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ABSTRACT: With a growing demand for time-domain simulations of correlated many-
body systems, the development of efficient and stable integration schemes for the time-
dependent Schrödinger equation is of keen interest in modern electronic structure
theory. In this work, we present two approaches for the formation of the quantum
propagator for time-dependent equation-of-motion coupled cluster theory based on the
Chebyshev and Arnoldi expansions of the complex, nonhermitian matrix exponential,
respectively. The proposed algorithms are compared with the short-iterative Lanczos
method of Cooper et al. [J. Phys. Chem. A 2021 125, 5438−5447], the fourth-order
Runge−Kutta method, and exact dynamics for a set of small but challenging test
problems. For each of the cases studied, both of the proposed integration schemes
demonstrate superior accuracy and efficiency relative to the reference simulations.

1. INTRODUCTION
In recent years, there has been renewed interest in the
development of efficient numerical methods to study the
quantum dynamics of correlated electrons in molecular and
materials systems (see, e.g., refs. 1,2 and references therein).
Under particular approximations, it is possible to circumvent
the direct solution of the time-dependent Schrödinger
equation (TDSE) in favor of time-dependent perturbation
theory (or “frequency-domain” methods), which aims to
implicitly access quantum dynamics through probing the
spectral structure of the Hamiltonian operator. In the context
of electronic structure theory, these approaches include linear-
response,3−5 polarization propagator,6−8 and equation-of-
motion9−12 methods, among others.13−15 While these methods
can often be a powerful tool for the simulation and prediction
of observable phenomena such as spectroscopies, their veracity
depends on the applicability of their various approximations to
accurately characterize queried physical conditions. Further,
the vast majority of these perturbative methods serve to access
the equilibrium behavior of electronic dynamics, leaving
nonequilibrium phenomena, such as charge migration,16

inaccessible. From a theoretical perspective, time-domain
simulations do not suffer from these deficiencies and may be
straightforwardly extended to nonperturbative and nonequili-
brium regimes.1,2

Given the ability to faithfully represent physical conditions
by a chosen Hamiltonian, wave function ansatz, and initial
condition, the primary challenges of time-domain electronic
structure methods are practical rather than theoretical. In
contrast to frequency-domain methods which trade the

problem of temporal dynamics for the tools of numerical
linear algebra,17−22 time-domain methods require explicit
integration of the TDSE, which is generally more resource-
intensive. For hermitian discretizations of molecular Hamil-
tonians, such as Hartree−Fock (real-time time-dependent HF,
RT-TDHF23,24), density functional theory (RT-TDDFT),25

and configuration interaction (TD-CI),26−29 significant
research effort has been afforded to the development of
efficient numerical methods to integrate the TDSE.30,31 In
particular, approximate exponential integrators based on
polynomial (Chebyshev30,32−35) and Krylov subspace (short-
iterative Lanczos,36 SIL) expansions of the quantum
propagator are among the most widely used integration
techniques for hermitian quantum dynamics. Exponential
integrators are powerful geometric techniques for the solution
of linear ordinary differential equations (ODE), such as the
TDSE, as they preserve their exact flow,37 thereby allowing for
much larger time-steps than simpler, nongeometric integrators
such as the fourth-order Runge−Kutta method (RK4). In
addition, these methods may also be formulated in such a way
as to only require knowledge of the action of a matrix−vector
product,30,38−40 thereby avoiding explicit materialization of the
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Hamiltonian matrix, which is generally large for correlated
many-body wave functions.
The situation is significantly more complex for nonhermitian

Hamiltonian discretizations such as those arising from
coupled-cluster (CC) theory (see ref 41. for a recent review).
Due to its simplicity and low memory requirement, RK4 has
generally been the integrator of choice for time-domain CC
methods in the recent past.41 Symplectic,42−44 multistep,45 and
adaptive46 integrators for time-domain CC methods have been
developed and have yielded significant efficiency improve-
ments over their nonsymplectic counterparts. Exponential
Runge−Kutta integrators have been explored in the context of
nonlinear time-dependent CC theory (TD-CC)47 but have yet
to see wider adoption. Recently, Cooper et al.48 suggested an
approximate exponential integration scheme for time-depend-
ent equa t ion -o f -mot ion CC theory (TD-EOM-
CC)29,41,43,49−52 based on the hermitian SIL method to
efficiently generate linear absorption spectra for molecular
systems. Despite being valid only for hermitian matrices, the
proposed SIL approach was demonstrated to produce
sufficiently accurate spectra with relatively low subspace
dimensions. However, the ability of this scheme to produce
faithful, long-time dynamics within TD-EOM-CC has not been
assessed and is unlikely due to its hermitian ill-formation. In
this work, we pursue the development, application, and
assessment of polynomial and nonhermitian Krylov subspace
(short-iterative Arnoldi, SIA) methods, previously considered
for hermitian Hamiltionians,30,32−35,38,40 for the complex
matrix exponential to enable the efficient and accurate
simulation of TD-EOM-CC.
The remainder of this work is organized as follows. In

Section 2.1, we review the salient aspects of TD-EOM-CC
theory relevant to the development of efficient exponential
integrators. In Sections 2.2 and 2.3, we examine the properties
of exact and approximate dynamics for the TD-EOM-CC ODE
and present the developed integration schemes based on the
Chebyshev (Section 2.3.1) and SIA (Section 2.3.2) expansions
of the complex matrix exponential. In Section 3, we apply the
developed integration schemes to a set of small test problems
and compare their veracity with exact dynamics, as well as
previously employed SIL and RK4 methods. We conclude this
work in Section 4 and offer an outlook on future directions for
approximate exponential integrator development in TD-EOM-
CC in the years to come.

2. THEORY AND METHODS
2.1. TD-EOM-CC Theory. TD-EOM-CC theory is a

general time-domain reformulation of many-body quantum
mechanics capable of simulating the dynamics of both time-
dependent29,41,49,50 and time-independent51,52 Hamiltonians.
In this work, we consider the moment-based formulation51 of
TD-EOM-CC to compute the spectral function

=f t S t( )
2
3

d e ( )i t

(1)

where S(t) = ⟨M̃(0)|M(−t)⟩ = ⟨M̃(t)|M(0)⟩ is the
autocorrelation function. Here, |M(t)⟩ (⟨M̃(t)|) is (the dual
of) the time-dependent moment function which describes the
propagation of weak perturbations throughout the many-body
system. We note for clarity that due to the nonhermiticity of
the CC formalism, ⟨M̃(t)| is not the complex conjugate of
|M(t)⟩. Additionally, throughout this paper, we chose S(t) to
be ⟨M̃(0)|M(−t)⟩, although ⟨M̃(t)|M(0)⟩ is also valid. |M(t)⟩

(⟨M̃(t)|) may generally be described via a linear expansion of
(de)excitations from a reference state |0⟩ (typically taken to be
HF)
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where m0 (m̃0), mi
a (m̃a

i ), and mij
ab (m̃ab

ij ) are time-dependent
(de)excitation amplitudes, cp (cp†) is the Fermionic annihila-
tion (creation) operator associated with the spin−orbital p,
and the indices i, j, ... and a, b, ... denote occupied and virtual
spin−orbitals relative to |0⟩. In this work, we truncate eq 2 to
include only up to double excitations from the reference,
resulting in the TD-EOM-CCSD approach.
Within the TD-EOM-CC formalism, the moment excitation

and de-excitation amplitudes obey the following set of coupled,
linear-time-invariant (LTI) ODEs51

= = { }

{ }

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

m H m mt i t t

m t

m t

m t

( ) ( ), ( )

( )

( )

( )

t N i
a

ij
ab

n

0

(4)

and their left-hand counterparts
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where ×HN
n n is the nonhermitian, normal-ordered,

similarity-transformed Hamiltonian represented in the basis
of Slater determinants.10,11 From the moment state-vectors,
m(t) and m̃(t), S(t) of eq 1 may be evaluated as

= m mS t t( ) ( )T (6)

where we have taken m̃≡m̃(0). It is worth mentioning that the
TD-EOM-CCSD formalism used here requires propagating
only the right- or left-hand moment amplitudes (in this case,
the right-hand amplitudes, following eq 4). While eq 1 is
perturbatively derived from Fermi’s Golden Rule,51 time
evolution of |M(t)⟩ via eq 4 also serves as a useful model for
the development of both LTI and non-LTI integration
techniques for TD-EOM-CC methods as it formally consists
of the same algorithmic components that are required for the
simulation of time-dependent Hamiltonians.29,41,49,50

When specified as an initial value problem, eq 4 admits an
analytic solution

=m H mt i t( ) exp( ) (0)N (7)

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00911
J. Chem. Theory Comput. 2023, 19, 9177−9186

9178

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00911?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


where exp(−iH̅Nt) is the quantum propagator and exp is the
matrix exponential defined in the canonical way.53 We refer the
reader to refs 51 and 52, for discussions pertaining to the
choices of initial conditions for eq 7 to simulate various
spectroscopic properties. In this work, we consider the dipole
initial conditions51 induced by

| = | |= | +
=

M(0) 0 , M(0) 0 (1 ) ,

exp( T) exp(T) (8)

where T̂ and Λ̂ are the ground-state CC excitation and de-
excitation operators (again truncated at double excitation/de-
excitations in this work), and μ̂ is a particular component of
the electronic dipole operator.

2.2. Exact Matrix Exponential. When H̅N is small enough
to be formed explicitly in memory, eq 7 may be directly
evaluated as

= =m R w w Lmt i t( ) exp( ) , (0)ex ex ex (9)

where ×n n is the diagonal matrix of EOM-CC
eigenvalues, = { } =I I

n
1, and

×L R, n n are the full,
biorthogonal set of corresponding left and right eigenvectors
satisfying the equations10,11

= = =H R R LH L LR I, ,N N (10)

where ×I n n is the identity matrix. As Ω is a diagonal
matrix, exp(−iΩt) is simply the diagonal matrix with entries
e i tI . Insertion of eq 9 into eq 6 yields the following simple
expression for the exact autocorrelation function

= =w w w R mS t i t( ) exp( ) ,ex
ex,T ex ex T (11)

As a nonhermitian matrix, HN is not guaranteed to have real
eigenvalues if the many-electron basis is truncated, and as such,
eq 9 (and by extension eq 7) is not guaranteed to be unitary
(norm-preserving) and will generally yield dissipative or
divergent dynamics along EOM-CC modes with 0I
(see, e.g., a recent study in ref 54.). However, it has been
shown that55,56, barring suboptimal ground-state CC solutions
or the presence of conical intersections, HN typically admits a
real spectrum representing physical excited states and, thus, eq
9 is unitary in exact arithmetic. Nevertheless, the exact
conditions that would enable the prediction of complex
eigenvalues a priori are not known; thus, it is paramount for
propagation schemes for TD-EOM-CC to properly handle
both real and complex spectra. As such, we consider both
states of affairs in this work.

2.3. Approximate Exponential Integrators. While eq 9
is an exact solution to the LTI TD-EOM-CC dynamics
considered in this work, it requires the full diagonalization of
H̅N. As the memory requirement associated with the EOM-
CCSD HN grows O(N8) with system size, full diagonalization
is impractical for all but the smallest problems. For some
systems, it is possible to integrate the TD-EOM-CC equations
in a subspace spanned by a small number of states such that
full diagonalization is not required.29,41,49,50 However, if a large
number of states are required or spectral regions of interest are
densely populated or spectrally interior, this approach also
becomes impractical.
Matrix exponentiation is a challenging numerical linear

algebra problem, and the past half century has yielded a wealth
of research into the development of efficient implicit30,38−40

and direct53 methods both for hermitian and nonhermitian

matrices. In this work, we will consider subspace approaches
for evaluation of the complex, nonhermitian matrix exponential
generally taking the form

+ =m H m Vct t i t t t( ) exp( ) ( ) ( )N (12)

where ×V n k is a k-dimensional subspace (with k ≪ n)
generated by the action of −iHN onto the current state vector,
m(t), and c t( ) k is a time-varying coefficient vector.
Given the ability to implicitly form σ ← HNv (i.e., a “σ build”),
which is a standard algorithmic component of any EOM-CC
implementation,10,11 the implementations of eq 12 considered
in this work will not require materialization of H̅N in memory.
Within the subspace ansatz, eq 6 becomes

+ =w c w V mS t t t( ) ( ),T T k (13)

where w̃ is time-independent for fixed V.
For a particular expansion order k and state vector m(t), eq

12 will generally be valid for |δt| ≤ |Δt|, where Δt will be
referred to as a macro time-step in the following. Within this
prescription, the total simulation length, , will be partitioned
into subintervals { = [ ]}+t t,i i i 1 where t0 = 0, ti = ti−1 + Δti
and Δti is the macro-time-step for the i-th interval. The
relationship between k and Δt is method-dependent and will
be discussed for both the Chebyshev and Arnoldi integrators
below. Due to the factorization of the time-dependence into
c(t), a general property of truncated expansions such as eq 12
is in their ability to interpolate within each i without
requiring additional σ builds.30 This property is particularly
advantageous for methods such as EOM-CCSD in which the
computational complexity of σ formation scales O(N6) with
system size.10,11 For each i , a single V is computed and the
propagator may be interpolated to arbitrary temporal
resolution by varying the corresponding coefficients. For
each of the intermediate time intervals (i > 0), the
approximation of m(ti+1) generated from the end point of i
is used as the starting vector to generate V for +i 1.

2.3.1. Chebyshev Time Integration. The use of the
Chebyshev expansion to evaluate the quantum propagator
for hermitian Hamiltonians is well established and is among
the most efficient known strategies for integrating LTI variants
of the TDSE.30,32−35 In this work, we demonstrate that this
approach is also applicable to nonhermitian Hamiltonians with
real or complex spectra. In the present treatment, we work with
modified Chebyshev polynomials of the first kind, {Φp}, given
by the recurrence

= =

= ++

z z z

z z z z

( ) 1, ( )

( ) 2 ( ) ( )p p p

0 1

1 1 (14)

In the Chebyshev basis, the TD-EOM-CC propagator acting
on a general vector v may be exactly expanded as30,32

=
=

+H v H vi t J t iexp( ) e (2 ) ( ) ( )N
i t

p
p p p N

0
0

(15)

where = ±± ( )1
2 max min , ωmin/max are the minimum/

maximum eigenvalues of H̅N, δk0 is a Kronecker delta, Jp is
the p-th Bessel function of the first kind, and H̃N =
γ−

−1(H̅N−γ+I) is an auxiliary matrix that scales the spectrum
of H̅N from [ωmin, ωmax] → [−1, 1] such that the image of Φp
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remains within the unit disk. Practically, H̃N need not be
formed explicitly (see Alg. 1) and γ± need not be computed
from exact eigenvalues and can be approximated using
standard techniques.57−61

In practice, the sum in eq 15 is truncated to a finite order k,
yielding a compact representation of the propagator in the
Chebyshev basis, Vcheb = [v0cheb,v1cheb,v2cheb,...,vk−1

cheb], given by

= = +v H mi t c t J t( ) ( ), ( ) e (2 ) ( )p p N p
i t

p p
cheb cheb

0

(16)

For real-valued spectra, the truncation error at the interval
end point (t + Δt) of the Chebyshev expansion can be
shown62,63 to be bounded by

= || || | |
=

vC t J t( ) 2 ( )
p k

p
(17)

For fixed argument, Jp(z) is highly oscillatory for p < z but
decays exponentially for p > z, as depicted in Figure 1. We note
that for even (odd) p, Jp is an even (odd) function of about
zero. Therefore, for p sufficiently larger than |γ−Δt|, we may
approximate C(Δt) ≈ 2∥v∥|Jp(γ−Δt)|. Given a desired step
size, Δtcheb, and an error threshold εcheb, we may use this
approximation to select k > |γ−Δtcheb | such that

| | <J t( )
vk cheb 2

cheb

. We note that due to the fact that the
many-body Hamiltonian is an unbounded operator, the
spectral radius of H̅N is known to grow superlinearly with
basis and system size. As such, it should be expected that for
large systems, the number of Chebyshev terms required to
achieve an accurate approximation of the propagator will grow
at a commensurate rate.
For complex spectra, the convergence analysis for the

Chebyshev expansion becomes slightly more challenging as the
uniform convergence of |Jp(α)Φp(z)| with respect to increasing
p is only a property held by z ∈ [−i, i].64 Outside of this
domain, |Φp| grows exponentially. However, as the complex
exponential is holomorphic, eq 15 is guaranteed to converge
absolutely in all of . As the typical manifestation of complex
eigenvalues in EOM-CC spectra yields imaginary parts much
smaller in magnitude than the spectral radius of H̅N (see, e.g.,
refs 54−56) and given that the spectrum is already scaled by
this radius (further reducing this magnitude), it is expected
that these small imaginary components lie close enough to [−i,
i] that eq 17 remains a valid metric by which one may derive
the required order of the Chebyshev expansion. We examine
this behavior for complex spectra in Section 3.

As Δtcheb is fixed, may be evenly partitioned into | |

Ä
Å
ÅÅÅÅÅÅ

É
Ñ
ÑÑÑÑÑÑtcheb

intervals. The Chebyshev subspace vectors may be efficiently
evaluated using only k σ-builds (Alg. 1); thus, the total σ-build

cost for this method is ·| |

Ä
Å
ÅÅÅÅÅÅ

É
Ñ
ÑÑÑÑÑÑ k

tcheb
. Another important aspect of

the Chebyshev method is that because the expressions in eq 16
are analytic, one need not materialize Vcheb in memory. Instead,
one may evaluate w̃cheb = VchebT m̃ (eq 13) directly as the
subspace is generated, as is shown in Alg. 1, thus changing the
memory requirement from O(kn) to O(3n). As it is often the
case that one requires high-order Chebyshev polynomials
(≫ 3) to accurately approximate the matrix exponential, this
realization leads to a drastic reduction in memory consumption
for large systems.

2.3.2. Short Iterative Arnoldi Time Integration. Consider-
ing the spectral decomposition of the exact propagator given in
Section 2.2, it is expected that the Chebyshev method
discussed in Section 2.3.1 will be most effective when Ω is
nearly uniformly distributed within [ωmin, ωmax] because the
Chebyshev basis minimizes the uniform error norm. If Ω is
clustered, Krylov subspace techniques for the formation of the
exponential propagator are often more effective.38 The basic
principle behind Krylov approximation techniques for matrix
functions is rooted in the generation of a k-dimensional,
orthonormal basis, Vkrlv = [v0krlv,v1krlv,...,vk−1

krlv ], for the Krylov
subspace

= { }H v v H v H v H v( , ) , , , . . . ,k
N N N N

k
0 0 0

2
0

1
0 (18)

where v n
0 is an arbitrary vector with ∥v0∥ = 1. Given Vkrlv,

one may form a subspace-projected Hamiltonian

= † ×H V H VN
k k

krlv krlv krlv (19)

and approximate the action of the matrix exponential as38

=

v c

c

i t t

t v i t e

H V

H

exp( ) ( )

( ) exp( )

N krlv krlv

krlv krlv 1 (20)

where e1 is the first column of a k × k identity matrix and Vkrlv
is the Krylov subspace generated from v0 = v/∥v∥. Given that k

Figure 1. Graphical depiction of the order decay behavior of Bessel
functions of the first kind for fixed argument. The function is highly
oscillatory for p < z but decays exponentially for p > z.
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≪ n, the exponential in eq 20 may be efficiently evaluated via
eq 9.
For hermitian matrices, Vkrlv can be efficiently generated by

the Lanczos iteration,65 Hkrlv is a tridiagonal matrix, and both
Hkrlv and Vkrlv may be formed implicitly via a simple three-term
recursion. For the approximation of the propagator, this
approach has come to be known as the short-iterative Lanczos
(SIL) method.36 Here, we present an analogous scheme for the
exponential propagator based on the Arnoldi iteration,65,66

which is a general Krylov subspace technique which extends to
both hermitian and nonhermitian matrices with both real- and
complex-valued spectra. We will refer to this approach as the
short-iterative Arnoldi (SIA) method in the following. Instead
of a tridiagonal matrix, the Arnoldi method produces an upper
Hessenberg matrix via the recursion

= + + +H v eV V HN k k kkrlv krlv krlv 1 1
krlv T

(21)

where ek is the k-th column of the k × k identity matrix and
βk+1vk+1krlv is the residual

=+ +
†v H vI V V( )k k N k1 1

krlv
krlv krlv

krlv
(22)

with ∥vk+1krlv∥ = 1. If HN were a hermitian matrix, Hkrlv would be
tridiagonal and Vkrlv would span the same subspace as the one
produced by the Lanczos iteration in exact arithmetic.

Much like the Lanczos iteration, Hkrlv may also be formed
incrementally via the Arnoldi iteration, as shown in Alg. 2.
However, unlike the 3-term recurrence used in the Lanczos
method, the Arnoldi iteration requires explicit orthogonaliza-
tion of newly produced subspace vectors as opposed to the
implicit orthgonalization generated by Lanczos. As the Arnoldi
method is guaranteed to produce an orthonormal basis via
explicit orthogonalization, it is often more numerically stable
even for hermitian problems.67−69 In this work, we have
utilized the classical Gram-Schmidt method with reorthogon-
alization to perform the explicit basis orthogonalization.70

There exist nonhermitian extensions of the Lanczos method71

which produce simultaneous, biorthogonal approximations for
the left- and right-hand eigenspaces of nonhermitian matrices
and have seen successful applications in both frequency-
domain CC applications19 as well as state selection for TD-
EOM-CC.50 However, the biorthogonalization requirements of
these methods can often be numerically unstable,72−74 and as
such, we expect the Arnoldi method to yield superior
numerical stability in finite precision.75

It has been shown38 that the error produced by eq 20 can be
bounded by the right-hand side of the following inequality

+

H vi t i t e

t e

V Hexp( ) exp( )

2 ( ) max(1, )H

N

k
k t

0 krlv krlv 1 2

1
( )N (23)

where μ(H̅N) is the largest eigenvalue of (H̅N + H̅N
† )/2 and

= HN 2. Although tighter bounds can be found,40 the
bound given in (23) is more instructive. It shows that the
approximation error made in an Arnoldi time integrator
depends on the departure of Vkrlv from an invariant subspace of
H̅N, which is measured by βk+1, the step size or time window δt
as well as the spectral radius of HN, measured by ρ and μ(HN).
Unlike the Chebyshev method, where the expansion

coefficients are known ahead of time, the coefficients for SIA
are related to the spectrum of Hkrlv, which itself is dependent
on v [the current state vector, m(t), in the context of eq 12].
As such, it is canonical to adopt a dynamic time-stepping
approach where the Krylov subspace dimension (k) is fixed
before the simulation and each Δti corresponding to i is
determined dynamically throughout the time propagation. As
eq 23 is only a loose bound, its practical ability to determine
Δt is limited. Given that the Arnoldi method produces
successively more accurate Krylov subspaces with increasing k,
a more practical error bound is given by ckkrlv(Δt), which
measures the potential for projections of the exact matrix
exponential onto vectors outside the Krylov subspace.
Therefore, as has been successfully applied to the SIL
method,48 a reasonable choice for the step size is the largest
Δt such that |ckkrlv(Δt)|<εkrylov, where +krylov is a chosen
error threshold.
Another side effect of the nonanalytic nature of the SIA

coefficients is that, unlike Vcheb, Vkrlv must be materialized in
memory and eqs 13 and 15 must be evaluated explicitly. As
such, the memory requirement associated with SIA will grow
O(kn) with the basis dimension. However, as will be
demonstrated in Section 3, the SIA method will generally
require fewer σ builds than the Chebyshev method to achieve
commensurate integration accuracy.

3. RESULTS
To assess the efficacy of the Chebyshev and SIA TD-EOM-CC
integrators developed in this work, we compare the accuracy
and efficiency of these methods for three test systems, N2 (1.1
Å) and MgF (1.6 and 1.8 Å), relative to exact dynamics (eq 9)
as well as RK4 and the TD-EOM-CC SIL method of ref 48.
Each of these systems were treated at the EOM-CCSD level of
theory with the minimum STO-3G basis set76,77 to allow for
practical comparisons with exact dynamics. All ground-state
CC calculations were performed using a prototype Python
implementation interfaced with the HF and integral trans-
formation routines in the PSI4 software package78 and
geometries were aligned along the z-Cartesian axis without
the use of point-group symmetry. At their respective
geometries, N2 and MgF @ 1.6 Å exhibit real-valued EOM-
CC spectra while MgF @ 1.8 Å exhibits a pair of complex
conjugate eigenvalues with their imaginary components being
≈0.6 mEh. All simulations in this work were performed using
εcheb = 10−16 and εkrylov = 10−6 (for both SIL and SIA) for a
duration of = E1350 h

1 (≈32 fs). Exact results for the MgF
simulations are given in Figure 2 to exemplify the temporal
behavior S(t) in the presence of complex eigenvalues. MgF @
1.6 Å exhibits a constant signal profile, while MgF @ 1.8 Å
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exhibits exponential growth. We refer the reader to ref 54. for a
more comprehensive discussion of this behavior.
First, we examine the temporal error accumulation in the

autocorrelation function (eq 1) using the normalized root-
mean-square-deviation (rmsd) metric

=
| |

| |
= ×E t

S t S t

S t
t i t( )

( ) ( )

( )
,j

i j i i

i j i
i

ex
2

ex
2

(24)

where Sex is given in eq 11 and δt is the temporal resolution of
the integrated time series. For the Chebyshev, SIA, and SIL
integrators, δt = 0.05Eh−1. As the temporal resolution and step
size coincide for RK4, we have compared our methods with 3
different RK4 step sizes to illustrate convergence: RK4−1 (δt =
0.05Eh−1), RK4−2 (δt = 0.01Eh−1), and RK4−3 (δt =
0.001Eh−1). In the following, we will use E( ) (i.e., the total
accumulated autocorrelation error) as a global error metric to
assess each integrator’s relative accuracy. Figure 3 illustrates
the accumulated autocorrelation error for each of the
integrators considered. Parameters for Chebyshev (Δtcheb),
SIA (k), and SIL (k) simulations in Figure 3 were selected to
minimize E( ) for each method. For N2, the Chebyshev, SIA,
and RK4 integrators exhibit near constant error accumulation
over the full simulation. SIL exhibits a sharp error increase
between 1 and 10 Eh−1 which is of the same order as εkrylov. For
k = 36, SIA yields an invariant subspace up to an error of
O(εkrylov), and as such, the entire simulation <t T( ) can be
performed using a single Krylov subspace. At both geometries,
SIL and RK4-1 diverge for MgF, while Chebyshev, SIA, RK4-2,
and RK4-3 exhibit error accumulation characteristics similar to
those observed for N2. However, unlike in the N2 case, SIA
does not yield an invariant subspace even with the largest
subspace of k = 400, and thus multiple Krylov subspaces must
be generated over the course of the simulation. As such, error
O(εkrylov) is compounded at each macro-time-step, which
explains the overtaking of SIA by Chebyshev in the long-t limit.
We also note that the error accumulation profiles for both MgF
@ 1.6 Å and MgF @ 1.8 Å are nearly identical with the
exception that SIL diverges marginally faster for the system
with complex eigenvalues (1.8 Å) than that with real
eigenvalues (1.6 Å). This numerical experiment confirms the

Figure 2. Absolute value of the autocorrelation function for MgF at
1.6 and 1.8 Å internuclear separation. The EOM-CC spectrum of the
former only exhibits real eigenvalues, while that of the latter exhibits a
complex eigenvalue pair with imaginary component ≈6mEh.

Figure 3. Accumulated S(t) errors for RK4, Chebyshev, SIA, and SIL.
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efficacy of the Chebyshev and SIA schemes in the presence of
complex eigenvalues in the EOM-CC spectrum, and thus, we
will focus on the systems with real eigenvalues (i.e., N2 and
MgF @ 1.6 Å) for the remainder of the numerical experiments.
Figure 4 presents the cost-to-accuracy ratio, characterized by

E( ) as a function of σ builds emitted by each integrator, for a
range of parameter choices. For N2 (MgF @ 1.6 Å),
Chebyshev results were obtained for Δtcheb ∈ {1, 5} (Δtcheb
∈ {1, 5, 10, 30, 50}). As discussed in Section 2.3.1, the number
of required σ builds for the Chebyshev is fixed atm t/cheb cheb
and mcheb generally increases as a function of Δtcheb. This
behavior is shown explicitly for MgF @ 1.6 Å in Figure 5. For
both systems studied, neither E( ) nor the total number of σ-
formations is significantly affected by increasing Δtcheb.
SIA results were obtained for N2 (MgF @ 1.6 Å) with k ∈

{5, 10, 20, and 36} (k ∈ {50, 100, 200, 400}). As is shown, the
achievable time-step (σ build count) subject to εkrylov is
(inversely) proportional to k and, thus, the SIA and SIL data
points in Figure 4 are plotted in order of decreasing k. Unlike
the Chebyshev method, the accuracy of SIA consistently
improves with increased k, and thus, k should be maximized

subject to available memory resources to improve both
accuracy and efficiency of the SIA method.
For N2, SIL results were also obtained with k ∈ {5, 10, 20,

36, 50} for a direct order-by-order comparison with SIA. At
each order, SIA achieves better accuracy over SIL by between 2
and 3 orders of magnitude and requires >50% fewer σ builds in
cases where SIA is able to take time-steps larger than δt (k ≥
10). This is due to the fact that the Arnoldi method generates a
faithful Krylov subspace representation H̅N, while the Lanczos
method, being only valid for hermitian matrices, does not. This
fact is particularly apparent in SIA’s generation of an invariant
subspace for k = 36, while SIL fails to demonstrate similar
convergence.
For all problems considered, the proposed SIA and

Chebyshev integrators exhibit superior accuracy and efficiency
over analogous SIL and RK4 simulations. While it is possible
for RK4 to yield reasonable accuracy at small time-steps (RK4-
3), these simulations require an excessive number of σ builds
and would not be practical for the simulation of realistic TD-
EOM-CC problems.

Figure 4. Cost-to-accuracy comparison for RK4, Chebyshev, SIA, and
SIL.

Figure 5. Assessment of the variance of cost and accuracy of (a)
Chebyshev and (b) SIA integrators as a function of parameter
selection for MgF at 1.6 Å. SIA results are presented as the average
time-step t as a function of k.
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4. CONCLUSIONS
In this work, we have presented two approximate exponential
time-integrators for the TD-EOM-CC theory based on
Chebyshev and Arnoldi (SIA) expansions of the quantum
propagator. The efficacies of these integrators were demon-
strated via comparison with the exact exponential dynamics for
three small test problems with both real and complex EOM-
CC spectra. The Chebyshev and SIA integrators were
demonstrated to yield superior accuracy and efficiency when
compared to RK4 and the recently developed SIL method for
TD-EOM-CC.48 As both of the presented methods are built
from the standard algorithmic components required for any
implementation of (TD-)EOM-CC, the implementation of
these methods has a low barrier for entry and holds the
potential to yield significant performance and accurate
improvements for these simulations in the future.
The practical application of the presented schemes requires

consideration of the balance between the desired integration
accuracy and available computational resources. If memory
capacity allows, the SIA method would be preferred for most
chemistry applications due to its systematic improvability with
respect to truncation order. However, the memory require-
ment of SIA quickly becomes prohibitive for large problems,
and the explicit orthogonalization requirement complicated
efficiently distributed memory implementations. In these
instances, the Chebyshev method would be preferred due to
its low memory requirement and the simplicity of its
implementation. However, given the noted dependence of
the required Chebyshev order on the spectral radius of H̅N, the
SIA method may still be preferable for particularly large
systems due to its ability to simultaneously and compactly
approximate the extreme ends of the spectrum.
While the results presented in this work have focused on the

moment-based formalism of TD-EOM-CC, the presented
efficacy experiments serve as an important proof of concept to
demonstrate the proposed methods for general TD-EOM-CC
simulations. Future work to extend these methods to large-
scale TD-EOM-CC simulations is currently being pursued by
the authors. Further, extension of these methods for use with
time-dependent Hamiltonians, such as those required to study
field-driven dynamics of molecular systems, is currently under
development. While the moment-based formalism considered
in this work requires only the propagation of the right-hand (or
left-hand) EOM-CC state, modeling field-driven dynamics
with a time-dependent Hamiltonian will require propagating
both the right- and left-hand states. As such, the performance
of the integrators we have presented should be re-evaluated for
this use case.
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