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EPIGRAPH

You are both the screenwriter and the actor in your life.
If you don’t like your movie, write a different scene

and/or act your part better. Some of us have written a
better script full of wealth, great health, social success

but you are still acting out your old role.

Tej Dosa

The only authority over us is God.

Tyler Vu

The downside is never failure. View failure as
another form of “success”. There’s tangible
success - growth in the external world. And
there’s intangible success (“failure”) - growth
in the internal world. As long as you’re not stagnant,
physically or mentally - you’re progressing.

Ian Du
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ABSTRACT OF THE DISSERTATION

Analyses of Viral Genetic Networks in the Presence of Missing Data

by

Tyler Vu

Doctor of Philosophy in Biostatistics

University of California San Diego, 2022

Professor Xin Tu, Chair

Molecular epidemiology is increasingly used to investigate patterns of HIV transmission.

To do so, many analyses consider investigating properties of a sexual or transmission network.

The use of sampled data to estimate such properties is a common practice; however, in the

presence of missing data, even missing completely at random, networks based on sampled data do

not represent their population counterparts. As a result, inferences on sampled networks become

unreliable. To address this challenge, we propose statistical approaches to accommodating

missing data in the analysis of sampled networks.
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Chapter 1

Introduction

Molecular epidemiology is increasingly used to investigate patterns of disease trans-

mission dynamics and the effect of interventions on them [2, 10, 29]; a useful analysis in this

regard is of viral genetic linkage (VGL) where linkage is defined on the genetic distance between

viral sequences taken from pairs of infected individuals. Pairs with a genetic distance below

a specified threshold would be considered linked and demonstrate transmission between the

two individuals [17]. Such analyses can reveal which viral strains are propagating within and

between-communities, the characteristics of people infected with such strains, and the effects of

interventions designed to control rates at which viral genetic clusters grow.

Both the CDC and NIH have proposed that viral genetic analyses be used to guide re-

sources intended to end the AIDS epidemic where there are a million deaths annually as a result

of HIV [6, 8]. The development of antiretroviral therapy (ART) has shown to significantly reduce

the mortality rate of HIV-infected individuals [11]. Even with such advances, over 69% of the

individuals with HIV are located in Sub-Saharan Africa [18]. Mah et. al. showed that concurrent

sexual relationships played an important role in the AIDS epidemic in this region [20]. The use

of viral genetic sequencing has been of interest to model such sexual relationships to further

investigate HIV transmission dynamics and the impact of prevention interventions [2, 10, 29].

Yerly et al. used viral genetic sequencing to demonstrate that drug resistance transmission

decreased considerably in Switzerland between 1996 and 1999 by using phylogenetics trees
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and epidemiological linkages to identify clusters between treatment groups in the study [29].

Similarly, Aldous et al. showed that HIV transmission was associated with lack of antiretroviral

drug use and higher viral load [1].

Currently most studies regarding VGL make inferences about a population by estimating

network properties from a set of observed viral genetic sequences while disregarding any po-

tential effects from sampling and missing data [1, 4]. However, in the presence of missing data,

even if missing completely at random, observed VGL networks do not represent their population

counterparts, rendering inferences based on sampled networks unreliable without adjustment for

missing data. Specifically, estimates of network properties from observed VGL networks will

generally be biased unless networks are completely observed, which generally is unfeasible. As a

result, inference pertaining to transmission may not accurately represent transmission networks.

Liu, et al addressed this bias by developing a multiple imputation framework in which

the missing sequences are imputed [17]. Carnegie et al. made use of a subsampling approach

to generate estimators that adjust for this bias [3]. Note that both of these approaches focus

on estimating specific network properties; both papers investigate properties of the proposed

estimators only through simulation; neither provide a theoretical foundation for properties like

unbiasedness and consistency, i.e. convergence of a network property to its true value as the size

of the network sample and the network itself increases. To address this challenge, this dissertation

presents novel methods to generate consistent and asymptotically normally estimators for various

network properties pertinent to VGL linkage.

To guide development of methods, we will analyze data from a large pair-matched

cluster-randomized trial, the Botswana Combination Prevention Project (BCPP) [9]. The over-

arching goal of the BCPP was to estimate the impact of a package of combination prevention

interventions on reducing population-level cumulative three year HIV incidence in Botswana,

a country in Sub-Saharan Africa. The BCPP randomized 15 matched pairs of communities

(30 communities in all) Botswana to intervention vs control; matching was based on size of

community, pre-existing health services, population age structure, and geographical location.
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The intervention consisted of home-based and mobile HIV testing and counselling, point-of-care

CD4 testing, linkage to care support, expanded antiretroviral therapy. The study generated

viral sequences for all infected members of a 20% sample of households at baseline and on all

participants who became infected during the study. Additionally, 3 pairs of intervention-control

communities participated in the End of Survey Study (ESS), in which eligible members of all

households were tested for HIV at the end of the study.

However, issues arise in assessing the intervention effect, because of the presence of

mixing between randomized clusters, i.e., some individuals have sexual partners outside com-

munities randomized to their assigned treatment group, and hence violating the Stable Unit

Treatment Value Assumption (SUTVA). As a result, one can obtain unbiased estimates of the

randomized treatment effect (including the presence of mixing) but not of causal estimands of

public health interest, such as the difference in outcome between rolling out the intervention

everywhere versus nowhere. I intend for the developments made in this dissertation to be used in

the development of approaches to address this issue in the future.

To accurately estimate the causal effect of the BCPP intervention described above (not

just the randomized effect) we must first develop knowledge about mixing. To investigate this is-

sue, BCPP investigators made use of the viral sequences obtained from HIV-infected individuals,

with a goal of learning about patterns of HIV transmission dynamics in Botswana by estimating

network properties pertinent to VGL linkage [19]. However, with currently available methods,

one cannot be assured of the conditions under which estimators have good asymptotic properties.

This dissertation develops these methods and applies them to the investigation of transmission

flows across three pairs of communities in Botswana. The results from these analyses reflects

transmission flows between three sets. Such information is useful for estimating a counterfactual

estimator of interest—the difference between implementing the intervention in all communities

versus implementing it in none. Although we use the BCPP to guide development of our methods,

the developments made in this dissertation extend to general networks beyond HIV linkage.

The methods developed will prove useful in revealing features of transmission patterns within

3



and across communities and assessing the effect of interventions for infectious diseases such as

COVID-19.
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Chapter 2

Estimating Viral Genetic Linkage Rates in
the Presence of Missing Data

2.1 Introduction

While networks have become widely used to analyze elements in a system and how these

elements interconnect, the challenge of sampling complete network data remains a prevalent

issue. In most instances, we only sample a portion of the nodes and hence don’t observe the

edges corresponding to the missing nodes. As a result, estimators for linkage rates that ignore

the impact of missing data will be biased downwards.

Additionally, obtaining asymptotic properties for estimators of linkage rates is challeng-

ing, because linkage indicators across pairs of individuals are correlated; hence, the central limit

theorem and law of large numbers cannot be directly applied to such estimators.

For our parameter of interest, past work has been explored to accommodate missing data

in the case of viral genetic linkage networks (which in turn would apply to networks general).

In Liu et. al., a multiple imputation framework in which the missing sequences are imputed

is used to adjust for the bias in estimation of linkage rates across individuals that results from

the missing data [17]. Carnegie et. al. consider a subsampling approach to develop such an

adjustment [3]. Neither of these papers demonstrate desirable asymptotic properties such as

consistency and asymptotic normality.

In this paper, the overall goal is to develop estimators for linkage rates under the assump-
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tion that unobserved nodes are missing completely at random (MCAR). First, we show that

the bias can, under the MCAR assumption, be represented as a multiplicative factor equal to

the probability that we observe a node’s edge in the sample. From estimates of this factor, we

construct an improved estimator for this multiplicative factor using a subsampling approach. A

U-Statistics approach facilitates development of an improved estimator for linkage probabilities

that are asymptotically normal. We refer to the proposed estimator as the adjusted estimator.

Lastly, we propose a diagnostic approach for assessing the reliability of the method.

We apply these methods to analyses of HIV viral genetic linkage network in Botswana

where the data is from a large cluster-randomized trial of a combination HIV prevention interven-

tion - the Botswana Combination Prevention Project (BCPP) [21]. The interest in these analyses

is to investigate the patterns of HIV transmission between communities in Botswana.

The paper is organized as follows. Section 2 introduces the notation and setting along

with our parameter of interest. Section 3 illustrates the bias of an estimator for θrs that arises

when we do not adjust for incomplete data. Section 4 shows our proposed approach to adjust for

incomplete data. Section 5 demonstrates the proposed approach applied to a simulation setting

and the HIV viral genetic network from the BCPP. In Section 6, we discuss the overall findings

from the proposed approach.

2.2 Notation and Setting

Consider a population of nodes, Ω, of finite size N partitioned into w disjoint groups,

Ω1, . . . ,Ωw, with Nr being the number of subjects in group r. Let yri denote the ith individual

in group r. We consider two nodes to be linked if the pairwise distance between their viral

sequences is less than some given threshold. Let the network be represented by G = (Ω,E)

where E is the set of links between individuals, E ⊂ Ω×Ω. Note that G is an undirected network.

Let Ds
ri be the number of individuals in Ωs that are linked to yri (excluding yri if r = s).

Let Nrs = Nr +Ns if r ̸= s. Otherwise, let Nrs = Nr. We assume that the nodes and edges
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in Ω come from some network generating process and that Nrs is sufficiently large such that

the network structure of Ω is that of its network generating process. Also, we assume that
max(Ds

r1,...,D
s
rNr )√

Nrs
→ 0 as Nrs → ∞.

We are interested in inference about the probability that a randomly selected individual

in group r links to at least one individual in group s (excluding itself if r = s), and we refer to it

as the linkage rate. We denote the linkage rate as the following:

θrs = Pr(Ds
ri ≥ 1)

where Pr() is defined by the superpopulation of infinite size. In practice, we need to estimate

θrs based on a sample from Ω. Consider a random sample of subjects from the individuals in Ω

of size n, which we denote by Sn, such that the proportion of sampled subjects in group r is pr

(known). We denote the sample from Ωr as Sn(r) and the size of Sn(r) as nr. Then n = ∑
w
r=1 prNr.

2.3 Bias Arising from Incomplete Data

Let D̃s
ri be the number of edges that yri has in Sn(s) (excluding yri if r = s). For yri ∈ Sn(r),

we define

us
ri = I(Ds

ri ≥ 1)

vs
ri = I(D̃s

ri ≥ 1)

so us
ri is the indicator for an edge between yri ∈ Sn(r) with at least one node in Ωs and vs

ri is a

“sample version” of us
ri with respect to Sn(s). The differences between us

ri and vs
ri is shown in

Figure 2.1 . Note that E(us
ri) = θrs.

Nodes in Sn(r), who do not link to any nodes in Sn(s), may in fact be linked to nodes in Ωs

but were not observed in Sn(s). Thus, vs
ri ≤ us

ri for all 1 ≤ i ≤ nr and the estimator that ignores the
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Figure 2.1. Plot of a network to show differences between us
ri and vs

ri. For simplicity, we consider
only a single group, r. Nodes that are colored in red are selected in Sn(r). Note that us

ri and vs
ri

are only defined for yri ∈ Sn(r).

impact of incomplete data, θ̃rs =
1
nr

∑
nr
i=1 vs

ri, is biased downward (unless all of Ω is sampled):

E
(

θ̃rs

)
=

1
nr

nr

∑
i=1

E (vrs
i ) = E (vrs

i )≤ E (urs
i ) = θrs. (2.1)

We refer to θ̃rs as the unadjusted estimator.

2.4 Methods

As shown in Section 3, the unadjusted estimator for the linkage rate is biased downwards

for θrs. Additionally, even if θ̃rs were an unbiased estimator,the Central Limit Theorem and Law

of Large Numbers cannot be directly applied, because the independence assumption is violated.

Hence, we use a U-Statistics framework to derive an estimator for θrs that is asymptotically
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normal and consistent for θrs.

2.4.1 An Unbiased Estimator of Probability of Linkage

First, we note that vs
ri = 1 implies that us

ri = 1, because if a link is observed in Sn, then it

must exist in Ω. It follows that

E(θ̃rs) = Pr(vs
ri = 1)

= Pr(vs
ri = 1,us

ri = 1)

= Pr(vs
ri = 1 | us

ri = 1)Pr(us
ri = 1)

= πrsθrs

where πrs = Pr(vs
ri = 1 | us

ri = 1), the probability of observing the link of an individual in Snr

with some individual in Sn(s) given that this individual is linked to at least one individual in Ωs.

We have that

πrs = Pr(vs
ri = 1 | us

ri = 1)

=
Pr(vs

ri = 1,us
ri = 1)

Pr
(
us

ri = 1
)

=
Pr(vs

ri = 1)
Pr
(
us

ri = 1
)

Therefore, the following is an unbiased estimator for θrs:

1
nrπrs

nr

∑
i=1

vs
ri, (2.2)

However, in practice, πrs is unknown, because the event {urs
i = 1} is not observed. Thus, the

above is not a feasible estimator for θrs.
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2.4.2 A Feasible and Consistent Estimator for Linkage Rate

Consider a subsample from the individuals in Sn of size m = ∑
w
r=1 prnr, which we denote

by Sm, such that for each group r we randomly sample a proportion pr of the individuals in Sn(r).

We define mr = prnr. We denote the subsample from group r as Sm(r). Note that nr = prNr as

well. Thus, in the subsample, we recapitulate the sampling of the observed data from the entire

population. Let ˜̃Ds
ri be the number of individuals in Sm(s) that are linked to yri (excluding yri is

r = s). For any yri ∈ Sm(r), we define

ũs
ri = I(D̃s

ri ≥ 1)

ṽs
ri = I(˜̃Ds

ri ≥ 1)

We then denote π̃rs as the following:

π̃rs = Pr(ṽs
ri = 1 | ũs

ri = 1)

=
Pr(ṽs

ri = 1)
Pr(ũs

ri = 1)

We can then estimate π̃rs by

̂̃πrs =
1

mr
∑

mr
i=1 ṽs

ri
1

mr
∑

mr
i=1 ũs

ri

which is well-defined based on Sn as ṽs
ri and ũs

ri are observed.

We then want to show that as Nr,Ns → ∞,

π̃rs → πrs
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so that ̂̃πrs is a consistent estimator.

Theorem 1 Suppose
max(Ds

r1,...,D
s
rNr )√

Nrs
→ 0 as Nrs → ∞. We note that pr and ps are fixed so nr → ∞

and ns → ∞ as Nr → ∞ and Ns → ∞, respectively. Suppose also that Pr(D̃ri = k | D̃ri ≥ 1)→

Pr(Ds
ri = k | Ds

ri ≥ 1) as Nr,Ns → ∞. Then

π̃rs = P(ṽs
ri = 1 | ũs

ri = 1)→ P(vs
ri = 1 | us

ri = 1) = πrs, as Nr,Ns → ∞.

The proof of Theorem 1 is provided in the appendix. The first assumption is made in

Section 2. Due to the assumption in Theorem 1 that Pr(D̃ri = k | D̃ri ≥ 1)→ Pr(Ds
ri = k | Ds

ri ≥ 1)

as Nr,Ns → ∞, consistency requires further assumptions on the structure of our network. Hence,

we assume that the degree distribution for linked individuals in the superpopulation follow a

power-law distribution. For such distributions, there exists some k0 such that for k ≥ k0 we have

Pr(Ds
rs = k | Ds

rs ≥ 1) = βk−α

where 2 ≤ α ≤ 3. Networks whose degree distributions follow a power law are referred to as

scale-free networks. Several investigators have notes that HIV genetic linkage networks appear

to have this property [14, 27, 28]. Although Stumpf et. al. showed that this assumption will not

hold theoretically with networks of power law distributions, we show in Section 4.4 that this

assumption approximately holds for large enough values of ps resulting in consistent estimators.

Theorem 1 shows that although {us
ri = 1} is not observed, we can develop a subsample Sm of Sn

and estimate πrs by treating Sn as Ω and Sm as Sn.

Since ̂̃πrs applies only to a single subsample, the estimator can depend heavily on the
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specific subsample that was selected. Hence, we propose the following estimator for πrs :

π̂rs =

(nr
mr

)−1(ns
ms

)−1
∑Sm(r)∈Cn(r)

m(r)
∑Sm(s)∈Cn(s)

m(s)

1
mr

∑
mr
i=1 ṽs

ri(nr
mr

)−1(ns
ms

)−1
∑Sm(r)∈Cn(r)

m(r)
∑Sm(s)∈Cn(s)

m(s)

1
mr

∑
mr
i=1 ũs

ri

,

where Cn( j)
m( j) is the set of all possible combinations from sampling m j individuals from Sn( j).

With such an estimator π̂rs, we can consider a feasible estimator of θrs as:

θ̂rs =
1

nrπ̂rs

nr

∑
i=1

vs
ri, (2.3)

We refer to θ̂rs as the adjusted estimator for θrs.

To establish consistency and asymptotic normality of the estimate in (2.3), standard

asymptotic methods such as the law of large numbers and central limit theorem cannot be directly

applied. This is because ũs
ri,v

s
ri and ṽs

ri are not stochastically independent, thereby violating the

required independence assumption. Below in Section 4.3, we describe an approach to establish

such properties.

2.4.3 Inference on Linkage Rate: A U-Statistics Framework

First, we let

γrs1 = Pr(ṽs
ri = 1)

γrs2 = Pr(ũs
ri = 1)

γrs3 = Pr(vs
ri = 1) .
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Now, we denote γrs as the following:

γrs =


γrs1

γrs2

γrs3

 .

Then γrs1γrs3
γrs2

→ θrs as Nrs → ∞ and by Theorem 1, π̃rs =
γrs1
γrs2

. From Section 4.1 and 4.2, we

propose the following estimator for γ:

γ̂rs (yr1,yr2, . . . ,yrnr ;ys1,ys2, . . . ,ysns) =


γ̂1

γ̂2

γ̂3



=


(nr

mr

)−1(ns
ms

)−1
∑Sm(r)∈Cn(r)

m(r)
∑Sm(s)∈Cn(s)

m(s)

1
mr

∑
mr
i=1 ṽs

ri(nr
mr

)−1(ns
ms

)−1
∑Sm(r)∈Cn(r)

m(r)
∑Sm(s)∈Cn(s)

m(s)

1
mr

∑
mr
i=1 ũs

ri

1
nr

∑
nr
i=1 vs

ri

 .

Thus, provided that we can establish consistency and asymptotic normality of γ̂rs , by the Delta

Method and Theorem 1, θ̂rs is consistent and asymptotically normal. To this end, we adopt the

following U-Statistics framework.

First, we note that

E(γ̂rs) = γrs

and that the arguments of γ̂rs are invariant to permutations of individuals within each group, i.e.,

γ̂rs
(
yr1′,yr2′ , . . . ,yrn′r ;ys1′′ ,ys2′′ , . . . ,ysn′′s

)
= γ̂rs (yr1,yr2, . . . ,yrnr ;ys1,ys2, . . . ,ysns)
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where (1′,2′, . . . ,n′r) and (1′′,2′′, . . . ,n′′s ) are any permutations of (1,2, . . . ,nr) and (1,2, . . . ,ns),

respectively. Thus, by [13], γ̂rs is a multivariate U-Statistic. Let

hrs1 (yki) = E (γ̂rs (yr1 . . . ,yrnr ;ys1 . . . ,ysns) | yki) , h̃rs1 (yki) = hrs1 (yki)− γrs,

Σk = Var
[
h̃rs1 (yki)

]
= E

[
h̃rs1 (yki) h̃⊤

rs1 (yki)
]
.

By [13, 24, 26], it follows that

√
nrs (γ̂rs − γrs)→d N

(
0,Σγ(rs)

)
.

where

nrs =


nr r = s

nr +ns r ̸= s
.

Σγ(rs) =
Nr −nr

Ns
ρ

2
r n2

r Σr +
Ns −ns

Ns
ρ

2
s n2

s Σs

and

ρ
2
k = lim

nrs→∞

nrs

nk
.

A consistent estimate of Σγ(rs) is given by:

Σ̂γ(rs) =
Nr −nr

Nr

nrs

nr
n2

r Σ̂r +
Ns −ns

Ns

nrs

nr
n2

s Σ̂s = nrs(
Nr −nr

Nr
nrΣ̂r +

Ns −ns

Ns
nsΣ̂s),

Σ̂k =
1

nk −1

nk

∑
i=1

(ĥrs1(yki)− γ̂rs)(ĥrs1(yki)− γ̂rs)
T

where ĥrs1(yki) is a consistent estimate of hrs1 (yki). In the appendix, it is shown that ĥrs1(yri)
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defined as follows is consistent:

ĥrs1(yri) =


1
nr

(nr−1
mr−1

)−1
∑Sm(r)∈Cn(r)

m(r)

(ns
ms

)−1
∑Sm(s)∈Cn(s)

m(s)
ṽs

ri +
nr−1

nr
γ̂rs1

ũs
ri

nr
+ nr−1

nr
γ̂rs2

ũs
ri

nr
+ nr−1

nr
γ̂rs3


and

ĥrs1(ysi) =


γ̂rs1

γ̂rs2

γ̂rs3


Thus, Σ̂s = 0, which implies

Σ̂γ(rs) = nrsnrΣ̂r.

Theorem 2 Let

hrs1 (yki) = E (γ̂rs (yr1 . . . ,yrnr ;ys1 . . . ,ysns) | yki) , h̃rs (yki) = hrs1 (yki)− γrs,

Σk =Var
[
h̃rs (yki)

]
= E

[
h̃rs (yki) h̃⊤

rs (yki)
]
,

nrs =


nr if r = s

nr +ns if r ̸= s
, ρ

2
k = lim

nrs→∞

nrs

nk
< ∞, k = r,s

Then, we have: (1) γ̂rs is a consistent, unbiased and asymptotically normal estimator of γrs:

√
nrs (γ̂rs − γrs)→d N

(
0,Σγ(rs) =

Nr −nr

Nr
ρ

2
r n2

r Σr +
Ns −ns

Ns
ρ

2
s n2

s Σs

)
,
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(2) A consistent estimator of the asymptotic variance is given by:

Σ̂γ(rs) =
Nr −nr

Nr

nrs

nr
n2

r Σ̂r +
Ns −ns

Ns

nrs

nr
n2

s Σ̂s = nrs(
Nr −nr

Nr
nrΣ̂r +

Ns −ns

Ns
nsΣ̂s),

Σ̂k =
1

nk −1

nk

∑
i=1

(
ĥrs1 (yki)− γ̂rs

)(
ĥrs1 (yki)− γ̂rs

)⊤
,

ĥrs1 (yri) =


1
nr

(nr−1
mr−1

)−1
∑Sm(r)∈Cn(r)

m(r)

(ns
ms

)−1
∑Sm(s)∈Cn(s)

m(s)
ṽs

ri +
nr−1

nr
γ̂rs1

ũs
ri

nr
+ nr−1

nr
γ̂rs2

ũs
ri

nr
+ nr−1

nr
γ̂rs3

 ,

ĥrs1(ysi) =


γ̂rs1

γ̂rs2

γ̂rs3

 .

With the asymptotic results in Theorem 2, we can readily obtain the consistency and

asymptotic normality by the Delta method. Let

f (γrs) =
γrs1γrs3

γrs2
.

Then, θ̂rs = f (γ̂rs). By the Delta method and Theorem 2,

√
nrs

(
θ̂rs −θrs

)
→d N

(
0,σ2

θ(rs) = φ
⊤(γrs)Σγ(rs)φ(γrs)

)
,

where

φ(γrs) =
∂

∂γrs
f (γrs) =


∂ f (γrs)
∂γrs2

∂ f (γrs)
∂γrs1

∂ f (γrs)
∂γrs3

=


− γrs1γrs3

γ2
rs2

γrs3
γrs2

γrs1
γrs2

 .

A consistent estimator of σ2
θ(rs) is given by:

σ̂
2
θ(rs) = φ

⊤ (γ̂rs) Σ̂γrsφ(γ̂rs),
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where φ⊤ (γ̂rs) and Σ̂γrs denote the respective quantities by substituting γ̂rs in place of γrs.

2.4.4 Diagnostic

The consistency of the proposed estimator depends on the assumption that Pr(D̃s
ri = k |

D̃s
ri)≈ Pr(Ds

ri = k | Ds
ri). Stumpf et. al. performed a simulation with sampling from scale-free

networks [25]. They showed that the larger the value of α , the greater the sample degree

distribution deviates from the true distribution. Since for many settings 2 ≤ α ≤ 3 [25], we apply

our approach to a scale free network with α = 3 to evaluate values of p such that

Pr(D̃s
ri = k | D̃s

ri)≈ Pr(Ds
ri = k | Ds

ri)

From Figure 2.2, we find that the estimates deviate greatly from the true value when

p < .40.

2.5 Applications

2.5.1 Simulation Study

We apply the proposed methods to a population with two communities. We denote them

both as community 1 and 2. We let N1 = 1000 and N2 = 1200. For the degree distributions, we

have

Pr(Dr
ri = k) =


ak−2.5 k ≥ 1

0.50 k = 0

Pr(Ds
ri = k) =


βk−2.6 k ≥ 1

0.60 k = 0
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Figure 2.2. Distribution of adjusted estimators for various values of p when applying the
proposed approach to a scale-free network with α = 3. Here, the x-axis represents p and the
y-axis represents values for the adjusted estimators where the red line indicates the true value.
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Figure 2.3. Distribution of adjusted and unadjusted estimators for linkage rates from the
simulation in Section 5.1. The red horizontal line is the true value.

Pr(Dr
si = k) =


βk−2.3 k ≥ 1

0.80 k = 0

Pr(Ds
si = k) =


βk−3 k ≥ 1

0.70 k = 0

We have that

θ =

0.50 0.40

0.20 0.30


We apply the proposed approach with letting p1 = 0.40 and p2 = 0.60.

Figure 2.3 demonstrates that the adjusted estimators are considerably less biases than

are the unadjusted estimators. As expected, the sampling fraction of the group impacts the

performance of the adjusted estimator. Figure 2.3 confirms the expectation from Theorem 1 that

when estimating the probability of linkage from Group ”A” to Group ”B”, sampling additional
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nodes from Group ”B” rather than Group ”A” contributes more to improved performance. Most

of the biases observed in the adjusted estimators is upwards.

Table 2.1 shows that the coverage probabilities for the between-community estimates are

much greater than the estimates for within communities.

Table 2.1. Coverage probabilities of adjusted estimators from simulation in Section 5.1.

Group 1 Group 2

Group 1 0.68 0.74

Group 2 0.64 0.47

2.5.2 Botswana Combination Prevention Project

As discussed earlier, the intent of developing this approach was to estimate linkage rates

for the HIV viral genetic linkage networks Botswana. The data used comes from a large cluster-

randomized trial of a combination HIV prevention intervention - the Botswana Combination

Prevention Project (BCPP).

In the BCPP, all households were targeted for a survey in 6 of the 30 participating commu-

nities in Botswana. The communities that were selected are Gumare, Mauntalala, Mmankgodi,

Mmathethe, Ramokgonami and Shakawe. For those that choose to participate in the survey,

demographic and household data along with HIV status is ascertained. For those who are HIV+,

the viral genetic sequences are obtained. Hence, missing data arises due to the fact we have

individuals who choose not to participate in the BCPP. However, going forward we assume that

all individuals in the BCPP are MCAR, but acknowledge the fact that this assumption may not

entirely hold.

It follows that we define an edge between two individuals to exist if and only if the

pairwise distance between their viral genetic sequences is below some threshold, c. Following

Novitstky et. al, we set c = 0.07.

Table 2.2 provides the proportions of HIV+ in individuals that participated in the BCPP;
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Figure 2.4. Adjusted estimators for linkage rates between the communities from the BCPP and
coefficients of variation (CV) indicated by colors of circle and cell, respectively.

for 4 of the 6 communities, the proportions were over 40% but for 2, they were below 30%.

Table 2.2. The proportion (p) and number (n) of HIV+ individuals in each community that
participated in the BCPP.

Gumare Maunatlala Mmankgodi Mmathethe Ramokgonami Shakawe

p 0.29 0.52 0.26 0.44 0.48 0.48

n 325 363 270 336 350 484

We applied our methods to adjust for the incompleteness of the same. Figure 2.4 provides

a heat map of the intensity of linkage after adjustment for missing data, within and across

the communities as well as the variability associated with these estimates of linkage. For

within community analyses, Gumare and Mmathethe have the highest linkage rates. Across

communities, the high linkage rates are between Shakawe and Gumare in both directions.
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2.6 Discussion

Viral genetic linkage analysis can play an important role in molecular epidemiology

in that it can reveal features of transmission patterns within and across communities. This

knowledge can aid in control of outbreaks and by helping direct resources where they might

be most effectively deployed. Because observed transmission networks are rarely complete,

and because VGL analyses are particularly sensitive to the impact of missing data—even when

observations are MCAR within communities under study—adjustment for incompleteness of

samples is essential.

While methods have been proposed for such analyses, this paper is the first to ground

such methods in statistical theory. Through the use of the U-statistics framework, we were able

to show consistency of our estimator under assumptions about the nature of the VGL network

that are consistent with available literature and also to prove asymptotic normality, thereby

permitting development of confidence interval estimates. We demonstrate that the methods work

well when sampling proportion is greater than 0.4; but even in a setting with lower sampling

rates, the adjustment greatly improve performance of estimators compared to those that ignore

missing data. How to make further improvements to our estimator when applied to data with low

sampling rates is a topic for further research.

Our illustrative example made use of data from the HIV prevention study in Botswana —

the BCPP. We demonstrated that VGL linkage across communities is common—which implies

that a treatment-as-prevention intervention applied at the village level will likely have effects

on HIV incidence that are attenuated compared to effects that would occur if all relationships

took place within villages. Furthermore such estimates would also be attenuated compared to an

estimand of interest—the counterfactual expected difference in incidence between a setting in

which the intervention was implemented in all villages and a setting in which it in none. Hence

these VGL analyses are useful in both design and interpretation of cluster randomized trials for

control of endemic diseases or disease outbreaks.
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We note that our methods would apply not only to VGL or transmission networks but to

networks of all types, for which sampling of nodes is not complete. Our focus was on scale-free

network; future work is required for extension to networks more generally.

2.7 Acknowledgements

Chapter 2, in full, is a reprint of the materials as it appears in Estimating Viral Genetic

Linkage Rates in the Presence of Missing Data 2022. Victor De Gruttola, Tu, Xin, Vladimir

Novitsky, Jingjing Zou, Tuo Lin. The dissertation author was the primary investigator and author

of this paper.

23



Chapter 3

Estimating Probabilities of Linkage in
the Presence of Missing Data

3.1 Introduction

Molecular epidemiology is increasingly used to investigate patterns of HIV transmission,

epidemic dynamics; in addition, both the CDC and NIH have proposed that such analyses be

used to guide resources intended to end the AIDS epidemic [8]. An important feature of such

analyses is investigation of HIV genetic linkage; such linkage can be based on the genetic dis-

tance between genetic sequences taken from pairs of individuals from whom HIV transmission

may have occurred. Such analyses can reveal which viral strains are propagating within and

between communities, the characteristics of people infected with such strains, and the effects of

interventions designed to control HIV on the rates at which viral genetic clusters grow. How-

ever, in the presence of potentially informatively missing data, observed viral genetic linkage

networks do not represent the true underlying networks in populations under study, rendering

inferences based on sampled networks unreliable [5]. Specifically, estimates of probabilities of

linkage, specifically defined the probability of linkage between viral genetic sequences from two

individuals selected at random from their respective groups, that ignore the impact of missing

data (henceforth referred to as unadjusted estimators) will be biased.

Carnegie et.al. provided consistent estimates of probabilities of linkage under the as-

sumption that viral genetic sequences were missing at random (MAR) given group membership.
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However, they did not demonstrate asymptotic normality for this estimator. It follows in our

previous work, under the assumption that viral sequences were missing completely at random,

we developed an unbiased estimator through a subsampling approach and demonstrated con-

sistency and asymptotic normality using a U-Statistics framework. However, in our previous

work, demonstrating consistency required strict conditions. Specifically the network generating

process of the complete network had to be known and the degree distribution for the complete

network would be approximately the same as that of the sampled network (which seemed to

be feasible when the sampling proportion was at least 0.40. In this paper, we propose a more

flexible approach that allows data to be MAR given continuous covariates and yields a consistent

and asymptotically normal estimator without the strict conditions required in our previous work.

We consider linkage to occur between two individuals if the pairwise genetic distance be-

tween their viral genetic sequences is less than some threshold. Obtaining asymptotic properties

for estimators of probabilities of linkage — which are informative regarding linkage rates–is

challenging, because indicators of linkage across pairs of individuals are between-, rather than,

within-subject attributes in conventional statistical analyses, and as such standard asymptotic

methods such as the central limit theorem and law of large numbers cannot be directly applied

to these estimators [15, 16]. In this paper, we develop estimators for probabilities of linkage

under the assumption that unobserved viral genetic sequences are missing at random (MAR) and

derive asymptotic properties for these estimators.

The choice of the threshold indicating linkage is an important scientific question in the

analysis of viral genetic data. In general it may be best to investigate the sensitivity of findings,

but the methods developed here apply regardless of the threshold value.

We apply the proposed methods to analyze HIV sequences from the Botswana Combina-

tion Prevention Project (BCPP), which has motivated the development of the proposed approach,

but we note that our methods apply in any setting wherein nodes are sampled from networks. We

demonstrate that the methods can be applied to networks more generally.
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3.2 Botswana Combination Prevention Project (BCPP)

The BCPP was a large cluster-randomized trial of a combination HIV prevention inter-

vention compared to standard of care in 30 villages in Botswana. In this section we review the

sampling design of the BCPP along with the layers of missingness in this study.

3.2.1 Study Introduction

At baseline, 20% of the households in each community in Botswana were targeted for

participation in a baseline household survey, which collected demographic and household data

among those household members willing to participate. For those unwilling to participate, such

demographic and house data were generally provided by heads of households. All participants

were tested for HIV infection and virus from blood samples were sequenced for all HIV+

participants; the remaining participants who were HIV- form the incidence cohort. For the next

two years the HIV incidence cohort was annually tested for HIV; once again, all virus from

those participants who became HIV+ was sequenced. At the end of the BCPP, six communities

were selected to participate in a survey of all households, denoted the End of Survey Study

(ESS). Because of the inclusiveness of this survey, we illustrate our methods using data from

ESS villages.

As our research question focuses on viral linkage without regard to timing of infection—in

other words on a static VGL network– we do not consider time as variable in our models.

Dynamic VGL models have been described but require information about time of infection ,

which is generally not available in our study population.

3.2.2 Missing Data

In BCPP, we have two layers of missingness in the observed viral genetic linkage (VGL)

network data. First, HIV status is unknown for non-participating household members. Note that

unlike common survey studies, demographic data for non-participating household members are
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also observed (obtained through head of household), provided that the head of the household

participated in the BCPP. Second, genetic sequences are unavailable for those who were not

tested; hence they are available for only a subsample of those who tested positive; hence they are

available for only a subsample of those who were HIV+. Third, we do not have any observed

data on households that did not participate in the ESS. In this paper we will only be addressing

the first two layers of missingness and hence, assume that our population of interest to consist of

only individuals from participating households.

A common approach for addressing non-response in survey studies is to model this

missingness probability, or propensity score, using all observed participants’ information such

as demographic and HIV status in the current study and then use the inverse of the propensity

as propensity score weights, in addition to weights due to multi-stage sampling frames if

applicable, to construct consistent population-level estimators under the missing at random

(MAR) mechanism [26]. Because the second layer of missingness causes all genetic links to

be missing for those who were HIV+ but never tested, this usual approach cannot be applied

to address non-response for BCPP. We propose instead to prior estimates of HIV prevalence in

Botswana to address this missing not at random (MNAR) mechanisms in the current BCPP. We

consider this analysis in two steps: 1) to address the missing HIV status of non-participants, and

2) to address the missingness of links among HIV+ nonparticipants and between them and others

who might have been linked to them.

3.3 Notation and Setting

Consider a population of individuals, Ω, of finite size N partitioned into w disjoint groups,

Ω1, . . . ,Ωw, with Nr being the number of individuals in group r. Let yri be a vector denoting

the viral sequence of the ith individual in group r. We consider two individuals to be linked if

the pairwise distance between their viral genetic sequences is less than some given threshold, c.

Note that all individuals in the VGL network are HIV+ (HIV- individuals cannot have a viral

27



strain). Let the VGL network be represented by G = (Ω,E) where E is the set of links between

individuals, E ⊂ Ω×Ω. As the direction of transmission is unknown, G is an undirected network.

We assume that N1, . . . ,Nw are known.

Let Drs
i j be the pairwise distance between individuals i and j from groups r and s,

respectively. Note that we have Drs
i j = Dsr

ji under the assumptions. Our focus is on inference

about the probability of linkage between viral sequences from two individuals selected at random

from their respective groups. We denote the probability of linkage as the following:

γrs = Pr(Drs
i j ≤ c)

where Pr() is defined with respect to the underlying superpopulation [26]. Note that γrs = γsr.

In practice, we estimate γrs based on a sample from Ω. Consider a sample of individuals

from Ω of size n, such that the same household sampling is performed as in the BCPP. We denote

this sample by Sn. We denote the sample from Ωr as Sn(r) and the size of Sn(r) as nr. Then

n = ∑
w
r=1 nr.

3.4 Methodology

As described above, obtaining an estimator for γrs is challenging, because of 1) the

missing HIV statuses of non-participants and 2) the informative missingness of the BCPP

network data. To accommodate the first layer of missingness, we apply a multiple imputation

approach. It follows that to address the second layer of missingness, we model and estimate the

missingness probability using logistic regression [13].

As with any estimator, we hope to derive desirable asymptotic properties for it. Since

indicators for linkage are dependent, to derive asymptotic properties for such an estimator,

Central Limit Theorem and Law of Large Number cannot be directly applied. Hence, we use a

U-Statistics based weighted generalized estimating equations to derive an estimator for γrs that is

asymptotically normal and consistent for γrs [13].
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3.4.1 Estimating Probability of Linkage

We denote the indicator linkage in the sample as

X rs
i j = I(Drs

i j ≤ c)

so

γrs = E(Xi j) = Pr(Drs
i j ≤ c)

where E() is again defined with respect to the superpopulation. Let

zri = I(yri ∈ Sn(r))

zs j = I(ys j ∈ Sn(s)).

If non-response were MCAR, then by the Theory of U-Statistics [13] the following would

be a consistent estimate for γrs:

1
nrs

∑
yri∈Ωr

∑
ys j∈Ωs

Xi jzrizs j

where nrs = nrns.

However, in BCPP, non-response may not arise from the missing-completely-at-random

(MCAR) mechanism; the probability of non-participation is likely to depend on observed demo-

graphic variables and HIV status. (A low participation rate among young males was observed

in the BCPP as a whole.) To accommodate for such selection bias, we model participation

probability as:

wi j = Pr(yri,ys j ∈ Sn |Cri,Cs j, HIV+)
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where Cri and Cs j are a vector of covariates for yri and ys j, respectively. Note that we define wi j

by conditioning on the HIV+ subsample, as the linkage indicator can only ascertained among

these participants. We assume that when conditioning on Cri and Cs j , HIV+ individuals with

non-response are MCAR so that the inverse probability weighted estimator:

1
∑yri∈Ωr ∑ys j∈Ωs wi jzrizs j

∑
yri∈Ωr

∑
ys j∈Ωs

wi jXi jzrizs j

will be consistent for γrs. Below we consider estimation of the weights.

3.4.2 Estimating Participation Probability

Under the (previous) assumption that subjects are independently sampled, we have:

wi j = Pr(yri,ys j ∈ Sn |Cri,Cs j, HIV+)

= Pr(yri ∈ Sn |Cri, HIV+)Pr(ysi ∈ Sn |Csi, HIV+)

Here we assume Cri and Cs j are only to be demographic variables. We note that it would

be possible for zri and zs j could be correlated, especially when two subjects are within the same

household but we do not address this possibility.

Without loss of generality, we now focus only on modeling Pr(yri ∈ Sn |Cri, HIV+), for

which we use logistic regression

π(Cri;β )) = Pr(yri ∈ Sn |Cri, HIV+)

where

logit(π(Cri;β )) = β0 +β1Cri
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for the vector of parameters β = (β0,β1). In our setting, the variables for Cri are community and

age.

We condition on HIV+ individuals only, because only they can contribute to the VGL

network. To fit this logistic regression model, we need to accommodate the uncertainty regarding

which non-responders are HIV+. As noted earlier, this information is not available since HIV

status can only be obtained for BCPP responders. Although for nonparticipants in the BCPP,

gender and age are provided by other members within their household, it is still not possible to

estimate the parameters in the logistic regression model. We discuss next how to address this

MNAR mechanism using population level data.

3.4.3 Addressing Missing HIV+ Nonparticipants

Because HIV status is missing for all non-participants, HIV status is missing not at

random (MNAR) [26]; hence we cannot fit the logistic regression model in the previous section

directly using observed BCPP data. To address this MNAR mechanism, we will use estimates

of HIV prevalence in each community obtained from a national household survey (BAIS). We

assume that within HIV+ individuals, non-response in the BCPP is MAR, depending only de-

mographic covariates. Under this assumption, the HIV+ individuals in the BCPP sample is a

random subsample of the HIV+ subpopulation of the targeted population of interest. Thus, given

the covariates, prevalence of HIV is assumed to be the same in the sampled and non-sampled

HIV+.

We propose to use multiple imputation to address the missing HIV status of the nonpar-

ticipants in the BCPP. Each imputation is obtained by randomly selecting a proportion of the

nonparticipants to be assigned status of HIV+. This proportion is given by the HIV prevalence in

each community which was obtained in the BAIS study. Thus all village residents–including

those not selected to be in the original household incidence cohort–were used to estimate wi j.

Following Rubin et. al., we conduct this imputation 10 times resulting in 10 imputed

samples [23] and use the methods in Section 4 to estimate γrs for each imputed sample. We use
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the following formulas to calculate the mean probability of linkage across imputed-complete

samples, the variance, standard deviation and standard error of the mean.

Following the notation from Rubin, the m imputed samples have corresponding m es-

timated statistics [Q.1,Q.2, . . . ,Q.m] and variance-covariance matrices [U.1,U.2, . . . ,U.m] [23].

The repeated-imputation estimate is Qm = ∑
m
l=1 Q.l/m, the associated variance-covariance of

Qm is Tm = Um + m+1
m Bm, where Um = ∑

m
l=1U.l/m is the within-imputation variability, which

is calculated using the binomial variance, and Bm = 1
m−1 ∑

m
I=1(Q.I −Qm)(Q.I −Qm)

′ is the

between-imputation variability.

3.4.4 Inference on Probability of Linkage

First, we assume that Xi j⊥zri,zs j | C̃i j. We then note that if Sn were a completely random

sample, then Xi j⊥zri,zs j and it follows that

γrs = E(Xi j) =
1

pr ps
E(zrizs jXi j),

where pr and ps are the sampling proportions of community r and s, respectively. A consistent

estimate is then given by:

γ̂rs =
1

pr ps

1
nrs

∑
Ωr

∑
Ωs

Xi jzrizs j.

However, in our case, we do not have a completely random sample, so we cannot use

1
pr

and 1
pS

as sampling weights as demonstrated above. To adjust for selection bias, we use the

following:

γ̂rs = ∑
Ωr

∑
Ωs

Xi jzrizs j

πriπs j
.
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where πri = π(Cri;β )) and πs j = π(Cs j;β )).

One approach is to estimate β for πri and πs j and substitute such estimates in the

estimator for γrs. However, this approach does not take into account sampling variability when

estimating πri and πs j. By utilizing the functional response models (FRM), we can jointly

estimate πri, πs j and γrs. To this end, consider the following FRM.

E(fi j | C̃i j) = hi j(C̃i j;θ), fi j = ( fi j1, fi j2)
⊤, hi j = (hi j1,hi j2)

⊤, C̃i j = {Cri,Cs j},

fi j1 = Xi j, fi j2 = zrizs j, hi j1 = γrs, hi j2 = πriπs j,

πri = π (Cri;β ) = logit−1 (β0 +β1Cri) , πs j = π
(
Cs j;β

)
= logit−1 (

β0 +β1Cs j
)
.

In the model above, the response fi j is indexed by a pair of subjects. It is a member of a class

of functional response models (FRM). This class of models is useful, because of its ability to

model relationships of interest that involve interactions between subjects [7, 30]. For inference,

consider a class of U-Statistics based weighted generalized estimating equations (UWGEE):

UN (θ) = ∑
yri∈Ωr

∑
ys j∈Ωs

UN,i j = ∑
yri∈Ωr

∑
ys j∈Ωs

Di jV−1
i j ∆∆∆i jSi j = ∑

yri∈Ωr

∑
ys j∈Ωs

Di jV−1
i j ∆∆∆i j

(
fi j −hi j

)
,

(3.1)

where

Var
(

fi j1 | C̃i j

)
= γrs (1− γrs) ,

Var
(

fi j2 | C̃i j

)
= πriπs j(1−πriπs j),

Si j = fi j −hi j, Vi j =

Var( fi j1) 0

0 Var
(

fi j2
)
 ,

Di j =
∂

∂θ
hi j, ∆∆∆i j =

 zrizs j
π(Cri;β )π(Cs j;β )

0

0 1

 , θ = (γrs,β )
⊤.
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To show the UWGEE in (3.1) is unbiased, i.e.,

E [UN (θ)] = ∑
yri∈Ωr

∑
ys j∈Ωs

E
(
UN,i j

)
= ∑

yri∈Ωr

∑
ys j∈Ωs

E
(

Di jV−1
i j ∆∆∆i jSi j

)
= 0.

we only need to show that E
(

Di jV−1
i j ∆∆∆i jSi j

)
= 0. To this end, we have:

E
(

Di jV−1
i j ∆∆∆i jSi j

)
= E

[
E
(

Di jV−1
i j ∆∆∆i jSi j

)
| C̃i j

]
= E

[
Di jV−1

i j ∆∆∆i jE
(

Si j | C̃i j

)]
= E

Di jV−1
i j ∆∆∆i jE


 fi j1 −hi j1

fi j2 −hi j2

 | C̃i j




= E

Di jV−1
i j ∆∆∆i j

 E
[(

fi j1 −hi j1
)
| C̃i j

]
E
[(

fi j2 −hi j2
)
| C̃i j

]



= E

Di jV−1
i j ∆∆∆i j

 E
(

fi j1
)
−hi j1

E
(

fi j2 | C̃i j

)
−hi j2




= 0.

Thus, the UWGEE is unbiased.

As in the case of GEE, a working correlation structure C(α) between fi j1 and fi j2

parameterized by some vector α may be assumed and incorporated into Vi j to improve efficiency

of estimates of θ . In this more general case, Vi j(α) depends on α as well. Like GEE, the UWGEE

estimate θ̂ by solving the equations above, the estimated parameter of interest is asymptotically

normal by Theorem 1. For notational brevity, we only consider working independence structure

below unless otherwise stated.
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Theorem 3 Let

vri = E(Un,i j | yri,zri,Cri), vs j = E(Un,i j | ys j,zs j,Cs j), B = E
(

Di j∆∆∆i jV−1
i j D⊤

i j

)
, (3.2)

Σr =Var (vri) , Σs =Var
(
vs j
)
, ρ

2
r = lim

n→∞

Nrs

Nr
< ∞, ρ

2
s = lim

n→∞

Nrs

Ns
< ∞,

Nrs = NrNs, ΣU = ρ
2
r Σr +ρ

2
s Σs, Σθ = BΣU B⊤.

Then, under mild regularity conditions, we have

1. θ̂ is consistent.

2. If
√

Nrs(θ̂ −θ)→d N(0,Σθ ).

To estimate Σθ , we first estimate B by:

B̂ =
1

Nrs
∑

yri∈Ωr

∑
ys j∈Ωs

D̂i j∆̂∆∆i jV̂−1
i j D̂⊤

i j ,

where B̂ denotes B with θ substituted by θ̂ . We then estimate Σr and Σs by:

Σ̂r =
1
Nr

Nr

∑
i=1

v̂riv̂⊤ri , v̂ri =
1
Ns

Ns

∑
j=1

ÛN,i j,

Σ̂s =
1
Ns

Ns

∑
i=1

v̂s jv̂⊤s j, v̂s j =
1
Nr

Nr

∑
i=1

ÛN,i j,

where ÛN,i j denotes UN,i j with θ substituted by θ̂ . A consistent estimator of Σθ is given by:

Σ̂θ = B̂Σ̂U B̂⊤ = B̂
(

Nrs

Nr
Σ̂r +

Nrs

Ns
Σ̂s

)
B̂⊤.
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3.5 Application

3.5.1 Simulation Study

We apply the proposed approach to simulated data to examine its performance. Consider

two groups: Group r and s. Let Nr = 1000 and Ns = 1200. Note HIV networks have shown to

have been follow power law distributions; we assume such a network for our simulation study:

Pr(Drs = k) = βk−α

for some value of α with β being the normalizing factor. Stumpf et. al., showed that a larger

results in a heavier loss of data when sampling; hence we perform simulations on scale-free(a

subset of power law) networks with α = 3 [25].

For sampling, let

tri ∼ η1 +η2wri +η4Dri

ts j ∼ η1 +η2ws j +η3 +η4Ds j

wri ∼ N(µwr,σwr), ws j ∼ N(µws,σws)

hri ∼ Bern(pr), hs j ∼ Bern(ps)

As in the BCPP, we will define an individual from Group r to be sampled, so zri = 1,

if and only if tri = 1 and hri = 1 and zri = 0 otherwise,and use the same procedure for zs j. We

apply the proposed approach to this setting for each of the scenarios shown in Table 3.1. Figure

3.1 demonstrates that the adjusted estimators are considerably less biased than those of the

unadjusted estimators. Additionally, Table 3.2 shows that the coverage probabilities for each

scenarios are considerably high with the lowest coverage probability being 0.94 for Scenario 5.
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Figure 3.1. Distribution of adjusted and unadjusted estimators for Probabilities of Linkage from
the simulation. The red horizontal line is the true value

Table 3.1. Each of the scenarios considered in the simulation study performed in Section 5.1.

Scenario η µ σ p

1 (0.50, -2, 2, 0.60) (1,2) (1.5, 1.5) (0.50, 0.50)

2 (0.50, -2, 2, 0.60) (1,1) (1.5, 1.5) (0.30, 0.25)

3 (1, -3, 1, 0.60) (1,2) (2, 1.5) (0.15, 0.15)

4 (1, -2, 3, 0.6) (2,2) (1, 1) (0.15, 0.15)

5 (1, -2, 3, .45) (2, 2) (1.5, 1.5) (0.55, 0.20)

Table 3.2. The coverage probabilities for the adjusted estimators for probabilities of linkage
from the simulation.

Scenario 1 2 3 4 5

Coverage 1 1 1 0.99 0.94

3.5.2 BCPP Application

At the end of BCPP study, all households were targeted for a survey in 6 of the 30

participating communities (Gumare, Mauntalala, Mmankgodi, Mmathethe, Ramokgonami and
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Shakawe). For participants who chose to participate, the survey obtained demographic and

household data as well as HIV status. For those who were HIV+, the viral genetic sequences

are available. Table 3.3 provides the proportions of HIV+ in individuals that participated in the

BCPP; for 4 of the 6 communities, the proportions were over 40% but for the other 2, they were

below 30%.

Table 3.3. The proportion (p) and number (n) of HIV+ individuals in each community that
participated in the BCPP.

Gumare Maunatlala Mmankgodi Mmathethe Ramokgonami Shakawe

p 0.29 0.52 0.26 0.44 0.48 0.48

n 325 363 270 336 350 484

We applied our methods to adjust for the sampling bias described above. As stated in

Section 1, two individuals are considered linked if the pairwise genetic distance between their

viral genetic sequences is less than some given threshold. Following Novistky et. al., we use a

threshold of c = 0.07 to define genetic linkage. Figure 3.2 provides a heat map of the intensity

of linkage rates after adjustment for missing data, within and across the ESS communities as

well as the variability associated with these estimates of linkage. The analysis provides evidence

of a larger within- than between-community linkage. Gumare, Mmathethe and Ramokgonami

have the highest within-community linkage rates.

3.6 Discussion

Viral genetic linkage analysis play an important role in molecular epidemiology in it s

ability to reveal features of transmission patterns within and across communities such analyses

may prove useful in control of COVID-19 and other outbreaks. While methods have been

proposed for viral genetic linkage analyses in the presence of sampling bias, this paper is the

first to ground such methods in a statistical framework uniquely positioned to address between-

subject, rather than within-subject attributes as as the primary focus of analyses. Through the
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Figure 3.2. Adjusted estimators for probabilities of linkage between the communities from the
BCPP and coefficients of variation (CV) indicated by colors of circle and cell, respectively.

use of FRM and UWGEE, we were able to show consistency and asymptotic normality of our

estimators under the assumption that non-responses are MAR, thereby permitting unbiased point

and interval estimates, as demonstrated by our simulation results.

Our illustrative example made use of data from an HIV prevention study in Botswana —

the BCPP. We demonstrated that VGL linkage across communities is common—which implies

that a treatment-as-prevention intervention applied at the village level will likely have effects on

HIV incidence that are attenuated compared to effects that would occur if all relationships took

place within villages. Furthermore such estimates would also be attenuated compared to another

estimand of interest—the counterfactual expected difference in incidence between a setting in

which the intervention was implemented in all villages and a setting in which it was in none.

Hence these VGL analyses are useful in both design and interpretation of cluster randomized

trials for control of endemic diseases or disease outbreaks.

In many real studies, we can estimate missing response probabilities under the MAR

assumption. In this case, the FRM with inference based on a class of UWGEE will provide valid

inference about linkage among network nodes. In the BCPP study, data are missing on people

within households who were enumerated but who did not provide blood samples (used to assess

HIV status as well as to obtain sequences) —leading to data that are MNAR. the By utilizing
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population level estimates and multiple imputation, we addressed this statistical challenge. The

idea is similar to raking–an approach used in survey research to improve estimation of sampling

weights by utilizing aggregated population-level estimates. Our methods would apply networks

of all types, for which sampling of nodes is not complete but for which there exist sufficient

covariate information to help identify the MAR mechanism. This paper also illustrates how

to address a type of MNAR mechanism in survey research by taking advantage of general

information regarding the population survey.
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Chapter 4

Nonparametric Estimation of Network
Properties in the Presence of Missing Data

4.1 Introduction

While networks have become widely used to analyze elements in a system and how these

elements interconnect, the challenge of sampling complete network data remains a prevalent

issue. In most instances, we only sample a portion of the nodes and hence don’t observe the

edges corresponding to the missing nodes. As a result, estimation of summary statistics related

to the network and the network’s generative process will be generally biased.

We addressed this issue for probabilities of linkage and linkage rates. However, the

methodology shown in each of those works only applied for those specific summary statistics.

Hence, in this chapter we focus on developing a method to generate consistent estimators for

network properties while assuming nodes are missing completely at random. To do so, we

developed a Monte Carlo Markov Chain (MCMC) edge toggling approach.

This brings a nonparametric approach to estimating various network properties such as

degree distribution, average degree and totals. In doing so, the only assumptions required are the

nodes are missing completely at random and properties pertaining to the network property of

interest. Notably, this approach does not require any assumptions on structure of the complete

network. Overall, this approach can be seen as a tool to derive consistent estimators for notable

network properties under the case that we have a sampled network.
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We apply these methods to analyses of HIV viral genetic linkage network in Botswana

where the data is from a large cluster-randomized trial of a combination HIV prevention inter-

vention - the Botswana Combination Prevention Project (BCPP) [21]. Specifically, we intend to

estimate the power law parameters and degree distribution from the viral genetic linkage network

within and between each of the communities in the BCPP. The interest in these analyses is to

investigate the patterns of HIV transmission between communities in Botswana.

4.2 Notation and Setting

Consider a population of nodes, Ω, of finite size N. Let G = (Ω,E) denote a network

where E is the set of edges between nodes, E ⊂ Ω×Ω. Note that we assume that G is an

undirected network. We note that we will assume that all nodes in G are known, but the edges

are not assumed to be known.

Now let φ(·) be some function that maps a given network to network property statistics.

Examples of network property statistics are edge probability, degree distribution, clustering

coefficient and values pertaining to the network generating process. We are interested in inference

about φ(G) when nodes are MCAR.

Consider a random sample of nodes from Ω of size n, which we denote by Sn, such that

the proportion of sampled nodes is defined as p (known). It is important to note how we denote

the ”sampled graph” - g0. We then denote g0 as the graph that includes all nodes in G, but only

includes all observed edges from the random sample taken, so g0 = (Ω,En) where En is the set

of edges observed in Sn. This implies that although we sampled only a proportion of the nodes

from G, we assume that the missing nodes are enumerated and are included in the g0. However,

only the edges that are observed in Sn are included in g0.

Let E∗ denote the set of all possible edges based off Ω. It follows that we define the

”potential edges of G” as the following:
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Ep = E∗−En

Therefore, Ep resembles the set of edges that may possibly exist if all the edges were observed

while not including any edges that were observed in Sn.

4.3 Methodology

In estimating φ(G), Markov Chain Monte Carlo (MCMC) procedure is the basis for

generating a collection of estimates for φ(G), which we call by {φ1, . . . ,φt} where our final

proposed estimator for φ(G) will be defined as φ̂

φ̂ =
1
t

t

∑
m=1

φm

with t denoting MCMC sample size. We first discuss the steps implemented to calculate φm for

m = 1, . . . , t and then we show consistency for φ̂ .

4.3.1 Calculating φm

We first calculate φ(g0). We then randomly take M samples from g0. Note that the choice

of the number of subsamples M is arbitrary. Let g0k be the graph that includes all nodes in G,

but only includes all edges observed in the kth subsample from g0. For each subsample taken,

we calculate φ(g0k) and d = ||φ̄0 − φ(g0)|| where φ̄0 =
1
M ∑φ(g0k) and || · || is the Euclidean

distance. We randomly select [d ∗ b] potential edges from Ep where [·] represents the ceiling

function and b represents is arbitrary such that if b is small then we get more accurate estimates

for φ(G) at the cost of run-time and if b is large then we get less estimates for φ(G) with a faster

run-time. Now we edge toggle all selected potential edges. Where an edge does exist, we remove

it; for any potential edges where no edge exists, we add an edge. We define the graph for which
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edges have been toggled as gp
o .

We obtain M completely random subsamples from gp
0 of size [p∗N]. Let gp

0k be the graph

that includes all nodes in G, , but only includes edges that exist after edge toggling in the kth

subsample from gp
0 . For each subsample taken, we calculate φ(gp

0k) and ds = ||φ̄ −φ(g0)|| where

φ̄ = 1
M ∑φ(gp

0k). Let c be some pre-defined threshold. It follows that there are 3 potential cases

to consider: 1) If ds < d and d > c, then let d = ds and g0 = gp
0 , 2) if ds < d and d ≤ c, then let

d = ds, g0 = gp
0 and φm = φ(g0) and 3) otherwise, restart back at the first step and repeat. After

performing the described approach t times, we then calculate φ̂ , our proposed estimator for φ .

Note that we outline the proposed approach Algorithm 1.

4.3.2 Consistency of φ̂

Let Φ(g0) be a random variable representing the network property statistics of interest

when sampling from G. Thus, φ(g0) is an instance of Φ(g0). In Theorem 4, we show that

the proposed approach leads to a consistent estimator for φ(G) under the following set of

assumptions: 1) || φ̄ −E(Φ(g0)) ||→ 0, as N → ∞ and 2) there exists some continuous function

f such that f (E(Φ(g0))) = φ(G) and 3) f (φ̄) → φ(g) as N → ∞. Theorem 4 can be shown

using Continuous Mapping Theorem. Theorem 4 implies that if the expected network summary

statistic for a sample from g0 converges to the expected network summary statistic for a sample

from G, then φ(g)→ φ(G) as N → ∞.

The first assumption is equivalent to performing a sufficient number of edges toggles

on g0 for this condition to hold: || φ̄ −E(Φ(g0)) ||→ 0, as N → ∞. To assess whether this

assumption holds and given that E(Φ(g0)) is not observed, we estimate ds =|| φ̄ −E(Φ(g0)) ||

by replacing E(Φ(g0)) with φ(g0) and assess whether ds ≤ c to identify potential violations of

this first assumption.

The second assumption implies that for our network property of interest, there exists

some function that can map the network property of the sampled network to that of population

network.To provide additional context, we show an example of f that satisfies the second
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assumption. φ(·) be edge probability for a given network. Let X be the number of edges in G

and T be the number of possible edges in G, so T =
(N(N−1)

2

)
. Let Xs be number of observed

edges in g0 and Ts be the number of possible edges in g0, so Ts =
(n(n−1)

2

)
. It can be shown that

E(Xs)

Ts
=

X
T

We define f as the following:

f (X) =
T X
Ts

.

We consider another example of f that satisfies the second assumption, where interest

lies in degree distribution. Suppose that we are interested in degree distribution. Let fd and f ∗d

be the true and observed frequency for degree d nodes in G and g0, respectively. From [22], it

can be shown that

E( f ∗d ) =
N−1

∑
d′=0

Pr(d,d′) fd′

where

Pr(d,d′) =

(d′

d

)(N−1−d′

n−1−d

)(N−1
n−1

)
It follows that we can use the above equation to create a system of equations to solve for

( f0, f1, . . . , fN−1) which we would define as f . Additionally, it can be shown that such an f exists

for other relevant network properties such as average degree, group size, clustering coefficient

and totals [12].
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4.3.3 Diagnostic

Our proposed diagnostic for assessing if the assumptions of Theorem 4 hold focuses on

violation of the first assumption. Let Ds = ds1, . . . ,dst be the collection containing each corre-

sponding ds from φ1, . . . ,φt . Using Ds, we then estimate the standard error for ds by calculating

its asymptotic variance or through bootstrapping. We then calculate the 95% confidence interval

for ds.

After obtaining the confidence interval, we then focus on its upper bound which we

denote as du. To assess if the first assumption holds, we check to see if du ≤ c. If so, we infer

that the first assumption is not violated. If du ≥ c, then further edge toggling may be necessary

to safely ensure that the first assumption holds.

Theorem 4 Let Φ(g0) be a random variable representing the network property statistics of

interest when sampling from G (so φ(g0) would be considered an instance of Φ(g0)). Suppose

that || φ̄ −E(Φ(g0)) ||→ 0, as N → ∞. If there exists some continuous function f such that

f (E(φ(G0))) = φ(G) and f (φ̄)→ φ(g) as N → ∞, then φ(g0)→ φ(G) as N → ∞.

Proof. We note that from the first assumption, Φ̄ is a consistent estimator for φ(G0), so

φ̄ → E(Φ(G0))

Hence, by Continuous Mapping Theorem, we have

φ(g0) = f (φ̄)→ f (E(Φ(G0))) = φ(G)

46



Algorithm 1. Estimating φm

1: procedure ET(g0)
2: System Initialization
3: for m = 1;m++; while m <= t do
4: while d ≥ c do
5: Calculate φ(g0)
6: Perform completely random subsamples from g0 of size [p∗N]
7: Calculate g0k, the graph that includes all nodes in G, but only includes all edges

observed in the kth subsample from g0
8: Calculate φ(g0k) for all k
9: Calculate d = ||φ̄0 −φ(g0)|| where φ̄0 =

1
M ∑φ(g0k)

10: Randomly select [d ∗b] potential edges in from Ep
11: Edge toggle all [d ∗b] selected potential edges and call this new graph gp

0
12: Perform completely random subsamples from gp

0 of size [p∗n]
13: Calculate gp

0k, the graph that includes all nodes in G, but only includes all edges
observed in the kth subsample from gp

0
14: Calculate φ(gp

0k) for all k
15: Calculate ds = ||φ̄ −φ(g0)|| where φ̄ = 1

M ∑φ(gp
0k)

16: if ds ≤ d then
17: Let d = ds
18: Let g0 = gp

0
19: end if
20: end while
21: Let φm = φ(g0)
22: end for
23: Calculate φ̂ = 1

t ∑φm
24: end procedure
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4.4 Application

4.4.1 Simulation

In this section, we apply the proposed approach in a simulated setting. Stumpf et. al.

performed a simulation with sampling from networks that follow a power law distribution [25]

and follow the following probability distribution:

Pr(Di = k) =


βk−α k ≥ 1

p k = 0

where α is considered as a scaling factor and β is a normalizing factor. Generally α is the

parameter of interest and that will be our parameter of interest for this simulation study. Stumpf

et. al. showed that the larger the value of α , the greater the sample degree distribution deviates

from the true distribution. Since for most settings, 2 ≤ α ≤ 3 [25], we apply the proposed

approach to a power law network with α = 3 for various sampling proportions.

Consider a network, G = (V,E), where |V |= 500 with the following degree distribution:

Pr(Di = k) =


βk−3 k ≥ 1

0.50 k = 0

where Pr(Di = k) represents the probability that a randomly selected node has degree k. It

follows that we take a completely random sample from G and apply the proposed approach.

We will take 500 completely random samples from G for each sampling proportion considered

where p = 0.20,0.30,0.40,0.50,0.60,0.70. We will then apply the approach.

Figure 4.1 shows the results from the simulation. For p≥ 0.50 and degree value between 0

and 3, we find that the estimated probabilities are accurate. Otherwise, the estimated probabilities
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show to be inaccuarate.

Figure 4.1 shows the results from the simulation. The estimated probabilities appear to

be accurate only for values of p ≥ 0.50 and degree value between 0 and 3,but not otherwise.

As stated in previous sections, the intent of the proposed method was not to estimate

the degree distribution value itself, but instead to estimate the parameter, α pertaining to

the network’s generating distribution. Figure 4.2 shows that for all sampling proportions the

estimated α is considerably closer to the true value, α = 3, when fitting the proposed network’s

degree distribution to a sampled data from a power law network.

4.4.2 BCPP

As discussed above, we use this approach to estimate the network generating process

for the HIV viral genetic linkage networks in Botswana. The data come from a large cluster-

randomized trial of a combination HIV prevention intervention - the Botswana Combination

Prevention Project (BCPP).

In the BCPP, all households were targeted for a survey in 6 of the 30 participating commu-

nities in Botswana. The communities that were selected are Gumare, Mauntalala, Mmankgodi,

Mmathethe, Ramokgonami and Shakawe. Due to low sampling proportions for Gumare and

Mmankgodi, we will only focus the following communities for the applied approach: Mauntalala,

Mmathethe, Ramokgonami and Shakawe. For those that choose to participate in the survey,

demographic and household data along with HIV status was ascertained. For those who were

HIV+, the viral genetic sequences were obtained. Hence, missing data arise because some

individuals chose not to participate in the BCPP. Nonetheless, in our analyses, individuals are

assumed to be MCAR. We acknowledge the fact that this assumption may not entirely hold.

Lastly, we note that an edge exists between two individuals when the pairwise distance between

their viral genetic sequences are below the threshold 0.07.

We note that several investigators have shown that HIV genetic linkage networks appear

to follow a power law distribution [14, 27, 28]. Obtaining an accurate for the power law parame-
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Figure 4.1. The proposed approach was applied to a power law network with α = 3 and N = 500
for the following proportions: 0.20,0.30,0.40,0.50,0.60,0.70. The x axis represents the degree
value and the y axis represents the proportion of nodes with the specified degree value. For
values between 0 and 3, the degree distribution of the proposed approach diverges from the true
degree distribution for proportions of 0.40 and less. For values between 4 and 7, the proposed
degree distributions deviate considerably from the true values for all proportions.
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Figure 4.2. Estimated α for each sample performed in the simulation study.The red horizontal
line represents the true value for α .

ter α is challenging. We apply the proposed approach to estimate the degree distributions for the

communities of interest and use the estimated degree distributions to estimate α .

From Figure 3.3, we have the proposed degree distributions for Mauntalala, Mmathethe,

Ramokgonami and Shakawe. For Mauntalala, Ramokgonami and Shakawe, the proportion of

individuals that have zero edges are approximate to 0.60 and for Mmathethe the proportion of

individuals that have zero edges is approximately 0.50 indicating that Mmathethe has the largest

proportion of nodes that have an edge. Additionally Mauntalala and Ramokgonami appear to

have a fairly large number of nodes with have six to eights edges–implying the existence of

super spreaders in these communities. Figure 3.4 shows that the values of α for Mmathethe and

Shakawe are both close to 2.28, whereas the values of alpha for Mauntalala and Ramokgonami

are 2.42 and 2.38, respectively. Since Mauntalala and Ramokgonami have larger values for α

compared to Mmathethe and Shakawe, then we can expect a higher probability for larger degree

values in these two communities, this feature is displayed in Figure 3.3.
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Figure 4.3. Proposed degree distributions for the communities Maunatlala, Mmathethe, Ramokg-
onami, Shakawe.

Figure 4.4. Estimated values for α for the communities Maunatlala, Mmathethe, Ramokgonami,
Shakawe.

52



4.5 Discussion

This paper presents novel methods to estimate network properties in the presence of

missing data. While methods have been proposed for such analyses, this paper is, to our

knowledge, the first to ground a non-parametric method in statistical theory. Through an MCMC

edge-toggling approach, we are able to show consistency of our estimator. We demonstrate

that the methods work well when sampling proportion is greater than 0.4. How to make further

improvements to our estimator when applied to data with low sampling rates is a topic for further

research.

Our illustrative example made use of data from the HIV prevention study in Botswana —

the BCPP. For the viral genetic linkage networks, we estimated the degree distribution within

the communities and values pertaining to the communities’ network generating process. These

results can be then leveraged to understand transmission patterns for HIV in Botswana.
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Chapter 5

Conclusions and Future Work

This dissertation illustrates novel methods to develop consistent and asymptotically

normal estimators for various network properties of interest that adjust for the bias that results

from missing data. The motivation behind developing such methods was to analyze the viral

genetic linkage data from the BCPP. Specifically, my goal was to identify HIV transmission

patterns within and between-communities in Botswana; analyses in this dissertation focuses on

the 3 pairs of communities in the BCPP ESS.

The analyses from Chapters 2 and 3 provide evidence of a larger within- than between-

community linkage and identify pairs of communities with high levels of linkage. The signif-

icance of this work lies in making accurate estimates of linkage between communities in the

presence of missing data. Further in Chapter 4, the analyses provide evidence about whether

some communities may have a fairly large number of superspreaders, individuals who are linked

to a disproportionately high number of people, by identification of the network generating

distribution that would lead to within-community linkage. These advancements allowed us to

identify which pairs of communities that are in different treatment groups in the BCPP that have

high levels of linkage between one another indicating evidence of mixing. Therefore, in order to

accurately estimate the causal effect of the BCPP intervention, mixing between these identified

pairs of communities will need to be addressed.

As stated in previous chapters, the main limitation of the methods presented is their
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relatively poor performance—including a considerable amount of bias–when the sampling pro-

portion is below 40%. Thus, future work is required to extend the methods in ways that improve

performance when sampling proportions are small.

Additionally, the methods in this dissertation expand the theory of network analysis to

a missing data setting, and is the first, to our knowledge, that shows showing consistency and

asymptotic normality of estimators that accommodate missing data, and thereby provide reliable

inference on networks. Further, I expand upon this by developing a non-parametric approach to

generate consistent estimators for network properties that generalize over a range of network

properties under specified assumptions. These advancements will be useful in developing a

method to investigate the effect of an intervention for HIV, in the presence of mixing between

randomized cluster-level interventions.

A majority of analyses regarding HIV transmission networks have not adjusted for the

bias that arises from missing data and as shown in this dissertation can have dramatic effects

on inference and conclusions on HIV transmission patterns [1, 4]. Thus, the results from this

dissertation bridge the gap between HIV networks and missing data ultimately allowing for more

accurate and correct inference and conclusions regarding HIV transmission patterns.
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Appendix A

Estimating Viral Genetic Linkage Rates in
the Presence of Missing Data

A.1 Proof of Theorem 1

Proof. Without loss of generality suppose psns ∈ N. If psns /∈ N, then we take psns = ⌈psns⌉.

We denote D̃s
ri to be the number of individuals in Sn(s) linked to subject yri ∈ Sn(r), i.e., a sample

version of Ds
ri. Note that

P
(

D̃s
ri ≥ 1 | Ds

ri ≥ 1
)
= P(vs

ri = 1 | us
ri = 1) = πrs

and

D̃s
ri | Ds

ri ≥ 1,Ds
ri = d ∼ HyperGeometric(Ns,d,ns)
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where Ns is the size of the population of group s, d is the number of individuals in Ωs that are

linked to yri ∈ Sn(r) and ns is the size of the random sample taken from Ωs. We have

P
(

D̃s
ri ≥ 1 | Ds

ri ≥ 1,Ds
ri = d

)
= 1−

(Ns−d
ns

)(Ns
ns

)
= 1− (Ns −d)!

ns!(Ns −d −ns)!
ns!(Ns −ns)!

Ns!

= 1− (Ns −d)!
(Ns −d −ns)!

(Ns −ns)!
Ns!

= 1− ∏
ns−1
k=0 (Ns − k−d)

∏
ns−1
k=0 (Ns − k)

= 1−
ns−1

∏
k=0

(1− d
Ns − k

)

Take AN(d) = ∏
ns−1
k=0 (1− d

Ns−k), and let

Al
N(d) = log(AN(d))

=
ns−1

∑
k=0

log(1− d
Ns − k

)

57



We note that when x → 0, we have log(1+ x)→ x+O(x2). For Ns → ∞, We have

Al
N(d) =−

ns

∑
k=0

d
Ns − k

=−d
ns

∑
k=0

1
Ns − k

=−d
Ns

∑
j=(1−ps)Ns

1
j

=−d
Ns

∑
j=(1−ps)Ns

1
Ns

Ns

j

=−d
∫ Ns

(1−ps)Ns

1
Ns

Ns

j
d j

=−d
∫ 1

1−ps

1
x

dx

=−d(− log(1− ps))

= d log(1− ps).

Thus, AN(d)→ (1− ps)
d , and

P
(

D̃s
ri ≥ 1 | Ds

ri ≥ 1,Ds
ri = d

)
→ 1− (1− ps)

d.

Let Dmax
N(rs) = max{d : Pr(Ds

ri = d)}. It follows that we have

πrs = P
(

D̃s
ri ≥ 1 | Ds

ri ≥ 1
)

=

Dmax
N(rs)

∑
d=1

P
(

D̃s
ri ≥ 1 | Ds

ri = d
)

P(Ds
ri = d | Ds

ri ≥ 1)

→
Dmax

N(rs)

∑
d=1

(1− (1− ps)
d)P(Ds

ri = d | Ds
ri ≥ 1)

Let Dmax
n(rs) = max{d : Pr(D̃s

ri = d)}. Similarly, if we treat Sn as the population and Sm as the
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sample from Sn of size pn, we can do the same as above and get the following:

π̃rs = Pr( ˜̃Ds
rs ≥ 1 | D̃s

ri ≥ 1)

=

Dmax
n(rs)

∑
d=1

P( ˜̃Ds
rs ≥ 1 | D̃s

ri = d)P(D̃s
ri = d | D̃s

ri ≥ 1)

→
Dmax

N(rs)

∑
d=1

(1− (1− ps)
d)P(Ds

ri = d | Ds
ri ≥ 1)

Thus, π̃rs is a consistent estimator for πrs.

A.2 Derivation of Consistent Estimators for hrs1(yki)

A.2.1 A consistent estimator for h1
rs1(yki)

To find ĥ1
rs1 (yki), a consistent estimator for h1

rs1(yki), we first note that

h1
rs1 (yki) = E [γ̂rs1 (yr1,yr2, . . . ,yrnr ;ys1,ys2, . . . ,ysns) | yki]

=

(
nr

mr

)−1(ns

ms

)−1

∑
Sm(r)∈Cn(r)

m(r)

∑
Sm(s)∈Cn(s)

m(s)

{
1

mr

mr

∑
j=1

E [ṽs
ri | yki]

}

=

(
nr

mr

)−1(ns

ms

)−1

∑
Sm(r)∈Cn(r)

m(r)

∑
Sm(s)∈Cn(s)

m(s)

G1
ki,

where

G1
ki = G1

ki
(
Sm(r),Sm(s)

)
=

1
mr

mr

∑
j=1

E [ṽs
ri | yki] .

If k = r and yri ∈ Sm(r), then

G1
ki =

1
mr

[ṽs
ri +(mr −1)γrs1] .
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Otherwise,

G1
ki = γrs1.

Therefore, we have h1
rs1 (ysi) = γrs1, which implies

ĥ1
rs1 (ysi) = γ̂rs1.

For h1
rs1 (yri), we have there are

(nr−1
mr−1

)
subsets of size mr from Sn(r) that contain yri and the

remaining
(nr−1

mr

)
subsets of Sn(r) that do not contain yri. It follows that we derive the explicit

form of h1
rs1 (yri):

h1
rs1 (yri) =

(
nr

mr

)−1(ns

ms

)−1

 ∑
Sm(r)∈Cn(r)

m(r):yri∈Sm(r)

∑
Sm(s)∈Cn(s)

m(s)

G1
ri + ∑

Sm(r)∈Cn(r)
m(r):yri /∈Sm(r)

∑
Sm(s)∈Cn(s)

m(s)

G1
ri


=

(
nr

mr

)−1(ns

ms

)−1

∑
Sm(r)∈Cn(r)

m(r):yri∈Sm(r)

∑
Sm(s)∈Cn(s)

m(s)

G1
ri +

(
nr

mr

)−1(nr −1
mr

)
γ1

=

(
nr

mr

)−1(ns

ms

)−1

∑
Sm(r)∈Cn(r)

m(r):yri∈Sm(r)

∑
Sm(s)∈Cn(s)

m(s)

1
mr

[ṽs
ri +(mr −1)γ1]+

nr −mr

nr
γ1

=

(
nr

mr

)−1(ns

ms

)−1

∑
Sm(r)∈Cn(r)

m(r):yri∈Sm(r)

∑
Sm(s)∈Cn(s)

m(s)

1
mr

ṽs
ri +

(
nr

mr

)−1(nr −1
mr −1

)
mr −1

mr
γ1+

nr −mr

nr
γ1

=

(
nr

mr

)−1(ns

ms

)−1

∑
Sm(r)∈Cn(r)

m(r):yri∈Sm(r)

∑
Sm(s)∈Cn(s)

m(s)

1
mr

ṽs
ri +

nr −1
nr

γ1

=

(
1

mr

(
nr

mr

)−1(nr −1
mr −1

))(
nr −1
mr −1

)−1

∑
Sm(r)∈Cn(r)

m(r):yri∈Sm(r)

(
ns

ms

)−1

∑
Sm(s)∈Cn(s)

m(s)

ṽs
ri+

nr −1
nr

γ1

=
1
nr

(
nr −1
mr −1

)−1

∑
Sm(r)∈Cn(r)

m(r):yri∈Sm(r)

(
ns

ms

)−1

∑
Sm(s)∈Cn(s)

m(s)

ṽs
ri +

nr −1
nr

γ1
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Therefore,

ĥ1
rs1 (yri) =

1
nr

(
nr −1
mr −1

)−1

∑
Sm(r)∈Cn(r)

m(r):yri∈Sm(r)

(
ns

ms

)−1

∑
Sm(s)∈Cn(s)

m(s)

ṽs
ri +

nr −1
nr

γ̂1

A.2.2 A consistent estimator for h2
rs1(yki)

To find ĥ2
rs1 (yki), a consistent estimator for h2

rs1(yki), we first note that

h2
rs1 (yki) = E [γ̂rs2 (yr1, . . . ,yrnr ;ys1, . . . ,ysns) | yki]

=

(
nr

mr

)−1(ns

ms

)−1

∑
Sm(r)∈Cn(r)

m(r)

∑
Sm(s)∈Cn(s)

m(s)

{
1

mr

mr

∑
j=1

E[ũs
ri | yki]

}

=

(
nr

mr

)−1(ns

ms

)−1

∑
Sm(r)∈Cn(r)

m(r)

∑
Sm(s)∈Cn(s)

m(s)

G2
ki,

where

G2
ki = G2

ki(Sm(r),Sn(s)) =
1

mr

mr

∑
j=1

E[ũs
ri | yki].

If k = r and yri ∈ Smr , then

G2
ki =

1
mr

[ũs
ri +(mr −1)γrs2] .

Otherwise,

G2
ki = γrs2.

Therefore, we have h2
rs1 (ysi) = γrs2, which implies a consistent estimator ĥ2

rs1 (ysi) for h2
rs1 (ysi)

is defined as follows:

ĥ2
rs1 (ysi) = γ̂rs2.

Further, as ũs
ri is a connection indicator with respect to Sn(s), as long as we know yri ∈ Sm(r) we

have ũs
ri does not depend on Sm, i.e., if Sm(r) and S′m(r) are both subsamples of size mr from Sn(r)
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that contains yri ∈ Sm(r), then

G2
ki(Sm(r),Sn(s)) = G2

ki(Sm(r),Sn(s)).

For h2
rs1 (yri), we have

(nr−1
mr−1

)
subsets of size mr from Snr that contain yri and there are the

remaining
(nr−1

mr

)
subsets of size mr from Snr that do not contain yri. Fix S′mr

to be any subset of

size mr from Snr that contain yri. Thus,

h2
rs1 (yri) =

(
nr

mr

)−1(ns

ms

)−1

 ∑
Sm(r)∈Cn(r)

m(r):yri∈Sm(r)

∑
Sm(s)∈Cn(s)

m(s)

G2
ri + ∑

Sm(r)∈Cn(r)
m(r):yri /∈Sm(r)

∑
Sm(s)∈Cn(s)

m(s)

G2
ri


=

(
nr

mr

)−1(nr −1
mr −1

)
G2

ri(Sm′
r
,Sn(s))+

(
nr

mr

)−1(nr −1
mr

)
γrs2

=
mr

nr
G2

ri(Sm′
r
,Sn(s))+

nr −mr

nr
γrs2

=
1
nr

[ũs
ri +(mr −1)γrs2]+

nr −mr

nr
γrs2

=
ũs

ri
nr

+
nr −1

nr
γrs2

Therefore,

ĥ2
rs1 (yri) =

ũs
ri

nr
+

nr −1
nr

γ̂rs2

A.2.3 A consistent estimator for h3
rs1(yki)

To find ĥ3
rs1(yki), a consistent estimator for h3

1(yi), we first note that
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h3
1(yki) = E[γ̂rs3(yr1, . . . ,yrnr ;ys1, . . . ,ysns) | yki]

=
1
nr

nr

∑
j=1

E[vs
r j = 1 | yki]

=


1
nr
[vrs

ni +(nr −1)γrs3],k = r

γrs3, k = s

If k = r and j = i, then

E[vs
r j | yki] = vs

ri.

Otherwise,

E[vs
r j] = γrs3.

Therefore,

ĥ3
1(yki) =


vrs

ni
nr
+ nr−1

nr
γrs3,k = r

γrs3, k = s

Thus,

ĥ3
1(yki) =


vrs

ni
nr
+ nr−1

nr
γ̂rs3,k = r

γ̂rs3, k = s
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A.3 A Consistent Estimator for the Variance of θ̃rs

Note that

θ̃rs = θ̃rs(yr1, . . . ,yrnr ;ys1, . . . ,ysns) =
1
nr

nr

∑
i=1

vs
ri.

We have that the arguments of θ̃rs are symmetric when when permuted with respect to each

group and that

E(θ̃rs) = πrsθ .

Thus, θ̃rs is a U-Statistic for πrsθ . Note that we denote θ̃rs and πrsθ as γ̂3 and γ3, respectively.

Let

h3
rs1 = E(h3

rs (yr1, . . . ,yrnr ;ys1, . . . ,ysns) |yki),

h̃3
rs1(yi) = h3

rs1(yi)− γrs3

σ
2
h(3) =Var(h̃3

rs1(yki))

By [13], it follows that

√
nrs (γ̂rs3 − γrs3)→d N

(
0,σ2

γ(3) = ρ
2
r n2

r σ
2
r3 +ρ

2
s n2

s σ
2
s3

)
.

where ρ2
k = limnrs→∞

nrs
nk

and

nrs =


nr r = s

nr +ns r ̸= s
.

64



A consistent estimate of σ2
γ(3) is given by:

σ̂
2
γ(3) =

1
nk −1

nk

∑
i=1

(
ĥ3

rs1 (yki)− γ̂rs3

)2
,

where ĥ3
rs1 (yki) denotes a consistent estimator for h3

rs1 (yki).

A.4 Comparison of Adjusted and Unadjusted Probabilities
of Linkage

A.4.1 Estimates for Probabilities of Linkage

Table A.1. Unadjusted (U) and adjusted (A) linkage rates for the communities investigated from
the BCPP.

Gumare Maunatlala Mmankgodi Mmathethe Ramokgonami Shakawe

U A U A U A U A U A U A

Gumare 0.26 0.54 0.08 0.11 0.06 0.19 0.12 0.22 0.07 0.09 0.131 0.24

Maunatlala 0.09 0.19 0.17 0.25 0.04 0.10 0.10 0.19 0.08 0.13 0.04 0.08

Mmankgodi 0.06 0.13 0.03 0.04 0.10 0.32 0.09 0.18 0.04 0.08 0.03 0.06

Mmathethe 0.05 0.13 0.07 0.12 0.04 0.11 0.26 0.47 0.03 0.05 0.05 0.08

Ramokgonami 0.06 0.13 0.07 0.12 0.03 0.10 0.08 0.15 0.23 0.37 0.03 0.06

Shakawe 0.10 0.26 0.02 0.03 0.02 0.06 0.06 0.12 0.03 0.06 0.22 0.37

A.4.2 Standard Error of Probabilities of Linkage

Table A.2. Standard errors of unadjusted (U) and adjusted (A) linkage rates for the communities
investigated from the BCPP.

Gumare Maunatlala Mmankgodi Mmathethe Ramokgonami Shakawe
U A U A U A U A U A U A

Gumare 0.13 0.09 0.07 0.02 0.02 0.07 0.02 0.04 0.02 0.02 0.20 0.04
Maunatlala 0.02 0.05 0.03 0.03 0.03 0.04 0.08 0.07 0.01 0.04 0.02 0.03
Mmankgodi 0.17 0.05 0.01 0.02 0.03 0.08 0.03 0.04 0.02 0.03 0.01 0.02
Mmathethe 0.16 0.04 0.04 0.03 0.01 0.04 0.09 0.07 0.04 0.02 0.06 0.02
Ramokgonami 0.02 0.03 0.04 0.05 0.03 0.03 0.08 0.04 0.09 0.04 0.04 0.03
Shakawe 0.03 0.05 0.02 0.03 0.02 0.03 0.07 0.05 0.04 0.03 0.34 0.04

65



Bibliography

[1] Jeannette L Aldous, Sergei Kosakovsky Pond, Art Poon, Sonia Jain, Huifang Qin, James S
Kahn, Mari Kitahata, Benigno Rodriguez, Ann M Dennis, Stephen L Boswell, et al.
Characterizing hiv transmission networks across the united states. Clinical Infectious
Diseases, 55(8):1135–1143, 2012.

[2] Bluma G Brenner, Michel Roger, Daniela D Moisi, Maureen Oliveira, Isabelle Hardy,
Reuven Turgel, Hugues Charest, Jean-Pierre Routy, Mark A Wainberg, et al. Transmission
networks of drug resistance acquired in primary/early stage hiv infection. AIDS (London,
England), 22(18):2509, 2008.

[3] Nicole Bohme Carnegie, Rui Wang, Vladimir Novitsky, and Victor De Gruttola. Linkage
of viral sequences among hiv-infected village residents in botswana: estimation of linkage
rates in the presence of missing data. PLoS computational biology, 1 2014.

[4] Kristen Chalmet, Delfien Staelens, Stijn Blot, Sylvie Dinakis, Jolanda Pelgrom, Jean Plum,
Dirk Vogelaers, Linos Vandekerckhove, and Chris Verhofstede. Epidemiological study of
phylogenetic transmission clusters in a local hiv-1 epidemic reveals distinct differences
between subtype b and non-b infections. BMC infectious diseases, 10(1):1–9, 2010.

[5] Sharoda Dasgupta, Anne Marie France, Mary-Grace Brandt, Jennifer Reuer, Tianchi Zhang,
Nivedha Panneer, Angela L Hernandez, and Alexandra M Oster. Estimating effects of hiv
sequencing data completeness on transmission network patterns and detection of growing
hiv transmission clusters, 4 2019.

[6] Malia Duffy, Caitlin Madevu-Matson, Jessica E Posner, Hana Zwick, Melissa Sharer, and
Antonia M Powell. Systematic review: Development of a person-centered care framework
within the context of hiv treatment settings in sub-saharan africa. Tropical Medicine &
International Health, 27(5):479–493, 2022.

[7] Abdulrahman M El-Sayed, Peter Scarborough, Lars Seemann, and Sandro Galea. So-
cial network analysis and agent-based modeling in social epidemiology. Epidemiologic
Perspectives & Innovations, 9(1):1, 2012.

[8] Anthony S. Fauci, Robert R. Redfield, George Sigounas, Michael D. Weahkee, and Brett P.
Giroir. Ending the HIV Epidemic: A Plan for the United States. JAMA, 321(9):844–845,
03 2019.

66



[9] Tendani Gaolathe, Kathleen E Wirth, Molly Pretorius Holme, Joseph Makhema, Sikhulile
Moyo, Unoda Chakalisa, Etienne Kadima Yankinda, Quanhong Lei, Mompati Mmalane,
Vlad Novitsky, et al. Botswana’s progress toward achieving the 2020 unaids 90-90-90
antiretroviral therapy and virological suppression goals: a population-based survey. The
lancet HIV, 3(5):e221–e230, 2016.

[10] Gareth J Hughes, Esther Fearnhill, David Dunn, Samantha J Lycett, Andrew Rambaut,
Andrew J Leigh Brown, and UK HIV Drug Resistance Collaboration. Molecular phy-
lodynamics of the heterosexual hiv epidemic in the united kingdom. PLoS pathogens,
5(9):e1000590, 2009.
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