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Abstract

The role of plasticity and epigenetics in shaping cancer evolution and response to therapy has 

taken center stage with recent technological advances including single cell sequencing. This 

roadmap article is focused on state-of-the-art mathematical and experimental approaches to 

interrogate plasticity in cancer, and addresses the following themes and questions: is there a formal 

overarching framework that encompasses both non-genetic plasticity and mutation-driven somatic 

evolution? How do we measure and model the role of the microenvironment in influencing/

controlling non-genetic plasticity? How can we experimentally study non-genetic plasticity? 

Which mathematical techniques are required or best suited? What are the clinical and practical 

applications and implications of these concepts?
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1. Introduction to the roadmap on plasticity and epigenetics in cancer

Genetic mutations play a key role in cancer progression and the evolution of treatment 

resistance. But while these mutations provide the substrate for processes driving somatic 

evolution, evolution also depends on selection at the phenotypic level, which is driven by 

epigenetic and microenvironmental factors enabling plasticity in tumour cell populations. 

Exploring the genetic mechanisms in cancer has driven much of the basic research in the last 

few decades but new techniques such as single cell sequencing and mathematical modelling 
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have allowed scientists to study the role of plasticity and epigenetics in shaping cancer 

evolution and response to therapy.

In this roadmap we focus on some of these state-of-the-art mathematical and experimental 

approaches to interrogate plasticity in cancer. Here we summarize the specific contributions 

from experts and identify current challenges to understanding the mechanisms and role of 

phenotypic plasticity in cancer progression as well as discussing ways of translating these 

ideas into therapeutic opportunities.

1.1. Experimental challenges and opportunities

One of the key challenges in the study of plasticity lies in characterizing and defining 
phenotypic states. For example, defining cell states with cell surface markers or antibodies 

with flow cytometry can give us a very different perspective than using more high-

dimensional technology such as single cell genomic sequencing. Even after a phenotypic 

state is defined, it remains difficult to experimentally isolate cells in specific states to study 

subpopulations and heterogeneity within a given sample. Another layer of complexity is the 

possibility of a continuum—rather than discrete set-of states. Cells that are in a state of flux, 

or transition, between phenotypic states are particularly difficult to identify in vivo, where 

states may exist simultaneously or dynamically change due to environmental factors. Critical 

experimental challenges also include developing approaches to observe the time scale and 

frequency of state transitions, which are needed to guide experimental designs.

In addition to defining and observing phenotypic states and transitions, understanding 

the mechanisms driving these behaviours, which may change in space and in time, 

poses another significant challenge. Inter- and intra-cellular signalling, for instance, is a 

dynamic, feedback-driven process that depends on the cell microenvironment. There is 

currently a limited ability to measure or quantitatively interrogate potential mechanisms 

since many model systems either lack or utilize a vastly simplified representation of the cell 

microenvironment.

To complicate matters even more, cancer therapies which directly or indirectly modify 

epigenetic states may impact transition rates or induce novel, previously uncharacterized 

states. These challenges constitute opportunities to develop new experimental model systems 

and methods of interrogation. This is an active area of research and is ripe for innovation, as 

discussed in sections by Strelez et al and Mitchell and Lathia.

1.2. Mathematical challenges and opportunities

In contrast to experimental challenges, which require technological advances and cleverly 

designed experiments, mathematical models are limited by our understanding of biology and 

the resolution and quality of the experimental data. The development of new mathematical 

models and theories can be used, in conjunction with experimental and clinical data, to aid 

in testing hypotheses about characterization of states, heritability and transience, dynamics 

of populations, directionality preferences, and environmental effects. However, this requires 

analyses of evolutionary models which reflect known and hypothesized mechanisms of 
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phenotypic switching, to produce model predictions to compare with experimentally 

observable measurements.

A pressing practical challenge for mathematical modelling in cancer plasticity includes the 

need for statistical techniques to estimate transition rates and characteristics of individual 

states from bulk data and single time point snapshots of the dynamic system. As shown by 

Frankhouser et al, this is important for estimating parameters and rate constants in order to 

quantify and characterize the behaviours of individual states, as well as determine critical 

time scales of transition dynamics.

At a conceptual level, challenges remain in how to identify and model genetic and 
non-genetic evolution in cancer. This distinction is critical to correctly modelling the 

mechanism(s) of epigenetic states and plasticity. Genetic and non-genetic evolutionary 

dynamics may differ substantially and have important implications for therapy design. 

As suggested by Marusyk et al and Huang, integrated modelling frameworks reflecting 

both genetic and non-genetic evolutionary dynamics are crucial for understanding complex 

tumour behaviours and response to therapy.

1.3. Translating to clinical applications

Ultimately, most studies of epigenetic phenotypes and cellular plasticity in cancer are 

motivated by the goal of improving the application of existing therapies as well as the 

development of new ones. The two major contributors to mortality in cancer are metastases 

and therapy resistance, both of which are mediated by plasticity. Hari and Jolly describe how 

the integration of clinical and experimental data with machine learning and mathematical 

multiscale modelling is the key to design new rational therapeutic strategies. From a data-

centric point of view, Hatzikirou shows how mathematical models can integrate machine 

learning-based tools with evolutionary theories of cancer evolution to provide opportunities 

for biological insight and innovation in therapeutic design.

The pharmaceutical industry, tasked with translating these novel scientific advances into 

practice, has begun to recognize the role of plasticity and epigenetic states in cancer 

treatment. In particular, industrial research groups more frequently now employ both 

experimental and mathematical models to rationally design treatment strategies that prevent 

epigenetically driven resistance or use therapies targeting epigenetic processes. At a 

practical level in the clinic, there is a pressing need to connect experiments and modelling 

to understand clinical responses to epigenetic or cell state modifying treatments such as 

immunotherapies.

As suggested by Poels et al, novel treatment strategies are needed to combat drug-resistance 

driven by tumour plasticity, and mathematical models can be leveraged to inform the design 

of such strategies. These efforts will require improved monitoring of dynamic tumour 

responses in vivo, which may be enabled by promising new technologies such as detection 

and analysis of cell-free DNA and circulating tumour cells.

Plasticity not only provides therapeutic challenges but also shows us novel therapeutic 

targets that have, by and large, been ignored and that could be exploited to improve 
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outcomes. For example, Robertson-Tessi et al consider cellular plasticity in the context of 

bet-hedging strategies employed in tumour cell populations that drive escape from therapy. 

They suggest that the mechanisms of phenotypic memory in bet-hedging may be targeted to 

increase the efficacy of primary therapies.

1.4. Concluding remarks

Together, the perspectives from leaders in the field featured in this roadmap present 

a nuanced view of plasticity, highlighting the new experimental techniques to capture 

epigenetic mechanisms that drive plasticity at the single cell level as well as the 

mathematical models and methods that enable integration of data with theory. Together, 

advances in experimental methods and mathematical modelling and analysis help us better 

understand the therapeutic implications of cell plasticity in cancer.
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2. Diversity of cancer-associated fibroblasts and their influence on cancer 

progression

2.1. Status

Cancer-associated fibroblasts (CAFs), the dominant stromal cell type within the tumor 

microenvironment (TME), have been linked to several tumor promoting mechanisms across 

cancer types, including increased tumor cell proliferation and invasion, and protection 

against drug-induced apoptosis [1]. Research surrounding CAFs has historically focused on 

identifying markers that uniquely define this cell population. Several studies have attempted 

to target CAF-specific markers in in vivo models and clinical trials, yet these attempts 

have been unsuccessful [1]. Of late, CAF studies have evolved to include sophisticated 

subpopulation analyses, revealing significant intra- and inter-tumoral CAF heterogeneity. 

The presence of CAF diversity may explain why the identification of CAF-specific targets 

has been challenging and unsuccessful in clinical trials. Increasingly, research in the field 

suggests that certain CAF populations are indicative of poor patient prognosis, confer drug 

resistance, and increase tumor invasion and metastasis, while other CAF populations are 

capable of restraining tumor growth, stimulating a pro-inflammatory TME, and predicting 
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response to immunotherapy [2]. While CAF heterogeneity is acknowledged, there remains 

limited insight into the functional implications of this heterogeneity on cancer progression.

2.2. Current and future challenges

Important work is being done to identify CAF subpopulations, yet there is a critical 

need to connect these findings to an impact on tumor cell behavior. Moreover, it is now 

appreciated that CAFs are highly plastic and respond to diverse cues from cancer cells 

and the TME [2]. Rather than existing in a terminally differentiated state, CAFs can adapt 

to surrounding factors and interconvert between states, thus influencing tumor cells in a 

diverse manner. An example of CAF plasticity was recently highlighted in a pancreatic 

ductal adenocarcinoma (PDAC) study, where the authors identified spatially and functionally 

distinct CAF subpopulations, termed inflammatory CAFs (iCAFs) and myofibroblasts 

(myCAFs). They concluded that myCAFs reside closer to the tumor foci, while iCAFs 

are further away, and an intermediate subpopulation that expresses both myCAF and iCAF 

markers was also detected. Further work by this group demonstrated that the cell state 

transition between myCAFs and iCAFs was dependent on TGF-β and IL-1/JAK/STAT 

signaling from the tumor cells [3]. A deeper understanding of CAF plasticity in the 

context of tumorigenesis remains an important research challenge with significant clinical 

implications.

To tackle this challenge, we must address fundamental questions such as: what cues from 

genetically diverse cancer cells or the TME are responsible for CAFs switching cell states? 

To what extent does CAF heterogeneity depend on intrinsic mechanisms (e.g., cell of origin) 

or stochastic gene expression? How do CAF subpopulations evolve over time? How do 

CAF phenotypic states influence cancer progression? To respond to these questions, it is 

imperative to recreate and tune aspects of the TME and measure the resulting changes to 

CAFs and cancer cells (figure 1). This requires (1) biological model systems in which, at 

a bare minimum, cancer cells and CAFs can be physically cultured together, (2) the ability 

to deconvolve CAF and cancer cell behavior, (3) measurements that capture spatial and 

temporal dynamics, (4) development of mathematical models to understand the dynamics 

at timescales difficult to directly measure, and (5) validation of findings with human tumor 

tissue.

2.3. Advances in science, technology and mathematics to meet challenges

Recent scientific and technological advancements have improved our ability to define and 

perturb the functional significance of CAF diversity in cancer biology.

Biomimetic models: cell culture advances have led to organ-on-chip and spheroid/organoid 

models that confer 3D spatial relationships in a tunable human TME context while 

maintaining a degree of throughput previously limited to 2D cell culture studies [4]. The full 

complexity of organ-level interactions has yet to be captured in these biomimetic models, 

but the current technologies are conducive to mimicking physical interactions between CAFs 

and cancer cells and unraveling how CAF populations change in response to the TME [5].

Experimental tools: advances in experimental tools have focused on improving resolution 

from the cell population level to the single cell level. Technologies such as single-cell 
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RNA seq (sc-RNAseq), DNA barcoding, and spatial-omics methods (e.g., seqFISH+) offer 

interrogation of individual cell transcriptomes, lineage tracing, and a spatial context for the 

cells, respectively [6–9]. While these technologies tend to generate massive amounts of data 

that require significant computational power for analysis and individually may lose spatial 

or full heterogeneity context, they have the potential to provide unparalleled insight into 

dynamic CAF cell states in a spatiotemporal manner, especially when coupled together.

Functional readouts: functional readouts such as tumor cell viability (particularly in response 

to drug therapies) and migration/invasion assays offer contextual analysis for how CAFs 

impact tumor cell behavior. Methodological advances in live cell imaging (e.g., light 

sheet microscopy, time-lapse microscopy, high-content screening), have transformed our 

ability to visualize diverse behavioral profiles in a spatiotemporal manner at single cell 

resolutions [10]. While technical considerations must be weighed, including phototoxicity 

and resolution limitations, advanced imaging and analysis techniques offer greater insight 

into the functional significance of individual cell states compared to conventional static, 

population-level readouts. As biomimetic models and assay technologies improve, tumor 

cell behavior can be studied in a more physiologically relevant context.

Mathematical modeling: mathematical models, which are broadly categorized as discrete, 

continuum, and hybrid, can provide useful predictions of experimental results and offer 

information at difficult to observe timescales [11]. In one instance, a mathematical model 

was used to describe the interactions between cancer cells and fibroblasts using nonlinear 

differential equations to model state transitions between pro- and anti-tumor fibroblasts 

and investigated the role of phenotypic switching on cancer progression [12]. While 

mathematical models are immensely powerful, they are inherently biased by the underlying 

experimental data and theories/principles used to create them. However, this concern can be 

alleviated via robust experimental protocols that limit experimental bias and maintain the 

predictive power of the models.

Integration and applications: the advances outlined above offer new avenues to interrogate 

the complexity of CAF phenotypic states and the resulting impact on tumor cell behaviors. 

For example, in the context of treatment strategies, two studies combining sc-RNAseq 

analysis of PDAC CAFs with data from patient tissue and clinical trials revealed that some 

CAF populations can influence tumor response to immunotherapy [13, 14].

To expand our understanding of CAF plasticity, we suggest a workflow that combines 

the areas of biomimetic models, experimental tools, functional readouts, and mathematical 

models (figure 2). For instance, to better study the effect of CAFs on tumor metastasis, 

a biomimetic organ-on-chip model could be used to accurately recreate the tissue-tissue 

interface of vessel structures and cancerous tissue while tuning the model to include CAF 

vs no CAF scenarios [15]. Combining an experimental technique, such as sc-RNAseq of 

CAFs, with the functional readout of cancer cell intravasation on-chip, measured by live 

cell imaging, would yield powerful insights into the phenotypic heterogeneity of CAFs 

and the effects of those phenotypic profiles on invasion. A mathematical model could be 

developed from the sc-RNAseq and intravasation data and used to generate predictions for 

how perturbations of the TME influence the composition of CAF subtypes and subsequent 
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tumor cell invasion behaviors. Together, these scientific and technological advances offer 

unprecedented approaches to studying CAF heterogeneity and, when combined with patient 

samples and large-scale clinical datasets, can begin to connect the functional relevance of 

CAF heterogeneity to patient outcome.

2.4. Concluding remarks

It is evident that CAFs are important mediators of cell behavior in the TME and although 

there are significant challenges to studying this cell type, understanding how these cells 

interact with their surroundings (and systematically targeting these interactions) has the 

potential to significantly impact patient care.
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3. Modelling mayhem: interrogating cellular heterogeneity and the cancer 

stem cell state during tumor progression and in response to therapies

3.1. Status

Cellular heterogeneity has long been appreciated as a hallmark of advanced cancers and 

the significance of these century-old histological observations has been recently confirmed 

by molecular and functional studies demonstrating distinct cell populations in a given 

human tumor. First in leukemias, then in breast and glioblastoma (GBM), the demonstration 

of a cancer stem cell (CSC) population capable of generating heterogeneous tumors 

from transplantation of a small number of human cells in a xenograft model provided 

unprecedented opportunities to better understand tumor progression and identify new 

molecular targets for therapeutic development [16]. While one of the first phenotypes 

attributed to CSCs was resistance to standard of care approaches, including radiation 

and chemotherapies, CSCs have been linked to other key oncogenic processes including 

metastasis, angiogenesis, and immune evasion [17]. More recent studies have demonstrated 

multiple populations of CSCs in a given tumor with distinct cell cycle states and 

metabolic dependencies, as well as different underlying gene networks [18], highlighting 

the circumstance that there is heterogeneity within the CSC compartment. Transcriptional 

profiling of GBM tumors at single cell resolution has indicated that CSCs likely do not 
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represent distinct populations, but rather a cell state, similar to epithelial and mesenchymal 

states, and CSCs exhibit plasticity in their capacity to flow in and out of this CSC state. If 

we maintain that the CSC state is a major contributor to treatment failure, experiments 

designed to gain mechanistic insight into the cell intrinsic and extrinsic mechanisms 

controlling transition into and out of the CSC state have the ability to provide much needed 

information into how tumors develop, progress, and resist therapy.

3.2. Current and future challenges

The initial observations of CSCs were based on enrichment via cell surface markers and 

validation in xenotransplantation and surrogate in vitro self-renewal assays. While these 

approaches have provided a strong foundation for the understanding of CSC properties—

namely self-renewal, tumor initiation and recapitulation of tumor heterogeneity—they have 

been limited in their ability to capture the dynamic and heterogeneous nature of CSCs. 

For instance, monitoring CSC properties in real time (both in vitro and in vivo) at high 

resolution is technically challenging, thereby mechanisms driving cells in and out of the 

CSC state have been elusive and subject to inference based on static analyses. Some 

initial progress has been made in this area though the generation of reporter systems such 

as fluorescent protein promoter reporters of pluripotency transcription factors (NANOG, 

SOX2, OCT4) shown to be elevated in CSCs [19] or via assessment of the dynamics 

of CSC division (via symmetric or asymmetric cell division) observed in CSC cultures 

[20]. These reporter systems have provided some understanding of molecular mechanisms 

enriched in CSCs and CSC behavior in vivo, and lever aging them for high resolution 

profiling (single cell genomics) or real time tracking in therapeutic contexts in vivo 
could provide deeper understanding of these populations. Specifically, reporter systems 

could help address the timescale and dynamics of transitions into and out of the CSC 

state, signals and pressures that induce and reverse these transitions (such as therapeutic 

pressure and microenvironmental interactions), initial and longer-term clonal diversity of 

cell types that resist therapy, and the relationship between transcriptional states and reported 

clonal diversity. Utilization of the abovementioned pluripotent reporter systems may reveal 

methods to perturb the CSC state through inhibiting plasticity and blocking transitions into 

the CSC state.

Genetically-engineered mouse models have provided important insight into the mechanisms 

driving tumor initiation, growth, and progression, and serve as pre-clinical models for 

therapeutic development efforts, however, the ability to assess the CSC state in real time 

in these models remains challenging [21]. While immunodeficient models are attractive 

due to the ability to implant and test therapeutics on primary human tumor cells, given 

our increased understanding of the importance and coordination of the immune system in 

GBM, it seems prudent that we also utilize models that recapitulate the immune infiltration 

and suppressive mechanisms occurring in human tumors [22]. Incorporating these tumor-

immune interactions into our experimental modelling of tumor cell states in GBM will 

be important not only for predicting (immune) therapy clinical outcomes, but also for 

monitoring CSC dynamics in the context of cell extrinsic pressures. Some exciting progress 

has been made on this front in brain tumor models (GBM, medulloblastoma) [23, 24], and as 
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with reporter systems described above, there is great potential in using these models for high 

resolution profiling studies and in-depth in vivo assessments.

3.3. Advances in science, technology and mathematics to meet challenges

As discussed above, the dynamic nature and clinical relevance of CSCs invoke the need 

to visualize and track the CSC state in the context of tumor development and in response 

to therapy, both in conventional mouse models and human-derived models. Below are 

a summary of advances in CSC systems that have the potential to be leveraged with 

mathematical modelling to eventually develop, test, and validate integrated therapeutic 

approaches.

a. Representative models of human cancers and CSC compartment(s): patient-

derived organoid models have led to further understanding of tumor growth 

dynamics through their increased maintenance of cellular diversity compared 

to sphere culture, allowing the modeling of CSCs and their non-CSC progeny 

in parallel. Moreover, the engraftment of tumor-derived organoids into normal 

human tissue organoids, as has recently been done in GBM models [25–27], 

provides additional layers of complexity and opportunities to study how tumor 

cells shape non-tumor niches and vice versa. Organoids provide the opportunity 

to interrogate the CSC state in an ex vivo system that maintains crucial features 

of primary tumors such as cellular and microenvironmental heterogeneity, cell-

cell interactions, invasiveness and heterogeneous therapeutic response. Such 

molecular insight can be leveraged for mouse models and next-generation 

reporter systems.

b. The development of high fidelity CSC reporter systems: as introduced 

above, current CSC reporter systems have been built around core pluripotency 

transcription factors (NANOG, SOX2, OCT4) [19] or cellular processes such as 

cell division, and provide assessment of the CSC state in real time. Expanding 

these systems to include lineage tracing elements via genetic approaches to 

mark individual populations (e.g. confetti [28], MADM [29], ClonTracer [30], 

macsGESTALT [31]) could be leveraged for powerful dynamic modelling 

studies. Further, incorporating these reporter systems into organoid and genetic 

mouse models may vastly improve our understanding of CSC dynamics in the 

setting of external stimuli.

3.4. Concluding remarks

The cancer biology field continues to experience rapid advances across a variety of areas

—ranging from the fundamental understanding of tumor initiation and progression to 

visualizing tumors at the single cell level—providing great promise for the identification of 

new treatment strategies. Decades of research support the idea that strategies to compromise 

the CSC state will likely be therapeutically effective. To facilitate this translational goal, a 

more nuanced understanding of the CSC state is required and this will require enhanced 

models, both human-derived and genetically engineered mouse models, as well as the 

ability to fully appreciate the CSC state in real time in vitro and in developing and 

refractory tumors (in vivo). Overall, the future utilization of high-fidelity experimental 
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models in combination with mathematical modelling approaches holds promise for deeper 

understanding and prediction of the dynamics of CSC state transitions and for the 

identification of putative vulnerabilities to be exploited for therapeutic benefit (figure 3).
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4. Viewing cancer as a system-wide epigenetic state-transition

4.1. Status

Although cancer is typically viewed as a clonally evolving disease caused by inherited 

or acquired genetic mutations, epigenetic alterations may also be required for malignant 

transformation. Epigenetic mechanisms identified in cancer progression include changes in 

DNA methylation (DNAm), histone modifications, post-transcriptional changes, or altered 

expression of messenger or micro-RNA (mRNA, miRNA). In this context, an epigenetic 

landscape represents the set of all possible epigenetic states during transformation from 

a healthy to diseased state. Consequently, a cancer-specific epigenetic landscape can 

be viewed as a cancer state-space (figure 4(A)) where cancer evolves through distinct 

steady states characterized by distinct genetic and epigenetic alterations corresponding to 

healthy, perturbed, or cancer states. State-space representations have been used to infer cell 

differentiation and as fitness landscapes in a number of different contexts at the cellular level 

[32–36], however, these representations often focus on state-transitions of individual cells 

and not state-transitions of the collection of malignant and non-malignant cells.

The epigenetic state-space approach to studying cancer initiation and progression has many 

potential research and clinical applications by associating an epigenetic configuration with a 

specific phenotype. With a state-space constructed empirically with genomic data, biological 

mechanisms associated with epigenetically driven phenotypic states can be discovered. For 

example, specific topologies of gene regulatory networks (GRNs) have been shown to 

produce attractor states in the landscape [37–39].

Clinically, the state-space has diagnostic, predictive, and prognostic potential. By following 

a patient longitudinally over time to capture sufficient information about the disease state-

space, an individual’s disease trajectory can be predicted by solving stochastic equations 

of motion in the landscape (figure 4(B)). Trajectories in the epigenetic state-space can 

be used to predict disease progression or response to treatment for an individual patient. 
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Personalised predictions from epigenetic states can add an additional layer of information 

that clinicians can use to tailor therapeutic decisions to an individual’s predicted course of 

disease. However, several challenges remain to translate these concepts into the clinic which 

are outlined in current and future challenges.

Acute myeloid leukaemia (AML) is an ideal model system for investigating the dynamics of 

epigenetic state-transitions of cancer because the disease can be directly assayed through 

the peripheral blood at sequential time points without invasive procedures. In AML, 

epigenetic mechanisms of DNAm and miRNA expression play an important role in disease 

initiation and evolution [40, 41]. Although DNA mutations have been observed years before 

diagnosis [42, 43] and DNAm has been investigated for its role in AML state-transition 

[44], miRNA have often been overlooked as an epigenetic mechanism, despite their role 

in post-transcriptional regulation of onco- and tumour suppressor gene expression. We 

have shown that mRNA and miRNA expression levels in blood cells—both normal and 

leukemic cells—can be used to create an AML state-space where it is possible to follow the 

system undergoing state-transition during AML development, thereby reinforcing the role of 

epigenetic states for AML pathogenesis and in general, for malignant transformation [32].

4.2. Current and future challenges

The most formidable challenge in a state-space approach is constructing and identifying 

the dimensionality of the state-space. First, the number of stable and unstable states 

must be observed or hypothesized, which requires multiple sequential observations of the 

system. Unstable states are less likely to be observed than stable states and therefore their 

existence must be hypothesized or inferred. Moreover, longitudinally collected samples 

from individual patients are expensive and difficult to obtain. One approach to address 

this challenge is to use samples from different individuals at different stages of cancer 

development to increase the number of observations and create pseudo trajectories; however, 

genetic variation across individuals makes this approach challenging. An alternative 

approach is to use a disease model, such as a mouse, where samples can be more easily 

obtained, from the induction of driver gene mutations and throughout the course of disease 

development. In addition to the challenge of having a ‘good’ mouse model recapitulating the 

human disease, we also face the challenge of mapping between mouse and human.

Another challenge is quantitatively mapping the underlying biological mechanisms that 

produce or alter empirically derived state-spaces. In system-wide state-spaces derived 

from bulk samples where multiple cell types contribute to the observed epigenetic state, 

identifying a mechanism is difficult, and mathematically impossible to solve uniquely. To 

address this challenge, one approach is to compare landscapes constructed with single 

cell genomic sequencing to the landscape derived from bulk samples. However, single 

cell experiments present an additional set of challenges; for example, single-cell data can 

be sparse due to gene dropouts which are false negatives created when certain genes are 

not observed in all cells. Future studies need to investigate whether similar information 

regarding the system’s epigenetic state is contained in both single-cell and bulk samples. To 

this end, we have already shown that changes in gene expression may be detected from bulk 
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samples before either phenotypic changes or leukemic cells can be detected; this supports 

the concept that cancer initiation may induce system-wide epigenetic state-transitions [32].

4.3. Advances in science, technology and mathematics to meet challenges

The most significant advance to enable epigenetic state-space models of cancer is the routine 

collection of ‘omics’ data at sequential time-points from diagnosis through treatment, 

which is supported by the precision medicine approach. Although longitudinal collection 

of genomic data remains mostly in research centres, such data may enable the creation of 

patient-specific epigenetic state-transition trajectories correlated with clinical features and 

outcomes. Moreover, the use of standardized sequencing arrays enables quantitative and 

reproducible state-spaces and trajectories that reduce the variability in genomic data due to 

sequencing technologies and bioinformatics methods.

In parallel to the collection of genomic data over time, advances in mathematical 

methods to construct the state-space are equally important. Although not a recent 

advance, dimensionality reduction methods such as the singular value decomposition 

(SVD)combined with information-theoretic measures such as mutual information, can be 

used to quantitatively identify genomic features most relevant to cancer state-transition. 

Using SVD which produces lower dimensional representations of the data, a state-space 

can be constructed from one or more principal components; the associated eigenvector(s) 

describes how each gene contributes to the state-space construction. This enables inference 

of state-transition dynamics and identification of eigenvectors of gene expression, or 

‘eigengenes,’ that contribute to the normal, perturbed, transition, or cancer states [32, 45].

A generalisation of the SVD, the tensor GSVD, provides a method to simultaneously 

integrate multiple data types, (ex. mRNA, miRNA, DNAm) derived from the same sample 

to identify novel multi-omic defined epigenetic states [45]. Integrating multiple epigenetic 

data from bulk samples may provide more accurate predictions of future states and has the 

potential to reveal multifaceted underlying mechanisms of cancer state-transition. In support 

of a multi-omic view of epigenetic state-transition, we have shown that an AML state-space 

can be constructed using bulk miRNA as well as mRNA expression profiles from peripheral 

blood in a mouse model [35]. Intriguingly, the miRNA-derived state-space is very similar to 

the mRNA-derived state-space, but not identical. This raises the possibility that mRNA and 

miRNA contain complementary information about AML induced epigenetic state-transition.

Another advance is the use of data-driven mathematical models to predict the evolution of 

epigenetic states over time. By identifying critical points in the state-space, an individual’s 

epigenetic state can be modelled as a particle undergoing Brownian motion in the landscape. 

Importantly, given the location of a sample in the state-space, the probability of finding 

the location of the particle at some future time can be predicted with the solution of the 

Fokker–Planck equation corresponding to the equation of motion in the state-space (figure 

4(B)).

Our studies of AML state-transition illustrate how an epigenetic state-space provides an 

analytical framework to investigate biological processes and predict disease evolution. Since 

the location in the state-space represents a phenotypic state in cancer development, the 
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state-space can be used to align individuals with different disease states and rates of disease 

progression. We have leveraged this to investigate biological processes specific to states of 

cancer development and have discovered nonlinear dynamic patterns of mRNA and miRNA 

expression that can be used to identify potential therapeutic targets.

4.4. Concluding remarks

The conceptualization of cancer as an epigenetic state-transition of the system, beyond 

the transformation of individual malignant cells and through different states of the disease 

and treatment response, is a powerful and potentially insightful approach for understanding 

cancer dynamics that compliments the DNA mutation and clonal evolution centric view. 

With genomic sequencing becoming more routine in the clinical management of cancer and 

precision medicine, state-transition models can be a powerful predictive tool to guide the 

development of therapies that target critical points in epigenetic state-transitions.
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5. Integrative understanding of acquired therapy resistance

5.1. Status

A revolution in molecular biology has enabled an explosion of studies leading to an 

in-depth interrogation of molecular mechanisms that underlie cancer-specific phenotypes 

(hallmarks) [46]. These studies resulted in the identification of molecular targets, whose 

suppression induces remarkable clinical responses with minimal toxicities, enabling control 

of disease over months or even years, such as with inhibitors of mutant EGFR and anaplastic 

lymphoma kinase (ALK) in lung cancers. Unfortunately, these responses do not translate 

into cures in advanced metastatic neoplasia. A similar situation is observed in cancers that 

are treated with more traditional, cytotoxic chemotherapies, where cancers typically relapse 

despite strong initial responses.

One obvious cause of acquired resistance is that therapies fail to eliminate all tumor cells in 

advanced metastatic cancers. This failure is the consequence of tumor heterogeneity: genetic 

and phenotypic differences between individual neoplastic cells in tumor cell populations, as 

well as differences in TMEs. While most tumor cells can be eliminated by properly selected 
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therapy, some tumor cells can avoid elimination due to cell-intrinsic properties that make 

them tolerant [47, 48,] or resistant to treatment, or microenvironmental location [49] that 

limits drug penetration or provides signals that counteract the effects of therapies.

While the key importance of intratumor heterogeneity as a cause of therapy resistance 

is widely recognised in the field, development of therapy resistance by initially sensitive 

tumors has another salient cause: the ability of populations of tumor cells to change under 

therapy-induced selective pressures.

In the simplest case, when fully resistant cells are present in a tumor before treatment, 

therapy causes their competitive release and expansion (figure 5(A)). At some point, this 

expansion translates into net positive growth of tumors, leading to relapse. On the other 

hand, undeniable experimental and clinical evidence shows that strong resistance can be 

acquired by cells that are initially sensitive or weakly resistant (persistent/tolerant) to 

therapies [50]. Whether resistant cells pre-exist or arise de novo is still a subject of debate. 

However, it is hard to reconcile pre-existing resistance with remission that lasts for months 

and years before re-emergence of rapidly growing tumors (most patients on front line 

therapies in ALK+ and EGFR mutant lung cancers).

5.2. Current and future challenges

Arguably, an adequate understanding of how and why resistance develops is prerequisite 

to developing therapeutic strategies that can achieve substantial improvements in clinical 

outcomes. While great advances have been made in the understanding of individual 

resistance mechanisms, our knowledge of how resistance develops from sensitive or weakly 

resistant cells is very limited. In the case of genetic resistance mechanisms, such as target 

amplification or point mutations that disrupt binding of the drug, resistance is assumed to 

be a result of a single stochastic mutational event (figure 5(B)). Emergence of non-genetic 

resistance mechanisms is less clear. Some evidence points to the possibility of stochastic 

hardwired epigenetic changes, analogous to genetic mutational events [47]. On the other 

hand, ample evidence points to the importance of therapy-induced changes, where at least 

some tumor cells transition to more plastic phenotypic states [36] (frequently referred to as 

CSCs). While stemness and epithelial to mesenchymal transition (EMT) in carcinomas are 

commonly considered to be sufficient to fully account for resistance [51], recent studies as 

well as first principles point to a distinct phenomenon, where phenotypic plasticity enables 

cells to adjust GRNs, achieving phenotypic states that no longer rely on the activity of the 

therapeutic target [36, 52, 53] (figure 5(C)).

While epigenetic adaptations to therapy-induced stress clearly fall outside of the 

conventional Darwinian paradigm of stochastic heritable variability, and have closer 

parallels to the Lamarckian paradigm [36], the resulting resistant phenotypes can and do 

act as a substrate for selection forces that act on the population level [52]. Importantly, 

stochastic (both genetic and epigenetic) and induced changes are not mutually exclusive. 

Our recent work [54], as well as studies from other groups [53] suggest that therapy 

resistance represents complex, multi-step adaptations, where resistance reflects a combined 

contribution of multiple individual resistance mechanisms, including both genetic and 

epigenetic changes. Moreover, in vivo, these changes occur within spatially diverse 
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microenvironmental contexts that can dramatically impact therapeutic sensitivity, phenotypic 

state transition and evolutionary dynamics (figure 5(D)).

5.3. Advances in science, technology and mathematics to meet challenges

We posit that despite undeniable utility, reductionistic studies are not sufficient to provide 

an adequate understanding of therapy resistance, much like how a catalogue and detailed 

studies of airplane parts cannot explain how an airplane flies, and increasing resolution of 

mechanistic detail can only obfuscate the answer. Instead, we need to develop knowledge 

that integrates the multiple molecular inputs that lead to the development of resistance and 

understand the spatiotemporal dynamics of this process. Since linear logic is not suitable for 

this task, the challenge can only be addressed with the help of mathematical modelling tools, 

even if an appropriate toolset still needs to be fully developed and refined.

Specifically, we will need to understand the process of phenotypic adaptation from a biology 

perspective as a trajectory across a cell state landscape, incorporating the input of induced 

and stochastic changes. Similarly, we need to understand evolving resistance as a trajectory 

on an adaptive landscape in a way that incorporates the impact of mutational and expression 

level changes that impact cell fitness.

A stiffer, unresolved challenge is to integrate consideration of both cell state and adaptive 

landscapes, while accounting for the impacts of distinct microenvironmental niches, 

limited heritability of many of the epigenetic changes, and interactions between evolving 

subpopulations in space and time (figure 6).

Addressing these challenges is not trivial, as it will require the development and integration 

of new conceptual frameworks as well as new experimental and modelling pipelines. 

Moreover, ideal integration of all of the essential determinants of resistance is likely to be 

unrealistic. Yet, this does not mean that the mission is impossible, as even partial advances 

in this area could translate into improved ability to optimize therapies towards long term 

outcomes rather than maximizing short term gains.

5.4. Concluding remarks

Adequate understanding of acquired therapy resistance requires acquisition, and modelling 

assisted integration of knowledge of epigenetic, genetic and microenvironmental 

determinants of resistance, within evolving neoplastic populations. Achieving meaningful 

progress in this direction must start with the recognition that the problem of cancer cannot 

be fully solved within the dominant reductionistic frameworks. At least equal efforts need 

to be devoted towards the more challenging task of integration. As progress in this area 

requires development of conceptual frameworks, experimental and modelling tools, as well 

as fully integrated research teams, it is not realistic to expect a quick fix and immediate 

translation before adequate understanding is gained. Still, as we build up the knowledge, it 

will enable progressive development of more effective therapies, using existing and future 

drugs and treatment modalities.
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6. A dynamical systems framework for uniting the Darwinian and 

Lamarckian schemes of treatment-induced tumor progression and 

analyzing single-cell omics profiles

6.1. Status

The rapid recurrence of tumors after treatment defies the prevailing Darwinian paradigm 

of random mutation and selection as driver of progression [36, 55–57]. The recent spate 

of single-cell resolution gene expression profiles of tumors reveals non-genetic phenotype 

plasticity of cancer cells that allows regulated cell state transitions into new, inheritable 

phenotypic states without mutations. This property is at odds with somatic Darwinian 

evolution of tumor cells. It permits Lamarckian [36] dynamics and calls for cancer biology 

to embrace principles that govern the process by which the same set of genes collectively 

produces a variety of discretely distinct stable cell phenotypes, such as the canonical cell 

types.

Reliance on genetic mutations and a 1:1-genotype ↔ phenotype correspondence in 

Darwinian thinking [36] obviates the need for mathematical theory to explain new 

phenotypes. But how can an invariant genotype (the genome) produce a diversity of 

phenotypes, i.e. the phenotypic states of cells?

In metazoan the most elementary phenotype is the cell type, commonly defined by a 

particular configuration (state vector) x of the expression levels of all the m genes of 

the genome, x = [x 1, x 2,, ‥, x i, ‥, x m ], which is approximately measurable as the 

transcriptome. The genome can produce only a particular set of stable configurations x * 

(that we observe as phenotype) because genes are not independent but regulate each other 

via the GRN that is ‘hardwired’ in the genome via the cis and trans regulatory sequences 

[58]. The GRN is the dynamical system ẋ = F (x) that actuates the change of expression, ẋi , 

of gene i, and thereby drives the cell state x towards stable steady-states x * with F ( x *) = 

0, or attractor states, where regulatory driving forces vanish.

F contains non-linear terms, as is generally the case for functions describing gene-regulatory 

interactions, and thus can generate a vast number of stable steady-state configurations x 
*. Importantly, this multi-stable dynamics (for a certain class of networks to which GRN 

belong) can produce gradientlike dynamics [59, 60] in that the driving force that push 

the state x (t) towards x * can for most regions of the state space be approximated as F 
( x ) = −∇V ( x ), even if the system is non-integrable. Thus, it is permissive to represent 

the multi-stable dynamics by a quasi-potential landscape with ‘elevation’ V( x ) at x and 
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‘potential wells’, much as Waddington envisioned with his ‘epigenetic landscape’ in which 

attractors (valleys) correspond to cell types [58, 60].

An essential corollary is that cells can switch between the discretely distinct stable and 

inheritable phenotypes encoded by attractor states x without change in the genotype. Two 

non mutually-exclusive modes for cell transitioning from one attractor to another, xa* xb*

can be considered:

a. Due to gene expression noise, state x fluctuates in high-dimensional space almost 

randomly around attractor state x * and can occasionally overcome the attracting 

force, resulting in cells ‘jumping’ out of the basin of attraction of xa* (first exit) 

into that of neighboring attractor state xb* , manifest as a stochastic phenotype 

conversion. Macroscopically, this event appears like that resulting from a random 

mutation, but differs from it because the new phenotype is latently present as 

a developmental potentiality (unused attractor) and thus, there is a much higher 

probability for a single ‘chance event’ to produce a complex self-stabilizing and 

selectable phenotype [61].

b. Because F ( x ) captures regulation of gene expression, it provides an entry for 

environmental influences as the ‘regulator’ of x , e.g. via transcription factors 

responsive to external signals which change the values of parameters in F ( x ). 
This modulation alters the topography of the landscape in ways constrained by 

the form of V(x), such as lowering the height of an ‘energy barrier’ ΔV(x) 

between attractors. Environmental signals thus act as bifurcation parameters that 

can ‘catalyse’ attractor (phenotype) transitions [55, 62].

Of importance for cancer progression after treatment is that a neighbouring attractor into 

which a perturbation shifts the cells often encode stem cell-like states that may have evolved 

for injury response [55].

6.2. Current and future challenges

A series of observations made by new technologies, such as ultra-deep tumor sequencing, 

single-cell transcriptomics and clonal analysis, has recently exposed cracks in the fundament 

of the Darwinian somatic mutation theory of cancer [36, 56, 57]. Single-cell transcriptomics 

data is commonly displayed such that each cell is a dot in some dimension-reduced space 

(typically, a 2D plane) at position x of its state x . These points form ‘clusters’ that represent 

cells in the same attractor, with the dispersion reflecting gene expression noise. Treatment 

stress imparts a broad perturbation to the GRN of each individual cell, affecting their state 

x differently. This increase of cell population dispersion is manifest as broadening of the 

cell clusters or the increase in the number of clusters (=occupied attractors). Thus, treatment 

can push cells into nearby attractors some of which may encode their developmentally 

neighbouring stem-like phenotypes [36, 53, 63, 64].

With single-cell resolution measurement we can observe the temporal change of N 
individual cells in state x , i.e. the ‘cell number density’ N( x , t) and can write for the 

temporal evolution of the distribution of the cell states x a Fokker–Planck type equation:
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∂N(x, t)
∂t = ∇ ⋅ [D(x)∇N(x, t) − F (x)N(x, t)] + g(x)N(x, t) . (1)

This equation considers the probability of cells, due to stochastic gene expression, to be in 

state x (diffusion term in equation (1) with diffusion D ( x )) and the cell state change driven 

by multi-stable GRN dynamics(second=drift term F ( x )); a third term not encountered in 

systems with mass conservation, captures changes of the number of cells in state x with 

growth rate constant g ( x ).

The Darwinian and Lamarckian dynamics are both contained in equation (1): if the 

dynamics of N ( x , t) is driven mostly by the growth rate g ( x ) that differs between 

for various phenotypes x , we have Darwinian selection. If change is mostly due to the 

drift term F ( x ) that can be modulated by environmental regulation, we have Lamarckian 

induction. Thus, the Darwinian and Lamarckian schemes represent extremes of the same 

underlying behavior [63, 65]. The challenge is to predict and measure N ( x , t).

6.3. Advances in science, technology and mathematics to meet challenges

Obviously, it is not realistic to expect to soon know the specific form of F ( x ). But we can 

still make sense of burgeoning single-cell transcriptome (or proteome) data X (T) with

X(T ) =
x1

1 ⋯ x1
c

⋮ ⋱ ⋮
xm1 ⋯ xmc

(2)

by analyzing it through the lens of GRN and cell population dynamics without invoking 

F ( x ). Here, xi
j is the transcription level of gene i in cell j for a total of m genes and c 

cells. The data matrix X (T) is a snapshot of the states of cells in a population, measured in 

condition T where T can be time points in tumor ‘evolution’, e.g. before and after treatment. 

We consider X (T) to represent the c cells within one (unimodal) cluster (in one basin of 

attraction). Its population structure is manifest in the distribution of the cell vectors u 1, u 2, 

…, u c (columns in X (T)). But of importance are also the gene vectors v 1, v 2, …, v m (rows 

in X (T)) which reflect the GRN dynamics, as explained below.

The data structure of X (T) must somehow manifest the underlying dynamics of F ( x ). The 

property that near x * the cells descend to an attractor state x * in a (nearly) gradient-driven 

fashion, allows us to formulate, without F ( x ) but using permissive approximations and 

assumptions (linearization, discretization in time, ergodicity, hyperbolic attractor) and the 

reversion of a perturbed state x to x * (where x = x * + Δ x ), the dynamics in terms of the 

Jacobian J of F ( x ) at x * [62]:

Δx(t + 1) = Δx(t)J x* . (3)

We are interested in destabilization of the attractor because treatment involves the 

destabilization of the attractor that cancer cells inhabit, causing cells to exit it and enter 
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the basin of attraction of an apoptosis state [55]. However, attractor destabilization in a 

multi-attractor landscape also means loss of control, such that some cells may aberrantly 

‘spill’ into nearby attractors encoding stem-cell like phenotypes that become accessible [55]. 

This would explain the inevitable adoption of stem-like phenotypes in cells that survive 

harsh treatment.

With (additive) gene expression noise and above approximations and assuming X (T) to 

represent a snapshot sample of cells fluctuating around x *, we link the statistics to the 

dynamics: E ( x ) = x * that is, the attractor state is (approximately) the expected value E for 

x . Connecting X (T) to the dynamics expressed as J( x *) in equation (3) via its eigenvalues 

λ i and using E ( x ) = x * we ask: what happens to cell vectors u j and gene vectors v i in X 
(T) during destabilization when the largest eigenvalue λ * goes from λ * < 0 to zero (or 1 for 

discrete models)?

It is intuitive and can be shown that destabilization of the attractor increases the dispersion 

of cells, as experimentally confirmed [62]. Thus, the correlation between cell vectors u j on 

average decreases, making the cell population more heterogeneous.

For gene vectors v i in X (T) the interpretation is less intuitive. One can show that for λ * → 
0 the average correlation between pairs of gene vectors v i increases towards a maximum at 

the bifurcation point [62, 66]. Thus, the gene vectors align as the attractor states destabilize 

in the direction of the eigenvector of J ( x *) corresponding to λ *.

In summary, generic dynamical systems principles without a specific model suggest that as 

destabilization of an attractor towards a bifurcation proceeds, dispersion of cell vectors and 

alignment of gene vectors in the data set X (T) increase. These two changes are manifest as 

decrease or increase of the average Pearson correlation 〈|R(…, …)|〉between the cell vectors 

v j or the gene vectors u i , respectively. We can summarize this as a ratio I C (T) that 

increases when the attractor state destabilizes towards a bifurcation [62]:

IC(T ) = R ui, uj
R vi, vj

. (4)

An increase in I C (T) or just in gene-gene correlation has been observed in various single-

cell transcriptome experiments of cell state transitions [62,66,67]. I C (T) may thus be used 

to identify tumors in the process of destabilizing and acquiring a new phenotype, such as 

stemness.

6.4. Concluding remarks

The single most daunting challenge in treatment of invasive cancer is the near-inevitable 

recurrence of a more resilient cancer. The need to embrace gene regulatory dynamics, 

manifest in non-genetic plasticity of cell phenotype, to complement Darwinian somatic 

evolution of the cancer cell is increasingly appreciated. But single-cell resolution molecular 

profiles of tumors are still overwhelmingly analyzed using ad hoc, descriptive, heuristic 

computational algorithms detached from theory or biological first principles. While 

scientific ‘bottom up’ models of the GRN to predict patterns in the data remains unrealistic, 
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we can solve this dilemma by engaging in coarse-grained approaches, still grounded in 

principles of how biological systems work to identify meaningful structures in the data.

Cancer progression is more than ‘survival of the fittest (cell)’ and its study in terms of 

fundamental principles of dynamical systems, even without the specific details, may help 

in designing therapeutic control of a complex non-linear behaviour that too often generates 

cells in stem-like states upon cytotoxic perturbation.
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7. Towards multi-scale mechanistic models of phenotypic plasticity in 

metastasis and drug resistance

7.1. Status

The concept of clonal genetic mutations has largely dominated cancer biology research. 

However, in the past two decades, a focus on phenotypic plasticity as a driver of cancer has 

emerged thanks to the increased understanding of two critical aspects of cancer: metastasis 

and drug persistence.

Metastasis remains the cause of more than 90% of cancer-related deaths. Despite the 

extensive efforts, no unique genetic changes (mutations) have been associated with 

metastasis. Instead, cellular/phenotypic plasticity—the ability of metastasizing cells to 

adapt to the repertoire of dynamic adverse conditions that they face and doing so in a 

fast and reversible manner—has been emerging as a hallmark of metastasis [68]. Cellular 

plasticity in metastasis takes various forms. The most well-studied among them is epithelial–

mesenchymal plasticity (EMP) [69], a developmental process that involves cells dynamically 

acquiring a spectrum of phenotypes ranging from an adherent, low-motility phenotype 

(epithelial) to a less-adherent, more-motile (mesenchymal) one. Other ‘axes’ of plasticity 

that are intricately coupled to EMP include stemness and metabolic reprogramming [70].

In drug evasion scenarios, phenotypic plasticity manifests as drug-tolerant persisters (DTPs). 

As a phenomenon, persistence is extensively observed and studied in bacterial systems. 

When bacteria encounter stressful conditions, such as antibiotics, they undergo a phenotypic 

transition involving a decelerated cell cycle and metabolism while not altering their genetic 

makeup [71]. This, of course, is not the only mechanism of survival, others being resistance 

(acquisition of mutations that provide selective advantage) and tolerance, but persistence has 

the least response time of all. An interesting aspect to note here is that every bacteria cell in 
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a population can achieve persistence. However, only a fraction of cells achieves it in a given 

time. Furthermore, isolating and re-populating persister cells and exposing them to adversity 

leads to a similar fraction of persisters in the population as before [71].

Similarly, in cancer, the presence of therapy-evading cancer cells has been noticed for over 

three decades. However, the classification of these escapees into resistant and persistent 

cells has only been made possible recently by technological advancements. While separating 

tolerance from persistence is hard in cancer, reversible tolerance to treatment has been 

noted through cancer DTPs which do not involve changes in cell’s genetic makeup [72]. 

Depending on the treatment administered, cancer DTPs can have various characteristic 

functions: decelerated cell cycle, adaptive cell metabolism, transdifferentiation, or hijacking 

their micro-environment. These DTPs can serve as reservoirs of cells that can often lead 

to genetic ‘resisters’ that can survive therapy at long timescales, as they can ‘buy time’ to 

hedge their long-term ‘solutions’ [50].

Mechanisms regulating cellular plasticity are collectively termed ‘epigenetic.’ They can be 

broadly divided into two categories: molecular/chromosomal epigenetics (covalent changes 

at the chromatin structure that control access to the promoter/enhancer regions, thus 

controlling expression and protein levels) and non-chromosomal epigenetics (stochasticity, 

cell cycle differences, regulatory networks at transcription, translation, signal transduction 

levels etc) [73].

In metastasis, multiple experimental and computational studies have identified that complex 

regulatory networks underlying EMP across cancer types can lead to a spectrum of inter-

converting cell states, suggesting non-chromosomal epigenetic regulation [74]. A common 

theme emerging from preclinical and clinical observations is that the more ‘plastic’ hybrid 

epithelial–mesenchymal phenotypes are ‘fitter’ for metastasis [75]. Recent data from ChIP-

Seq, ATAC-Seq etc has begun to map the chromosomal changes that can work in tandem 

with non-chromosomal mechanisms during EMP. For instance, presence of ‘master’ EMT-

inducing and MET (the reverse of EMT)-inducing epigenetic factors at active chromatin can 

give rise to a bistable system emerging from concentration variations in these antagonistic 

factors [76]. Detailed dynamic understanding of such mechanisms is crucial to better decode 

EMP.

While cancer DTPs can arise from non-chromosomal mechanisms as well, chromosomal 

epigenetic mechanisms have been extensively reported. Many of these chromosomal 

changes can be inherited over a few cell generations, thus allowing for the inheritance 

of persistence and thereby enhanced survival. Epigenetic factors such as SETDB1 in lung 

cancer, KDM6A in GBM, and KDM5B in melanoma have been associated with persistence. 

In DTPs, how these factors influence many downstream processes, such as the expression 

of cell-cycle related genes, is well-studied [50]. However, it is unclear how these factors 

get recruited precisely at appropriate chromosomal locations to execute corresponding 

functions.
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7.2. Current and future challenges

To curb cellular plasticity and consequently cancer aggressiveness, we need to understand 

the underlying epigenetic mechanisms. The following challenges arise in doing so.

a. Multi-tier regulation in non-chromosomal epigenetics: multiple non-

chromosomal mechanisms have been shown to underly metastasis, including 

transcriptional, translational, and metabolic regulation etc. Cellular plasticity is 

an emergent behavior of these regulatory modules. While these modules are 

being studied individually, a systems-level understanding of these regulatory 

modules is lacking.

b. Regulatory and inheritable mechanisms of chromosomal epigenetics: 

chromosomal or molecular epigenetics involves modifying chromosomes via 

various mechanisms, including DNA methylation or acetylation. While the 

downstream effects of these factors have been well documented in EMP and 

persistence, mechanisms of regulation of these factors are relatively unclear. 

Given the shorter timescale of epigenetic mechanisms of adaptability, their 

inheritance ensures maintenance of adaptability for a longer time until the 

‘desired’ mutation can be acquired. However, mechanisms and timescales of 

such inheritable epigenetic ‘memory’ require further decoding.

c. Multi-axial plasticity: cellular plasticity has multiple interconnected flavours. 

Hybrid E/M phenotypes have been shown to have higher stemness and 

drug recalcitrance [75, 77]. Similarly, in EMP, the two types of epigenetic 

regulations discussed above are often seen to act in tandem. Prolonged exposure 

to EMT inducer can not only drive the cancer cell population towards a 

mesenchymal phenotype but also can induce epigenetic locking of phenotypes 

via chromosomal modification [78]. In the case of drug persistence, epigenetic 

alterations and intracellular signaling together drive properties such as metabolic 

adaptivity [50]. Hence, it is crucial to understand these interactions between 

these different axes of plasticity by integrating mechanistic models with high-

throughput data.

7.3. Advances in science, technology and mathematics to meet challenges

Mathematical models have made significant contributions in generating new hypotheses 

and testable predictions to guide experiments. Many such models have been constructed to 

test different epigenetic mechanisms and their implications in regulating cellular plasticity. 

Classic models of epigenetic regulation deal with a beads-on-string model of a chromosome, 

where each bead is a nucleosome and can have one of these states: unmodified, acetylated 

and methylated. Dodd et al proposed the balance between cooperativity and noise in 

recruitment as a possible mechanism to induce epigenetic ‘memory’, which can then help 

in the faithful inheritance of epigenetic state of chromosomes across cell generations [73]. 

In another attempt, Sandholtz et al [79], using Hi-C data, have shown that selective binding 

of HP1 to methylated regions can help in nucleosomes regaining their parental methylation 

patterns upon replication. How these patterns are affected upon EMP to understand the 

emergence of phenotypic plasticity across cell generations remains to be investigated. Jia et 
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al showed through a mathematical model that recruitment of epigenetic factors upon EMT 

induction could help fix the state in absence of the inducer, especially upon a prolonged 

exposure to the inducer [78]. Thus, decoding the dynamics of cellular plasticity across scales 

of length, time, and regulation is essential to decoding hallmarks of metastasis and drug 

resistance.

Collection and analysis of high-throughput data at bulk and single-cell level (RNA-seq, 

ChIP-seq, ATAC-seq, etc) is feasible now; thanks to our advanced technological and 

computational prowess. Efforts are being made to collect and integrate data at multi-tier 

regulation levels [80].These advancements, together with the mathematical models, can 

help in decoding both the underlying design principles and perturbation strategies for the 

interconnected multi-scale regulatory interactions underlying cellular plasticity [81].

7.4. Concluding remarks

Integrative approaches involving mechanistic models and machine learning are now being 

developed to identify patterns in the plethora of data available. This integration can provide 

a platform to establish causal connections among multi-tiered and multi-modal dynamic 

data and characterize the epigenetic (figure 7) (both chromosomal and non-chromosomal) 

regulation dynamics in cancer, with valuable contributions towards designing new rational 

therapeutic strategies.
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8. Operating in the unknown: enabling clinical predictions when we 

partially understand phenotypic plasticity regulation

8.1. Status

Phenotypic plasticity has been recognized as one of the main factors that contributes to 

tumour heterogeneity and eventually in cancer progression and therapy resistance [82]. 

Many phenotypic plasticity mechanisms have been identified such as the Warburg effect, 

the epithelial–mesenchymal transition (EMT/MET), migration/proliferation plasticity (Go 

or Grow) etc. For example, the latter implies that the propensity of motile phenotypes is 

reduced at the expense of proliferative ones and vice-versa.
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Mathematical modelling has been proven instrumental in understanding the impact of 

phenotypic plasticity mechanisms in tumour progression, growth dynamics or designing 

appropriate therapeutic approaches. In the case of migration/proliferation plasticity we have 

shown the existence of an emergent Allee effect for low grade glioma tumours [83] and 

no ‘one size fits all’ therapeutic approach can be implemented in high grade gliomas [84]. 

However, developing such models involves a number of reasonable assumptions since not all 

molecular regulation pathways of the different phenotypic plasticity mechanisms are known. 

Although modelling insights enhance our qualitative understanding of how phenotypic 

plasticity impacts disease dynamics, their translation to reliable clinical predictions faces 

important challenges.

8.2. Current and future challenges

In clinical reality, the need of quantitative tumour growth and progression predictions is 

pivotal for designing individualized therapies. To achieve this a plethora of examinations 

is conducted to assess the tumour lesion state, spanning from blood sample analysis, 

clinical imaging (e.g., CT, MRI), biopsy sampling, -omics screening etc. Such medical data 

correspond to snapshots in time of the patient’s state and in the current standard of care 

their collection relies on patient’s clinical presentation. This implies that we cannot acquire 

many data timepoints hampering the personalized calibration of mathematical models and 

their corresponding prediction potential. Moreover, many clinical data types are not useful in 

informing phenotypic plasticity models hindering their clinical applicability.

In a nutshell, the use of phenotypic plasticity models in the current cancer standard of 

care faces the following challenges: (C1) data collection is sparse in time since it relies on 

patient’s clinical presentation, (C2) we lack the knowledge of the precise pathways involved 

in regulating phenotypic plasticity mechanisms, and (C3) medical data cannot always inform 

mathematical models. Overcoming the afore-mentioned challenges to predict the future of 

a disease and propose an appropriate treatment (e.g., choice of a drug targeting proteins 

expressed in the tumour) is a formidable but not impossible task.

8.3. Advances in science, technology and mathematics to meet challenges

In this section, I present two different approaches that can address the above challenges.

8.3.1. A top-down approach—The first approach involves the development of 

methodologies that combine dynamic modelling and machine learning allowing for 

heterogeneous data integration and enabling predictions under partial biological/mechanistic 

knowledge. The so-called physics (here biology)-informed machine learning holds the 

promise of revolutionizing the field of engineering and quantitative sciences [85]. In 

particular regarding clinical tumour predictions, we have developed a Bayesian combination 

of machine learning and mechanistic modelling (BaM3) [86] that allows for improved 

clinically relevant predictions (see figure 8). The method uses mechanistic model predictions 

as intelligent priors, even when mechanisms and parameters are partially known (C2). 

In turn, it corrects model predictions by harnessing the predictive power of infrequent 

non-modellable data (C1, C3). We demonstrated BAM3 potential on a synthetic dataset for 

glioma and two real cohorts of patients with leukaemia and ovarian cancer. Predictions 
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from the method are in close agreement with actual clinical data for individual patients, 

suggesting its potential applicability in enabling accurate personalised clinical predictions. 

The only limitation of the BaM3 framework is related to the fact that the probability 

distribution of unmodellable data should be in a quasi-time invariant, otherwise prediction 

quality is hampered (for more details see [86]).

8.3.2. A bottom-up approach—An alternative and ambitious approach to address 

(C2), i.e., when regulatory mechanisms of phenotypic plasticity are not fully known, is 

to focus on potential principles that dictate cell decision-making. Such principles have 

been proposed by the pioneering work of W Bialek [87]. The starting point is how single 

cells process microenvironmental information. Regarding cells as energetically constrained 

Bayesian decision-makers that infer their phenotype according to microenvironmental 

cues, such as other cell type densities, ligands, chemical concentrations, ECM densities, 

expressed proteins, spatial transciptomic data to name a few, we have recently proposed least 
environmental uncertainty principle (LEUP) [88, 89]. According to LEUP cell phenotypes 

change to minimize the entropy, i.e., uncertainty, of their corresponding microenvironment. 

Microenvironmental entropy can be regarded as a potential functional in the sense of 

Waddington’s epigenetic landscape.

LEUP can be used for developing agent-based models (bottom-up approach) of tumor 

development, where single cells stochastically decide over their phenotype according to 

LEUP. This will allow for integrating the existing cell plasticity regulation mechanisms and 

fill the knowledge gap by the implementation of LEUP. Such LEUP-driven models may 

produce reliable simulations able to shed light in the role of phenotypic plasticity in tumor 

progression dynamics and in the design of new therapies.

Currently, LEUP has been used to explain collective migration patterns of spherical 

Serratia marcescens bacteria [90] and the robustness of avian photoreceptor mosaic patterns 

[91]. In both applications, the common denominator was the partial knowledge of the 

involved mechanisms regarding bacteria migration direction decisions and photoreceptor 

fate selection.

Predicting cell phenotypic dynamics using LEUP works as any other entropy maximization 

method by integrating raw data and prior mechanistic knowledge in the form of optimization 

constraints. Interestingly, LEUP inferred dynamics offer a good compromise regarding 

model interpretability and required mechanistic knowledge when compared to machine 

learning and detailed biophysical models, as shown in figure 9. Although this approach is 

promising, it still requires significant research in order to be validated and further tested 

against real data, before becoming useful in a clinical setting.

8.4. Concluding remarks

Although phenotypic plasticity mechanisms have a critical impact in tumour heterogeneity 

and therapy design, their regulation is not always fully known. This fact makes clinical 

predictions a formidable task. Here, I have presented two approaches to deal with this 

challenge: (i) the combination of mechanistic modelling of phenotypic plasticity with 

machine learning and (ii) focus on the principles that dictate cell decision-making and in 
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particular phenotypic plasticity. Currently, the former offers ready to go solutions for clinical 

implementation, where the latter requires further research.
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9. Can therapeutics keep pace with tumor plasticity? An opportunity for 

model-assisted learning cycles

9.1. Status

Tumor plasticity encompasses a vast array of biological mechanisms and its impact on 

therapeutic response is equally large, leading to resistance against a diverse repertoire of 

cancer therapies [92, 93]. Elucidation of the primarily factors leading to drug resistance 

is critical for pharmaceutical decisions regarding clinical drug regimens, combinations, 

new target selection and drug design requirements. Furthermore, within the pharmaceutical 

industry, the multi-faceted challenge created by tumor plasticity requires practical and timely 

action.

While TME, immune involvement, bypass signaling pathways and drug transporters can 

lead to plasticity and drug resistance, for molecularly targeted agents there has been a 

significant focus on genetic mutations that render targeted therapies ineffective against 

cancer cells. As an example, for ALK inhibitors, emerging data following patient treatment 

with sequential first, second and third generation ALK inhibitors reveal distinct on-target 

(EML4-ALK) resistance mutation profiles that are dependent upon the therapeutic sequence 

[94]. A better understanding of genetic mutation evolution is useful to inform optimal 

therapeutic and drug development decisions. Yet, monitoring the emergence of genetic-

driven resistance in treated patients remains a challenge due to heterogeneity in tumors 

and treatment response. Non-genetic plasticity presents additional complexities that can 

be particularly difficult to appropriately and efficiently capture in patients. Similarly, at 

the bench (pre-clinical setting) it can be problematic to elicit, measure or properly define 

clinically meaningful non-genetic plasticity. Given these emerging complexities associated 

with tumor plasticity, it is critical that technologies are available to monitor tumor status 

in patients. In this regard, liquid serial biopsies (i.e., circulating tumor DNA (ctDNA) and 

circulating tumor cells (CTCs) [95]) are showing promise as a tool to monitor post-therapy 

genetic and signaling changes in tumors.
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Along with robust collection of longitudinal data, we advocate for novel modeling methods 

that can integrate these serial clinical measurements with other patient data as well as in 
vitro and preclinical knowledge to create a wholistic view of emerging therapeutic resistance 

patterns to explore alternative therapeutic approaches. Encouragingly, modeling approaches 

in academia and industry are available to begin this endeavor [96–98].

Here we review some of the challenges and opportunities tumor plasticity presents to 

oncology drug discovery and development.

9.2. Current and future challenges

While modeling approaches are a useful tool to de-risk decisions at various points in the 

drug-development pipeline (figure 10), especially when dealing with complex problems such 

as connecting plasticity signals across various datasets, models need to be appropriately 

calibrated and supported by data.

We outline three main challenges concerning our ability to obtain data that informs 

our understanding of tumor plasticity and associated drug-tolerant cells [92]. First, most 

molecular causes that predispose tumor cells to undergo a phenotypic conversion are still 

unknown, and a stochastic nature of such conversions further complicates our understanding. 

Second, the sequential dynamics of tumor cell phenotypic plasticity upon treatment are not 

well understood. Third, the mechanisms influencing plasticity may vary across patients, 

treatment schedules and disease progression. Thus, ascertaining time-dependent profiles 

reflective of tumor heterogeneity, plasticity and corresponding drug-tolerant or resistant 

cells requires advancement and refinement in the resolution of our screening procedures 

in patients, permitting tumor assessment down to the single cell level [92, 99]. Liquid 

biopsies appear to be a promising alternative to conventional biopsies, providing both 

precise molecular data to improve the clinical management of patients (with most notable 

examples in lung cancer) as well as a less invasive way to sequentially monitor tumor 

behavior.

Mathematical modeling and early clinical evidence have suggested that repeated detection, 

profiling and targeting of surviving cells would improve patient outcomes [100, 101]. Liquid 

biopsies are top contenders for non-invasive and iterative methods to assess resistance/

plasticity in the clinic. In this regard, both CTC and ctDNA could assist therapeutic 

decision-making and supply an adequate reflection of intra-tumor heterogeneity [95].

Iterative collection of ctDNA can address tumor heterogeneity and may predict acquired 

treatment resistance driven by genetic and epigenetic mechanisms. Methylated ctDNA has 

been evaluated as a potential liquid biopsy-based biomarker but its application to NSCLC in 

the clinic is less common than the serial assessment of genetic alterations in ctDNA [102]. 

Unfortunately, no protein or functional readouts are available from ctDNA data, which could 

be informative in respect to a tumor’s changing phenotype. Additionally, ctDNA analysis 

remains limited due to a lack of pre-analytical conditions [95]. In contrast, CTC studies 

allow for evaluation of cancer phenotype and assist in molecular characterization of the 

disease. CTCs constitute a small and fragile population of cells with broad heterogeneity, 

which can make it harder to identify them. However, if successfully captured, they could 
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provide complementary information to that obtained from ctDNA. Unfortunately, both 

ctDNA and CTC have low signal-to-noise ratio in current screening procedures, especially 

in early-state disease, so emerging tumor variants may not be detected. This technical hurdle 

as well as cost and broad accessibility will need to be addressed to improve and better 

define the clinical utility of these measurements. Importantly, there has been progress in 

this area in recent years, especially in next-generation sequencing for analyzing ctDNA. The 

sensitivity of ctDNA detection methods has substantially increased through the optimization 

of a patient-specific library preparation, and the implementation of novel computational and 

experimental error correction strategies [96, 103].

9.3. Advances in science, technology and mathematics to meet challenges

An emerging challenge is achieving consensus around technical approaches to collect the 

most robust and reproducible patient data, while also integrating it with insights from 

pre-clinical in vitro or animal data. Mathematical modeling approaches can be useful in 

bridging these gaps. In the pharmaceutical setting, a range of models are used to guide 

timely and practical strategies to monitor and optimize tumor response in the presence of 

treatment, as outlined below and in figure 10.

Pre-clinical modeling.—Mathematical modeling in drug discovery informs on basic 

biological understanding, therapeutic design [104] and ultimately translation of preclinical 

exposure-response relationships into humans. Emerging clinical data may guide therapeutic 

opportunities and experiments for model-based quantification of exposure-response 

relationships through ODE-based PK/PD models [105]. Pre-clinically, tumor complexity 

is often simplified to permit testing of the therapeutic potential against specific mutations or 

nodes in cellular pathways; thus tumor plasticity is decoupled into simplified, data-driven, 

testable pieces.

Clinical development: early stages (phase I/II).—Here, models are used to inform 

selection of the recommended dose for expansion. In addition, virtual clinical trial 

simulations leveraging quantitative systems pharmacology models can connect clinical 

biomarkers with pre-clinical biological mechanisms to inform on biomarker selection and 

study design, while subsequently integrating the collected information for further learnings. 

Later stages. Population PK, PK/PD and disease progression (statistically driven) models 

are leveraged to define therapeutic performance across a population of individuals.

While early discovery modeling efforts currently focus on identifying and delivering the 

right compound to the clinic, integrated clinical modeling approaches can impact strategies 

for minimizing resistance and plasticity when focused on: (i) careful selection of drug 

regimen and (ii) the use of rational combination treatments that prevent the activation of 

pathway-compensation mechanisms. We list some examples below that show promise in 

these two areas.

Optimal dose selection.—Historically, the dose finding paradigm in oncology has 

been dominated by the maximum tolerated dose (MTD) approach wherein phase I dose 

escalation studies are employed to find MTD using pre-defined dose limiting toxicity 
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criteria. However, this approach has the potential to shift tumors into a stress-response 

state that encourages resistance of the cells that will survive treatment either due to unequal 

access to drugs, or heterogeneity of tumor cell phenotypes that encourage escape from 

treatment. Recent work of Poels et al is an example where tumor evolution and resistance 

modeling are integrated with design of a clinical trial [98]. More work is needed in this 

space; ecologically inspired adaptive therapies tied to clinical studies from academic groups 

could have the potential to shift the traditional paradigm and also influence modeling 

approaches in the pharmaceutical setting [106].

Modeling drug combination effects.—Models that incorporate translation of pre-

clinical datasets into clinical efficacy projections for multiple drug combinations have 

incorporated some pathway resistance components [97]. However, translational modeling 

that can impact tumor plasticity is lacking in this space and we believe this is an area that 

can be impactful in the near term, particularly as more novel combinations are tested in the 

clinic.

Finally, we highlight a new generation of models that incorporate novel liquid biomarkers 

with tumor evolution models [96]. This approach has potential to optimize trial designs, 

especially if it can be adapted in settings in which monotherapy or combination treatments 

are included.

9.4. Concluding remarks

Robust treatment approaches combating tumor plasticity will require improved monitoring 

of individual time-dependent patient responses, by promising novel technologies such as 

ctDNA and CTC. This information in turn can be optimally leveraged in association with 

mathematical modeling methods. Quantitative models from the academic setting are well 

equipped to account for new types of data, such as ctDNA, but progress and consensus 

regarding technical approaches in biomarker data collection and analysis is needed to 

augment the real impact of these models in the clinic. We hope that a more synergistic 

union of the intellectual creativity of academicians and the resources from industry will aid 

in defeating tumor plasticity in the clinic.
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10. The importance of phenotypic memory in therapy resistance

10.1. Introduction

Cellular plasticity is one of the driving mechanisms behind the emergence of treatment 

resistance in cancer. Although the theory of bet hedging has long been studied in many 

living systems [107–112], it is only in recent years that the idea has been explored in cancer 

[113–118]. Importantly, a better understanding of stochastic plasticity has the potential to 

significantly alter the way therapies are delivered. The general principle of bet hedging 

is that two or more phenotypes are generated within an isogenic population, and these 

phenotypes have different fitness in different environments. For example, persister cells in 

bacteria [107, 119, 120] are a phenotype that has low fitness in environments that favor the 

growth of the primary ‘normal’ phenotype, while having high fitness in toxic environments 

where the normal bacteria rapidly die. A strain of bacteria may therefore stochastically and 

rarely produce persister phenotypes, which act as a hedge against a future toxic environment 

to prevent population extinction.

Here, we focus on phenotypic memory in the setting of bet hedging [117], wherein a 

population that is using bet hedging can alter its phenotypic probabilities such that recently 

successful strategies are more favored. Although numerous biological mechanisms could 

create this memory effect, here we use a chemical reaction network (CRN) to illustrate 

that rich population dynamics can arise from a very simple memory bet-hedging scheme. 

This has implications for cancer therapy, especially if mechanisms that foment phenotypic 

memory can be targeted, which would increase the efficacy of primary agents.

10.2. Bet-hedging dynamics

We use a parsimonious agent-based model of bet-hedging (without phenotypic memory, to 

begin with) to illustrate some key behaviors that depend on generalized physical properties 

of the system (figure 11). The model simulates individual cells that can be in either of 

two phenotypes: fast-growing 100%-sensitive (S, green) or slow-growing 100%-resistant (R, 

red). Upon division, a cell produces two daughter cells, and each can change its phenotype 

with a probability that is determined by the outcome from the iteration of an ‘approximate 

majority’ CRN (figure 11(A); see [114] for details). The network is initialized with a 

certain number of each of two molecules (s and r, representing the S and R phenotypes 

respectively). Note that the b molecule is a transient product of the reactions and starts 

and ends at zero. We define the genotype of a cell as the fixed initial numbers of s and 

r molecules produced, and these numbers determine the probability of the daughter cell 

being phenotype S or R. For example, if the network commences with 50 of each type of 

molecule, the CRN will resolve to have 100 molecules of s (and therefore an S phenotype 

cell) about half the time, and 100 molecules of r (and phenotype R) the other half. The 

CRN is run twice at the time of cell division: once for each daughter cell, to determine their 

phenotypes independently. Figure 11(B) shows the probability of producing an S daughter 

for different fractions of s molecules present at the start of the CRN iterations, given a total 

of 100 molecules of either type.
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We are interested in the dynamics of these populations under therapy (here, six pulses of 

a drug that kills only S cells). Figure 11(C) shows the case with genotype 53s/47r (which 

produces about 75% S daughter cells). The behavior is like that of a persister population: 

the R subpopulation prevents the species from going extinct. Figure 11(D) uses genotype 

46s/54r (which produces > 80% R cells); here, the population is mostly resistant to therapy, 

representative of multicellular tissue where significant cell death is undesirable.

10.3. The impact of phenotypic memory

A key limitation faced by the above populations is that the fitness of each genotype is 

not optimal. In the persister-like case (figure 11(C)), the number of R cells needed to 

prevent extinction during therapy is large, and this reduces off-treatment fitness; in the 

multicellular-like case, the highly fit sensitive cells always have a minor presence, and 

again the population is poorly fit for growth off-treatment. Ideally, a population would be 

better served if successful phenotypes tended to not switch strategies, while unsuccessful 
phenotypes would favor switching. This is a form of phenotypic memory and can be 

modeled as follows: rather than reinitializing the CRN with the fixed initial s and r 
molecules upon division, daughter cells inherit half the molecules present in the parent at 

time of division. Importantly, after the CRN is run and phenotype determined, the remaining 

molecules undergo decay, such that the longer a cell has lived before dividing, the fewer 

molecules it passes to its daughters. These remaining inherited molecules are then added 

to the fixed genotype molecules before running the CRN for each daughter; this has the 

effect of reducing the probability of switching phenotypes from the parent. Figure 12(A) 

illustrates: the baseline genotype of initial 53s/47r molecules normally produces about 75% 

S phenotypes. If a sensitive parent has 20 s molecules left after some time, the chemical 

reaction in each daughter will start the CRN with (53 + 10)s/47r molecules, which will have 

a much greater probability of producing an S-phenotype daughter. Note that the genotype 

defined by the number of molecules added (53s/47r) remains the same across cells, and 

it is the remaining molecules that shift the probabilities from the baseline defined by the 

genotype alone. Similarly, a resistant cell with 20 r molecules remaining at time of division 

will have a greater probability of producing an R daughter than the baseline of 25%. The 

longer a cell takes to divide (i.e., the lower the proliferative fitness), the fewer molecules 

remain in the cell and therefore the daughter phenotype probabilities approach the original 

unbiased probability determined by the genotype. The net result of this system is one that 

has phenotypic memory, where cells that are dividing more rapidly will tend to keep their 

phenotype, relative to the baseline chance of switching without memory.

By exploring different ratios of the genotype molecules and their decay rates (figures 

12(B)–(E)), a wide variety of phenotypic dynamics can be generated. Key elements of the 

illustration are that (1) the steady-state ratio of S and R cells can be fine-tuned through 

genotype ratio and decay rate; (2) this pre-treatment S/R ratio affects the initial response 

due to therapy; and (3) the responses to therapy include a micro-persister strategy (panel 

(B)), a tissue-preservation strategy (panel (C)), and a hybrid strategy (panel (D)) where the 

population can grow equally well in both conditions. Figure 12 (E) shows a case where the 

parameters can even lead to tumor extinction. In the latter, the decay rates are fast, and the 

probability of producing resistant cells is very low.
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An interesting aspect of this system is that evolution can easily act on the properties of 

these molecules to change their expression levels (e.g., changes to transcriptional control) 

and their decay rates (e.g., via phosphorylation, localization, mutation, etc). Depending on 

the desired functionality of the cells and tissue in question, a suitable strategy can be found 

in the evolutionary landscape that would maximize the fitness of the population subject to 

treatment (or other perturbations). Importantly, figure 12(E) suggests that agents that alter 

the mechanisms of phenotypic stochasticity (such as those that target epigenetic controls like 

HDAC) could be powerful combination therapy agents that improve the efficacy of cytotoxic 

drugs.

10.4. Challenges and opportunities

A key challenge in researching plasticity is that the biology is vastly more complicated than 

the simple illustration presented above. Cellular networks often use dozens if not hundreds 

of interacting molecules, which in turn produce many more than two phenotypes; subtle 

temporal aspects also likely play a significant role, since molecules are constantly being 

transcribed from the genome and then degraded by cellular processes, complicating the 

meaning of ‘resolution’ for a CRN. Furthermore, the microenvironment of a cell is also a 

key input into phenotypic expression. Molecules may be acquired from the environment, 

either as metabolites or signals produced by other cells, and these can influence the 

balance of phenotypic outcomes. This effectively acts as an ‘environmental memory’: as 

cells generate successful phenotypes in a changing environment, they may release signaling 

molecules that bias nearby cells to switch to the same fitter phenotype with more likelihood, 

and therefore produce faster population growth than would be seen with independently 

switching cells.

Along with the advanced experimental techniques needed to study phenotypic heterogeneity, 

mathematical modeling is a key component to disentangling these complexities. The primary 

challenge remains in identifying realistic networks, timescales, and mechanistic interactions 

from the biology.

10.5. Concluding remarks

Bet hedging with phenotypic memory can create a wide range of dynamics from stable 

resistant tissues to small-population persister-type dynamics. These behaviors occur even in 

a system with only two phenotypes; indeed, it is the way in which these phenotypes arise 

that leads to the rich variation. Understanding these dynamics will give insight into the 

process of therapy resistance through plasticity, which in turn can inform epigenetic-based 

treatments that enhance the effect of existing therapeutic agents.
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Figure 1. 
CAFs are comprised of multiple subpopulations that can interconvert based on the cues from 

the TME. CAF subtypes differentially influence various aspects of cancer progression.
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Figure 2. 
Integration of novel technologies to better understand CAF heterogeneity. Biomimetic 

models, experimental tools, and functional readouts are used to generate experimental 

data that can be coupled with mathematical models to make predictions based on model 

perturbations.
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Figure 3. 
Utilizing reporter systems to track the CSC state in real time in various microenvironmental 

conditions, therapeutic contexts, organoid models, and in vivo could provide valuable insight 

into development, progression, heterogeneity and therapy resistance in tumors such as GBM.
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Figure 4. 
The epigenetic cancer state-space. (A) A phenotypic landscape derived from epigenetic 

states is shown for normal (left) and cancer (right). The cancer state-space is the normal 

landscape perturbed by oncogenic events resulting in a lower energy barrier and therefore 

a higher probability of undergoing a state-transition to the cancer state. In both cases, the 

evolution of the system is modelled as a particle undergoing Brownian motion in the state-

space. (B) (Left) The evolution of the system represented as a trajectory in the state-space 

over time. The location in the state-space is shown for two samples; one (red samples) that 

undergoes state-transition to cancer, defined by the red line and one (blue samples) that does 

not. (Right) Once the state-space is constructed, new samples can be projected into the space 

to make individual predictions based on the evolution of the probability density function 

with Fokker-Planck equations corresponding to the equation of motion.
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Figure 5. 
Models of acquired therapy resistance. (A) Pre-existent fully resistant subpopulations 

expand due to therapy-induced competitive release. (B) Full resistance develops from 

tolerant cells or cells sheltered from therapy by proximity to protective stromal niches 

due to stochastic occurrence of resistance-conferring (epi)genetic mutation. (C) Resistance 

as the result of plasticity-mediated therapy induced phenotypic ‘reprogramming’. (D) 

Multifactorial, gradual acquisition of resistance resulting from integration of multiple 

contributing inputs.
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Figure 6. 
Understanding of acquired resistance requires consideration of epigenetic reprogramming, 

stochastic genetic and epigenetic changes, converging at the level of inclusive fitness ‘seen’ 

by selection. Such an integration requires development and use of mathematical modelling 

tools.
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Figure 7. 
Crosstalk among the chromosomal and non-chromosomal epigenetic arms can drive 

emergent phenomenon in cancer cells, enabling phenotypic plasticity in many 

interconnected dimensions/axes.
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Figure 8. 
The BaM3 method. A schematic representation of the data and method integration of the 

BaM3 method. Details can be found in [86].
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Figure 9. 
LEUP features. LEUP allows for predictions even when lacking exact mechanistic 

knowledge. Machine learning offer solutions in similar situations. However, LEUP models 

are still more interpretable and facilitate generalisation.
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Figure 10. 
Modeling impact in a pharmaceutical setting.
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Figure 11. 
Bet hedging without phenotypic memory. (A) CRN (approximate majority) that is a bistable 

switch between states of all s or all r molecules, using a facilitating molecule b. (B) 

Probability that the CRN produces phenotype S, for a given fraction of starting s molecules. 

(C) Simulation using 53s and 47r upon cellular division (dashed line in panel (B)) and 

treating with six pulses of therapy. (D) Simulation using 46s and 54r, with the same therapy 

as panel (C).
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Figure 12. 
Bet hedging with phenotypic memory. (A) Adding molecular memory and decay shifts 

the probability curve when the dividing cell still has molecules remaining. Green and red 

curves show the shifts for 10s and 10r remaining molecules at division, which are added 

to the 53s/47r baseline. This will bias the probability of producing daughter cells toward 

preserving the parental phenotype. (B) Simulation with 53s/47r, slow s-decay, and fast 

r-decay shows a persister population: there is no sustained relapse during remission, only 

survival, then rapid regrowth once treatment ends. (C) When decay rates are swapped 

(s-decay is fast and r-decay is slow), we see a population that maintains a high density, 

representative of a multicellular tissue. Unlike in figure 11(D), the off-treatment population 

has almost 50% sensitive cells. (D) With a different genotype (57s/43r) and slow decay for 

both molecules, the population can grow continuously under therapy. Compare with panel 

(B), where indefinite therapy would hold the population to low-level spikes rather than 
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sustained growth. (E) For some parameters, the population can be driven extinct, suggesting 

that agents that affect the hedging and decay rates may be powerful combination therapies 

that could enhance the primary cytotoxic agent’s effect.
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