq.

Proof. A.5 is dedicated to proving this result.

A.5 Proof of Theorem 4

The proof proceeds using mathematical induction. It largely mimics the proof for the case of

d “ 1 which were the convergence results in [Pandit et al., 2019b, Thm. 5]. However, in the

case of d ą 1, we observe that several quantities which were scalars in proving [Pandit et al.,

2019b, Thm. 5] are now matrices. Due to the non-commutativity of these matrix quantities,

we re-state the whole prove, while modifying the requisite matrix terms appropriately.
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A.5.1 Overview of the Induction Sequence

The proof is similar to that of [Rangan et al., 2019b, Theorem 4], which provides a SE analysis

for VAMP on a single-layer network. The critical challenge here is to extend that proof to

multi-layer recursions. Many of the ideas in the two proofs are similar, so we highlight only

the key differences between the two.

Similar to the SE analysis of VAMP in [Rangan et al., 2019b], we use an induction

argument. However, for the multi-layer proof, we must index over both the iteration index k

and layer index ℓ. To this end, let H`
kℓ and H´

kℓ be the hypotheses:

• H`
kℓ: The hypothesis that Theorem 4(a) is true for a given k and ℓ, where 0 ď ℓ ď L´1.

• H´
kℓ: The hypothesis that Theorem 4(b) is true for a given k and ℓ, where 1 ď ℓ ď L.

We prove these hypotheses by induction via a sequence of implications,

tH´
0ℓu

L
ℓ“1 ¨ ¨ ¨ ñ H´

k1 ñ H`
k0 ñ ¨ ¨ ¨ ñ H`

k,Ĺ 1 ñ H´
k̀ 1,L ñ ¨ ¨ ¨ ñ H´

k̀ 1,1 ñ ¨ ¨ ¨ , (A.20)

beginning with the hypotheses tH´
0ℓu for all ℓ “ 1, . . . , L´1.

A.5.2 Base Case: Proof of tH´
0ℓu

L
ℓ“1

The base case corresponds to the hypotheses tH´
0ℓu

L
ℓ“1. Note that Theorem 4(b) states that for

k “ 0, we need Υ´
01 Ñ Υ

´

01 almost surely, and tpwℓ,n:,p
0
ℓ´1,n:,q

´
jℓ,n:quNn“1 empirically converge

to independent random variables pWℓ, P
0
ℓ´1, Q

´
0ℓq. These follow directly from equations (A.10)

and (A.11) in Assumption 1 (a).

A.5.3 Inductive Step: Proof of H`
k,ℓ`1

Fix a layer index ℓ “ 1, . . . , L´1 and an iteration index k “ 0, 1, . . .. We show the implication

¨ ¨ ¨ ùñ H`
k,ℓ`1 in (A.20). All other implications can be proven similarly using symmetry

arguments.
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Definition 8 (Induction hypothesis). The hypotheses prior to H`
k,ℓ̀ 1 in the sequence (A.20),

but not including H`
k,ℓ̀ 1, are true.

The inductive step then corresponds to the following result.

Lemma 16. Under the induction hypothesis, H`
k,ℓ`1 holds

Before proving the inductive step in Lemma 16, we prove two intermediate lemmas. Let us

start by defining some notation. Define P`
kℓ :“

“

p`
0ℓ ¨ ¨ ¨p`

kℓ

‰

P RNℓˆpk̀ 1qd, be a matrix whose

column blocks are the first k`1 values of the matrix p`
ℓ . We define the matrices P´

kℓ, Q
`
kℓ

and Q´
kℓ in a similar manner with values of p´

ℓ ,q
`
ℓ and q´

ℓ respectively.

Note that except the initial matrices twℓ,q
´
0ℓu

L
ℓ“1, all later iterates in Algorithm 4 are

random due to the randomness of Vℓ. Let G˘
kℓ denote the collection of random variables

associated with the hypotheses, H˘
kℓ. That is, for ℓ “ 1, . . . , L´1,

G`
kℓ :“

␣

wℓ,p
0
ℓ́ 1,P

`
k,ℓ́ 1,q

0
ℓ ,Q

´
kℓ,Q

`
kℓ

(

, G´
kℓ :“

␣

wℓ,p
0
ℓ́ 1,P

`
ḱ 1,ℓ́ 1,q

0
ℓ ,Q

´
kℓ,P

´
k,ℓ́ 1

(

.

For ℓ “ 0 and ℓ “ L we set, G`
k0 :“

␣

w0,Q
´
k0,Q

`
k0

(

, G´
kL :“

␣

wL,p
0
Ĺ 1,P

`
ḱ 1,Ĺ 1,P

´
k,Ĺ 1

(

.

Let G
`

kℓ be the sigma algebra generated by the union of all the sets G˘
k1ℓ1 as they have

appeared in the sequence (A.20) up to and including the final set G`
kℓ. Thus, the sigma

algebra G
`

kℓ contains all information produced by Algorithm 4 immediately before line 20 in

layer ℓ of iteration k. Note also that the random variables in Algorithm 5 immediately before

defining P`
k,ℓ in line 20 are all G`

kℓ measurable.

Observe that the matrix Vℓ in Algorithm 4 appears only during matrix-vector multi-

plications in lines 20 and 32. If we define the matrices, Akℓ :“
“

p0
ℓ ,P

`
ḱ 1,ℓ P

´
kℓ

‰

, Bkℓ :“
“

q0
ℓ ,Q

`
ḱ 1,ℓ Q

´
kℓ

‰

, all the matrices in the set G`

kℓ will be unchanged for all matrices Vℓ satisfying

the linear constraints

Akℓ “ VℓBkℓ. (A.21)

Hence, the conditional distribution of Vℓ given G
`

kℓ is precisely the uniform distribution on

the set of orthogonal matrices satisfying (A.21). The matrices Akℓ and Bkℓ are of dimensions
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Nℓ ˆ p2k ` 2qd. From [Rangan et al., 2019b, Lemmas 3,4], this conditional distribution is

given by

Vℓ|G`

kℓ

d
“ AkℓpA

T
kℓAkℓq

´1BT
kℓ ` UAK

kℓ

rVℓU
T
BK

kℓ
, (A.22)

where UAK
kℓ

and UBK
kℓ

are Nℓ ˆ pNℓ ´ p2k ` 2qdq matrices whose columns are an orthonormal

basis for RangepAkℓq
K and RangepBkℓq

K. The matrix rVℓ is Haar distributed on the set of

pNℓ ´ p2k ` 2qdq ˆ pNℓ ´ p2k ` 2qdq orthogonal matrices and is independent of G`

kℓ.

Next, similar to the proof of [Rangan et al., 2019b, Thm. 4], we can use (A.22) to write

the conditional distribution of p`
kℓ (from line 20 of Algorithm 4) given G

`

kℓ as a sum of two

terms

p`
kℓ|G`

kℓ
“ Vℓ|G`

kℓ
q`
kℓ

d
“ p`det

kℓ ` p`ran
kℓ , (A.23a)

p`det
kℓ :“ AkℓpB

T
kℓBkℓq

´1BT
kℓq

`
kℓ (A.23b)

p`ran
kℓ :“ UBK

k

rVT
ℓ U

T
AK

k
q`
kℓ. (A.23c)

where we call p`det
kℓ the deterministic term and p`ran

kℓ the random term. The next two lemmas

characterize the limiting distributions of the deterministic and random terms.

Lemma 17. Under the induction hypothesis, the rows of the “deterministic" term p`det
kℓ along

with the rows of the matrices in G
`

kℓ converge empirically. In addition, there exists constant

d ˆ d matrices β`
0ℓ, . . . , β

`
ḱ 1,ℓ such that

p`det
kℓ

2
ùñ P`det

kℓ :“ P 0
ℓ β

0
ℓ `

ḱ 1
ÿ

i“0

P`
iℓ βiℓ, (A.24)

where P`det
kℓ P R1ˆd is the limiting random vector for the rows of pdet

kℓ .

Proof. The proof is similar that of [Rangan et al., 2019b, Lem. 6], but we go over the

details as there are some important differences in the multi-layer matrix case. Define

rP`
ḱ 1,ℓ “

“

p0
ℓ , P

`
ḱ 1,ℓ

‰

, rQ`
ḱ 1,ℓ “

“

q0
ℓ , Q

`
ḱ 1,ℓ

‰

, which are the matrices in RNℓˆpk`1qd. We can

then write Akℓ and Bkℓ from (A.21) as

Akℓ :“
”

rP`
ḱ 1,ℓ P

´
kℓ

ı

, Bkℓ :“
”

rQ`
ḱ 1,ℓ Q

´
kℓ

ı

, (A.25)
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We first evaluate the asymptotic values of various terms in (A.23b). By definition of Bkℓ in

(A.25),

BT
kℓBkℓ “

»

—

–

prQ`
ḱ 1,ℓq

T
rQ`

ḱ 1,ℓ prQ`
ḱ 1,ℓq

TQ´
kℓ

pQ´
kℓq

T
rQ`

ḱ 1,ℓ pQ´
kℓq

TQ´
kℓ

fi

ffi

fl

We can then evaluate the asymptotic values of these terms as follows: For 0 ď i, j ď k ´ 1

the asymptotic value of the pi ` 2, j ` 2qnd d ˆ d block of the matrix prQ`
ḱ 1,ℓq

T
rQ`

ḱ 1,ℓ is

lim
NÑ8

1
Nℓ

”

prQ`
ḱ 1,ℓq

T
rQ`

ḱ 1,ℓ

ı

i`2,j`2

paq
“ lim

NÑ8

1

Nℓ

pq`
iℓq

Tq`
jℓ

“ lim
NÑ8

1
Nℓ

Nℓ
ÿ

n“1

rq`
iℓsn:rq

`
jℓs

T
n:

pbq
“ E

“

Q`T
iℓ Q

`
jℓ

‰

where (a) follows since the pi` 2qth column block of rQ`
ḱ 1,ℓ is q`

iℓ, and (b) follows due to the

empirical convergence assumption in (A.14). Also, since the first column block of rQ`
ḱ 1,ℓ is

q0
ℓ , we obtain that

lim
NℓÑ8

1
Nℓ

prQ`
k´1,ℓq

T
rQ`

k´1,ℓ “ R`
k´1,ℓ and

lim
NℓÑ8

1
Nℓ

pQ´
kℓq

TQ´
kℓ “ R´

kℓ,

(A.26)

where R`
k´1,ℓ P Rpk`1qdˆpk`1qd is the covariance matrix of

“

Q0
ℓ Q

`
0ℓ . . . Q

`
k´1,ℓ

‰

, and R´
kℓ P

Rpk`1qdˆpk`1qd is the covariance matrix of
“

Q´
0ℓ Q

´
1ℓ . . . Q

´
kℓ

‰

. For the matrix prQ`
ḱ 1,ℓq

TQ´
kℓ,

first observe that the limit of the divergence free condition (A.12) implies

E

«

Bf`
iℓ pP`

i,ℓ́ 1, Q
´
iℓ,Wℓ,Υiℓq

BQ´
iℓ

ff

“ lim
NℓÑ8

〈
Bf`

iℓ pp`
i,ℓ́ 1,q

´
iℓ,wℓ,Υ

`

iℓq

Bq´
iℓ

〉
“ 0, (A.27)

for any i. Also, by the induction hypothesis H`
kℓ,

EpP`T
i,ℓ́ 1Q

´
jℓq “ 0, EpP 0T

ℓ́ 1Q
´
jℓq “ 0, (A.28)

for all 0 ď i, j ď k. Therefore using (A.16), the cross-terms EpQ`T
iℓ Q

´
jℓq are given by

Epf`
iℓ pP 0

ℓ́ 1, P
`
i,ℓ́ 1, Q

´
iℓ,Wℓ,Υiℓq

TQ´
jℓq

paq
“ E

„

Bf`
iℓ pP 0

ℓ́ 1,P
`
i,ℓ́ 1,Q

´
iℓ,Wℓ,Υ

`

iℓq

BP 0
ℓ́ 1

ȷ

EpP 0T
ℓ́ 1Q

´
jℓq

` E
„

Bf`
iℓ pP 0

ℓ́ 1,P
`
i,ℓ́ 1,Q

´
iℓ,Wℓ,Υ

`

iℓq

BP`
i,ℓ́ 1

ȷ

EpP`T
i,ℓ́ 1Q

´
jℓq

` E
„

Bf`
iℓ pP 0

ℓ́ 1,P
`
i,ℓ́ 1,Q

´
iℓ,Wℓ,Υ

`

iℓq

BQ´
iℓ

ȷ

EpQ´T
iℓ Q

´
jℓq

pbq
“ 0,

(A.29)

(a) follows from a multivariate version of Stein’s Lemma [Liu, 1994, eqn.(2)]; and (b) follows
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from (A.27), and (A.28). Consequently,

lim
NℓÑ8

1
Nℓ
BT

kℓBkℓ “

»

—

–

R`
ḱ 1,ℓ 0

0 R´
kℓ

fi

ffi

fl

, and lim
NℓÑ8

1
Nℓ
BT

kℓq
`
kℓ “

»

—

–

b`
kℓ

0

fi

ffi

fl

, (A.30)

where b`
kℓ :“

“

EpQ`T
0ℓ Q

`
kℓq EpQ`T

1ℓ Q
`
kℓq ¨ ¨ ¨ EpQ`T

ḱ 1,ℓQ
`
kℓq

‰T
, is the matrix of correlations. We

again have 0 in the second term because ErQ`T
iℓ Q

´
jℓs “ 0 for all 0 ď i, j ď k. Hence we have

lim
NℓÑ8

pBT
kℓBkℓq

´1BT
kℓq

`
kℓ “

»

—

–

β`
kℓ

0

fi

ffi

fl

, β`
kℓ :“

„

R`
ḱ 1,ℓ

ȷ´1

b`
kℓ. (A.31)

Therefore, p`det
kℓ equals

AkℓpB
T
kℓBkℓq

´1BT
kℓq

`
kℓ “

”

rP`
ḱ 1,ℓ P

´
k,ℓ

ı

»

—

–

β`
kℓ

0

fi

ffi

fl

` O
´

1
Nℓ

¯

“ p0
ℓβ

0
ℓ `

ḱ 1
ÿ

i“0

p`
iℓβ

`
iℓ ` O

´

1
Nℓ

¯

,

(A.32)

where β0
ℓ and β`

iℓ are d ˆ d block matrices of β`
kℓ and the term Op 1

Nℓ
q means a matrix

sequence, φpNq P RNℓ such that limNÑ8
1
N

}φpNq}2 “ 0. A continuity argument then shows

the empirical convergence (A.24).

Lemma 18. Under the induction hypothesis, the components of the “random" term p`ran
kℓ

along with the components of the vectors in G
`

kℓ almost surely converge empirically. The

components of p`ran
kℓ converge as

p`ran
kℓ

2
ùñ Ukℓ, (A.33)

where Ukℓ is a zero mean Gaussian random vector in R1ˆd independent of the limiting random

variables corresponding to the variables in G
`

kℓ.

Proof. The proof is identical to that of [Rangan et al., 2019b, Lemmas 7,8].

We are now ready to prove Lemma 16.

Proof of Lemma 16. Using the partition (A.23a) and Lemmas 17 and 18, we see that the

components of the vector sequences in G
`

kℓ along with p`
kℓ almost surely converge jointly
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empirically, where the components of p`
kℓ have the limit

p`
kℓ “ pdet

kℓ ` pran
kℓ

2
ùñ P 0

ℓ β
0
ℓ `

ḱ 1
ÿ

i“0

P`
iℓ β

`
iℓ ` Ukℓ “: P`

kℓ. (A.34)

Note that the above Wasserstein-2 convergence can be shown using the same arguments

involved in showing that if XN |F d
ùñ X|F , and YN |F d

ùñ c, then pXN , YNq|F d
ùñ

pX, cq|F for some constant c and sigma-algebra F .

We first establish the Gaussianity of P`
kℓ. Observe that by the induction hypothesis, H´

k,ℓ̀ 1

holds whereby pP 0
ℓ , P

`
0ℓ , . . . , P

`
ḱ 1,ℓ, Q

´
0,ℓ̀ 1, . . . , Q

´
k,ℓ̀ 1q, is jointly Gaussian. Since Uk is Gaussian

and independent of pP 0
ℓ , P

`
0ℓ , . . . , P

`
k´1,ℓ, Q

´
0,ℓ̀ 1, . . . , Q

´
k,ℓ̀ 1q, we can conclude from (A.34) that

pP 0
ℓ , P

`
0ℓ , . . . , P

`
ḱ 1,ℓ, P

`
kℓ, Q

´
0,ℓ̀ 1, . . . , Q

´
k,ℓ̀ 1q is jointly Gaussian.

We now need to prove the correlations of this jointly Gaussian random vector are as

claimed by H`
k,ℓ`1. Since H´

k,ℓ̀ 1 is true, we know that (A.15) is true for all i “ 0, . . . , k´1 and

j “ 0, . . . , k and ℓ “ ℓ ` 1. Hence, we need only to prove the additional identity for i “ k,

namely the equations: CovpP 0
ℓ , P

`
kℓq

2 “ K`
kℓ and EpP`

kℓQ
´
j,ℓ̀ 1q “ 0. First observe that

EpP`T
kℓ P

`
kℓq

2 paq
“ lim

NℓÑ8

1
Nℓ
p`T
kℓ p

`
kℓ

pbq
“ lim

NℓÑ8

1
Nℓ
q`T
kℓ q

`
kℓ

pcq
“ E

`

Q`T
kℓ Q

`
kℓ

˘2

where (a) follows from the fact that the rows of p`
kℓ converge empirically to P`

kℓ; (b) follows

from line 20 in Algorithm 4 and the fact that Vℓ is orthogonal; and (c) follows from the

fact that the rows of q`
kℓ converge empirically to Q`

kℓ from hypothesis H`
k,ℓ. Since p0

ℓ “ Vℓq
0,

we similarly obtain that EpP 0T
ℓ P`

kℓq “ EpQ0T
ℓ Q`

kℓq, EpP 0T
ℓ P 0

ℓ q “ EpQ0T
ℓ Q0

ℓq, from which we

conclude

CovpP 0
ℓ , P

`
kℓq “ CovpQ0

ℓ , Q
`
kℓq “: K`

kℓ, (A.35)

where the last step follows from the definition of K`
kℓ in line 20 of Algorithm 5. Finally, we

observe that for 0 ď j ď k

EpP`T
kℓ Q

´
j,ℓ̀ 1q

paq
“ β0T

ℓ EpP 0T
ℓ Q´

j,ℓ̀ 1q `

ḱ 1
ÿ

i“0

β`T
iℓ EpP`T

iℓ Q´
j,ℓ̀ 1q ` EpUT

kℓQ
´
j,ℓ̀ 1q

pbq
“ 0, (A.36)

where (a) follows from (A.34) and, in (b), we used the fact that EpP 0T
ℓ Q´

j,ℓ̀ 1q “ 0 and

EpP`T
iℓ Q´

j,ℓ̀ 1q “ 0 since (A.15) is true for i ď ḱ 1 corresponding to H´
k,ℓ`1 and EpUT

kℓQ
´
j,ℓ̀ 1q “ 0
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since Ukℓ is independent of G`

kℓ, and Q´
j,ℓ̀ 1 is G

`

kℓ measurable. Thus, with (A.35) and (A.36),

we have proven all the correlations in (A.15) corresponding to H`
k,ℓ`1.

Next, we prove the convergence of the parameter lists Υ`
k,ℓ`1 to Υ`

k,ℓ`1. Since Υ`
kℓ Ñ Υ

`

kℓ due

to hypothesis H`
kℓ, and φ`

k,ℓ̀ 1p¨q is uniformly Lipschitz continuous, we have that limNÑ8 µ
`
k,ℓ̀ 1

from line 17 in Algorithm 4 converges almost surely as

lim
NÑ8

〈
φ`

k,ℓ̀ 1pp0
ℓ ,p

`
kℓ,q

´
k,ℓ̀ 1,wℓ̀ 1,Υ

`

kℓq

〉
“ E

”

φ`
k,ℓ̀ 1pP

0
ℓ , P

`
kℓ, Q

´
k,ℓ̀ 1,Wℓ̀ 1,Υ

`

kℓq

ı

“ µ`
k,ℓ̀ 1,

(A.37)

where µ`
k,ℓ̀ 1 is the value in line 17 in Algorithm 5. Since T`

k,ℓ̀ 1p¨q is continuous, we have that

λ`
k,ℓ̀ 1 in line 18 in Algorithm 4 converges as limNÑ8 λ

`
k,ℓ̀ 1 “ T`

k,ℓ̀ 1pµ
`
k,ℓ̀ 1,Υ

`

kℓq “: λ
`

k,ℓ̀ 1, from

line 18 in Algorithm 5. Therefore, we have the limit

lim
NÑ8

Υ`
k,ℓ̀ 1 “ lim

NÑ8
pΥ`

k,ℓ, λ
`
k,ℓ̀ 1q “ pΥ

`

k,ℓ, λ
`

k,ℓ̀ 1q “ Υ
`

k,ℓ̀ 1, (A.38)

which proves the convergence of the parameter lists stated in H`
k,ℓ`1. Finally, using (A.38),

the empirical convergence of the matrix sequences p0
ℓ , p

`
kℓ and q´

k,ℓ̀ 1 and the uniform Lipschitz

continuity of the update function f`
k,ℓ̀ 1p¨q we obtain that q`

k,ℓ̀ 1 equals

f`
k,ℓ̀ 1pp0

ℓ ,p
´
kℓ,q

´
k,ℓ̀ 1,wℓ̀ 1,Υ

`
k,ℓ̀ 1q

2
ùñ f`

k,ℓ̀ 1pP
0
ℓ , P

´
kℓ, Q

´
k,ℓ̀ 1,Wℓ̀ 1,Υ

`

k,ℓ̀ 1q “: Q`
k,ℓ̀ 1,

which proves the claim (A.16) for H`
k,ℓ`1. This completes the proof.

An overview of the iterates in Algorithm 4 is depicted in (TOP) and (MIDDLE) of Figure

A.1. Theorem 4 shows that the rows of the iterates of Algorithm 4 converge empirically with

2nd order moments to random variables defined in Algorithm 5. The random variables defined

in Algo. 5 are depicted in Figure A.1 (BOTTOM).
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Algorithm 4 General Multi-Layer Matrix (Gen-ML-Mat) Recursion

Require: Initial matrix functions tf0ℓ u. Matrix update functions tf˘
kℓp¨qu. Parameter statistic

functions tφ˘
kℓp¨qu. Parameter update functions tT˘

kℓp¨qu. Orthogonal matrices tVℓu.
Perturbation variables tw˘

ℓ u. Initial matrices tq´
0ℓu. Initial parameter list Υ´

01.
1: // Initial Pass
2: q0

0 “ f00 pw0q, p0
0 “ V0q

0
0

3: for ℓ “ 1, . . . , L´1 do
4: q0

ℓ “ f0ℓ pp0
ℓ́ 1,wℓ,Υ

´
01q

5: p0
ℓ “ Vℓq

0
ℓ

6: end for
7:

8: for k “ 0, 1, . . . do
9: // Forward Pass

10: λ`
k0 “ T`

k0pµ
`
k0,Υ

´
0kq

11: µ`
k0 “

〈
φ`

k0pq
´
k0,w0,Υ

´
0kq

〉
12: Υ`

k0 “ pΥ´
k1, λ

`
k0q

13: q`
k0 “ f`

k0pq´
k0,w0,Υ

`
k0q

14: p`
k0 “ V0q

`
k0

15: for ℓ “ 1, . . . , L ´ 1 do
16: λ`

kℓ “ T`
kℓpµ

`
kℓ,Υ

`
k,ℓ́ 1q

17: µ`
kℓ “

〈
φ`

kℓpp
0
ℓ́ 1,p

`
k,ℓ́ 1,q

´
kℓ,wℓ,Υ

`
k,ℓ́ 1q

〉
18: Υ`

kℓ “ pΥ`
k,ℓ́ 1, λ

`
kℓq

19: q`
kℓ “ f`

kℓpp
0
ℓ́ 1,p

`
k,ℓ́ 1,q

´
kℓ,wℓ,Υ

`
kℓq

20: p`
kℓ “ Vℓq

`
kℓ

21: end for

22: // Backward Pass
23: λ´

k̀ 1,L “ T´
kLpµ´

kL,Υ
`
k,Ĺ 1q

24: µ´
kL “

〈
φ´

kLpp`
k,Ĺ 1,wL,Υ

`
k,Ĺ 1q

〉
25: Υ´

k̀ 1,L “ pΥ`
k,Ĺ 1, λ

`
k̀ 1,Lq

26: p´
k̀ 1,Ĺ 1 “ f´

kLpp0
Ĺ 1,p

`
k,Ĺ 1,wL,Υ

´
k̀ 1,Lq

27: q´
k̀ 1,Ĺ 1 “ VT

Ĺ 1pk̀ 1,Ĺ 1

28: for ℓ “ L´1, . . . , 1 do
29: λ´

k̀ 1,ℓ “ T´
kℓpµ

´
kℓ,Υ

´
k̀ 1,ℓ̀ 1q

30: µ´
kℓ “

〈
φ´

kℓpp
0
ℓ́ 1,p

`
k,ℓ́ 1,q

´
k̀ 1,ℓ,wℓ,Υ

´
k̀ 1,ℓ̀ 1q

〉
31: Υ´

k̀ 1,ℓ “ pΥ´
k̀ 1,ℓ̀ 1, λ

´
k̀ 1,ℓq

32: p´
k̀ 1,ℓ́ 1 “ f´

kℓpp
0
ℓ́ 1,p

`
k,ℓ́ 1,q

´
k̀ 1,ℓ,wℓ,Υ

´
k`1,ℓq

33: q´
k̀ 1,ℓ́ 1 “ VT

ℓ́ 1p
´
k̀ 1,ℓ́ 1

34: end for
35: end for
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Algorithm 5 Gen-ML-Mat State Evolution (SE)

Require: Matrix update row-wise functions f 0
ℓ p¨q and f˘

kℓp¨q, parameter statistic row-wise
functions φ˘

kℓp¨q, parameter update functions T˘
kℓp¨q, initial parameter list limit: Υ

´

01,
initial random variables Wℓ, Q´

0ℓ, ℓ “ 0, . . . , L´1.
1: // Initial pass
2: Q0

0 “ f 0
0 pW0,Υ

´

01q, P 0
0 „ N p0, τ 00 q, τ 00 “ EpQ0

0q
2

3: for ℓ “ 1, . . . , L´1 do
4: Q0

ℓ “ f 0
ℓ pP 0

ℓ́ 1,Wℓ,Υ
´

01q

5: P 0
ℓ „ N p0, τ 0ℓ q, τ 0ℓ “ CovpQ0

ℓq

6: end for
7:

8: for k “ 0, 1, . . . do
9: // Forward Pass

10: λ
`

k0 “ T`
k0pµ

`
k0,Υ

´

0kq

11: µ`
k0 “ Epφ`

k0pQ
´
k0,W0,Υ

´

0kqq

12: Υ
`

k0 “ pΥ
´

k1, λ
`

k0q

13: Q`
k0 “ f`

k0pQ
´
k0,W0,Υ

`

k0q

14: pP 0
0 , P

`
k0q „ N p0,K`

k0q, K`
k0 “ CovpQ0

0, Q
`
k0q

15: for ℓ “ 1, . . . , L ´ 1 do
16: λ

`

kℓ “ T`
kℓpµ

`
kℓ,Υ

`

k,ℓ́ 1q

17: µ`
kℓ “ Epφ`

kℓpP
0
ℓ́ 1, P

`
k,ℓ́ 1, Q

´
kℓ,Wℓ,Υ

`

k,ℓ́ 1qq

18: Υ
`

kℓ “ pΥ
`

k,ℓ́ 1, λ
`

kℓq

19: Q`
kℓ “ f`

kℓpP
0
ℓ́ 1, P

`
k,ℓ́ 1, Q

´
kℓ,Wℓ,Υ

`

kℓq

20: pP 0
ℓ , P

`
kℓq „ N p0,K`

kℓq, K`
kℓ “ CovpQ0

ℓ , Q
`
kℓq

21: end for

22: // Backward Pass
23: λ

´

k̀ 1,L “ T´
kLpµ´

kL,Υ
`

k,Ĺ 1q

24: µ´
kL “ Epφ´

kLpP 0
Ĺ 1, P

`
k,Ĺ 1,WL,Υ

`

k,Ĺ 1qq

25: Υ
´

k̀ 1,L “ pΥ
`

k,Ĺ 1, λ
`

k̀ 1,Lq

26: P´
k̀ 1,Ĺ 1 “ f´

kLpP 0
Ĺ 1, P

`
k,Ĺ 1,WL,Υ

´

k̀ 1,Lq

27: Q´
k̀ 1,Ĺ 1 „ N p0, τ´

k̀ 1,Ĺ 1q, τ´
k̀ 1,Ĺ 1 “ CovpP´

k̀ 1,Ĺ 1q

28: for ℓ “ L´1, . . . , 1 do
29: λ

´

k̀ 1,ℓ “ T´
kℓpµ

´
kℓ,Υ

´

k̀ 1,ℓ̀ 1q

30: µ´
kℓ “ Epφ´

kℓpP
0
ℓ́ 1, P

`
k,ℓ́ 1, Q

´
k̀ 1,ℓ,Wℓ,Υ

´

k̀ 1,ℓ̀ 1qq

31: Υ
´

k̀ 1,ℓ “ pΥ
´

k̀ 1,ℓ̀ 1, λ
´

k̀ 1,ℓq

32: P´
k̀ 1,ℓ́ 1 “ f´

kℓpP
0
ℓ́ 1, P

`
k,ℓ́ 1, Q

´
k̀ 1,ℓ,Wℓ,Υ

´

k`1,ℓq

33: Q´
k̀ 1,ℓ́ 1 „ N p0, τ´

k̀ 1,ℓ́ 1q, τ´
k̀ 1,ℓ́ 1 “ CovpP´

k̀ 1,ℓ́ 1q

34: end for
35: end for
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Appendix B

Appendix for Asymptotics of Ridge

Regression in Convolutional Models

B.1 Complex Normal Distribution

Complex normal is the distribution of a complex random variable whose imaginary and real

parts are jointly Gaussian.

Standard complex normal distribution. A random variable Z “ X`iY where X, Y P R

has standard complex normal distribution represented by CN p0, 1q if

X, Y „ N p0, 1{2q, X |ù Y.

General complex Gaussian distribution. A random vector Z “ X`iY where X,Y P Rn

has complex Gaussian distribution CN pµ,Γ,Cq if X and Y are jointly Gaussian with

µ “ ErZs, (B.1)

Γ “ ErpZ ´ µqpZ ´ µq
H

s, (B.2)

C “ ErpZ ´ µqpZ ´ µq
T

s. (B.3)
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The parameters µ,Γ, and C are called mean vector, covariance matrix, and relation matrix

respectively. Alternatively, if we define

CXX “ ErpX ´ µXqpX ´ µxq
T

s, µX “ ErXs,

CY Y “ ErpY ´ µY qpY ´ µY q
T

s, µX “ ErYs,

CXY “ CT
Y X “ ErpX ´ µXqpY ´ µY q

T
s,

then X,Y are jointly Gaussian with distribution

pX,Yq „ N

¨

˚

˝

»

—

–

µX

µY

fi

ffi

fl

,

»

—

–

CXX CXY

CY X CY Y

fi

ffi

fl

˛

‹

‚

.

The matrices Γ and C are related to covariance matrices of X and Y through the following

equations:

Γ “ CXX ` CY Y ` ipCY X ´ CXY q,

Γ “ CXX ´ CY Y ` ipCY X ` CXY q.

B.2 Empirical Convergence of Vector Sequences

Here we review some standard definitions that are widely used in the papers that use

approximate message passing framework.

Definition 9 (Pseudo Lipschitz Continuity). A function f is called pseudo-Lipschitz continu-

ous of order p with constant C if for all x1,x2 P dompfq

}fpx1q ´ fpx2q} ď C }x1 ´ x2} p1 ` }x1}
p´1

` }x2}
p´1

q. (B.4)

Note that for p “ 1 this definition is a equivalent to the definition of the standard

Lipschitz-continuity.

Definition 10 (Uniform Lipschitz-continuity). A function f on X ˆW is uniformly Lipschitz-

continuous in x at ω̄ if there exists constants L1, L2 ě 0 and an open neighborhood U of ω̄
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such that for all x1,x2 P X ,ω P U

}fpx1,ωq ´ fpx2,ωq} ď L1 }x1 ´ x2} , (B.5)

and for all x P X ,ω1,ω2 P W

}fpx,ω1q ´ fpx,ω2q} ď L2p1 ` }x}q }ω1 ´ ω2} . (B.6)

Definition 11 (Empirical convergence of sequences). Consider a sequence of vectors xpNq “

txnpNquNn“1 with xnpNq P Rd, i.e. each xpNq is a block vector with a total of Nd components.

For a finite p ě 1, we say that the vector sequence xpNq converges empirically with pth order

moments if there exists a random variable X P Rd such that

• E }X}
p
p ă 8;

• for any f : Rd Ñ R that is pseudo-Lipschitz of order p,

lim
NÑ8

1

N

N
ÿ

n“1

fpxnpNqq “ ErfpXqs. (B.7)

With some abuse of notation, we represent this with

lim
NÑ8

xn
PLppq

“ X, (B.8)

where we have omitted the dependence on N to ease the notation. In this definition the

sequence txpNqu can be random or deterministic. If it is random we require the equality in

(B.7) to hold almost surely. In particular, if the sequence txnu is i.i.d. with xn „ pXp¨q, with

E }X}
p
p ă 8, then txnu converges empirically to X with pth order. The extension of this

definition to sequence of matrices and higher order tensors is straightforward.

Definition 12 (Convergence in distribution). A sequence of random vectors xn P Rd converges

in distribution (also known as weak convergence) to x if for all bounded functions f : Rd Ñ R

lim
nÑ8

Efpxnq “ Efpxq. (B.9)

PL(p) convergence is equivalent to convergence in distribution plus convergence of the

pth moment [Bayati and Montanari, 2011a].
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Definition 13 (Wasserstein-p distance). Wasserstein-p distance between two probability

measures µ, ν on Euclidean space Rd is

Wppµ, νq “ inf
γPΓ

´

Epx,yq„γ }x ´ y}
p
p

¯
1
p
, (B.10)

where Γ is the set of all probability measures on the product space Rd ˆ Rd with marginals µ

and ν.

PL(p) convergence is also equivalent to convergence the empirical measure of the sequence

xn to probability measure of X in Wasserstein-p distance [Villani, 2008].

B.3 1D Convolution Operators in Matrix Form

In this section we derive the matrix form of 1D convolution operators to show how these

operators look like in time domain. As we will see, convolution operators in time domain can

be represented as a doubly block circulant matrix. Because of this structure, approximate

message passing (AMP) (discussed in Appendix 2.3) cannot be directly used to obtain

estimation error of ridge regression for convolutional inverse problem in time domain. This

is due to the assumption in AMP that the measurement matrix has i.i.d. entries. If this

assumption can be relaxed, we can analyze estimators other than ridge, and compute error

metrics other than MSE. We hope to follow this direction in a future work.

First assume that in the convolutional model in (4.1), nx “ ny “ 1, i.e. the input and

output both have one channel. Also for a matrix Z P Rmˆn, let p⃗Zq P Rnm represent the

vector constructed by stacking X in a vector row by row. To simplify the notation, we zero

pad the convolution kernel which in this case is a vector of size k, so that it will have size

T and we still use K to represent the zero-padded kernel to simplify the notation. In this

case, the convolution operator K : X ÞÑ K ˚ X can be represented as a circulant matrix
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C : vecpXq ÞÑ C vecpXq

C “

»

—

—

—

—

—

—

—

—

—

—

–

K1 K2 K3 . . . KT

KT K1 K2 . . . KT´1

KT´1 KT K1 . . . KT´3

...
...

... . . . ...

K2 K3 K4 . . . K1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(B.11)

When the number of input channels and output channels are nx and ny respectively, the

convolution can be represented in matrix form as matrix with blocks of circulant matrices

C “

»

—

—

—

—

—

—

—

–

C11 C12 . . . C1, nx

C21 C22 . . . C2, nx

...
... . . . ...

Cny ,1 Cny ,2 . . . Cny, nx

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (B.12)

where each Cij is a circulant matrix of the form (B.11) constructed from Kij˚. Since the

adjoint of a circulant matrix is also a circulant matrix, one can see that the adjoint of a 1D

convolution (with stride 1) is also a convolution with respect to another kernel.

B.3.1 AMP for ridge regression

In this section we show how AMP can be used to derive asymptotic error of ridge regression

pxridge “ argmin
x

}y ´ Ax}
2
2 ` λ }x}

2
2 . (B.13)

The solution to this optimization problem is

pxridge “ pATA ` λIq´1ATy. (B.14)

Next, consider the AMP recursion in (2.29) and (2.30) with a fixed denoiser ηtpxq “ αx

xt`1
“ αpATzt ` xt

q, (B.15)

zt “ y ´ Axt
`
α

δ
zt´1. (B.16)
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The next lemma shows that this recursion solves the ridge regression for a specific regularization

parameter λ.

Lemma 19. The fixed point of AMP algorithm with ηtpxq “ αx is the solution of ridge

regression with

λ “
p1 ´ αqp1 ´ α{δq

α
, (B.17)

where δ “ ny{nx.

Proof. Let x˚ and y˚ denote the fixed points of the AMP recursion. Then we have

x˚
“ αpATz˚

` x˚
q, (B.18)

z˚
“ y ´ Ax˚

`
α

δ
z˚. (B.19)

Therefore,

z˚
“

1

1 ´ α{δ
py ´ Axq. (B.20)

Plugging this back to Equation (B.18) we get

x˚
“

ˆ

ATA `
p1 ´ αqp1 ´ α{δq

α
I

˙´1

ATy. (B.21)

Comparing this to (B.14) proves the result.

Given a λ, one can solve the quadratic equation (B.17) to find the α that satisfies the

equation. This is a quadratic equation that has two solutions. As we show in Section B.3.2,

so long as the regularization parameter λ is non-negative, this quadratic equation always has

two real and positive solutions. But only for the smaller solution the AMP recursions for

solving ridge regression converges, and hence only the smaller one is valid.

Having found the α we can use the state evolution (2.33) to find its fixed point. For ridge

regression, this can be done in closed form. The state evolution for ridge regression can be

written as

τ 2t`1 “ σ2
`

1

δ
pp1 ´ αq

2σ2
X ` α2τ 2t q, (B.22)
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If we define the fixed point value τ :“ limtÑ8 τt we have that it should satisfy

τ 2 “ σ2
`

1

δ
pp1 ´ αq

2σ2
X ` α2τ 2q, (B.23)

from which we obtain

τ 2 “
σ2 ` 1

δ
p1 ´ α2qσ2

X

1 ´ α2

δ

. (B.24)

The mean squared error then can be obtained as

1

nx

}pxridge ´ x0}
2
2 “ E

“

pαpX0 ` τZq ´ X0q
2
‰

“ pα ´ 1q
2EX2

0 ` α2τ 2.

B.3.2 Convergence of AMP

As mentioned in the previous section, when we use AMP to find the solution of ridge regression,

we first need to find an α that satisfies Equation (B.17). This is a quadratic equation that

has two solutions. In theory, the solution of ridge regression with a given λ is the fixed points

of AMP iterations for both values of α. However, we should also note that the results of AMP

are only valid if the iterations converge to a fixed point. This is equivalent to stability of

the dynamics corresponding to AMP recursion. We saw in Lemma 19 that a linear denoiser

ηtpxq “ αx can be used to solve for a ridge regression with regularization parameter λ. Recall

that the AMP iterations for this denoiser are

xt`1
“ αpATzt ` xt

q (B.25)

zt “ y ´ Axt
`
α

δ
zt´1. (B.26)

Plugging Equation (B.26) in Equation (B.25) we get

xt`1
“ αpI ´ ATAqxt

`
α2

δ
zt´1

` αATy, (B.27)

zt “ y ´ Axt
`
α

δ
zt´1. (B.28)
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These equations correspond to a linear time invariant system with state matrix

A “

»

—

–

αpI ´ ATAq α2

δ
AT

´A α
δ
I

fi

ffi

fl

. (B.29)

The system is stable if and only if all the eigenvalues of A lie inside the unit disk. A simple

row operation (which does not change the eigenvalues) shows that the eigenvalues of A are

the same as eigenvalues of

A1
“

»

—

–

αI 0

´A α
δ
I

fi

ffi

fl

. (B.30)

Therefore, the AMP recursions in (B.25) and (B.26) are stable, i.e. converge to the fixed

points corresponding to the ridge regression if and only if

|α| ď 1, |
α

δ
| ď 1. (B.31)

Since δ ą 0, this is equivalent to

|α| ď minp1, δq. (B.32)

If regularization parameter λ ě 0, solving the quadratic equation (B.17) for α, it is not hard

to show that it has two solutions α1, α2 that are always real and satisfy

0 ă α1 ď minp1, δq ď maxp1, δq ď α2. (B.33)

Comparing this to (B.32), we see that only α1 satisfies the stability condition. To summarize,

(B.17) always has two real positive solutions, but only the smaller one satisfies the stability

condition.

As a sanity check, we can also verify that if AMP iterations for ridge regression in (B.25)

and (B.26) are stable, so is the state evolution recursion. The state evolution for ridge

regression is given in (B.22). This is a scalar linear time invariant system that is stable if

and only if

´ 1 ď
α2

δ
ď 1. (B.34)

Clearly, the stability conditions in (B.31) imply this inequality. Therefore, the stability of
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Figure B.1: Log of normalized error for the AR(1) features with the process noise N p0, s2q,
with respect to δ “ ny{nx for three different values of λ. The figure is essentially
indistinguishable from Figure 4.2.

AMP recursions for ridge regression also implies the stability of the state evolution for ridge

regression. As a result, the smaller value of α that satisfies (B.17) should be used to get the

correct prediction of error.

B.3.3 AMP for complex ridge regression

Approximate message passing can also be used when the signals in (2.26) are complex

valued. So long as the sensing matrix has i.i.d. complex normal entries Aij „ CN p0, σ2
A{nyq

(see Appendix B.1 for a brief overview of complex normal distribution), i.e. the real and

imaginary parts of each entry are i.i.d. Gaussian random variables with variance σ2
A{p2nyq

and independent of each other, the state evolution holds [Maleki et al., 2013]. Therefore, by

changing all variables to complex variables, we can use AMP exactly as in Appendix B.3.1

and get the asymptotic error of complex ridge regression using the state evolution almost

without any changes.
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B.4 Experiment with Gaussian AR(1) Process

As mentioned in the experiments, for an AR(1) process as in (4.37), the auto-correlation

function derived in Equation (4.40) does not depend on the distribution of the noise ξt, but

only its second moment. This is true in general for an AR(p) process that evolves as a

linear time-invariant (LTI) system driven with zero-mean i.i.d. noise. For such processes the

auto-correlation only depends on the second order statistics of the noise as well parameters

of the linear system. Therefore, we expect to get identical results in the limit if the any zero

mean noise is driving the process so long as the variances match. In Figure 4.2, we showed

the results for the case where the noise was a scaled Rademacher random variable. Figure B.1

shows the same results for the case where the noise is Gaussian with the matched variance.

As expected, this plot is almost indistinguishable from Figure 4.2.

128



Appendix C

Appendix for Generalized Autoregressive

Linear Models for Discrete

High-dimensional Data

C.1 Proofs of Lemmas in Sections 5.5 and 5.6

Lemma 20. Under (A1)–(A3), Θ˚
i P argmin

β
ELipβq.

Proof. This is a direct consequence of Lemma 10 and assumption (A3). Notice that from

Lemma 9 we have

LipΘ
˚
i ` ∆iq ě LipΘ

˚
q ` x∇LipΘ

˚
i q,∆iy ` Ep∆i;Xq.

Taking expectations on both sides, and applying lemma 10, we get

ELipΘ
˚
i ` ∆iq ě ELipΘ

˚
q ` xE∇LipΘ

˚
i q,∆iy ` C2

X }∆i}
2
F .

It follows from Assumption (A3) that E∇LipΘ
˚q “ 0. Thus we get

ELipΘ
˚
i ` ∆iq ě ELipΘ

˚
q

for all ∆i P RN L̂, which proves the claim.

129



n number of samples
N number of variables
p number of lags
L number of filters
rns t1, 2, . . . , nu

i, j index of variable P rN s

k index of lag P rps

ℓ index of filter P rLs

t index of sample P rns

Xi discrete subset of R
Xˆp

i discrete subset of Rp

tpa1, a2, . . . , apq : ak P Xi, @ k P rpsu

X discrete subset of RN
ś

iPrNs
Xi

Xˆp discrete subset of RNˆp

ś

iPrNs
Xˆp

i

xti (scalar) P Xi

xt pxtiq
N
i“1 P X

xt´˚
j pxt´k

j q
p
k“1 P Xˆp

i

dℓ filter, P Rp

Xt p-lag history at sample t, P Xˆp
“

xt xt´1 . . . xt´p`1
‰

D dictionary, P RpˆL
“

d1 d2 . . . dL

‰

Θi (N ˆ L matrix) parameter for variable i
U subset of variables Ď rN s

ΘU (|U | ˆ N ˆ L tensor) pΘiqiPU
Θ (N ˆ N ˆ L tensor) ΘU w/ U “ rN s

Table C.1: List of notations used in the Chapter 5.

C.1.1 Choice of regularization hyperparameter

Lemma 21. For any constant c1 ą 2,

}∇LUpΘ˚
Uq}

8,8,8 ď BCLCD

a

c1 logp|U |NLq{n (C.1)

with probability at least 1 ´ p|U |NLq´c, where c “ c1{2 ´ 1.

Proof. Fix i, j P rN s and ℓ P rLs. Then we have,

BLipΘiq

BΘijℓ

“
1

n

n
ÿ

t“1

L1
itpx

t
i, i`Θi,X

t´1Dq pXt´1Dqjℓ “
1

n

n
ÿ

t“1

L1
itpx

t
i, i`Θi,X

t´1Dqxxt´˚
j ,dℓy
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where L1
itpu, vq :“ BvLitpu, vq It follows that

BLipΘ
˚
i q

BΘijℓ

“
1

n

n
ÿ

t“1

Dt
ijℓ where Dt

ijℓ :“ L1
itpx

t
i, xΘ

˚
i ,X

t´1Dyqxxt´˚
j ,dℓy.

Let F t´1 “ σpxt´1,xt´2, . . . q be the σ-field generated by the past observations of the process.

From assumption (A3), we have ErL1
itpx

t
i, xΘ

˚
i ,X

t´1Dyq | F t´1s “ 0, hence

ErDt
ijℓ | F t´1

s “ 0.

That is, tDt
ijℓut is a martingale difference sequence. Similarly, by assumption (A3), we

get }L1
it}8 ď CL. If follows that tDt

ijℓut is also bounded, i.e., |Dt
ijℓ| ď CL ¨ CD. By the

Azuma–Hoeffding inequality for martingale differences [van de Geer, 2002],

P
ˆ

ˇ

ˇ

ˇ

BLpΘ˚q

BΘijℓ

ˇ

ˇ

ˇ
ą t

˙

“ P

˜

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

Dt
ijℓ

ˇ

ˇ

ˇ
ą t

¸

ď 2 exp
´

´
nt2

2C2
LC

2
D

¯

, t ą 0.

Writing }∇
ř

i LpΘ˚
i q}

8,8,8
“ supijℓ |

BLipΘ
˚
i q

BΘijℓ
|, by the union bound we have,

P
´

|||∇
ÿ

iPU
LipΘ

˚
i q|||8,8,8 ą t

¯

ď 2|U |NL ¨ exp
´

´
nt2

2C2
L ¨ C2

D

¯

ď δ, t ą 0.

Taking t “ CL ¨ CD

a

2 logp|U |NL{δq{n with δ “ p|U |NLq´c establishes the result.

C.1.2 Quadratic lower bound on Remainder terms: Proof of Lemma

9

Fix i P U . Recall that the loss Li can be written as

LipΘiq “
1

n

n
ÿ

t“1

Li,tpx
t
i, i`Θi,X

t´1Dq

We have

B2LipΘiq

BΘiabBΘikℓ

“
1

n

n
ÿ

t“1

L2
i,tpi`Θi,X

t´1Dq pXt´1DqabpX
t´1Dqkℓ

“
1

n

n
ÿ

t“1

L2
i,tpi`Θi,X

t´1Dqxxt´˚
a ,dbyxxt´˚

k ,dℓy.

Let ∇2LipΘiq P RpNˆLqˆpNˆLq denote the Hessian matrix of Li, i.e.

∇2LipΘiq “

„

B2LipΘiq

BΘiabBΘikℓ

ȷ

, pa, bq P rN s ˆ rLs, pk, ℓq P rN s ˆ rLs,
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and define the vector ht :“ rxxt´˚
a ,dbys P RNˆL. Then we have

∇2LipΘiq “
1

n

n
ÿ

t“1

L2
i,tpi`Θi,X

t´1DqhthtJ
. (C.2)

Hence, for all Θi,β P RN L̂, the quadratic form of the Hessian of Li satisfies

i`β∇2LipΘiq,β “
1

n

n
ÿ

t“1

L2
i,tpi`Θi,X

t´1Dq vecpβq
JhthtJ

vecpβq

“
1

n

n
ÿ

t“1

L2
i,tpi`Θi,X

t´1Dqi`β,Xt´1D
2

piq

ě
κi
n

n
ÿ

t“1

i`β,Xt´1D
2
:“ κiEpβ;Xq, (C.3)

where vecpβq represents the vectorized form of the matrix β (in the same order as rows/columns

of ∇2Li), and inequality (i) follows from L2
i,tpx

t
i, ¨q ě κi ą 0, which holds by Assumption (A2).

Next, consider the function fptq :“ LpΘ˚
i ` tβq. By Taylor’s Theorem we have

fp1q ´ fp0q ´ f 1
p0q “

1

2
f2

pξq, for some ξ P r0, 1s.

Therefore, there exist a ξ P r0, 1s such that

RLipβ; Θ
˚
i q “

1

2
i`β∇2LipΘ

˚
i ` ξβq,β ě

κi
2
Epβ;Xq,

where the last inequality follows from (C.3). This completes the proof.

C.1.3 Uniform lower bound on EEpβ;Xq: Proof of Lemma 10

Using the notation in (C.10) and (C.11), equation (C.12) implies

EEp∆;Xq “ E }Xt˚Spβq}
2
2 for all t,

since by assumption the process is wide-sense stationary (i.e., the second moments of the

distribution of Xt˚ is the same for all t). Recall the stacking operator Spβq P RNL defined

in (C.11), and let R :“ EXJ
t˚Xt˚ P RNLˆNL be the population autocorrelation matrix, again

independent of t by stationarity. Then,

EEpβ;Xq “ E }Xt˚Spβq}
2
2 “ E tr

`

XJ
t˚Xt˚SpβqSpβq

J
˘

“ tr
`

RSpβqSpβq
J
˘

.
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Since R ´ λminpRqI ľ 0, we have that

EEpβ;Xq ě λminpRq }Spβq}
2
2 . (C.4)

We note that R is a block symmetric matrix with blocks Rij :“ Erxt´ipxt´jqJs P RNˆN . We

also note that due to the stationarity, Rij only depends on i´j, so with some abuse of notation

we write Rij “ Ri´j, i.e., R is block Toeplitz. Let Ci´j denote the centered autocorrelation

matrix Erpxt´i ´Extqpxt´j ´ExtqJs, whereby Ri´j “ Ci´j `ExtpExtqJ. Define C similarly

as a block Toeplitz matrix with Cij “ Ci´j. Consequently λminpRq ě λminpCq.

Let X pωq P CNˆN be the power spectrum matrix of the process as in assumption (A1)

so that

Cℓ :“
1

2π

ż π

´π

X pωq ejωℓdω, (C.5)

Also, recall from assumption (A1) that

C2
X :“ min

ω P r´π,πq
λminpX pωqq ą 0. (C.6)

It is well-known that λminpCq ě C2
X . See for example [Basu et al., 2015, Proposition 2.3]

or [Gray et al., 2006, Lemma 4.1]. For completeness, we prove this assertion below. This

together with equation (C.4) and }Spβq}
2
2 “ }β}2F proves Lemma 10.

Proof of λminpCq ě C2
X

Fix uJ “

„

uJ
0 uJ

1 . . . uJ
p´1

ȷ

, where ui P RN and set Gpωq “ 1?
2π

řp´1
r“0 ure

´jrω. Then, uJCu

equals,
p´1
ÿ

r,s“0

uJ
r Cr´sus “

p´1
ÿ

r,s“0

uJ
r

” 1

2π

ż π

´π

X pωqejpr´sqωdω
ı

us “

ż π

´π

GH
pωqX pωqGpωqdω. (C.7)

Since X pωq is a Hermitian matrix, GHpωqX pωqGpωq is always a real matrix. Moreover, we

have that

GH
pωqX pωqGpωq ě λminpX pωqqGH

pωqGpωq ě C2
X GH

pωqGpωq
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hence

uJCu ě C2
X

ż π

´π

GH
pωqGpωqdω “ C2

X

p´1
ÿ

r,s“0

uJ
r pδr´sINqus “ C2

X }u}
2
2 ,

by Parseval’s theorem. (Alternatively, reverse the operation in (C.7) with X pωq “ 1 ¨ IN and

recall that the inverse of a flat spectrum is the delta function). Here, δx “ 1tx “ 0u. Taking

the minimum over }u}2 “ 1 completes the proof.

C.1.4 Proof of Lemma 13

We start by stating a general result that for sets A,B, tAiu
N
i“1, tBiu

N
i“1 from a σ-algebra such

that (i)
Ş

iAi Ď A Ď B, and (ii) Bi Ď Ai for all i, then

PpBq ě PpAq ě P
´

č

i

Ai

¯

ě 1 ´

N
ÿ

i“1

PpAc
iq ě 1 ´ N max

i
PpAc

iq ě 1 ´ N max
i

PpBc
i q. (C.8)

The first two inequalities follows from (i), the third inequality is the union bound to Pp
Ş

iAiq “

1 ´ PpYiA
c
iq. The last inequality follows from (ii).

Recall that Yi ą aiXi, and consider the set definitions Bi “ tXi ą bi ´ diu, Ai “ taiXi ą

pmini aiqbi´pmaxi aiqdiu, A “ t
ř

i aiXi ą pmini aiq
ř

i bi´pmaxi aiq
ř

i diu and B “ t
ř

i Yi ą

pmini aiq
ř

i bi´pmaxi aiq
ř

i diu which satisfy the above inclusion for ai, bi, di ą 0. The lemma

follows immediately from (C.8).

C.2 Uniform law for Epβ;Xq: Proof of Lemma 12

For the current proof, we have fixed i P rN s. We also use the notation }β}q :“ }β}q,q for the

ℓq norm of a matrix β P RNˆL. Note that }β}2 “ }β}F . We also use the following notation.

B1prq :“ tβ P RNˆL : }β}1 ď ru, BB2prq :“ tβ P RNˆL : }β}2 “ ru,

Bd
ppuq :“ tD P Rd : }D}p ď uu.

ωi :“ ωsipΘ
˚
i q “ min

βPRN L̂
t}β ´ Θ˚

i }1 | }β}0 ď siu. (C.9)

C˚
i :“ CpS˚

i ,Θ
˚
i q “

␣

β P RNˆL :
›

›

›
βS˚c

i

›

›

›

1
ď 3

›

›

›
βS˚

i

›

›

›

1
` 4ωi

(

.
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where S˚
i is the support of the best ℓ1 approximator of Θ˚

i that has cardinality si, i.e., the

support of the optimal solution to (C.9). One can then show that }Θ˚

S˚c
i

}1 “ ωi.

We want to show the following inequality,

Epβ;Xq ě
1

4
C2

X }β}
2
F ´ τ 2i , @β P C˚

i .

We show this inequality by breaking C˚ into the sets

tC˚
i X BBF pr1qu Y tC˚

i X pBF pr1qq
c
u Y tC˚

i X BF pω2
i {

?
siqu.

For the first two sets of these, the inequality can be shown without any tolerance (τ 2i “ 0).

We need to allow for some tolerance τ 2i “ ω2
i {si when ωi ą 0.

Fixed ℓ2 norm

Consider the set C˚
i X BB2pr1q, where r21 “ pω2

i q{si ` 1tωi“0u.

Note that for any β P C˚
i , we have β “ βS˚

i
` βS˚c

i
, and hence

}β}1 “ }βS˚
i

}1 ` }βS˚c
i

}1 ď 4
›

›

›
βS˚

i

›

›

›

1
` 4

›

›

›
ΘS˚c

i

›

›

›

1
ď 4

`?
s }β}F ` ωi

˘

@β P C˚
i

using
›

›

›
βS˚

i

›

›

›

1
ď

?
si

›

›

›
βS˚

i

›

›

›

F
and

›

›

›
ΘS˚c

i

›

›

›

1
ď ωi. It follows that for any r1 ą 0,

C˚
i X BBF pr1q Ď B1

`

r2
˘

, where r2 :“ 4
`

r1
?
si ` ωi

˘

Next we consider covering C˚
i X BBF pr1q by finding a minimum ε-cover of B1pr2q. For a

metric space pT, ρq, let N be a minimum ε-cover of T in ρ, i.e., the smallest set N which

satisfies

@β P T, Dβ1
P N , such that ρpβ,β1

q ď ε.

The quantity N pε, T, ρq :“ log |N | for a minimum ε-cover N is called the metric entropy. The

following is an adaptation of a result of [Raskutti et al., 2011, Lemma 3, case q “ 1, p “ 2]:

Lemma 22. Let X P Rnˆd be a matrix with column normalization }X˚j}2 ď
?
n for all j.

Consider the following (pseudo) metric in the space Rd, ρpD1, D2q :“
1?
n

}XpD1 ´ D2q}2 on

Rd. Then, for a sufficiently small constant C1 ą 0, the metric entropy of B1puq in ρ is
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bounded as

N
`

ε,Bd
1puq, ρ

˘

ď rC2
u2

ε2
logpdq, @ε ď rC1u.

Now, consider a design matrix X P RnˆNL defined as,

Xt˚ :“ rpXt´1d1q
J

pXt´1d2q
J . . . pXt´1dLq

J
s P R1ˆNL, t “ 1, 2, . . . n (C.10)

Note that X satisfies the column normalization property }X˚j}2 ď CX
?
n for all ℓ since

Xtj P r´CX, CXs for all t P rns and j P rNLs. Fix ε P p0, 2 rC1r2{r1q for sufficiently small rC1 ą 0.

It follows that there exists an pr1ε{2q-cover, denoted by N 2
i , of BNL

1 pr2q in the metric defined

in Lemma 22 with cardinality bounded as

log |N 2
i | ď rC2

r22
r21ε

2
logpNLq.

Define a stacking operator S : RNˆL Ñ RNL that flattens a matrix into a vector columnwise:

Spβq :“

»

—

—

—

—

–

β˚1

...

β˚L

fi

ffi

ffi

ffi

ffi

fl

P RNL. (C.11)

Also denote for a set A denote by SpAq “ tSpaq | a P Au. Then we have

SpC˚
i X BBF pr1qq Ď SpB1

`

r2
˘

q “ BNL
1 pr2q.

Define a (pseudo) metric on the matrix space RNˆL as ρpβ,β1q :“ ρpSpβq, Spβ1qq. Since S

is a bijection, it follows that there is an exterior pr1ε{2q-covering of C˚
i X BBF pr1q in metric

ρ with the same cardinality as N 2
i ; call it N 1

i . (Here, the exterior covering means that the

elements need not belong the set they cover. Elements of N 1
i are matrices in B1pr2q but not

necessarily in C˚
i X BBF pr1q.)

We can pass from N 1
i to an pr1εq-cover of C˚

i XBBF pr1q, denoted by Ni such that |Ni| ď |N 1
i |

(see Exercise 4.2.9 in [Vershynin, 2018, p.75]). In particular, we have Ni Ď C˚
i X BF pr1q.

Using the following equality which is proved in Appendix C.2.1,

Ep∆;Xq “
1

n
}X Spβq}

2
2 , (C.12)
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by the triangle inequality
ˇ

ˇ|a| ´ |b|
ˇ

ˇ ď |a ´ b|, we get,

|
a

Epβ;Xq ´
a

Epβ1;Xq| ď ρpβ,β1
q, β,β1

P RN L̂

for any two matrices β and β1. Using pa´ bq2 ě 1
2
a2 ´ b2, with b “ Epβ;Xq, and a “ Epβ1;Xq

we have

Epβ;Xq ě
1

2
Epβ1;Xq ´ ρ2pβ,β1

q.

If follows that

inf
β PC˚

i X BBF pr1q

Epβ;Xq ě 1
2

inf
β PNi

Epβ;Xq ´ pr1εq
2

By Lemma 11 and the union bound, with probability at least 1 ´ |Ni| expp´nt2

G
q , we have

Epβ;Xq ´ EEpβ;Xq ě ´t }β}
2
1,1 , @β P Ni.

Since Ni Ď C˚
i X BF pr1q, for any β P Ni we have }β}

2
1,1 ď si}β}2F and }β}F “ r1. It follows

that with the same probability 1 ´ |Ni| expp´nt2

G
q,

Epβ;Xq ě EEpβ;Xq ´ t sr21 ě pC2
X ´ tsq r21, @β P Ni

where we have used Lemma 10 in the second inequality. It follows that with the same

probability

inf
β PC˚ X BBF pr1q

Epβ;Xq ě

´

1
2
C2

X ´ 1
2
ts ´ ε2

¯

r21. (C.13)

Taking r1 “ pωi ` 1tωi“0uq{
?
si, we can balance the two terms in r2. We obtain

4
?
si ď r2{r1 ď 8

?
si.

The constraint on ε is ε ď 2 rC1pr2{r1q. It is enough to require ε ď 8 rC1
?
si. Taking ε2 “ 1

8
C2

X

and assuming that si ě
C2

X

512 rC2
1

“: C2
X {C1 satisfies the constraint. Also, taking t “ 1

4
C2

X {si,

we obtain

P
´

inf
β PC˚

i X BBF pr1q

Epβ;Xq ě
`1

4
C2

X

˘

r21

¯

ě 1 ´ exp
´

log |Ni| ´ C4
X

n

16s2iG

¯

“: Pi (C.14)

Noting that

log |Ni| ď rC2

`

8
?
si
˘2
´ 8

C2
X

¯

logpNLq,
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the probability is further bounded as

1 ´ P1 ď exp
´ C2

C2
X

si logpNLq ´ C4
X

n

16s2iG

¯

,

where C2 :“ 512 rC2. Thus, we have established RSC with high probability for matrices in

C˚
i X BBF pr1q with curvature κ “ 1

4
C2

X and tolerance τ 2 “ 0, as shown in equation (C.14).

Note that when ωi “ 0 (i.e., the case of hard sparsity), C˚
i is a cone hence the above

extends immediately to all β P C˚
i , since Epcβ;Xq “ c2Epβ;Xq for all c ą 0, thus completing

the proof. Let us assume ωi ą 0 in the rest of the proof.

Extending to the complement of the ℓ2 norm ball

For ωi ą 0, since C˚
i is not a cone, we cannot use a scale-invariance argument to extend to

general matrices. However, we have the following:

Lemma 23. Assume that RSC holds for E in the sense of Epβ;Xq ě κ}β}2F , for all β P

C˚
i X BBF prq. Then, RSC holds in the same sense for all β P C˚

i X tβ : }β}F ě ru.

We skip the proof since it can be verified without much difficulty. The lemma establishes

the RSC of the previous step for all of C˚
i X tβ : }β}F ě r1u. The proof is straightforward

and follows from the observation that Ep¨ ;Xq satisfies Epcβ;Xq “ c2Epβ;Xq, for c ě 1.

Extending to small radii

It remains to extend the result to β P C˚ X tβ : }β}F ă r1u. In this case, we simply take

τ 2 :“ r21 “ ω2
i {si (since ωi ą 0 by assumption) so that

Epβ;Xq ě 0 ě }β}
2
F ´ τ 2

so that the RSC holds with curvature “ 1 and tolerance τ 2. Putting the pieces together, we

have the RSC for all β P Ci with the probability given in Step 1, curvature κi “ mint1
4
C2

X , 1u

and tolerance τ 2i “ ω2
i {si. This concludes the proof.
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C.2.1 Proof of equality (C.12)

The right hand side is

1
n

n
ÿ

t“1

pXt˚Spβqq
2

“ 1
n

n
ÿ

t“1

L
ÿ

ℓ“1

pXt´1dℓq
Jβ˚ℓ “ 1

n

n
ÿ

t“1

L
ÿ

ℓ“1

βJ
˚ℓpX

t´1dℓq “ 1
n
TrpβJXt´1Dq

“ 1
n

n
ÿ

t“1

xβ,Xt´1Dy

This proves the claim.

C.3 Intermediate lemmas mentioned in Section 5.7: Con-

traction in p-Markov chains.

In this section, we prove the following two main lemmas used in Section 5.7.

Lemma 24. The map X ÞÑ Epβ;Xq is Lipschitz with respect to the Hamming distance on

Xˆpn`p´1q, with Lipschitz constant at most p4B2C2
D{nq }β}

2
1,1 .

A process over a countable space X is referred to as a p -Markov chain if for some finite p,

Ppxt
“ z|txt´k

ukPN`
q “ Ppxt

“ z|txt´k
u
p
k“1q, (C.15)

for all z P X , for all t P Z. To keep the exposition simple, we assume that P above does not

depend on t, i.e., the process is homogeneous.

Lemma 25. For a p-Markov process over X , with equivalent kernel K P R|X |pˆ|X |p given by

(C.24) with r “ p, the mixing coefficients defined in (5.34) are bounded as

ηkℓ ď τ1pΘ˚
q
1`tpℓ´k´1q{pqu, ℓ ě k. (C.16)

In particular, for any τ P rτ1pΘ
˚q, 1q

|||mH|||
2
8 :“

´

max
kPrns

ÿ

ℓěk

ηkℓ

¯2

ď 2 `
2p2

pτ´1 ´ 1q2
. (C.17)
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C.3.1 Proof of Lemma 24

It is enough to consider two sequences txtu and tytu that differ in a single time step, say at time

point r, so that the state vectors can be written as X “ px´p`1,x´p`2, . . . ,xr, . . . ,xn´1q and

Y “ px´p`1,x´p`2, . . . ,yr, . . . ,xn´1q, where r will be fixed. The general case follows, via trian-

gle inequality, since any rY can be reached from X by a sequence X “: Xp0q,Xp1q, . . . ,Xphq :“ rY

such that Xpiq and Xpi´1q are Hamming distance 1 apart, for i “ 1, 2, . . . h, where h is the

hamming distance of X and rY in X n`p´1.

Let Xt´1 and Yt´1 be defined based on X and Y as before, i.e., the corresponding

p-lag history at time t ´ 1. Note that Xt´1 and Yt´1 are different only for t such that

t P tr ` 1, . . . , r ` pu, and for such t, we have via Hölder’s inequality:

|i`β,Xt´1D ´ Yt´1D| ď 2B
›

›pβDJ
q˚,t´r

›

›

1
and |i`β,Xt´1D ` Yt´1D| ď 2B

›

›βDJ
›

›

1,1
.

where M˚,i is the ith column of a matrix M . Note the inner products above are over matrices

in RNˆL. In the above inequality we have also used the fact that for any M P RNˆp, we have

xβ,MDy “ xβDJ,My where the second inner product is over RNˆp. Combining the above

inequalities we obtain

|Epβ;Xq ´ Epβ;Yq| “
1

n

ˇ

ˇ

ˇ

r`p
ÿ

t“r`1

“

i`β,Xt´1D
2

´ i`β,Yt´1D
2‰
ˇ

ˇ

ˇ
ď

r`p
ÿ

t“r`1

|i`β, pXt´1
´ Yt´1

qD||i`β, pXt´1
` Yt´1

qD|

ď
4B2

n

r`p
ÿ

t“r`1

›

›pβDJ
q˚,t´r

›

›

1

›

›βDJ
›

›

1,1
“

4B2

n

›

›βDJ
›

›

2

1,1

Finally,
›

›βDJ
›

›

1,1
“
›

›DβJ
›

›

1,1
“
řL

ℓ“1

›

›DpβJq˚,ℓ

›

›

1
ď CD }βℓ,˚}1 “ CD }β}1,1, where we have

used the fact that CD is the 1 Ñ 1 operator norm of the matrix D, i.e., CD “ max
u‰0

}Du}1
}u}1

.

This proves the claim.

C.3.2 Bounding }H}8 using p-Markov contraction

We start by recalling a well-known contraction quantity, the Dobrushin ergodicity coefficient,

and relating it to the mixing coefficients of p-Markov processes.
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Dobrushin ergodicity coefficient

For a Markov chain (or 1-Markov process) over a discrete space X , let P “ pPijq P R|X |ˆ|X |

be its transition kernel. The kernel is a nonnegative stochastic matrix, i.e., each row is a

probability distribution. Thus, P ě 0 and P1 “ 1 where 1 P R|X | is the all-ones vector. Let

H1 :“
␣

u P R|X |
| 1Ju “ 0

(

. (C.18)

This subspace is invariant to every Markov kernels P P R|X |ˆ|X |, i.e., for all u P H1, we have

uJP P H1. The Dobrushin ergodicity coefficient of P is defined as

τ1pP q :“ sup
uPH1

}uJP }1

}u}1
. (C.19)

It follows from the invariance of H1 to P that

}uJP ℓ
}1 ď τ1pP q

ℓ
}u}1 @u P H1. (C.20)

The following alternative characterization is well-known [Rhodius, 1997] (cf. Appendix C.3

for a proof):

Lemma 26. The Dobrushin ergodicity coefficient of P satisfies

τ1pP q “ 1
2
sup
x,y PX

}pex ´ eyq
TP }1 (C.21)

where ex is the x-th basis vector of RX .

Proof. Optimization problem in (C.19) is scale invariant, hence,

τ1pP q “ sup
u PH1p1q

}uJP }1, (C.22)

where H1p1q “ tu P H1 | }u}1 ď 1u. We will show that the set H1p1q “ C :“ convpt1
2
pex ´

eyquq. Using this, (C.22) is a maximization of a convex function }uJP }1 over a polytope

with extreme points 1
2
pex ´ eyq, x, y P X . It follows that the maximum occurs, at least, at an

extreme point, which gives the desired result. The inequality in the statement of the lemma

follows since the total-variation is bounded by 1.

The rest of the proof establishes H1p1q “ C. The inclusion C Ď H1p1q can be verified

easily by checking the membership of extreme points of C in H1p1q, since H1p1q is a convex
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set. We now prove the nontrivial direction H1p1q Ď C.

Let the ambient space be Rm, ∆m the probability simplex in Rm, and B B1 :“ tu P Rm :

}u}1 “ 1u the boundary of ℓ1 ball. We have C “ 1
2
∆m ` 1

2
p´∆mq, which is a Minkowski sum.

This follows since taking the Minkowski sum and taking the convex hull commute [Krein and

Smulian, 1940, Theorem 3]. Hence, it suffices to show that for any vector u P H1p1q, there

exists a pair of probability vectors π1, π2 P ∆m such that u “ 1
2
pπ1 ´ π2q. Since 0 P C, and

H1p1q “ convp0, B B1 XH1q, it is enough to consider u P B B1 XH1.

Let u P B B1 XH1, and let u` and u´ be the positive and negative parts of u, that is,

pu`qi “ maxpui, 0q and pu´qi “ ´minpui, 0q. Taking π1 “ 2u` and π2 “ 2u´, we have

u “ 1
2
pπ1 ´ π2q. Also, due to u P B B1, 1 “ }u}1 “ 1

2
}π1}1 ` 1

2
}π2}1 whereas due to u P H1,

0 “ 1Ju “ 1
2

}π}1 ´ }π2}1. It follows that }π1}1 “ }π2}1 “ 1, that is, π1, π2 P ∆m. This

concludes the proof.

Recall that }π1 ´ π2}TV denotes the total variation distance between probability distri-

butions π1 and π2. For discrete distributions we have, }π1 ´ π2}TV “ 1
2
}π1 ´ π2}1 ď 1, with

equality if and only if π1 and π2 are orthogonal, i.e., have completely mismatched supports.

Consequently, for any stochastic matrix P , we have τ1pP q ď 1. Furthermore, the inequality

is strict if and only if no two rows of P are orthogonal. Markov kernels with τ1p¨q ă 1 are

said to be scrambling. A sufficient condition for τ1pP q ă 1 is P having at least one column

with all entries positive.

The p-step chain

A p -Markov process can be equivalently represented by a Markov kernel K P r0, 1s|X |pˆ|X |p

that gives transition probabilities for consecutive blocks of size p. For any t P Z,

Kij “ P
´

pxt`1´k
q
p
k“1 “ j

ˇ

ˇ

ˇ
pxt´k

q
p
k“1 “ i

¯

, (C.23)

for all i, j P Xˆp.Kernel matrix K is constrained since Kij can be nonzero only if pj2, j3, . . . , jpq “

pi1, i2, . . . , ip´1q. The r-step chain associated with K has kernel Kr. In general, for all
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i, j P Xˆp and for r ě 1

pKr
qij “ P

´

pxt`r´k
q
p
k“1 “ j

ˇ

ˇ

ˇ
pxt´k

q
p
k“1 “ i

¯

. (C.24)

Similarly, pKrqij can be nonzero only if pjr`1, jr`2, . . . jpq “ pi1, i2, . . . , ip´rq, for r ă p.

However, no such constraint applies for r ě p. Moreover, one can verify that for r ă p,

a pair of rows pKrqi˚ and pKrqi1˚ are always orthogonal for i, i1 P Xˆp such that i1 ‰ i11.

Consequently, τ1pKrq “ 1 for all r ă p.

Fortunately for r “ p, one can show that τ1pKpq ă 1, under the mild assumption that

P
`

xt
“ z|pxt´k

q
p
k“1 “ j

˘

ą 0 for all z P X and j P Xˆp,

since this implies that Kp is a positive matrix and hence scrambling. Note that the above

condition always holds for the process defined in (5.3).

C.3.3 Proof of Lemma 25

Recall the notation τ1pΘ˚q defined in equation (5.11), whereby τ1pKpq “ τ1pΘ˚q by definition.

The following lemma provides an upper bound for |||mH|||8 as a function of τ1pΘ˚q.

Proof of (C.16)

Recall that Xn
´p`1 :“ txn,xn´1, . . . ,x´p`1u together make n steps of the p-Markov process.

Fix k ě 1 and take w P X , y P X p´1, and z P X k´1. We use the shorthand Xk
´p`1 “ wyz, to

denote xk “ w,Xk´1
k´p`1 “ y and Xk´p

´p`1 “ z and define the law

LpℓÑnq

k pwyzq :“ P
`

Xn
ℓ “ ¨ | Xk

´p`1 “ wyz
˘

“ P
`

Xn
ℓ “ ¨ | Xk

k´p`1 “ wy
˘

“: LpℓÑnq

k pwyq

using the p-Markov property, showing that LpℓÑnq

k pwyzq does not depend on z. Thus, we also

write LpℓÑnq

k pwyq for LpℓÑnq

k pwyzq.

143



Case 1. Assuming ℓ ` p ď n, we have

P
`

Xn
ℓ “ xnℓ | Xk

k´p`1 “ wy
˘

“ P
`

Xn
ℓ`p “ xnℓ`p | Xℓ`p´1

ℓ “ xℓ`p´1
ℓ

˘

¨ P
`

Xℓ`p´1
ℓ “ xℓ`p´1

ℓ | Xk
k´p`1 “ wy

˘

“ ϕ
`

xnℓ`p | xℓ`p´1
ℓ

˘

¨ ψwypxℓ`p´1
ℓ q

where we have defined ϕpu | vq :“ P
`

Xn
ℓ`p “ u | Xℓ`p´1

ℓ “ v
˘

and

ψwypβq :“ P
`

Xℓ`p´1
ℓ “ β | Xk

k´p`1 “ wy
˘

We note that ψwyp¨q is the wy-th row of Kℓ`p´k´1 which follows by comparing the definition

of ψwy with (C.24) applied with t “ k ` 1 and r “ ℓ ` p ´ k ´ 1. Letting ei denote the ith

row of identity in R|X |pˆ|X |p , we have

ψwy “ eJ
wy Kℓ`p´k´1.

Now, we have

2}LpℓÑnq
wyz ´ LpℓÑnq

w1yz }TV “
ÿ

xn
ℓ

ˇ

ˇP
`

Xn
ℓ “ xnℓ | Xk

k´p`1 “ wy
˘

´ P
`

Xn
ℓ “ xnℓ | Xk

k´p`1 “ w1y
˘
ˇ

ˇ

“
ÿ

xℓ`p´1
ℓ

ÿ

xn
ℓ`p

ϕ
`

xnℓ`p | xℓ`p´1
ℓ

˘ˇ

ˇψwypxℓ`p´1
ℓ q ´ ψw1ypxℓ`p´1

ℓ q
ˇ

ˇ

“
ÿ

xℓ`p´1
ℓ

ˇ

ˇψwypxℓ`p´1
ℓ q ´ ψw1ypxℓ`p´1

ℓ q
ˇ

ˇ

“ }ψwy ´ ψw1y}1 “ 2}LpℓÑ ℓ`p´1q
wy ´ LpℓÑ ℓ´p`1q

w1y }TV. (C.25)

Thus, we have

ηkℓ “ sup
w,w1,y,z

}LpℓÑnq

k pwyzq ´ LpℓÑnq

k pw1yzq}TV

“ 1
2
sup
w,w1,y

}ψwy ´ ψw1y}1 “ 1
2
sup
w,w1,y

}pewy ´ ew1yq
JKℓ`p´1´k

}1.

Let m “ ℓ ´ k ´ 1. Writing m “ ptm{pu ` pm mod pq and using 1
2
pewy ´ ew1yq P H1 (see
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Definition (C.18)), we get

ηkℓ ď sup
vPH1

}vJKp`ptm{pu`pm mod pq
}1

paq

ď sup
vPH1

τ1
`

Kpm mod pq
˘

}vJKp`ptm{pu
}1

pbq

ď sup
vPH1

}vJ
pKp

q
1`tm{pu

}1 ď τ1pKp
q
1`tm{pu, (C.26)

where (a) follows from (C.20) applied for uJ “ vJKp`ptm{pu which also belongs to H1, while (b)

follows from the inequality in Lemma 26 and the last inequality follows from inequality (C.20)

applied for u “ v. This is the desired result which holds for ℓ ` p ď n.

Case 2. When ℓ ` p ą n, the reduction in (C.25) is unnecessary, i.e., there are fewer

than p variables between ℓ and n. We cannot write the difference of the two underlying laws

in terms of rows of Kr for some integer r. But, we can augment and consider LpℓÑn`uq

k pwyzq

where u “ ℓ`p´n and then get LpℓÑnq

k pwyzq by marginalization. We have for any w,w1 P X ,

}LpℓÑnq

k pwyzq ´ LpℓÑnq

k pw1yzq}TV ď }LpℓÑn`uq

k pwyzq ´ LpℓÑn`uq

k pw1yzq}TV

since marginalization does not increase the total variation distance. This follows from the

triangle inequality: Assuming pp¨, ¨q and qp¨, ¨q to be some probability mass functions,
ÿ

x

ˇ

ˇ

ˇ
ppxq ´ qpxq

ˇ

ˇ

ˇ
“
ÿ

x

ˇ

ˇ

ˇ

ÿ

y

ppx, yq ´
ÿ

y

qpx, yq

ˇ

ˇ

ˇ
ď
ÿ

x

ÿ

y

|ppx, yq ´ qpx, yq|.

Since ℓ` p “ n` u, the proof in this case reduces to that of Case 1. The proof of (C.16) is

complete.

Proof of (C.17)

It is enough to prove the inequality for τ “ τ1pKpq. Then, the result follows since 1
p 1
x

´1q2
is

increasing on rτ1pKpq, 1q. For this τ , we have for any fixed k (recalling ηkk “ 1),

ÿ

ℓěk

ηkℓ ď 1 `
ÿ

ℓąk

τ 1`tpℓ´k´1q{pu
ď 1 `

ÿ

mě1

mp`k
ÿ

ℓ“pm´1qp`k`1

τm “ 1 `
pτ

1 ´ τ
.

It follows that

|||mH|||
2
8 :“

´

max
k

ÿ

ℓěk

ηkℓ

¯2

ď

´

1 `
pτ

1 ´ τ

¯2

ď 2 ` 2
p2τ 2

p1 ´ τq2

which is the desired result.
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C.4 Proofs of other Technical Lemmas

C.4.1 Proof of Lemmas 7 and 8

We start by defining some notation. Recall that for z P Xˆp,

Pz :“ PpXt`p´1
t “ ¨ | Xt´1

t´pq “ PpXp
1 “ ¨ | X0

1´pq,

using the invariance of the conditional distribution to time shifts. We also write pzp¨q for the

probability mass function of Pz, i.e.,

pzpaq :“ PpXt`p´1
t “ a | Xt´1

t´p “ zq “ PpXp
1 “ a | X0

1´p “ zq, @a P Xˆp.

We also let qpξ | aq :“ P
`

xt “ ξ | Xt´1
t´p “ a

˘

for ξ P X , a P Xˆp, and define

dKpa;a1
q :“ DKL

´

qp¨ | aq } qp¨ | a1
q

¯

, a,a1
P Xˆp,

where DKL denotes the KL divergence. The following lemma gives a decomposition for the

KL divergence between two samples of a p-Markov process. Lemmas 27, 28 and 29 are proved

later in Appendix C.4.

Lemma 27. Assume that the process is p-Markov in the sense of (C.15). Then,

DKLpPz }Pyq “

p
ÿ

t“1

Ez

„

dK

´

pXt´1
1 , z0t´pq ; pXt´1

1 ,y0
t´pq

¯

ȷ

.

Here, Ez denotes the expectation assuming that Xt´1
t is distributed as Pz. The notation

pXt´1
1 , z0t´pq P Xˆp denotes an N ˆ p matrix with columns in X , partitioned across columns

into N ˆ pt ´ 1q matrix Xt´1
1 and N ˆ pp ´ t ` 1q matrix z0t´p.

We also note the following bounds on the KL divergences between Bernoulli random

variables and Poisson random variables to be used in proving Lemmas 7 and 8 respectively.

Lemma 28. Let U „ Berppq, and V „ Berpqq for p, q P rε, 1 ´ εs for some ε P p0, 1
2
q. Then,

DKLpU}V q “ p log
p

q
` p1 ´ pq log

1 ´ p

1 ´ q
ď

3

4εp1 ´ εq
pp ´ qq2.

Lemma 29. Let U “ mintM,Poissonppqu, and V “ mintM,Poissonpqqu for p, q ą ε ą 0 for
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some ε. Then,

DKLpU}V q ď p log
p

q
` pq ´ pq ď

1

q
pp ´ qq2 ď

1

ε
pp ´ qq2

Proof of Lemma 7. Continuing with the proof of Lemma 7, recall that S “ t0, 1uN , and

xt
| Xt´1

t´p „

N
ź

i“1

Ber
`

fi
`

xΘi,Xt´1
t´pDy

˘˘

.

Let αt
i “ xΘ˚

i , pXt´1
1 , z0t´pqDy and βt

i “ xΘi, pXt´1
1 ,y0

t´pqDy. Then using the decomposability

of the KL divergence for product measures,

dK
`

pXt´1
1 , z0t´pq } pXt´1

1 ,y0
t´pq

˘

“

N
ÿ

i“1

DKL

`

Ber
`

fipα
t
iq
˘
›

› Ber
`

fipβ
t
iq
˘ ˘

,

ď
3

4εp1 ´ εq

N
ÿ

i“1

“

fipα
t
iq ´ fipβ

t
iq
‰2
.

By the Lipschitz assumption, rfipα
t
iq ´ fipβ

t
iqs2 ď L2

i

`

αt
i ´ βt

i

˘2. Using ε ă 1{2, it follows that

DKLpPz }Pyq ď
3

2ε

N
ÿ

i“1

L2
i

p
ÿ

t“1

Ez

`

αt
i ´ βt

i

˘2
.

Let dmℓ “ pdℓqm be the pm, ℓqth entry of D. Let zt´m
j ,m “ t, . . . , p denote entries on the jth

row of z0t´p and similarly for y0
t´p. We have

αt
i ´ βt

i “ xΘ˚
i , p0Nˆpt´1q, z

0
t´p ´ y0

t´pqDy “
ÿ

jℓ

Θ˚
ijℓ

p
ÿ

m“t

pzt´m
j ´ yt´m

j qdmℓ,

where 0Nˆpt´1q is the N ˆ pt ´ 1q zero matrix. Assuming that Xi Ă r´Bi, Bis, we have

|αt
i ´ βt

i | ď
ÿ

jℓ

|Θijℓ|

p
ÿ

m“t

`

|zt´m
j | ` |yt´m

j |
˘

|dmℓ|

ď 2B
ÿ

jℓ

|Θijℓ|

p
ÿ

m“t

|dmℓ|.

Putting the pieces together finishes the proof.

Proof of Lemma 8. The proof of Lemma 8, proceeds almost identically to that of 7. In this

case however S “ NN , and

xt
| Xt´1

t´p „

N
ź

i“1

Poisson
`

fi
`

xΘ˚
i ,Xt´1

t´pDy
˘˘

.

Let αt
i “ xΘ˚

i , pXt´1
1 , z0t´pqDy and βt

i “ xΘ˚
i , pXt´1

1 ,y0
t´pqDy. Then using the decomposability

147



of the KL divergence for product measures,

dK
`

pXt´1
1 , z0t´pq } pXt´1

1 ,y0
t´pq

˘

“

N
ÿ

i“1

DKL

`

Poisson
`

fipα
t
iq
˘
›

› Poisson
`

fipβ
t
iq
˘ ˘

,

ď
1

ε

N
ÿ

i“1

“

fipα
t
iq ´ fipβ

t
iq
‰2

ď
1

ε

N
ÿ

i“1

L2
i

`

αt
i ´ βt

i

˘2
,

where the first inequality is using Lemma 29 and the second by the Lipschitz assumption on

fi. The rest follows identically as in the proof of Lemma 7.

C.4.2 Proof of Lemma 27

Recall the notation Xp
1 “ pxp, . . . , x1q. Similarly, let a “ pap, . . . , a1q P Xˆp so that Xp

1 “ a

is the same as Xu “ au for all u P rps. We also write at´1
1 “ pat´1, . . . , a1q and so on for

elements of Xˆp. For any a, z P Xˆp, we have

pzpaq “ PpXp
1 “ a | X0

1´p “ zq

“

p
ź

t“1

Ppxt “ at | X t´1
1 “ at´1

1 , X0
t´p “ z0t´pq

“

p
ź

t“1

P
`

xt “ at
ˇ

ˇ X t´1
t´p “ pat´1

1 , z0t´pq
˘

“

p
ź

t“1

qpat | pat´1
1 , z0t´pqq

where the second line is by the Markov property. Replacing a with a random variable

Xp
1 P Xˆp,

pzpXp
1 q “

p
ź

t“1

q
`

xt | pX t´1
1 , z0t´pq

˘

.

Letting Ez denote the expectation assuming Xp
1 „ Pz, we have

DKLpPz }Pyq “ Ez log
pzpXp

1 q

pypXp
1 q

“

p
ÿ

t“1

Ez log
q
`

xt | pX t´1
1 , z0t´pq

˘

q
`

xt | pX t´1
1 , y0t´pq

˘

“

p
ÿ

t“1

EzEz

”

log
q
`

xt | pX t´1
1 , z0t´pq

˘

q
`

xt | pX t´1
1 , y0t´pq

˘

ˇ

ˇ

ˇ
X t´1

1

ı

“

p
ÿ

t“1

Ez dK
`

pX t´1
1 , z0t´pq } pX t´1

1 , y0t´pq
˘

where the last line follows by noting that underXp
1 „ Pz, further conditioning onX t´1

1 is equiv-
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alent to conditioning on X t´1
1 and X0

t´p “ z0t´p, i.e., xt will have distribution qp ¨ | pX t´1
1 , z0t´pqq

under this conditioning.

C.4.3 Proof of Lemma 28

It is enough to prove for the case q ě p (the other case follows by applying the proven case

to 1 ´ p and 1 ´ q). The second claim follows from the decomposition of the KL divergence

for product distributions. Let δ :“ εp1 ´ εq. Fix p and consider the function

fpqq “ p log
p

q
` p1 ´ pq log

1 ´ p

1 ´ q
´

1

4δ
pp ´ qq2,

over q P rp, 1 ´ εs. We have

f 1
pqq “ pq ´ pq

´ 1

qp1 ´ qq
´

1

2δ

¯

.

We have fpqq “ fppq ` f 1prqqpq ´ pq for some rq P rp, qs. Note that fppq “ 0 and

f 1
prqq ď prq ´ pq

´1

δ
´

1

2δ

¯

ď
1

2δ
pq ´ pq

using the fact that prqp1 ´ rqqq´1 P r4, δ´1s. Thus, we have fpqq ď pq ´ pq2{p2δq.

C.4.4 Proof of Lemma 29

The KL divergence between two Poisson distributions with parameters p and q is given by

p log
p

q
` pq ´ pq ´

pq ´ pq2

q
“ pplog

p

q
` 1 ´

p

q
q

We show that the truncation only reduces the KL divergence using Jensen’s inequality for

the convex function gpu, vq “ u logpu, vq. Let pi :“ e´p pi

i!
and qi :“ e´q qi

i!
. Next, observe that

the KL divergence for the truncated version is
ÿ

iăM

pi log
pi
qi

`
ÿ

iěM

pi log

ř

iěM pi
ř

iěM qi

Applying the Jensen’s inequality to second term, we get that the quantity above is at most
ÿ

iăM

pi log
pi
qi

`
ÿ

iěM

pi log
pi
qi
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which is the KL divergence between Poisson(p) and Poisson(q). Finally, observe that for

p, q ą 0

p log
p

q
` pq ´ pq ´

pq ´ pq2

q
“ pplog

p

q
` 1 ´

p

q
q ď 0

where we use the inequality log x ď x ´ 1.
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