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Effect of flexibility on the growth of concentration
fluctuations in a suspension of sedimenting fibers:
Particle simulations

Harishankar Manikantan and David Saintillan
Department of Mechanical and Aerospace Engineering, University of California San Diego,
La Jolla, California 92093, USA

(Received 7 May 2015; accepted 9 December 2015; published online 7 January 2016)

Three-dimensional numerical simulations are performed to study the stability of a
sedimenting suspension of weakly flexible fibers. It is well known that a suspension of
rigid rods sedimenting under gravity at low Reynolds number is unstable to concentra-
tion fluctuations owing to hydrodynamic interactions. Flexible fibers, however, reori-
ent while settling and even weak flexibility can alter their collective dynamics. In our
recent work [Manikantan et al., “The instability of a sedimenting suspension of weakly
flexible fibres,” J. Fluid Mech. 756, 935–964 (2014)], we developed a mean-field
theory to predict the linear stability of such a system. Here, we verify these predictions
using accurate and efficient particle simulations based on a slender-body model. We
also demonstrate the mechanisms by which flexibility-induced reorientation alters
suspension microstructure, and through it, its stability. Specifically, we first show that
the anisotropy of the base state in the case of a suspension of flexible fibers has a
destabilizing effect compared to a suspension of rigid rods. Second, a conflicting effect
of flexibility is also shown to suppress particle clustering and slow down the growth
of the instability. The relative magnitude of filament flexibility and rotational Brown-
ian motion dictates which effect dominates, and our simulations qualitatively follow
theoretically predicted trends. The mechanism for either effects is tied to the flexibility-
induced reorientation of particles, which we illustrate using velocity and orientation
statistics from our simulations. Finally, we also show that, in the case of an initially
homogeneous and isotropic suspension, flexibility always acts to suppress the growth
of the instability. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4938493]

I. INTRODUCTION

A central phenomenon in many natural and industrial processes involving complex fluids is the
sedimentation of a suspension of small particles. While the settling of an isolated object in a viscous
fluid is an often straightforward problem, the case of a suspension of hydrodynamically interacting
particles remains an area of active research even after decades of experiments, simulations, and theo-
retical arguments. An extensive review of the applications, current literature, and unresolved debates
can be found in the work of Guazzelli and Hinch.1

While the physics of a suspension of spherical particles is already non-trivial, even the simplest
anisotropy in particle geometry has drastic consequences on the bulk behavior of the system. Koch
and Shaqfeh2 first showed that a suspension of rodlike particles such as spheroids or slender fibers is
unstable to concentration fluctuations, a direct consequence of the fact that non-spherical particles can
orient in flow and have a configuration-dependent settling velocity. This hydrodynamic instability,
which has a significant impact on suspension microstructure as well as settling statistics, has since
been verified in numerous experiments3,4 and simulations,5,6 and further extensions have also been
proposed to account for the effects of container walls,7 Brownian fluctuations,8 and fluid inertia,9 to
list a few.

These previous studies all focused on rigid rods, which is a convenient and representative simpli-
fication of many physical systems involving the sedimentation of slender objects. Even weak fiber

1070-6631/2016/28(1)/013303/15/$30.00 28, 013303-1 ©2016 AIP Publishing LLC
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compliance, however, can have a significant impact on the bulk suspension properties. A flexible
filament can indeed deform in response to viscous stresses and internal elastic forces, and such defor-
mations have complex consequences on single-particle dynamics. It was previously shown10,11 that
an isolated flexible fiber, although torque-free, spontaneously aligns perpendicular to the direction of
gravity as it sediments. Apart from the obvious non-trivial trajectory that ensues, this reorientation
also affects the mechanism of destabilization in a suspension of such particles as we further elucidate
in this paper.

As flexibility-induced reorientation plays a central role in the simulations we perform here, we
find it useful to first recapitulate the main results of our previous work11 where this was derived.
The leading dimensionless group governing the deformation of a sedimenting elastic filament is the
elasto-gravitation number β, which compares the elastic bending force acting along the filament
backbone to the net external gravitational force,

β =
κ

FGL2 . (1)

Here, κ is the bending rigidity of the fiber, L its length and FG the total gravitational force acting on
it. The limit of large β corresponds to the regime of weak flexibility. In this regime, a multiple time
scale asymptotic analysis was performed and revealed that the shape and translational velocity of a
weakly flexible fiber is, to leading order, exactly the same as that of a rigid rod placed in the same
orientation. The first correction to the rigid-rod motion comes in at O(β−1) and simply acts to slowly
rotate the fiber towards an orientation perpendicular to gravity. Furthermore, numerical simulations
for arbitrary values of β showed that these predictions hold beyond the asymptotic regime of β ≫ 1
and well into values of β smaller than unity.

This rate of reorientation due to fiber compliance, which is proportional to β−1, was determined
to be11

∂θ

∂t
=

FG

8πµL2

A
2β

sin(2θ), (2)

where θ is the instantaneous angle the fiber makes with the direction of gravity. Note that all orienta-
tions but those parallel or perpendicular to gravity feel this rotational velocity, causing an isolated fiber
to rotate towards a terminal horizontal configuration. The fluid has viscosity µ, and A = 3(c − 7/2)/80
is a purely geometric constant depending on the shape of the fiber. We modeled the fiber as a slender
ellipsoid of contour length L and cross-sectional radius a at its center point, which defines the slender-
ness parameter c = ln[(L/a)2]. The asymptotic analysis also revealed the deflection of the fiber away
from a perfectly straightened state to have a maximum value of L/256β, which makes it possible to
conveniently approximate the fiber contour as that of a straight rod down to values of β slightly less
than 1.

We then applied our knowledge of single filament dynamics to study the stability of a suspension
of weakly flexible fibers using a continuum method.12 We followed the linear stability analysis first
proposed by Koch and Shaqfeh2 with the added ingredient of flexibility-induced reorientation. In the
case of a suspension of perfectly rigid rods, the base-state distribution is uniform in space and isotropic
in orientation. The effect of a spatial fluctuation in number density is to set up a vertical disturbance
flow that is downward in areas of higher particle density and upward outside. This vertical shear field
causes particles to rotate in such a way as to enable their orientation-dependent settling velocity to
draw them into regions of already higher density, thus enhancing concentration fluctuations. Adapting
this study to the case of weakly flexible fibers revealed two opposing effects of fiber flexibility. First, in
the absence of fluctuations, the balance between rotational diffusion and reorientation due to flexibility
gives rise to an anisotropic orientation distribution in the base state. Introducing a gravitational Péclet
number Pe = FGL/kBT , and defining η = APe/48(c − 1)β, this base-state distribution was found to
be

Ψ0(θ) = m0 exp[−2η cos2θ], (3)

where m0 is a normalization constant. We can see readily that η plays the role of an anisotropy
parameter. The limit of η → 0 renders the base state isotropic, while large values of η correspond to
increasingly anisotropic distributions with a preferential alignment perpendicular to gravity — a direct
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consequence of flexibility-induced reorientation. Perturbing about this configuration and following
through the linear stability analysis in the continuum approach, this base-state anisotropy was shown
to be the prime factor responsible for an enhanced instability as long β & 1. The mechanism sug-
gested was straightforward: a nearly horizontal alignment of fibers made it more likely for each to be
reoriented by the disturbance fields of the others in a way as to be drawn towards regions of already
higher number density. The second and opposite effect of flexibility becomes stronger as the fibers
become less rigid, specifically as β . 1, when the effect of the reorientation of individual particles
due to flexibility becomes comparable to that due to the disturbance field. Strong horizontal alignment
then tends to hinder horizontal drift and therefore the very mechanism of growth of fluctuations. On
approaching the problem asymptotically, we indeed showed that the growth rate has a O(β−1) negative
correction due to this “independent” effect of flexibility, contrasting it with the effect of the base state
that hinges on the relative magnitude of flexibility and rotational diffusion through the parameter η.

These prior theoretical results were derived from a continuum approach where the fibers were
abstracted as point forces with a director that determined their translational and rotational velocities.
While this simplified model was analytically tractable and extremely insightful into the short-time
growth of fluctuations, we draw in the present paper a more detailed picture using discrete particle
simulations. Not only do we show the validity of the continuum theory but we also go on to eluci-
date the microstructural changes that the particle simulation affords us, which will in turn reveal the
mechanisms involved in the enhancement or suppression of the instability. Here, again, we exploit
the approximations that weak flexibility grants us — namely, that each fiber can be approximated to
leading-order as a rigid rod, with the effect of flexibility entering solely through the rotational velocity
in Eq. (2). This allows us to use efficient and fast methods that have been previously developed for
simulating suspensions of rigid rods.5,13

Note that the “weak” flexibility mentioned above is measured with respect to gravitational forces.
The disturbance field induced by the settling of other particles could, in principle, also deform the
fibers, though we argue here that such deflections are negligible in dilute suspensions. The potential
for fiber deflection due to the disturbance flow field can be assessed by comparing the viscous forces
due to the flow against the elastic rigidity of the filaments. To this end, we need to determine an
appropriate velocity scale. We first note that bending due the flow can at most result from quadratic
variations of disturbance velocity field ud in a Taylor expansion about the fiber center, the leading
order contributing only to fiber translation and the linear term to rotation. The Fourier component of ud

can be estimated following Hasimoto12,14 as ũd ∼ nFG/µk2, where k is the wavelength of the pertur-
bation and n is the fiber number density. We know from the continuum theory that waves of the size of
the box (Lx) are the most unstable and therefore set k = 2π/Lx. The quadratic term in the expansion
of ud, which represents variations across the fiber length L potentially leading to deflections, is then
given by

ud ∼
x2

2
d2

dx2

(
nFGL2

x

µ(2π)2 ei2πx/Lx

) �����x=L, (4)

providing a velocity scale of ud ∼ nFGL2/2µ. We can then compare the relative strengths of this fluid
flow with the elastic rigidity of the fibers by constructing an appropriate dimensionless number. Such
a number is given by the “effective viscosity”15 defined as µ̄ = 8πµudL3/κ. Using the velocity scale
from Eq. (4), the effective viscosity simplifies to µ̄ ∼ nL3/β. Now, we know from previous works15,16

on the deformation of flexible filaments by viscous forces that significant filament deformation occurs
in the range µ̄ & 1000. For the range of β and nL3 that we shall restrict ourselves to in the current
work, µ̄ is significantly smaller than this value, and filament deformations by the disturbance flow
can thus be safely neglected.

The paper is organized as follows. In Sec. II, we describe the slender-body model used to describe
the dynamics of each fiber and its hydrodynamic interaction with every other fiber in the suspension.
The numerical method used to integrate the configuration of the fibers in time in the presence of
Brownian motion is also described there. Results from simulations are presented in Sec. III where we
systematically analyze the changes in number density fluctuations and migration of particles, which
reveals the mechanism of the instability. We also make use of our simulation method to consider the
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evolution of a well-stirred isotropic suspension of weakly flexible particles, which was outside the
purview of the linear continuum theory. Concluding remarks are given in Sec. IV.

II. SLENDER-BODY MODEL AND NUMERICAL METHOD

As previously discussed, the deflection of a fiber from a nearly straightened state is small when it
is weakly flexible (β ≫ 1), and we exploit this fact to model each fiber as a rigid rod with the effect of
flexibility entering only through flexibility-induced reorientation. We consider a periodic collection
of N fibers, where each fiber indexed by α is described entirely by the position of its center xα and a
director pα, which is the tangent to the filament at its center. We shall assume zero Reynolds number
flow, without any particle inertia. In a dilute suspension of such particles, the leading-order effect
of each particle on every other is that due to a net force on the fluid (Stokeslet) equal to its weight
corrected for buoyancy and acting at the particle center. Within these approximations, it is implicit
that we do not take into account the effect of the disturbance field of one fiber on the shape of another
— the suspension will be assumed to be sufficiently dilute to render such effects negligible.

We use slender-body theory for Stokes flow to model the dynamics of each fiber. To non-dimen-
sionalize the equations, we choose as characteristic scales the length of each filament L, the sedimen-
tation time scale 8πµL2/FG, and the gravitational force on a fiber FG. We shall be primarily concerned
with cases where Brownian motion is weak, hence the choice of fiber weight as the characteristic
scale for force. Parametrized along its length by sα ∈ [−1/2,1/2], each fiber then follows the local
slender-body equation17

ẋα + sṗα − sṗs
α(pα) − u∞α (xα + sαpα) = (λ1I + λ2pαpα) · fα(xα + sαpα). (5)

Here, ṗs
α is the flexibility-induced reorientation velocity that depends on the instantaneous orientation

of fiber α as described by Eq. (2). This can be interpreted as an external rotational velocity imposed on
each rod that captures the leading order effect of elastohydrodynamic interactions. The external ve-
locity u∞α felt by fiber α accounts for hydrodynamic interactions and is the disturbance field generated
by the forces exerted on the fluid by all other fibers in the suspension as well as their periodic images.
Finally, fα is the force distribution along the length of the fiber, and λ1 = c + 1 and λ2 = c − 3 are the
anisotropic mobility coefficients for a slender rod. Written this way, Eq. (5) is accurate to O(β−2).

The force distribution fα(sα) on each fiber has contributions coming from both gravity and Brow-
nian fluctuations in the solvent. Following previous works,5,13,18 this distribution is approximated by
a truncated Legendre polynomial expansion,

fα(xα + sαpα) = F(0)
α + 12sαF(1)

α +O(s2
α), (6)

where F(n)
α is the nth moment of the force distribution over the length of the fiber and where only the

first two moments are retained. The zeroth moment has contributions from both gravity and Brownian
forces: F(0)

α = −ẑ + F(0)
α,B. For the purpose of the simulation algorithm that we describe below, it is

convenient to write the first moment as a sum of parts along and orthogonal to the director,

F(1)
α = Sαpα + (I − pαpα) · F(1)

α . (7)

This, respectively, captures the effects of a scalar stresslet Sα = pα · F
(1)
α acting to “stretch” the fiber

along its director, and of a torque that reorients the fiber. It is worth noting here that a net torque can
only result from Brownian fluctuations; neither gravity nor its interaction with flexibility contributes
to a torque over the entire body. Inverting single-fiber equation (5) above enables us to express the
scalar stresslet as

Sα = −
1

λ1 + λ2

 1/2

−1/2
sαpα · u∞α dsα. (8)

The motion of each fiber and its periodic images affects every other fiber due to long-ranged
hydrodynamic interactions. This enters the dynamics of fiber α via the disturbance field u∞α , which
is given by
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u∞α (xα + sαpα) =
N
γ=1

 1/2

−1/2
K(xα + sαpα,xγ + sγpγ) · fγ(xγ + sγpγ) dsγ. (9)

Here, Kαγ ≡ K(xα + sαpα,xγ + sγpγ) is the periodic Green’s function for Stokes flow, with the direct
Stokeslet contribution removed when α = γ.

We now have all the ingredients needed to derive evolution equations for the position and orien-
tation of each fiber. Calculating the zeroth and first moments of Eq. (5) yields after manipulations

ẋα = ẋs
α +

N
γ=1


Q(0)

αγ · F(0)
γ + 12Q(1)

αγ · (I − pγpγ) · F(1)
γ + 12qαγSγ


, (10)

ṗα = ṗs
α + 12(I − pαpα) ·

N
γ=1


R(0)

αγ · F(0)
γ + 12R(1)

αγ · (I − pγpγ) · F(1)
γ + 12rαγSγ


. (11)

Here, ẋs
α and ṗs

α denote the linear and angular velocities of an isolated fiber under the effect of gravity
and of Brownian fluctuations:

u̇s
α = (λ1I + λ2pαpα) · F(0)

α , (12)

ṗs
α = 12λ1(I − pαpα) · F(1)

α +
A

2β
sin(2θα)θ̂α. (13)

Hydrodynamic interactions between fibers are captured by the sums on the right-hand sides of
Eqs. (10) and (11), where Q(n)

αγ, R(n)
αγ, qαγ, and rαγ are double integrals over pairs of fibers as described

below, the former two being second-order tensors and the latter two vectors:

Q(n)
αγ =


snγ Kαγ dsαdsγ, (14a)

R(n)
αγ =


sα snγ Kαγ dsαdsγ, (14b)

qαγ =


sγ Kαγ · pγ dsαdsγ, (14c)

rαγ =


sαsγ Kαγ · pγ dsαdsγ. (14d)

Finally, we note that the stresslets on each fiber remain unknown. They are coupled through Eq. (8),
which, when written out, yields the linear system,

(λ1 + λ2)Sα + 12 pα ·
N
γ=1

�
rαγ Sγ

�
= −pα ·

N
γ=1


R(0)

αγ · F(0)
γ + 12R(1)

αγ · (I − pγpγ) · F(1)
γ


. (15)

Advancing the configuration of the particles in the suspension involves integrating Eqs. (10)
and (11) in time. To this end, we need to evaluate the integral operators in Eq. (14) as well as determine
the yet unknown stresslets acting on each fiber. Solving Eq. (15) for the stresslets, in turn, also requires
knowledge of the integral operators. Each of the integrals in Eq. (14) involves a three-dimensional
summation of periodic Stokeslets that decay as ∼1/r , which in general diverges if performed directly.
Furthermore, these integrals are pairwise operators over a system of N fibers and, if calculated naively,
require O(N2) operations, which can be computationally prohibitive in large systems. Here, we choose
to use the Smooth Particle-Mesh Ewald (SPME) algorithm5 to perform these operations. The algo-
rithm relies on an Ewald summation technique to resolve the divergence of the periodic sum by
decomposing it into convergent real and Fourier parts, and then applies fast Fourier transforms to
accelerate the evaluation of the Fourier part. The reader is directed to the work of Saintillan et al.5

for more details, and we shall only mention here that SPME reduces the cost of each such operation
to approximately O(N log N).

The stresslet equation (15), which is an N × N linear system as mentioned above, forbids the use
of conventional inversion techniques such as LU decomposition when SPME is used to evaluate the
integrals. Indeed, the SPME algorithm forgoes the direct calculation of the entries of the matrix, but
rather provides an efficient and accurate “black box” to perform matrix-vector products. This hints at
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using an iterative method for the system inversion, and a convenient choice is the Generalized Minimal
Residual (GMRES) method.19 At each iteration, GMRES delegates the matrix-vector product to an
external routine, which in our case can be set to the SPME algorithm, and in this way the stresslets
can be determined efficiently with the same order of computational cost as SPME.

The last ingredient that is needed to complete the formulation is a description of Brownian forces.
The persistence length ℓp = κ/kBT of the fibers, which measures their elastic rigidity to thermal
fluctuations, can be expressed in dimensionless form as

ℓp

L
=

κ

kBT L
=

κ

FGL2 ×
FgL
kBT

= β × Pe. (16)

This demonstrates that filament distortions due to thermal fluctuations can be safely ignored as long
as the product of the elasto-gravitation number and Péclet number is sufficiently large, which is the
regime considered in this work. Therefore, consistent with the formulation above, we only need to
account for the first two moments of the Brownian force distribution on each fiber, which affect its
translational and rotational motion but not its shape. These depend on the instantaneous configura-
tion of the suspension through the fluctuation-dissipation theorem, and thus require knowledge of
the grand mobility tensor. To describe the Brownian forces, we make use of a shorthand notation and
formally rewrite the evolution equations (10) and (11) as:

*
,

U̇
Ṗ
+
-
=M · *

,

F (0)

F (1)+
-
, (17)

where the left-hand side consists of a concatenation of the generalized 3N translational and rotational
velocities U̇ and Ṗ.M is the 6N × 6N grand mobility tensor corresponding to this problem, which
incorporates all the dynamics, local and non-local, occurring as a result of the forces acting on the
fibers; F (n) is a 3N vector that is the concatenation of the nth moment of forces on each of the fi-
bers. Note that the contribution from the stresslets Sα is implicit inM. This notation is especially
convenient in specifying the moments of the Brownian forcesFB following the fluctuation-dissipation
theorem, 

*
,

F (0)
B

F (1)
B

+
-
(t)


= 0, (18)


*
,

F (0)
B

F (1)
B

+
-
(t) ⊗ (

F (0)
B F

(1)
B

) (t ′) = 2δ(t − t ′)M−1. (19)

For the purpose of numerical evaluation, we model the generalized Brownian force vector acting
during one time step ∆t as

*
,

F (0)
B

F (1)
B

+
-
≈


2
∆t
B · w, (20)

where w is a 6N vector containing a Gaussian variate distribution with zero mean and unit variance,
and B is an approximation to the square root of the inverse of the grand mobility tensor, B · BT =

M−1.
Finding B is not a straightforward exercise, again because the coefficients of the grand mobility

matrix are not known explicitly. In previous works,8,20–22 this problem was overcome by using a spec-
tral approximation to the matrix square root, and by expressingB in terms of a polynomial expansion
involving the grand mobility matrix, the action of which on any vector can then be performed using
SPME. In the same spirit, we resort here to a simpler approximation that exploits the diluteness of
the suspension: specifically, we decompose the grand mobility matrix into a dominant contribution
from the independent and local viscous drag on each fiber and a weaker contribution due to far-field
hydrodynamic interactions. To illustrate this approximation, it is convenient to abstract the 6N × 6N
matrix M as a N × N matrix M, each element Mi j of which is a 6 × 6 sub-matrix describing the
hydrodynamic coupling between fibers i and j. Formally, we can then decompose the matrix into a
sum of local and non-local parts,
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M = L + ϵH, (21)

where ϵ ≪ 1 because, in a dilute suspension, the contribution from hydrodynamic interactions is
small compared to the local effect due to viscous drag. Here, L has only diagonal entries, each of
which represents the known 6 × 6 local mobility tensor of individual fibers, while H contains the
off-diagonal components accounting for interactions. To proceed, we seek an approximation to the
inverse of M of the form M−1 = A + ϵK. Using the fact that M ·M−1 = I and retaining only terms
up to order ϵ , it is straightforward to see that A = L−1 and K = −L−1 ·H · L−1. Finding the square
root is then a similar exercise, where we seek a matrix B = N + ϵJ which satisfies B · BT =M−1. We
easily find that N = L−1/2 and J = −1/2 L−1/2 ·H · L−1.

Now, recall that each diagonal entry of L is not a scalar but a local 6 × 6 mobility matrix corre-
sponding to a given fiber. This matrix is known explicitly using Eqs. (12) and (13) and can be inverted
analytically. The final form of the inverse square root as used in the matrix-vector operation in Eq. (20)
above is then

B · w ≈ L−1/2 · w − 1
2

L−1/2 ·H · (L−1 · w), (22)

where we have omitted the ϵ in the second term. Using Eq. (22), the evaluation of the generalized
force vector FB now only requires local operations (of powers of the matrix L) as well as a small
number of calls to the SPME routine (to evaluate the action of the matrix H). Finally, we use the
second-order midpoint algorithm of Fixman23 and Grassia et al.24 for time integration of Eqs. (10)
and (11), which accurately treats the drift term8,22 known to arise in Brownian dynamics simulations
of systems with configuration-dependent mobilities.

III. RESULTS AND DISCUSSION

Our main motivation for this study is the verification of the predictions of the continuum model
of Manikantan et al.,12 and so we reiterate here the main results of the linear stability analysis follow-
ing that model. Flexibility-induced reorientation has two conflicting effects on suspension stability.
First, the base-state distribution in a suspension of flexible fibers is anisotropic with a preferential
alignment perpendicular to gravity following Eq. (3). This base state renders the suspension more un-
stable to number density fluctuations as compared to an isotropic suspension. The central mechanism
behind the growth of fluctuations requires particles to be reoriented by the disturbance flow in a way
that causes them to be drawn into regions of higher concentration. This mechanism, however, can
also be hindered by the second effect wherein flexibility-induced reorientation, if sufficiently strong,
acts to keep particles aligned perpendicular to gravity. As previously mentioned, this effect enters at
O(β−1). The relative magnitude of this reorientation with respect to rotational diffusion as well as
hydrodynamic disturbances decides which effect dominates.

In order to verify the predictions of the theory using particle simulations, we set as the initial
condition a homogeneous distribution in space, with an orientation distribution Ψ(θ) that depends on
the values of the Péclet and elasto-gravitation numbers according to Eq. (3). In this way, we have
a discrete analogue of the continuum problem and can perform direct comparisons. However, we
shall also look for completeness at the evolution of a well-stirred suspension, which is expected to
have an isotropic orientation distribution regardless of Pe and β — this initial condition, which is
perhaps the most relevant to experiments and is addressed in Sec. III C, is not a steady base state
in the continuum model and is therefore not easily addressed by a stability analysis. For the sake of
illustration, we select four representative cases to parametrically study the effects of flexibility and
thermal fluctuations. These cases are summarized in Table I, and we shall refer to them as cases A–D
from here on. They were chosen to compare and contrast the destabilizing effect of the base state, the
suppression due to flexibility-induced reorientation, and the randomizing effect of Brownian motion.
Of course, the linear stability results only describe the evolution of the suspension at short times and
for small perturbations away from the base state; we shall accordingly only compare the short-time
statistics to the mean-field predictions.
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TABLE I. The four representative cases used in the simulations to compare and contrast the different regimes of instability.

β Pe Description

Case A 106 106 Benchmark case: negligible effects of flexibility or Brownian motion
Case B 10 106 Anisotropic base state with weak flexibility-induced reorientation
Case C 0.01 106 Anisotropic base state with strong flexibility-induced reorientation
Case D 106 100 Strong thermal fluctuations

All the simulations discussed here were performed in a periodic box of dimensions Lx × Ly ×
Lz = 20 × 5 × 10, with gravity pointing downwards in the third dimension. Unless otherwise speci-
fied, the data below are ensemble averaged over 16 simulations each of 200 fibers in a periodic box,
corresponding to an effective volume fraction of nL3 = 0.2. Snapshots from a set of simulations are
shown in Fig. 1, where the growth of density fluctuations in the different cases described above can
be assessed.

A. Number density fluctuations

The growth of number density fluctuations is a very clear feature of unstable particle suspen-
sions. It has been observed in previous experiments as well as simulations that rigid rods tend to
cluster into vertical “streamers” that sediment much faster than the average settling speed and are
surrounded by clarified regions with a preferential alignment in the direction of gravity. Recall that

FIG. 1. Snapshots from simulations of 500 fibers in a 3-D periodic box of size 20×5×10 particles lengths. Gravity acts in
the direction indicated by the arrows. A larger number density of nL3= 0.5 is used here to better visualize the formation
of particle clusters. Case A is the benchmark case of an isotropic suspension of rigid rods. Cases B and C depict the effect
of flexibility, the former being when the anisotropic base state dominates and enhances the instability, while the latter is
when the rate of reorientation dominates and impedes particle clustering. The initial spatial distribution is homogeneous and
identical at t = 0; the orientations, however, follow the appropriate distribution of Eq. (3).
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case A corresponds exactly to this well-studied situation, and many of these features are indeed visible
in Fig. 1.

In order to systematically quantify the spatial non-uniformity of the particles in the system, we
define a measure d(t) as the standard deviation of the number density distribution across cubic inspec-
tion boxes of a given size and placed at arbitrary locations throughout the simulation domain. This
quantity is normalized by the standard deviation of the corresponding Poisson distribution, so that
d = 1 for a randomly distributed suspension of particles. The size of the inspection box was checked
to have no qualitative impact on the results shown here, all of which used cubical test sections of
volume (2.5L)3, where L is the length of a fiber. Physically, d is a qualitative index of the perturbations
to the number density, playing the analogue of the magnitude of concentration fluctuations in the
mean-field model.

Figure 2(a) shows this quantity for the four representative cases over the length of the entire
simulation. Clearly, all cases are destabilized although at different rates. Over a short time scale,
these differences are significant. Over long times, however, and especially after persistent clusters
are formed, d is no longer found to characterize the minor differences between the four cases. We are
primarily interested in the effects of flexibility on the initial growth of fluctuations, and so we look
at the short-time behavior of cases A–C in Fig. 2(b). Recall that d(t) is a proxy for the magnitude
of concentration fluctuations, and we use it to extract a linear “growth rate” by approximating it as
d(t)/d(0) = exp ςt ≈ 1 + ςt for short times. We see that the predictions of the continuum theory are
qualitatively reproduced in these simulations. As compared to the case of a suspension of initially
isotropically oriented rods (case A), an anisotropic suspension with weak flexibility-induced reori-
entation (case B) is found to be more unstable to concentration fluctuations due to the effect of the
base state. For yet smaller values of β (more flexible filaments), this base-state effect is overtaken by
the independent effect of flexibility in case C, where reorientation under gravity is strong enough to
hinder the instability.

A more quantitative comparison to the theory can be obtained by investigating the variations of
the measured growth rate in the Pe–β parameter space. A theoretical phase diagram was presented by
Manikantan et al.12 and is overlaid in Fig. 3 with data from simulations, where the radii of the circles
are proportional to ensemble averages of ς across 16 distinct simulations at the corresponding values
of β and Pe. In other words, since ς is a qualitative analogue to the linear growth rate in the continuum
model, a larger circle in Fig. 3 corresponds to a suspension that on average is destabilized faster. The
trends are obvious and excellently corroborate the theoretical predictions. Moving down along the
vertical Pe axis demonstrates that the suspension is always stabilized by thermal randomization. On
the other hand, the dependence upon β is non-monotonic. As β is decreased from large values (limit

FIG. 2. (a) Growth of number density fluctuations as visualized by the measure d(t). Here, case A is in red (⃝), B in blue
(�), C in green (△), and D in black (+). d = 1 corresponds to a homogeneous spatial distribution of fibers at t = 0, and this
is seen to be immediately disturbed in all cases. (b) A close-up of the region indicated by the dashed box in (a) shows the
short-time effect of flexibility on suspension stability (cases A–C). The linear fits used to determine the growth rate ς are also
shown in solid lines.
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FIG. 3. A phase diagram of suspension stability in the β–Pe parameter space. The circles are proportional to the ς parameter
which is a qualitative index of the growth rate of number density fluctuations in particle simulations. The contours in solid
lines correspond to the linear theory of Manikantan et al.,12 with predicted maximum growth rates σm indicated. According
to the normalization used, σm = 1 is the theoretical growth rate when β→ ∞ and Pe→ ∞ (rigid non-Brownian rods).

of rigid rods), an increase in the growth rate is first seen due to an increased value of the parameter
η which determines the anisotropy of the base state, until β . 1 below which the independent effect
of flexibility-induced reorientation kicks in and tends to suppress the instability by resisting rotation
of the fibers by the disturbance flow.

B. Horizontal particle migration

The mechanism of destabilization first described by Koch and Shaqfeh2 is based on the migration
of particles in the direction of the most unstable wavevector, which in the present case is the longest
periodic direction perpendicular to gravity. Orientability of the particles in the disturbance flow is key
to this mechanism, and a suspension of spherical particles is indeed known to be stable due to their
isotropic mobility that prevents this lateral drift. At the particle level, suppression of the growth rate
of fluctuations should therefore have a direct fingerprint on the horizontal migration of fibers, which
in turn is intricately linked to the instantaneous orientation distribution of the filaments.

We first check that the migration of fibers is indeed towards regions of higher concentration.
Figure 4 shows the ensemble-averaged mean velocity ⟨vx⟩ and the number density distribution p(Nx)
in the horizontal (most unstable) direction at a specific time instant for the three representative cases.
Both number density and velocity fields are averaged over the height and width of the simulation box
so as to be a function of x only, and the velocity is normalized by the settling speed of an isolated
vertical fiber. For cases A and B, when the flexibility-induced rotation is not overwhelmingly large, the
drift of particles towards denser regions is evident, and so is the suppression of this mechanism by the
strong horizontal reorientation due to flexibility in case C. The instantaneous orientation distribution
determines, via Eq. (12), this drift velocity, and we look next to quantify this very microstructural
link.

Figure 5 illustrates the key differences in lateral drift and orientation distributions between cases
A–C, leading to the differences in the growth of number density fluctuations discussed above. We
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FIG. 4. Horizontal drift velocity ⟨vx⟩ (blue dashed lines, axis on left) and number density distribution (red solid lines, axis
on right) along the most unstable direction. The mean number density is subtracted from the distribution for clarity, and the
shaded areas are meant to guide the eye towards regions where the measured drift is to the right (and to the left otherwise).
(a), (b), and (c) represent one simulation corresponding to cases A, B, and C respectively, each at time t = 1.00.

define ⟨|vx |⟩ as the ensemble-averaged mean of the absolute value of the velocity component in the
x-direction perpendicular to gravity, which is the most unstable direction. We choose the absolute
value as a quantifiable measure of the drift as opposed to the mean drift velocity ⟨vx⟩ used above
since the latter is zero due to symmetry and periodicity. This is plotted versus time in Fig. 5(a). We
also show in Figs. 5(b)–5(e) the evolution of the orientation distribution ψ(θ) in each case, where θ
denotes the polar angle between the fiber axis and the direction of gravity.

The effect of the base state is very clear at very short times t ≈ 0, where the orientation distribution
is nearly isotropic for case A but increasingly anisotropic and peaked around θ = π/2 in cases B and
C. The lateral drift velocity depends directly on the instantaneous orientation of a fiber. Due to the
form of the settling velocity of an individual fiber following Eq. (5), particles migrate more slowly
in the x-direction when oriented nearly perpendicular to gravity. This is evident from the values of
⟨|vx |⟩ at t ≈ 0, where cases B and C display much weaker drift than case A. In case B where the
flexibility-induced reorientation is weak and the disturbance field immediately dominates the dy-
namics, the effect of the base-state anisotropy on suspension stability is seen in the rapid increase
of ⟨|vx |⟩ due to the rapid reorientation of the particles in a direction that facilitates migration. This is
indeed the origin of the enhanced growth rate due to base-state anisotropy first proposed by Manikan-
tan et al.12 Particles in case B have a higher chance of being rotated by the disturbance field into

FIG. 5. (a) The effect of flexibility on mean horizontal drift velocities: case A is the red solid line, case B is the blue
dashed-dotted line, and case C is the dotted green line. (b)–(e) show the corresponding orientation distributions averaged
across all fibers in all simulations at times indicated by the arrows in (a).
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configurations that allow them to migrate towards regions of larger concentration, thereby bolstering
the instability.

In case C, however, we observe that flexibility-induced reorientation is sufficiently strong to
maintain an anisotropic orientation distribution well past the initial growth of the instability. Corre-
spondingly, the horizontal drift velocity remains much weaker than in cases A and B. This directly re-
flects the independent effect of flexibility. Particles now feel the competition between the disturbance
velocity field that tends to orient them away from a nearly horizontal configuration and flexibility that
tries to keep them horizontally aligned. For the value of β chosen in case C, the latter dominates at
short times, which tends to slow the instability by hindering particle horizontal migration.

C. Stability of a well-stirred suspension

We have thus far used our simulations as a means to verify the predictions of the linear stability
analysis of Manikantan et al.12 Recall that the linear theory considers a Smoluchowski equation for the
concentration field and perturbs it around a particular base state that solves the conservation equation
exactly when the suspension is homogeneous in space. An arbitrary initial condition, however, is not
amenable to a stability analysis the way it was performed because it may not solve a steady base
state exactly. In the previous discussion, we initialized the particle configurations in our simulations
according to the exact theoretical base state, assuming that such a state was somehow established
prior to the onset of the instability. In a physical experiment, the initial stirring of the suspension is
expected to lead to a random isotropic suspension, and the question remains whether the orientation
distribution in that case would evolve towards the theoretical base state sufficiently fast for the predic-
tions of the linear theory to hold, or whether the growth of the concentration instability would occur
more rapidly. Here, we shed light on some of these questions using our simulations.

We have seen enough of the physics of the problem to postulate what might happen. If the suspen-
sion were to be isotropic in orientation at t = 0, we expect the effect of the base-state anisotropy to
vanish. Flexibility-induced reorientation then only has one effect, namely, to oppose the rotation of
the fibers towards orientations that cause them to be drawn into regions of higher concentration. This
effect must become more significant as β decreases and always acts to suppress the instability. In
other words, we expect a well-stirred suspension of weakly flexible fibers to experience, on average,
a weaker concentration instability than in the benchmark case of a suspension of rigid rods.

Figure 6 summarizes the results of simulations corresponding to an initially isotropic particle
distribution and confirms our hypothesis. Flexibility is seen to always suppress the instability, as
demonstrated in Fig. 6(a) by the effective growth rate of the parameter d, which monotonically de-
creases with increasing flexibility (decreasing β). Figure 6(b) also shows the horizontal drift velocity,
which should be contrasted with Fig. 5(a). In all cases, ⟨|vx |⟩ now starts at the same value at t = 0,

FIG. 6. The stability of a well stirred (initially isotropic) suspension. We now only see the independent effect of flexibility,
as expected. Case A is in red (⃝ or a solid line), B is in blue (� or a dashed-dotted line), and C is in green (△ or dashed line).
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but is immediately suppressed in case C as a result of the rapid establishment of anisotropy in the
orientation distribution leading to a weaker instability. In this case, the time scale over which the
suspension evolves from the well-stirred isotropic distribution to the horizontally aligned configura-
tion is fast compared to the growth of the instability. This time scale has a relevant effect only when
β is sufficiently small, as we see no discernible difference for case B in the statistics of ⟨|vx |⟩ — the
leading-order effect of the base state predicted by the linear theory is absent here.

The stability analysis considered perturbations with respect to a steady base-state solution; a
random isotropic suspension, however, solves no such base state. Nevertheless, our simulations reveal
that the anisotropic orientation distribution corresponding to that steady state is quickly established
in the case of sufficiently flexible fibers (β = 0.01). This is particularly evident in Fig. 6(b) where the
absolute horizontal drift ⟨|vx |⟩ rapidly evolves towards the values corresponding to the steady-state
orientation distribution used in the stability analysis [compare with Fig. 5(a)], suggesting that the
theoretical predictions still hold thereafter. Such is not the case of more rigid fibers (β = 10), for
which the instability occurs before the base-state orientation distribution is achieved.

IV. CONCLUSION

In this paper, we have investigated the sedimentation of a suspension of weakly flexible fibers
using particle simulations, in an attempt to shed light on the effect of fiber flexibility on the microstruc-
tural changes at the single particle level as well as on the stability of the suspension as a whole. We
used the result from our previous work on individual elastic filaments to isolate the single additional
effect of weak flexibility on the settling dynamics of a fiber, i.e., flexibility-induced reorientation.
The effect of this reorientation on a suspension of such particles has already been studied using a
linear stability on a mean-field model. The primary objective of the current study was to validate the
predictions of the continuum model using simulations that captured the detailed dynamics of each
fiber in the suspension.

We presented a numerical method for simulating large periodic systems of weakly flexible fila-
ments, which we adapted from previous work on rigid particles. The entire set of evolution equations
for the positions and orientations of N fibers was reduced to a set of matrix-vector multiplications
only requiring knowledge of the current configuration of the particles in suspension. The calculation
of these matrix-vector multiplications was further accelerated using the efficient SPME summation
algorithm of Saintillan et al.5 together with an approximate form for the determination of Brownian
displacements based on diluteness, leading to a total computational cost of O(N log N).

We then went on to systematically study the effect of flexibility on suspension stability. Represen-
tative sets of parameters were chosen to most dramatically illustrate the different regimes of instability
and the phenomena that demarcate them. Three cases were brought up repeatedly — one where the
effect of flexibility was negligible, the second where flexibility-induced reorientation was known to
establish an anisotropic base state leading to an enhancement of the growth of fluctuations, and the
third where that same reorientation mechanism was strong enough to compete with rotation by the
disturbance flow so as to impede the instability.

We first examined the evolution of number density fluctuations by means of a parameter d(t)
capturing the magnitude of fluctuations with respect the random Poisson distribution imposed at t = 0.
The time evolution of d was shown to follow the trends predicted by the linear continuum theory.
The effect of the anisotropic base state was seen to enhance the instability, while increasing flexibility
further eventually impedes the growth of fluctuations. Extracting a short-time growth rate from the
evolution of d(t) allowed us to populate a phase diagram in β–Pe space, which showed excellent
qualitative agreement with the theory.

A more detailed picture of the microstructural changes and their influence on stability was ob-
tained by calculating the horizontal drift of the particles in the simulation. Recall that the mechanism
of destabilization hinges on the ability of particles to migrate perpendicular to gravity towards regions
of higher concentration. We saw that, on an average, the effect of the anisotropic base state alone is to
enhance this horizontal migration as soon as the suspension is allowed to sediment. This verifies the
hypothesized mechanism for an enhanced instability, i.e., a larger fraction of particles now reorient
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in a way as to destabilize the suspension. The independent effect of flexibility, as expected, was seen
to suppress this horizontal migration and prevent particle clustering by forcing particle orientations
to remain close to horizontal.

Finally, we also used our simulations to analyze the case of a well-stirred suspension in which
the initial orientation distribution is isotropic regardless of the values of β and Pe. This situation is
outside the purview of the linear stability analysis performed on the mean-field model, but is perhaps
the most relevant to describe experiments where the initial mixing of the suspension would lead to a
random distribution. We speculated in this case that the destabilizing effect of the base state would
vanish, and that flexibility would therefore only have a stabilizing effect. This was seen to be the case
indeed — the number density fluctuations were shown to systematically decrease with increasing
flexibility.

The effects of physically relevant considerations like walls and fluid inertia on flexible fiber
suspensions are still open problems, theoretically as well as via simulations. While we expect the
twofold consequences of flexibility to arise regardless, the relative strength of these effects may vary
depending on the particular problem at hand. Future work might consider this problem from an exper-
imental perspective, to which end we make it a point to note that our predictions are also valid for
a suspension of weakly flexible fibers raising against gravity due to buoyancy, or more generally to
any situation where a body force exists that causes particles to reorient perpendicular to it. Finally,
we emphasize that we have primarily focused on short-time statistics in dilute systems with weak
deformations; more detailed numerical methods would be needed to capture near-field lubrication
interactions, entanglements, and particle shape deflections due to the disturbance field, all of which
might become relevant over long times when local concentrations are sufficiently large.
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