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Abstract

Random-effects models are a popular tool for analysing total narrow-sense heritability for 

quantitative phenotypes, on the basis of large-scale SNP data. Recently, there have been disputes 

over the validity of conclusions that may be drawn from such analysis. We derive some of the 

fundamental statistical properties of heritability estimates arising from these models, showing that 

the bias will generally be small. We show that that the score function may be manipulated into a 

form that facilitates intelligible interpretations of the results. We go on to use this score function to 

explore the behavior of the model when certain key assumptions of the model are not satisfied — 

shared environment, measurement error, and genetic effects that are confined to a small subset of 

sites.

The variance and bias depend crucially on the variance of certain functionals of the singular values 

of the genotype matrix. A useful baseline is the singular value distribution associated with 

genotypes that are completely independent — that is, with no linkage and no relatedness — for a 

given number of individuals and sites. We calculate the corresponding variance and bias for this 

setting.
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1. Introduction

Genome-Wide Complex-Trait Analysis, known as GCTA, introduced by Jian Yang and 

collaborators in 2010 in [51], has led both to a profusion of research findings across the 

biomedical and social sciences and to exuberant controversy. The general method, as distinct 

from the GCTA package of algorithms, is now widely known as GREML, for “Genomic 

Restricted Maximum Likelihood.” Use of the method has leapt ahead of clarity about its 

statistical properties. There has been extensive discussion of sensitivity to violation of 

assumptions, but no consensus on performance when its most basic assumptions are 

satisfied. Is statistical bias a concern even in the simplest settings? Some say yes [20]. Some 

say no [53]. Do tractable standard errors depend on the presence of residual population 

stratification? Formulas in the literature [46] leave the answer murky.

In this paper we seek to settle these basic questions.

• For “Simple GREML”, defined below, with n respondents and p genetic markers, 

we go beyond order 1/ n, derive formulas for bias to order 1/n, and show this 

intrinsic bias to be negligible in practice.

• We present interpretable expansions for bias and standard error drawing on 

eigenvalue theory, depicting the contrasts between standard errors in the absence 

and in the presence of population stratification.

• For less simple settings, we consider known sources of bias including shared 

environment and measurment error, and characterize and bound bias arising from

– observed causal genetic variants at a subset of sites atypical with 

respect to their linkage statistics, and

– unobserved causal genetic variants.

• In a companion paper [44], we consider negative estimated values for the 

GREML parameter representing heritability which, we argue, remain meaningful 

within the model and should not be excluded.

The data for GREML are assays of very large numbers of Single Nucleotide Polymorphisms 

(SNPs) in the genomes of individuals along with measurements of a putatively heritable 

trait. The model that GREML fits via the technique of Restricted Maximum Likelihood is 

defined in Section 2. For simplicity, we refer to it as “the GREML model”. It is an example 

of a “linear mixed model,” in which the contribution of SNPs to trait values are treated as 

random effects. (We do not consider fixed effects in this paper, but the same arguments 

would apply to reduced phenotypes after elimination of fixed effects in a mixed model.) 

Alternative estimation methods for the model such as LD-score Regression and Haseman-

Elston regression have also come into wide use, bringing up statistical issues paralleling 

those we examine here for GREML.

Mixed models form a natural framework for the estimation of total heritability for traits 

whose variability is determined by a wide variety of sites, rather than by specific identifiable 

SNPs that each have strong influence. GREML found notable application in the GCTA work 
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by Yang and Visscher and associates to identify “missing heritability” in height [51, 49] and 

other complex traits, and many groups have followed their lead.

The goal of these methods is to estimate total additive heritability, without the overfitting 

that arises in attempts to identify specific loci influencing a trait. As we have said, most 

examination of pitfalls – including two papers [50, 55] with “pitfalls” in the title – have 

emphasized issues that arise from kinds of model misspecification: from single large-effect 

alleles (better treated as fixed effects [17, 38, 55]), from reliance on linkage disequilibrium 

when causal alleles themselves are unobserved [51, 41, 23, 42], from nonlinear increase in 

heritability estimates with increasing numbers of SNPs (reflecting saturation of coverage of 

a smaller subset of genuinely causal loci), and from ascertainment bias in binary traits [24, 

4, 13].

Recently, Kumar et al. [20] have taken a different tack, criticising GREML on statistical 

grounds, on what might be considered issues of inherent mathematical fallibility for 

estimation in models relying on high-dimensional covariates. Their paper has elicited 

rebuttals from Yang et al. [53] and [54] and rejoinders to the rebuttal [21] and [19] from 

Kumar et al. Parts of that exchange are devoted to GREML and the GREML model in more 

complicated settings, but our results for “Simple GREML” in this paper settle some of the 

points in contention.

In “Simple GREML”, as we use the words, all causal SNPs are observed, all observed SNPs 

are causal, and the sizes of causal effects are all drawn independently from the same 

centered normal distribution. We abstract away from the need, important in practice, for 

tagging unobserved causal alleles by observed alleles by taking advantage of linkage 

disequilibrium. Non-genetic variance is contributed by independent draws for each sample 

from another centered normal distribution. Fundamental statistical properties are brought 

into the spotlight by studying this streamlined version.

Taking as a starting point our treatment of bias and variance in Simple GREML, to be 

described shortly, we go on in later sections of this paper to add our own perspective on 

model misspecification. It is a crucial motivation for our approach. In recent decades the 

foundations of statistics have turned away from consistency in settings where the the data are 

sampled from a “true model” to estimation in what B. Lindsay and J. Liu have termed a 

“model-false world” [26]. It is important to understand the behavior of model parameters — 

such as heritability in GREML – that form the basis for scientific discussion, when the data 

do not come from the model that gave them a precise meaning. Some attempts in this 

direction were made by [20], but these are not founded on a consistent theory of model 

misspecification and suffer from some mathematical misunderstandings, as we shall point 

out.

Unlike the setting in Simple GREML, in more complicated settings only a subset of all 

SNPs may have causal effects on the phenotype, sometimes observed SNPs, sometimes 

unobserved ones. With regard to this topic, Section 4, under the heading of “Model 

Misspecification”, assesses potential biases at several levels of complexity. Yang et al. 
remark at the outset of [51] that it is harmless to relax the assumptions of Simple GREML to 
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allow non-zero effect sizes to be confined to an unknown random subset of observed SNPs. 

We agree with this claim up to a point, but show that it needs some correction. As Yang et al. 
and others [22] recognize, non-zero effects solely on a fixed, unidentified subset of SNPs 

can, in principle, introduce a bias of arbitrary size and direction. While it is true (as we 

confirm, using more direct arguments) that this bias averages out close to zero when the 

causal set is considered as a randomly chosen subset of all SNPs, this bias increases the 

expected error in the heritability estimates. Under strong but reasonable additional 

assumptions, however, we can estimate this additional error, and show that it is small under 

most circumstances. Non-zero effects on unobserved causal SNPs in linkage disequilibrium 

with observed SNPs is a complicated, widely-discussed issue, on which we offer some brief 

views of our own in Section 4.4.2.

Exactly this sort of misspecification forms the central subject of the recent work by Jiang et 
al. [16]. Those authors go into more mathematical detail than the present work and provide 

similar conclusions with regard to consistency as the matrix size goes to infinity. But they 

confine themselves to the special case of i.i.d. random genotype matrices. Our results, which 

complement theirs, offer both an interpretable description of the bias arising from particular 

genotype matrices and of the variance arising from averaging over random subsets of 

potential causal loci. Earlier work [15] also provides useful background on the theoretical 

underpinnings of Restricted Maximum Likelihood, although the approach and the 

orientation are substantially different from those adopted here.

We now return to Simple GREML. For us, the matrix of genotypes is fixed and observed 

without error; we condition on it. Statistical properties of GREML estimates depend on the 

matrix through its squared singular values, which are the eigenvalues of the Genetic 

Relatedness Matrix. Numbers of samples n are assumed to be in the tens or hundreds of 

thousands, and numbers of SNPs p much larger; the ratio μ of samples to SNPs is a key 

parameter.

Empirical studies have alluded to or reported a wide variety of patterns for sets of squared 

singular values, sometimes concentrated near unity, sometimes dispersed across orders of 

magnitude. We consider two extremes of contrasting settings intended to bracket the 

reported patterns in the literature. First, (A), is the “independent setting,” with a genotype 

matrix resembling one random draw from an ensemble of matrices with independent entries, 

thereby assuming an absence of population stratification and of linkage disequilibrium. 

Second, (B), is a “stratified setting”, represented in this paper by two flavors of stylized 

distributions, evoking genotype matrices whose singular values suggest deep population 

stratification.

While the independent setting is a frankly artificial idealization, it serves as an indispensable 

guide. Intuition suggests that the information content from a set of SNPs in linkage 

disequilibrium should resemble the information content from a smaller set of independent 

SNPs. The independent setting with a downward-adjusted ratio of SNPs to samples might be 

a good starting point for realistic genotype matrices. With this advantage in mind, we devote 

special attention to explicit formulas for estimator bias and variance in the independent 

setting
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The key tool in our statistical analysis of GREML is a profile likelihood function that 

reduces the estimation problem to finding the root of a univariate function and simplifies 

simulations. The model is set out in Section 2 and the profile likelihood and bias formula are 

derived in Section 3 under the assumptions of Simple GREML. Section 4 takes up the more 

complicated issues associated with subsets of causal SNPs and other aspects of model 

specification. Section 5 derives the formulas relevant to the independent setting, and Section 

6 sums up.

Our findings about bias and variance run contrary to conclusions of Kumar et al. in [19]. In 

particular, we see the limitations on accurate GREML estimation in the absence of 

stratification arising not from bias but from large standard errors, in contrast to their 

conclusions about the salience of bias. We see population stratification in small doses 

enhancing the accuracy of GREML estimates of heritability — at a cost in interpretability, as 

population structure typically correlates with environmental confounders [36, 2] — in 

contrast to their general contention that stratification undermines the stability of estimates. 

However, we do see large departures from the independent setting imperilling the accuracy 

of GREML, leading us to be less sanguine than Yang et al. [53] about the statistical 

properties of these genome-wide random effects models.

Many further issues about GREML arise in more complicated settings under more flexible 

assumptions and rightly engender continuing debate. However, given the impact of 

increasingly complex generalizations of Simple GREML to test association [18, 17, 59, 27, 

38, 45, 35, 31, 30, 29, 60, 3], partition heritability [57, 52, 9], predict phenotype values [37, 

58, 39, 6], and learn “co-heritabilities” [43, 25, 5, 7], it is important, if possible, to reach 

consensus on some core facts. Our analysis of bias and variance for Simple GREML aims at 

this goal.

2. The GREML model

We suppose we are given a data set consisting of an n × p matrix Z, considered to represent 

the genotypes of n individuals, measured at p different loci. There is a vector y, representing 

a scalar observation for each of the n individuals. The underlying observations are counts of 

alleles taking the values 0, 1, 2, but the genotype matrix is centered to have mean zero in 

each column and normalized to have mean square over the whole matrix equal to 1.

It is common practice to go further and normalize each column to have unit variance either 

empirically or under Hardy-Weinberg equilibrium. (SNPs far from Hardy-Weinberg 

equilibrium are generally excluded by quality control procedures, so these two alternatives 

amount to much the same thing.) Such normalization gives all columns equal weight in 

producing genetic effects. This assumption that normalized SNPs have i.i.d. effect sizes 

implies that unnormalized SNP effect sizes decrease with increasing allele frequency in a 

precise way [14, 48]. Except where noted, we do not assume this column-by-column 

normalization. However, the normalization of the sum of squares of the whole matrix is 

required for a sensible interpretation of the parameter representing heritability [41]. 

Moreover, heritability can be estimated under different assumed relationships between the 
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allele frequency and SNP effect distribution [41], and non-standard assumptions yield 

different heritability estimates and may better model many real datasets [40].

The basic assumption of the model is the existence of a random vector u ∈ ℝp of genetic 

influences from the individual SNPs such that

y = Zu + ε . (1)

The vectors u and ε are assumed to be independent and to have zero means and i.i.d. normal 

components. The variances are determined by two parameters, which are to be estimated: θ 
represents the precision (reciprocal variance) of the non-genetic noise and ψ represents the 

heritability, entering the model as the ratio of genetic variance to total variance. We use ψ 
rather than the more conventional h2 both because of the notational extravagance that results 

when these are raised to further powers, and also to accommodate possibly negative 

estimates, as is done in depth in [44]. It will be convenient at some points to use the 

parameter ϕ = ψ/(1 − ψ) in place of ψ itself. We allow the true values of the parameters to 

lie in the range θ > 0 and ψ ∈ [0, 1). Writing (θ0, ψ0) or (θ0, ϕ0) for the true values from 

which the data are generated, we have uj ~ (0, ϕ0/(pθ0)) ~ (0, ψ0/(pθ0(1 − ψ0))), and εi 

~ (0, 1/θ0).

In the discussion by [20], much weight is placed on Z being a “random” matrix. There are 

several senses in which Z may reasonably be thought of as random:

1. The individuals are sampled from a larger population.

2. The SNPs have been selected from a larger set of possible SNPs.

3. The genotypes of individuals have been formed by random processes of mating, 

mutation, selection, and recombination.

4. There are random errors in the genotypes.

None of these substantially affects the analysis we carry through in this paper (although, 

with regard to the fourth kind, see Section 4.3). The model assumes that all genetic causality 

runs through Z, so that for purposes of estimation Z may simply be taken as a deterministic 

known quantity, a standard setup for covariates in regression models. On the other hand, as 

in standard linear regression models, some choices of independent covariates make the 

regression problem easier than others, so it is worth considering which Z may be likely to 

occur.

As we show shortly — and as [20] correctly point out — the properties of this statistical 

model are determined entirely by the singular-value spectrum of Z. In our independent 

setting (A), for a population without stratification and linkage disequlibrium, the empirical 

distribution of the singular values is expected to be close to a known limiting form, featured 

in Section 5 and depending only on the dimension ratio μ = n/p. In our stratified setting (B), 

with a proportion of singular values orders of magnitude larger than those typical of setting 

(A), qualitative generalizations need not rely on the detailed singular value spectrum.
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3. The profile likelihood and bias formula

3.1. The likelihood function

We begin our derivation of expressions for bias and standard error in estimated heritability 

by reducing GREML likelihood estimation from a two-parameter to a one-parameter 

problem. We define a profile likelihood function whose local maximization only requires 

finding the zero of a univariate function. This device is the key to the derivation, and it offers 

the bonus of facilitating simulations.

We present terms for bias and variance up to order 1/n. Giving meaning to “order 1/n” 

requires an asymptotic framework. We could imagine the genotype matrix Z of fixed 

dimesions n and p to be imbedded in a sequence of matrices of increasing dimensions, 

typically for n increasing with p/n converging to a constant. Within the independent setting, 

such structure is easily specified; outside it, not so easily. Since the likelihood for ψ only 

depends on Z through the singular values, all we need is structure on a triangular array of 

singular values sn,i with i = 1, … n, typically just enough structure so that the empirical 

measures of the singular values for increasing n converge to a non-trivial limit.

We observe that the likelihood function is a sum of terms corresponding to the sn,i. The 

terms are independent but not identically distributed and themselves form a triangular array. 

Textbook theorems for maximum likelihood with independent observations do not, strictly 

speaking, cover the GREML model setup; our theorems (slightly) extend those theorems. As 

expected from the standard setup, we show that to order 1/ n estimator bias is zero. But 1/ n
is not small enough, in many GREML applications, to make the next term, of order 1/n, 

negligible, if it comes with a large constant. We need to compute the next term explicitly, 

and do so in order to resolve conflicting claims about bias in the literature.

The expression for bias brings with it an expression for estimator variance to order 1/n, 

equivalent to the standard but unwieldy expression from Fisher Information, given, e.g., on 

pages 234–235 of [46], We go on to make bias and variance interpretable by expanding them 

in the independent setting in terms of dimension ratios and comparing with stylized cases for 

stratified settings.

Conditioned on Z, in terms of the Genetic Relatedness Matrix or GRM defined by A := p
−1ZZ*, the measurements y are normally distributed with mean zero and covariance matrix

C2: = θ0
−1 ((ψ /(1 − ψ)) A + In) . (2)

Let Z = U diag(si)V* be the singular-value decomposition of Z / p, and rotate the 

observations to diagonalize the covariance matrix, obtaining

z: = U∗y .
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The elements of z are independent centered normal random variables with variances

(1 − ψ + ψsi
2)/(θ(1 − ψ)).

The log likelihood is then

ℓ(θ, ψ) = n
2 log θ(1 − ψ) − 1

2 ∑
i = 1

n
log (1 − ψ + ψsi

2) − θ
2 ∑

i = 1

n (1 − ψ)zi
2

1 − ψ + ψsi
2 . (3)

Note that z depends only on Z and y, not on the parameters θ and ψ.

We observe here that [20] claim (without demonstration) that the presence of singular values 

in the denominator of the likelihood creates “instability” in estimates based on this 

likelihood when the singular values are small, and that the dependence on the projection 

onto left singular vectors creates instability when the singular values are close together. 

Neither is true. Their representation of the log likelihood differs from the one we have here 

by the addition of the log determinant of A. This is a very large number if there are singular 

values close to zero (and indeed infinite if singular values are zero), but the addition of a 

constant, however large, has no influence on likelihood-based estimation. (We note as well 

that the work done by Sylvester’s Theorem (their equation [A6]) is unnecessary as soon as 

we interpret the determinant as a product of squared singular values. Furthermore, in the 

case when a singular value is exactly zero, which occurs automatically when using de-

meaned SNPs, the conditions for applying Sylvester’s Theorem are not satisfied.) Similarly, 

under the assumptions of the model, the zi are independent normal random variables, with 

variances θ−1(1 − ψ)−1(1 − ψ + ψsi
2), which are positive so long as the environmental 

contribution θ−1 is positive.

3.2. MLE Bias and Variance

We define

wi(ψ): = 1 − ψ

1 − ψ + ψsi
2

and

vi(ψ): =
(1 − ψ)zi

2

1 − ψ + ψsi
2 .

The wi are not random, whereas for each value of ψ the vi(ψ) = wi(ψ) zi
2 are random 

variables. The expected values of θ0vi(ψ0) for all i are unity.
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The normalization that makes each column of Z sum to 0 induces one singular value of 0. It 

corresponds to the constant left singular vector with all entries equal to 1/ n.

We use the symbol Cov to represent the empirical covariance of the elements of two n-

dimensional vector arguments. Similarly, we use Var with a vector argument for the 

empirical variance of the elements. When the vector elements are themselves random 

variables the output of Cov and of Var are themselves univariate random variables.

We define τk(ψ) to be a rescaled version of the empirical k-th central moment of the 

elements of the vector wi(ψ); that is, for k ≥ 2

τk(ψ) = ψ−k 1
n ∑

i = 1

n
wi(ψ) − w k, where w = 1

n ∑
i = 1

n
wi(ψ) .

We also define

τ1(ψ): = ψ−1 (1 − w) .

Note that if we define

w∼i(ψ): = ψ−1 (1 − wi(ψ)),

then

w∼i(ψ) =
si
2

1 − ψ + ψsi
2,

and τk(ψ) is the central moment of these wĩ. Hence τk(ψ) is well behaved at ψ = 0. It is 

bounded by the maximum of si
2k and for ψ > 0 also by ψ−k. We write τk with no argument 

for τk(ψ0). An important quantity in the scaling of errors in our estimates will be

ν: = 1
n τ2

.

Since wi(ψ0) ∈ [0, 1], we know ∣ τk ∣ ≤ 1/(2kψ0
k), and ∣ τk + j/τ j ∣ ≤ 1/(2kψ0

k) for ψ0 ∈ (0, 1]. 

For k ≥ 3 we may replace 2k by 2k + 2 (cf. [8]). For fixed ψ, wi(ψ) is a convex function of 

si
2, and the mean of si

2 is unity. Jensen’s Inequality implies that w̄ ≥ 1−ψ0 and τ1 ≤ 1. 
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Formulas for τ1 and τ2 and τ3 under various assumptions about the singular values of the 

genotype matrix Z are derived in Section 5.

We collect our main results about the asymptotic behavior of the MLE for heritability (ψ̂) in 

Theorem 3.1 proved in Appendix A. As shown there, substituting the maximum likelihood 

estimator of the precision parameter θ into the two-parameter log likelihood leads to a one-

parameter “profile log likelihood”, namely

( − n/2) log ∑wi(ψ)zi
2 + (1/2)∑ log wi(ψ) + (n/2)( log (n) − 1) .

For each fixed realization of the random variables zi, this quantity is well-defined for any 

trial value of ψ within the open interval ( −1/max(si
2 − 1), 1). It goes to minus infinity as ψ 

becomes so negative as to approach the lower boundary, and, thanks to the singular value at 

zero, it also goes to minus infinity as ψ goes to 1. Thus the profile log likelihood has an 

interior maximum.

Although the true heritability parameter ψ0 is required to be non-negative, we are allowing 

estimated values to range below zero. We are not excluding negative estimates and we are 

not truncating their distribution at zero. Arguments for regarding negative estimates as 

meaningful within the GREML model are developed in [44]. Irrespective of those 

arguments, bias that would arise from truncation is already well-understood, and our focus is 

naturally on the more cogent question of estimator bias in the absence of truncation.

For Theorem 3.1 we construct an approximation to the maximum likelihood estimator of ψ0, 

expanded in powers of ν. The approximation is expressed in terms of ψ0, τ1, and τ2. If we 

think of it as a limit these quantities must be held constant or converge to their own limits as 

n → ∞. The error in the approximation is bounded in terms of higher moments of w̃i, up to 

τ16, so these moments must be uniformly bounded. That is, for the nonasymptotic error 

terms to be small these moments must all be small relative to ν−1. When ψ0 = 0 we also 

need the maximum of the singular values to be uniformly bounded, or, at least, to grow more 

slowly than any power of n. This condition will indeed be satisfied, with probability going to 

1, in any of the cases we consider in Section 5

Theorem 3.1: The maximum likelihood estimate (θ̂, ψ̂) satisfies

0 = Cov w(ψ), v(ψ) , (4)

θ = 1
v = 1

n ∑
i = 1

n
vi

−1
. (5)
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Furthermore, for ψ0 ∈ [0, 1)

• The MLE has negative bias on the order of ν2, i.e. 1/n. If we drop terms of order 
ν3 and higher, we get

Bias = 𝔼 ψ − ψ0 ≈ −
2(1 − ψ0)(1 − τ1)

nτ2
, (6)

which is strictly negative except when ψ0 = 0.

• The MLE has variance

Variance = 𝔼 ψ − ψ0
2 ≈

2(1 − ψ0)2

n τ2
(7)

The errors are bounded by a constant times ν3−α for any positive α. The constant is bounded 
by a universal constant for a given ψ0, but goes to ∞ as ψ0 → 0. At the special point ψ0 = 

0 the convergence still happens in the same way as long as

lim
n ∞ n−α max

1 ≤ i ≤ n
si
2 = 0

for some α > 0.

The proof is given in Appendix A

We may identify terms in ν with terms in n−1/2 when it is asymptotically true that τ2 tends to 

a constant. In practice our expansions are more general in two regards: first, asymptotically, 

they should hold when τ2 decreases to zero but more slowly than 1/n. Then ν2 would go to 

zero more slowly than 1/n, and estimator variance would have different behavior from 

textbook maximum likelihood. Second, for practical purposes, our expansions appear to give 

serviceable approximations in simulations of cases for which τ2 is not very large compared 

with 1/n, so that ν is not very small, even when n itself is large.

One peculiarity of this situation, in comparison to textbook MLE theory, is that we are 

particularly concerned with the boundary case ψ0 = 0, as in the common situation where we 

are testing the null hypothesis {ψ0 = 0} against the alternative {ψ0 > 0}. For any finite 

example ψ0 = 0 is not really on the boundary of the mathematically sensible parameter 

range, a matter that we discuss at greater length in [44]. But asymptotically, if the large 

matrices (n → ∞) have large singular values ( max si
2 ∞), the parameter range shrinks 

down to [0, 1). Nonetheless, Theorem 3.1 guarantees that the MLE remains asymptotically 

unbiased and has the expected variance as long as the maximum singular value does not 

grow too rapidly.

The ratio of bias to standard error for ψ̂ is
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−
2(1 − τ1)

nτ2
.

The ratio will be small when nτ2 is large. It is negative, by Jensen’s inequality.

When the variance in { si
2} is small we have delta-method approximations

1 − τ1 ≈ ψ0(1 − ψ0) Var(si
2)

and

τ2 ≈ (1 − ψ0)2 Var(si
2) .

The consequence is an approximate bias in ψ̂ of −(2ψ0/n). These approximations may fail 

utterly if the eigenvalue variance is large, as it may be in stratified settings, but they correctly 

pick out leading terms when eigenvalue variance is small. In the null case when ψ0 = 0, the 

bias is zero not just to order 1/ n but actually to order 1/n.

For the the independent setting, we can be more precise. Exact formulas for the 

contributions of order 1/n to bias and variance in estimated heritability and for the moments 

of wi for the independent setting are derived in Section 5, along with expansions up to 

second order in μ = n/p. The expansions give

1 − τ1 = (1 − ψ0) ψ0 μ + (2ψ0
2 − ψ0) μ2 + ⋯

and

τ2 = (1 − ψ0)2 μ + (5ψ0
2 − 2ψ0)μ2 + ⋯

Estimator bias is given by

Bias (ψ) = −
2ψ0

n 1 + (ψ0 − 3ψ0
2)μ + ⋯ (8)

Estimator variance is given by
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Variance(ψ) =
2(1 − ψ0)2

nτ2
≈ 2

n μ
1

1 + (5ψ0
2 − 2ψ0)μ

(9)

We conclude that in the independent setting bias is indeed a very small negative number, a 

third-decimal effect even for samples no bigger than a thousand respondents. Variance, on 

the other hand, increases as the number of SNPs per person 1/μ increases, implying standard 

errors as large as 0.14 with 10, 000 people and a million SNPs. (In our independent setting, 

all SNPs are in linkage equilibrium.)

The contrasting “stratified setting”, as we are using the term, embraces a wide range of 

alternatives similar to those found in empirical cases whose genotype matrices have a subset 

of singular values substantially larger than singular values from the independent setting. 

Each genotypic singular value distribution we study represents a possible form of population 

structure. Since the mean of squared singular values is constrained to be unity, each large 

singular value must be balanced by a number of small ones. We review the behavior of bias 

and variance under three stylized models incorporating such balance and broadly resembling 

singular value distributions described in the literature. We emphasize these models all 

exclude confounding environmental structure, though in reality genotypic stratification 

almost always correlates with some degree of environmental stratification.

The first two models are built from a specification with paired point masses developed in 

Section 5, namely a distribution for si
2 which puts mass β/(β +1) at 1/β and puts mass 1/(β 

+ 1) at β.

In the first stylized model, a moderately small proportion α of squared singular values are 

drawn from this paired-mass distribution, while the remaining 1−α recapitulate those from 

the independent setting. Means and mean squares for wi are weighted averages of 

expressions given in Section 5. Such a “dosage” of more widely dispersed singular values 

does increase τ2 and reduce the standard error of estimation, but not by much. Small α even 

in combination with large β limits the improvement. When ψ = 1/4 and α = 1/100 with μ = 

1/25, standard errors drop by less than 25%. The dosage also shifts w̄, but the bias remains 

very small in comparison to the standard error for typical, sizable n.

In the second stylized model the cluster of singular values close to unity characteristic of the 

independent setting is taken out, putting α = 1 and leaving the paired-mass distribution on its 

own. For large β, the variance of the squared singular values is close to β and the moments 

of wi given in Section 5 lead to approximations for estimator bias and variance:

Bias (ψ) = − 2 β
n ψ0 β(1 − 1/β)2ψ0(1 − ψ0) + 1

β ≈ − 2 β
n ψ0

2 (1 − ψ0), and

Variance(ψ) = 2 β
n β(1 − 1/β)2ψ0(1 − ψ0) + (β − 1)−2 2 ≈ 2 β

n ψ0
2(1 − ψ0)2,
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where the approximation holds for ψ0 > 0 and β large. (If ψ0 is close to 0 we need 

β ≫ ψ0
−1/3.) Here, the larger the variance in squared singular values (roughly β), the larger 

the variance in ψ̂. Instead of affecting estimator accuracy in the same fashion as μ = n/p (the 

variance of si
2 in the independent setting), β takes on a role like 1/μ, eroding accuracy as it 

grows. The stylized setup makes the reason apparent. Large squared singular values have to 

be balanced by large numbers of near-zero values to preserve the mean of unity. The 

transformation from si to wi discounts the leverage of large values while the preponderance 

of small ones pull w̄ toward unity and τ2 toward zero.

The third stylized model posits squared singular values from a lognormal distribution, 

mimicking the appearance of singular value graphs in [20] and elsewhere. Denoting the 

variance of the squared singular values by γ, under the constraint of unit mean the variance 

of the underlying normal is log(1 + γ) and its mean is −(1/2) log(1 + γ). Our wi then follows 

a so-called “logit-normal” distribution. Closed-form moments for wi are not available, but 

their behavior is easy to infer. As γ increases, squared singular values become heavily 

concentrated near zero and wi near 1−ψ. The variance of wi, that is, τ2, increases to a 

maximum and then falls off slowly toward zero. Moderate stratification reduces standard 

errors of estimation, but large departures from the independent setting raise standard errors 

and spoil estimates.

3.3. Implications of the formulas

The formulas of Section 3.2 have implications that may at first seem surprising but have 

logical explanations. First, in the context of Simple GREML, when we are dealing with 

independent random genotypes, increasing p — providing more data — seems to make 

accurate estimation harder. For fixed n, standard errors go up with p, not down. Second, 

stratified populations — something that would ideally be avoided in real data [51] and that 

the earlier analysis of [20] suggested would undermine the model even in theoretical, 

unconfounded data— seem up to a point to alleviate the problem of large standard error.

In fact, neither of these implications is surprising. The apparent paradox of more data 

producing a worse estimate dissolves when we recognise the structure of GREML. 

Increasing p does not simply provide more data. It changes the assumed set of influences on 

the phenotype. In Simple GREML, increasing p means dividing the same overall genetic 

effect into tinier pieces. In more complicated versions, where causal SNPs comprise a subset 

of (observed or unobserved) SNPs, as discussed in Section 4.4, positing larger numbers of 

causal SNPs similarly means dividing up the overall effect. The Law of Large Numbers 

tends to equalize genetic endowments among individuals, regardless of which particular 

SNPs happen to have the largest effects. Naturally, the situation becomes more complex 

when causal SNPs are sparse and linkage disequilibrium is crucial, issues that figure 

prominently in the literature.

It is also no surprise that some degree of population stratification, as it augments the 

variance of squared singular values, reduces standard errors of estimation. Zero or near-zero 

singular values reflect sets of individuals with high genetic similarity. Their presence allows 

noise to be most easily isolated from the genetic effect. It is common practice to study twins 
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to simplify the identification of genetic effects. The reason behind the standard practice of 

removing relatives from a sample and pulling out population strata as fixed effects is a belief 

that relatives are likely to have their common genetic influences confounded with shared 

environment, and that genetic strata are likely to reflect stratification in non-genetic respects, 

hence also create confounding [36, 34, 51, 2] (though the magnitude of this effect in typical 

datasets is debatable [12]). The reason is not that such individuals make the statistical 

analysis inherently difficult.

The GREML model implies a correspondence between the covariances of the measured trait 

and the covariances of the high-dimensional genotype. Clearly, there is information in Z and 

y, but it is not immediately apparent where it is and how much is there. Passing to the 

diagonalization of Z*Z clarifies the situation: The information is in the different magnitudes 

of the rotated components. This is very diffuse information. We are faced with a large 

number of observations zi from very similar distributions, differing only in their variances, 

which are (1 − ψ + ψsi
2)/(θ(1 − ψ)) We are trying to identify ψ as the parameter that best 

orders the zi by magnitude. It is apparent that the challenge increases as the si become more 

compressed, as our formulas prove.

3.4. A symmetry relation

The demonstration in Section 3.2 that the GREML estimator of heritability is approximately 

unbiased depends on an approximation to order 1/n that is incomplete from a practical point 

of view, insofar as we do not show that terms of higher order than 1/n are genuinely smaller 

for ranges of parameters of interest.

The demonstration can be strengthened by appeal to a symmetry relation. If we replace y by 

ỹ = A−1/2y, then we obtain a sample from the same class of multivariate normal distributions 

defined in (2), with the matrix A replaced by A−1, ψ replaced by 1 − ψ, and θ by θ(1/ψ − 

1).

A genotype matrix that would produce A−1 would not have the usual properties of the 

normalized genotype matrices we have been considering; in particular, such inverted GRMs 

may be unrealistic, in that they have low probability under typical genotypic models. Any 

claim that the GREML model generally yields estimates biased in one direction must depend 

on such properties. In principle an allowable data set that yields a positively biased 

heritability estimate can be paired with an alternative allowable data set (obtained by 

inverting the GRM) that yields a negatively biased heritability estimate, without changing 

the form of the model.

4. Model misspecification

4.1. Basic principles

Models that function well when fitted to data sampled from the correct distribution may 

produce unpredictable and unintuitive results when applied to data generated by a different 

albeit analogous distribution. Much of the dispute between [20] and [53] centers around the 

question of whether the specification of the GREML model and algorithm allows for linkage 
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disequilibrium, and whether population stratification is adequately accounted for. [20] also 

considers, by means of subsampling real data, the question of whether the choice of SNPs to 

be investigated — as a subset of the full complement of SNPs — increases the variance of 

heritability estimates in ways that the standard analysis fails to capture.

The question that needs to be asked is this: Given the simplifications that we know underlie 

the GREML model, should we expect approximately sensible inferences to follow from 

approximately well specified data? We consider three types of deviation from the model:

• Shared environment;

• Measurement error;

• A small number of causal loci that are responsible for the influence of genes on 

phenotype, while the large majority of SNPs have no influence.

4.2. Shared environment

This problem is well known, and a focus of significant attention. It has long been recognized 

that large and small singular values of the genotype matrix are associated with potential 

confounding of genetic and environmental influences. Large singular values arise from 

stratified populations, reflecting geographical or ethnic differences that may be associated 

with trait differences not directly caused by the genetic differences themselves. Small 

singular values tend to arise from small clusters of related individuals, who are likely to be 

correlated in their environments as well. (In the extreme case, C clones produce C − 1 zero 

singular values and one singular value of size C.) The usual practice of working with the 

GREML model recognizes these problems: from the outset, population stratification has 

been addressed with principal component analyses and cryptic relatedness by removing 

samples with suspiciously high kinship [51].

We have ignored environmental effects here, focusing on situations where all assumptions of 

the GREML model hold exactly. The one thing we have to add to this discussion is to point 

out that the behavior of models such as the GREML model depends entirely on the 

distribution of singular values of the genotype matrix, and thus any confounding must 

manifest itself through these singular values. In particular, any excess variance among the 

singular values relative to the known limiting form in the independent setting — which 

models i.i.d. genotypes that, by construction, cannot be confounded — must come from 

latent structure between samples or between loci. Inter-sample structure almost inevitably 

allows the intrusion of shared environment. That is, related samples present a tradeoff: they 

increase spectral spread, decreasing the heritability estimator’s variance, but expose 

heritability estimates to potential confounding bias. Therefore, if one is convinced that the 

latent inter-sample structure is benign — possibly, for example, in laboratory animals or 

carefully controlled twin studies — the additional spectral variance improves heritability 

estimates.

This also explains apparent peculiarities in the distribution of squared singular values in the 

independent setting described in Section 5. First, it has disappointingly small variance 

because there is no latent sample structure. More importantly, the problem is exacerbated 
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when p grows larger, as relatedness that emerges due to chance from a small number of i.i.d. 

draws will converge asymptotically to zero, the expected relatedness in i.i.d. data. This is 

something like genome-wide Mendelian randomization, and one expects these purely 

exogenous genotype effects to cancel out as the number of independent genotype 

contributions increases.

4.3. Measurement error

We note here that simple measurement errors do not cause any unusual problems for the 

mixed-effects model; as one would expect, it simply biases the estimates of heritability 

downward. We look here at two types of error: Independent additive error in measuring 

phenotypes, and independent misidentification of SNPs. Adding an independent 

measurement error to the phenotype simply increases the variance of the noise term ε, so it 

is equivalent to the same model with a lower value of ϕ (or ψ).

Misidentification of SNPs is slightly more complicated. Suppose that instead of observing Z, 

we observe Ž = Z + Z̃. We assume the entries of Z̃ to be independent of each other, and of 

the noise, with expectation 0. (They obviously can’t be independent of the entries of Z, but Z 
is taken to be fixed, not random.) They are nonzero with probability π, which we assume is 

close to 0. Then the phenotypes will satisfy

y = (Z − Z∼)u + ε .

Applying the singular value decomposition Ž = U diag(si)V*, we get

z: = U∗y = diag(si)V
∗u + U∗ ε − Z∼u .

The term ε −Z̃u is approximately a vector of independent normal random variables, with 

mean zero and variance σε
2 + cpσu

2π, where c depends on the distribution of Z̃. Its covariance 

with diag(si)V*u will be on the order of V* Z̃, which has expectation 0 (averaged over 

realizations of Z̃), and should typically be on the order of σu pπ, meaning that the 

correlations are small as long as pπ is large.

We may conclude, then, that the model with occasional and independent misidentification of 

SNPs is very much like the model with increased noise in the phenotype measurement, with 

a downward bias in heritability estimates proportional to the error probability. While more 

realistic models of genotyping error may lead to different conclusions, we have assumed 

only that entries of Z̄ are independent and sparse.

4.4. Causal loci

The usual practice of working with the GREML model recognizes that the genetic effect 

saturates as the number of SNPs sampled increases [27, 30, 28, 58, 11, 10]. This is generally 

attributed to the increasing amount of linkage to the (possibly unobserved) causal loci. Here 
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and in the following section we analyze the effect of applying GREML in a situation where 

there is a small number of causal SNPs, either a small subset of the observed SNPs (Section 

4.4.1) or an unobserved set that may be linked to the observed SNPs (section 4.4.2).

4.4.1. Observed causal SNPs—Suppose that the genetic effect on y is produced by a 

small number k ≪ n of SNPs. Other SNPs will be linked to these, thus being indirectly 

correlated with y. We may represent this as a slightly modified version of the standard 

GREML model by assuming that there is a subset η ⊂ {1, …, p} of causal SNPs, and that 

these causal SNPs have i.i.d. normal effects, with mean 0, conditioned on the sum of their 

squares being a fixed number σg
2. We will also think of η as a p-dimensional vector with 1 in 

the positions corresponding to the causal SNPs and 0 elsewhere.

We write the noise variance as

σe
2 =

1 − ψ0
ψ0

σg
2 .

(The “true heritability” is naturally identified with θ ||u||2; when all but a small number of 

the components of u are zero, this will not necessarily be very close to ψ0 unless we impose 

this as a condition.) When we think of the set of causal SNPs η as being fixed we will call 

this the causal-SNP GREML model (or CS); when we think of η as being a uniform 

randomly selected subset we call it the random causal-SNP GREML model (or RCS).

We wish to understand the difference between the true ψ0 and the asymptotic estimate ψ* to 

which the estimates would converge if we had a large number of independent experiments. 

We define ε := (ψ* − ψ0)/(ψ0(1 − ψ0)).

Conditioned on a fixed η,

yi = ∑
j ∈ η

Zi ju j + εi .

The MLE will converge to the closest fit (in the Kullback–Leibler sense) to the generating 

model. Equivalently, we seek the ψ* that solves

𝔼 Cov 1
1 − ψ∗ + ψ∗si

2,
zi
2

1 − ψ∗ + ψ∗si
2 = 0.

By linearity of covariances, this becomes
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Cov wi(ψ∗), 𝔼[zi
2]wi(ψ∗) = 0. (10)

For the CS model — so, considering a fixed η — we define

γi: = p ∑
j ∈ η

V ji
2 − k . (11)

This represents the deviation from expectation of the size of the projection of η onto the i-th 

right singular vector. We note for later that γi has expectation zero (with respect to the 

choice of a random η), and is identically zero when k = p. We note as well that when k ≪ p, 

we will typically expect γi + k to be distributed approximately like a chi-squared variable 

with k degrees of freedom.

Lemma 4.1: ψ* satisfies

0 = Cov wi(ψ∗),
wi(ψ∗)
wi(ψ0) +

ψ0/(1 − ψ0)
kψ∗/(1 − ψ∗) Cov (wi(ψ∗), γi) − Cov (wi(ψ∗), γi wi(ψ∗)) . (12)

There are two ways we might use this equation. For a given choice of singular-value 

distribution and of true parameter ψ0, this equation defines ψ* as a function of (γi). For a 

given genotype matrix we could compute the distribution of the γi jointly with the 

phenotypes for a random choice of possible causal sites. In this way we could more 

efficiently simulate the effect of restricted causality on the heritability estimates.

Alternatively, we could use the assumption that the γi are generically i.i.d. samples from a 

chi-square distribution.

Theorem 4.2: In the Random causal-SNP model — that is, treating the causal SNPs as a 
uniform random sample of all SNPs — for large n and assuming τ4 ≪ τ2,

𝔼[ψ∗] ≈ ψ0, (13)

and we have a relative increase in the estimation error

Var(ψ∗)
Var(ψ) ≈

τ1
2ψ0

2

k . (14)

Proofs of these results may be found in Appendix B.
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Thus, the effect of a restricted set of causal sites may be assumed to be negligible — relative 

to the uncertainty already acknowledged in the standard analysis — as long as the phenotype 

is influenced by several tens of SNPs, but to increase the uncertainty substantially when 

fewer than 10 SNPs are involved. This effect will be exacerbated when w̄ is small, which 

will be the case when the heritability is high.

To illustrate this effect, we conducted simulations in the independent setting. We took p = 

100, 000 SNPs, and defined them to have minor allele frequencies independently chosen, 

uniform on [0.05, 0.5]. We then simulated genotypes for n =2,000 or 10,000 individuals by 

independently assigning a random number of minor alleles to each individual and site, 

according to the binomial distribution with the appropriate MAF. The genotypes 

corresponding to each site were then normalized to have mean 0 and variance 1. This was 

our genotype matrix Z.

We then selected a random subset of k sites to be causal and independently simulated 1,000 

datasets using Z, these causal SNPs and heritability either 0.25, 0.5 or .75. The heritability 

was then estimated for each dataset, according to the standard MLE procedure described in 

Section 3. We then repeated this procedure for 100 different random choices of the causal 

SNPs.

To empirically estimate variance of ψ*, the asymptotic heritability estimate for a given set of 

causal SNPs, we use a standard random-effect model. Specifically, if ψ̂
ij is the estimated 

heritability for the j-th simulated dataset derived from the i-th set of causal SNPs, we assume

ψi j = ψi
∗ + εi j

where the ψ j
∗ and the εij are i.i.d. Gaussian, each with an unknown variance parameter fit 

using lme4 [1].

The results are summarized in Figure 1. The estimates of the variance of ψ i
∗ are plotted as 

points in Figure 1 and are compared to their theoretical predictions from (30) (continuous 

curves) as k varies. We then repeated the entire process for another, independently simulated 

Z matrix, giving two points for each combination of k, true h2 and n. Overall, the theoretical 

curve is fit very well, though the fit is worse when the variance between different Z is small 

(k large and n small), making it hard to separate from the much larger phenotype variance.

The code implementing this analysis is freely available online at: https://github.com/

andywdahl/greml-causals

These results are consistent with previous empirical observations that randomly choosing a 

small number of causal SNPs inflates the variance of heritability estimates but causes no 

bias [56, 41, 28]. Our arguments are also in line with previous approximate characterizations 

of the likelihood function [22], though we approximate the profile likelihood and do not 

require ψ ≈ 0.
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We go further than simulation, though, by analytically characterizing the variance inflation 

as a function of the number of causal SNPs. We also show the variance inflation derives 

from a random bias, ψ* − ψ0, defined by the γi (see Appendix C). When averaging over 

random γ, perhaps by averaging over choice of study population, ψ̂ can be interpreted 

simply as an unbiased estimator with inflated variance. However, nature chooses η and, in 

real data, V will replicate to some degree across different datasets because of common 

linkage disequilibrium patterns, loosely suggesting all real analyses will partially share a 

common, albeit in some sense random, bias.

Theorem 4.2 is also comparable to a recent analysis of a similarly misspecified mixed model 

— though we have not discussed fixed effects — that showed ψ̂ to be consistent as n, p and 

k jointly grow large [16]. However, we show (approximate) unbiasedness averaged over η 
and quantify the increase in estimator variance and its dependence on k. Further, we allow u 
to be non-normally distributed, which is important when modelling causal SNP effects 

which are known to vary over orders of magnitude.

4.4.2. Unobserved causal SNPs—It is generally assumed that the SNPs that directly 

influence the phenotype yi are not actually among the p SNPs that have been measured [16], 

the problem of “untagged variation”. Clearly we cannot assume that the estimate of ψ will 

be unbiased. In the extreme case where the causal SNPs are independent of the observed 

SNPs, of course the expected estimate of ψ will be 0. In general we expect to see a 

downward bias, since the residual uncertainty about the causal SNPs will act like regression 

measurement error, deflating our estimate of the regression slope, which is heritability. 

While this has been remarked qualitatively, we are not aware of a formal derivation of the 

effect of untagged variation on heritability estimates.

Intuitively, it makes sense that the estimation will be as good as the best possible imputation 

of the causal SNPs. Of course, if we knew which were the causal SNPs we could simply 

include them in the sample — either measured, or the imputed values. We are assuming, 

though, that there is no information about the causal SNPs, which are not in the panel.

More to the point, there is no inherent meaning to “best imputation” outside the context of a 

particular probabilistic model generating the genotypes. For a given collection of observed 

and unobserved (but causal) genotype data there is an answer to the question, what is the 

bias in the heritability that would be estimated if we calculated the MLE from the observed 

genotypes? We write down this answer formally in (33), but do not see any meaningful 

interpretation of this formula. If we embed the genotypes in a probabilistic model, on the 

other hand, we are able to discuss the distribution of the unobserved bias understood as a 

random quantity, just as we did in Section 4.4.1.

The model is exactly the same as in Section 4.4.1, except that the k causal SNPs are not 

among the p observed SNPs, so the model now includes p + k SNPs in total. (We do not 

assume independence, so this model includes the observed-causal model as a special case, if 

we simply make the causal columns to be copies of some of the observed columns.)

We consider two probabilistic models:
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1. The causal sites are a random sample of all sites, which are then not included in 

the observed genotype matrix.

2. The causal genotype matrix is generated by a linear relation

Zc = ZoB + δ, (15)

where B is a fixed p×k matrix, and δ a random n×k matrix with mean-zero 

independent entries, such that the entries in column ℓ have variance σδℓ
2 . We write

σ(ℓ)
2 : = ∑

j = 1

p
B jℓ

2 , σδ
2: = 1

k ∑
ℓ = 1

k
σδℓ

2 .

We assume that B is approximately sparse — all but a small fraction of entries 

are negligibly small — with no more than one non-small entry in any row. That 

is, there is a small number of observed sites that yield nearly all the information 

about an individual’s causal SNPs, and these linked sites are distinct for different 

causal SNPs. We also assume that

∑
ℓ = 1

k
σ(ℓ)

2 = k − kσδ
2,

which is simply a matter of ensuring that σg
2 is actually the additive genetic 

variance.

At the moment there is not much we can say further about the first model. As we will see in 

the discussion below, analyzing this model would require some general results relating the 

SVD of a matrix to the SVD of a random sample of its columns. It would be possible to 

investigate (33) through simulation. This would represent only a slight formalization of the 

simulation approach initially employed in GCTA to inflate h2 estimates post hoc [51].

The second model is somewhat unsatisfactory, as it produces abstract “genotypes” that are 

unlike the 0, 1, 2 SNP genotypes produced in real experiments. We describe it here to 

illustrate how the behavior of such models may be rigorously analyzed, though a more 

realistic version would be technically more demanding.

Theorem 4.3: For large n the heritability estimates produced by the model (15) have a 
negative bias

ψ∗ − ψ0 ≈ − 2σδ
2ψ0

2 +
σγ
τ2

X (16)

Steinsaltz et al. Page 22

Electron J Stat. Author manuscript; available in PMC 2018 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for large n and small values of σδ
2, with an error that is bounded in distribution by a uniform 

multiple of σδ
4 + σγ

2, and X is approximately standard normal (as B varies over different 

permutations of possible causal SNPs) and

σγ
2 =

2ψ0
2(1 − ψ0)2

nk τ2τ1
2 + 2τ3τ1 + τ4 · k−1 ∑

ℓ = 1

k
σ(ℓ)

4 .

We may draw two conclusions:

1. When σδ is not zero (or very small) — that is, when the causal SNPs are not 

completely determined by the observed SNPs — there is a negative bias in the 

heritability estimate, proportional to σδ
2, which is a measure of untagged 

variation.

2. When σδ is zero this includes the situation of Section 4.4.1, if B is a binary 

matrix with only ones and zeros, so that each causal SNP is a copy of an 

observed SNP. The formula (16) generalizes the calculation from the previous 

Section, so that we see that the added uncertainty (or random bias) decreases 

when the information about each causal SNP is split up among multiple observed 

SNPs.

5. Singular Values

We now present formulas for moments relevant to estimator bias and variance for special 

cases of the distribution of squared singular values on which the GREML heritability 

estimates depend. We consider first the independent setting, followed by several stylized 

models for a stratified setting. Whereas our general treatment has only assumed a 

normalization of the total sum of squares of the elements of the genotype matrix, for these 

special cases we assume — as is usual in applications of GREML — that each column of the 

genotype matrix has been normalized to have unit variance as well as zero mean. The 

methods of this section can be extended to cases with dispersion in column variances, as 

well as to genotype matrices with linkage disequilibrium, but we do not pursue these 

extensions here.

There is a closed-form limiting expression for the empirical measure of the singular values 

in our independent setting as n grows large for fixed μ = n/p. It was discovered by Marcenko 

and Pastur [33] and independently by Mallows and Wachter (see [32]). We use it in the 

generality established by Wachter [47].

The theorems provide for almost-sure convergence to a deterministic limit. Any fixed 

genotype matrix Z will have singular values with an empirical measure close (to order 1/n) 

to this limit, if Z falls within a set of matrices that would have probability one in an 

ensemble of random matrices with independent elements. Recall that the column variances 

of Z are normalized to be close to unity.
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In order to find expressions for the empirical moments across i of wi(ψ) as functions of ψ 
and μ = n/p. define the Stieltjes Transform for complex ζ away from the real interval [a, b] 

by

M(ζ) = μ∫a

b dG(t)
ζ − t

Here t = s2 stands for the eigenvalues corresponding to the singular values, and dG is the 

limiting empirical measure of the eigenvalues, concentrated on the interval [a, b] where 

a = (1 − n/ p)2 and b = (1 + n/ p)2. Conversion of the formulas for singular values to 

eigenvalues requires removing mass 1 − 2μ conventionally placed at zero and rescaling by μ 
so that dG has unit mass on [a, b].

The average of wi is given by the value of ζM(ζ)/μ and the average of wi
2 by the value of 

−ζ2M′(ζ)/μ when we plug in ζ = −(1 − ψ)/ψ = −1/ϕ, making 1/(1−ζ) equal the heritability 

ψ. Averages of higher powers of wi are given by expressions in higher-order derivatives of 

M(ζ)/μ. Equation 2.1.1 of [47] shows that M(ζ) is the solution vanishing at infinity to the 

quadratic equation

ζ = μ
M(ζ) + 1

1 − M(ζ)

The solution can be written

M(ζ) = 1 − μ − ζ − (1 − μ − ζ)2 − 4μζ
−2ζ

Here the sign on the square root is chosen to agree with the sign on 1 − μ − ζ in order to 

make M(ζ) vanish at infinity and to make ζM(ζ) approach μ at infinity.

The expression for M(ζ)/μ containing the square root can be differentiated in closed form, 

and exact expressions for the moments of wi follow from substituting 1/(1 − ζ) = ψ, and −ζ 
= (1 − ψ)/ψ. For practical purposes, it is helpful to expand M(ζ)/μ in powers of μ. The 

coefficients conveniently arrange themselves in powers of (1 − ζ)−1, streamlining 

differentiation and calculation of uncentered moments of any order for wi.

Specifically, for small μ and ζ either off the real axis or outside [a, b], we have

M(ζ)/μ ≈ −1
(1 − ζ) − μ

(1 − ζ)3
+ μ2

(1 − ζ)4
− 2μ2

(1 − ζ)5
…
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When 1/(1 − ζ) = ψ, and −ζ = (1 − ψ)/ψ, evaluating ζM/μ we find that the mean over i of 

wi is given up to second order in μ by

w ≈ (1 − ψ) + (1 − ψ)ψ2μ + (1 − ψ)(2ψ − 1)ψ3μ2 + ⋯,

and so

τ1 ≈ 1 − (1 − ψ)ψ μ − (1 − ψ)(2ψ − 1)ψ2μ2 − ⋯ .

Differentiating M by ζ yields

M′(ζ)/μ ≈ −1
(1 − ζ)2

− 3μ

(1 − ζ)4
+ 4μ2

(1 − ζ)5
− 10μ2

(1 − ζ)6
⋯

It follows that the scaled variance over i of wi is given by

τ2 ≈ (1 − ψ)2μ + (1 − ψ)2(5ψ2 − 2ψ)μ2 + ⋯ . (17)

We also have

τ3 ≈ (1 − ψ)3(1 − 3ψ)μ2 + ⋯, (18)

τ4 ≈ 2(1 − ψ)4μ2 + ⋯ . (19)

Higher-order moments follow by successive differentiation.

Central moments of the eigenvalues themselves around their mean of unity can be found by 

collecting terms in powers of 1/(1 − ζ). The variance is μ, and to second order in μ the third 

central moment is +μ2 and the fourth central moment 2μ2. Evaluating M(ζ)/μ at ζ = 0 shows 

that the mean of the reciprocal eigenvalues is 1/(1−μ), and successive differentiation reveals 

a variance of μ/(1− μ)3 and a third central moment of 2μ2/(1 − μ)5 for the reciprocal 

eigenvalues.

For the stratified setting, a great variety of scenarios come under consideration. Stratified 

populations are expected to have genotype matrices with some or many eigenvalues 

substantially larger than those in the independent setting, and large eigenvalues entail large 

numbers of small ones, since the mean is unity.
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Among the simplest stylized models for eigenvalues arising in a stratified population, one 

posits eigenvalues concentrated at two reciprocal values 1/β and β with weights β/(β +1) and 

1/(β + 1). This two point-mass distribution, with its mean of unity, has variance (β −1)2/(β 
+1), close to β when β is large. Moments over i of wi come out to be

w = β
β + 1

(1 − ψ)β
ψ + (1 − ψ)β + 1

β + 1
(1 − ψ)

1 − ψ + ψ β ,

which may be simplified to

1 − τ1 = 1 − 1 − w
ψ = (β − 1)2ψ(1 − ψ)

β + (β − 1)2ψ(1 − ψ)
;

and

τ2 = (1 − ψ)2β(β − 1)2

[β + (β − 1)2ψ(1 − ψ)]2
.

For large β, the mean of wi is close to 1 and the variance of wi is close to 1/β. In contrast to 

the independent setting, where the variance of wi is roughly proportional to the eigenvalue 

variance, in this stylized model for the stratified setting, the variance of wi is roughly 

inversely proportional to the eigenvalue variance. Implications for bias and variance for 

GREML heritability estimates have been described in Section 3.2.

6. Discussion

In the simple setting when assumptions are satisfied, we have shown that threats to the 

accuracy of GREML heritability estimates arise not from bias but from potentially large 

standard errors. Our findings run counter to some recent criticisms of GREML.

We have also evaluated the bias arising from fixed but unknown structured subsets for causal 

SNPs. This can be substantial in principle, but seems likely to be disabling in practice. We 

have argued that the structures that amplify bias are likely to be the exception rather than the 

rule. In a separate work [44] we also show how the approach presented here offers some 

insights into one other well-known source of bias, the presumed need to truncate negative 

heratibility estimates.

Standard errors for GREML estimates of heritabilities depend on the dispersion in the 

squared singular values of the genotype matrix. In this regard, an idealized baseline case, the 

independent setting, is something like a worst-case scenario. Here, drawing on eigenvalue 

theory, we have given explicit expansions for standard error, as well as bias, in terms of the 

ratio of respondents to SNPs. Implications of our formulas have been reviewed in Section 

3.3. Departures from the independent setting which augment the dispersion of the squared 
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singular values can improve the statistical properties of the estimates, but only up to a point 

and only at a cost in substantive interpretability. Linkage disequilibrium augments 

dispersion. Unexpunged population stratification augments dispersion. Their relative roles 

and their signatures are not yet clear. A priority for future research is analysis of empirical 

genotype matrices and their sets of singular values, the natural next step in elucidating the 

statistical properties of random effects models for genetic heritability.
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Appendix A: Proof of Theorem 3.1

We recall that

wi(ψ) = 1 − ψ

1 − ψ + ψsi
2,

vi(ψ) = wi(ψ)zi
2,

w∼i(ψ) =
si
2

1 − ψ + ψsi
2 .

τk is the k-th order central moment of w̃i(ψ0).

The log likelihood is a sum over n given by

(1/2)∑ log (wi) − θwizi
2 + log (θ) .

The partial derivative of the log likelihood with respect to θ is

∂ℓ
∂θ = n

2θ − 1
2 ∑

i = 1

n (1 − ψ) zi
2

1 − ψ + ψsi
2 (20)

Solving ∂ℓ/∂θ = 0, we get
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θ = 1
n ∑

i = 1

n (1 − ψ)zi
2

1 − ψ + ψsi
2

−1
.

Substituting into (3) we get the profile likelihood

ℓP(ψ) = − n
2 log ∑

i = 1

n zi
2

1 − ψ + ψsi
2 − 1

2 ∑
i = 1

n
log (1 − ψ + ψsi

2) + n
2( log n − 1) . (21)

The score function is then

dℓP
dψ = 1

2(1 − ψ) n−1 ∑
i = 1

n zi
2

1 − ψ + ψsi
2

−1

∑
i = 1

n zi
2si

2

(1 − ψ + ψsi
2)2 − ∑

i = 1

n si
2

1 − ψ + ψsi
2 (22)

= − n
2ψ(1 − ψ)2v

Cov(w, v)

= n
2(1 − ψ)2v

Cov(w∼, v)

(23)

We have now arrived at our profile likelihood equation. Setting the left-hand side of equation 

(23) to zero, we have the maximum likelihood estimate of ψ equal to a root of the univariate 

equation

0 = Cov w(ψ), v(ψ) (24)

The estimate is a function of the transformed observations z and of the singular values si of 

the scaled genotype matrix Z / p.

Our next task is to express equation (24) in terms of a power series in the differences ψ − 

ψ0. The right-hand side of equation (24) as a function of ψ for any fixed realization of the 

random quantities zi
2 is a polynomial in ψ times a weighted sum of fractions 

1/(1 + ψ(si
2 − 1)), and it is an analytic function everywhere except on the interval 

( −1/ max (si
2 − 1), 1), hence on a neighborhood of [0, 1).

We will use Kj throughout the following discussion, for different indices j, to represent 

constants that are bounded by a universal constant times a power of w* := max{w̃i}. We will 
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use Vj to represent a random variable — a function of v — that has fourth moment bounded 

by a power of w*.

We define

ε: =
ψ − ψ0
1 − ψ0

.

We set out to find a root of equation (24) with ε in the “search interval” (−2δ*, +2δ*), where

δ∗: = max 0.01
w∗

, 1
6w∗

2 K3
,

and K3 is a universal constant, to be defined below. We use the relation

vi(ψ) = vi(ψ0) 1 + ε
1 − εw∼i(ψ0)

−1
,

wi(ψ) = wi(ψ0) 1 + ε
1 − εw∼i(ψ0)

−1
.

For the rest of the proof we will write, unless otherwise indicated, w̃ for w̃(ψ0), w for 

w(ψ0), and so on. We use the third-order Taylor expansion

1 + ε
1 − εw∼i

−1
= 1 − ε

1 + ε(w∼i − 1)

= 1 − εw∼i + ε2 w∼i
2 − w∼i − ε3 w∼i

3 − 2w∼i
2 + w∼i + Ri(ε),

where the remainder term Ri(ε) is bounded by

∣ Ri(ε) ∣ ≤ ε4 (w∼i − 1)3 w∼i (1 + ε(1 − w∼i))
−5

≤ 2w∗
4ε4 .

We apply this to expand the score equation up to third order in ε. (This expansion is the 

usual one for expressing asymptotic variance in terms of Fisher information, but we need 

explicit formulas for the sake of our bias approximation, and for a similar expansion in 

section 4.4.) For most purposes it would suffice to expand only out to second order. An extra 

order is required to make the estimates work consistently for ψ0 near 0, where the lowest 

order coefficients may vanish. For this reason, we may ignore — or, rather, lump into the 

final error term — any terms that are third-order or higher in ε and include in addition a 

factor of ν or ψ0.
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By the bilinearity of covariance,

Cov(w(ψ), v(ψ)) = Cov(w, v) − ε [Cov (ww∼, v) + Cov (w, vw∼)]

+ ε2 Cov (vw∼, ww∼) + Cov v, ww∼2 + Cov w, vw∼2 − Cov (ww∼, v) − Cov (w, vw∼)

− ε3 Cov v, w w∼3 − 2w∼2 + w∼ + Cov v w∼3 − 2w∼2 + w∼ , w + Cov w∼v, w∼2 − w∼ w + Cov (w∼2 − w∼)v, w∼w
+ ε4V4(ε),

The factor V4 in the remainder term is a random variable, depending on the vi(ψ0), that is 

bounded by

∣ V4(ε) ∣ ≤ 8w∗
4 · 1

n ∑
i = 1

n
vi(ψ0)

as ε ranges over our search interval.

We write S(ε) for the multiple of the score function given by the covariance we have just 

expanded, multiplied by θ0/τ2 :

S(ε) = ψ0νX + ε ψ0 + ν(ψ0Y + X) + ε2 1 + ψ0ξ + ν −ψ0W + X + (1 + ψ0)Y + ε3

ξ + 1 + ψ0K3 + νV3 + ε4V4(ε),
(25)

where

X : = − n
τ2

1/2
θ0 Cov (w∼, v),

Y : = n
τ2

1/2
θ0 Cov w∼2, v + θ0 Cov w∼, vw∼ − τ2 ,

W : = n
τ2

1/2
θ0 Cov w∼2, vw∼ + θ0 Cov w∼3, v + θ0 Cov w∼2v, w∼ − (2τ3 + 4τ1τ2)

ξ: = −
2τ3
τ2

− 4τ1 + 1

K3: =
3τ4
τ2

+
10τ1τ3

τ2
+ 10τ1

2 −
4τ3
τ2

−
8τ1
τ2

.

We observe now that θ0v(ψ0) is a vector of i.i.d. χ1
2 random variables. It follows that X, Y, 

and W (which are close to normal random variables) have expectation values of zero and 

product moments
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𝔼 X2 = 2,

𝔼 Y2 =
8τ4
τ2

+
24τ1τ3

τ2
+ 18τ1

2 − 6τ2,

𝔼 X Y = −
4τ3
τ2

− 6τ1 .

There is a uniform bound on the fourth moments of V3, X, Y, and W, bounded by a 

universal constant multiple of τ16.

We now express relevant probabilities and moments in terms of powers of ν. We are looking 

for a solution ε̂ to the rescaled score equation S(ε̂) = 0. If ν is small, and if ε̂ were on the 

order of ν, we could neglect the remainder term of order ε3, solve the resulting quadratic 

equation to obtain the proposal solution

ε0: = − νX + ν2 XY − ξX2 (26)

and seek the full solution as a perturbation of order ν3 to our quadratic solution. Except on 

an exceptional event  of small probability, defined below, this strategy succeeds.

Substituting into (25), we observe that all terms in S(ε0) cancel out that are not multiples of 

either ν4 or ν3ψ0. We assume that ν is small enough so that |ε0| < δ*, and consider ε = ε0 + 

δ, where |δ| < δ*. For all such ε

S(ε0 + δ) − S(ε0) = δ ψ0 (1 + νY + (2ε0 + δ) −
2τ3
τ2

− 4τ1 + 1 + ν(Y − W) + 3ε0
2 + 3ε0δ + δ2 K3

+ νX + (2ε0 + δ) (1 + ν (X + Y)) + 3ε0
2 + 3ε0δ + δ2 (2ξ + νV3) + (ε0 + δ)4V4(ε0 + δ) − ε0

4V4(ε0) .

Consider first the case ψ0 > 0. Because the random variables all have bounded moments of 

all orders, for any α > 0 the exceptional event

𝒜: = ∣ S(ε0) ∣ > ν3 − αψ0 or ν ∣ X ∣ > 0.01 or ν ∣ Y ∣ > 0.01 or ν ∣ W ∣ > 0.01 or ν ∣ V3 ∣ > 0.01 or

max
ε ∈ ( − 2δ∗, 2δ∗)

∣ V4(ε) ∣ > 10w∗
4

has probability smaller than Kαν3 for all n (hence all ν), where Kα as usual is bounded by a 

universal constant times a power of w*.

By the assumption that |ε0| ≤ δ* and |δ| ≤ δ*, and the assumption that the realization of v 
falls in , we see that the coefficient of δ is bounded below by ψ0/2. If we set δ0 := 2ν3−α 
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it follows that S(ε0 + δ0) > 0 and S(ε0 − δ0) < 0. We conclude that, with probability at least 

1 − Kαν3−α, there is a solution to S(ε̂) = 0 with |ε̂ − ε0| < 2ν3−α. This corresponds to a 

solution ψ̂ satisfying

ψ − ψ0 = (1 − ψ0) −νX + ν2 XY − ξX2 + O ν3 − α . (27)

This random variable has distribution independent of the matrix Z, except through τ1, τ2, τ3, 

and its mean and variance are as stated in the theorem. This convergence is uniform as long 

as ν → 0 as n→∞. As n→∞ the probability of multiple zeros to the score function goes to 

zero, so with probability approaching 1 as ν → 0 the unique solution converges in 

probability to the solution given by (27).

If ψ0 = 0 we define the exceptional event

𝒜: = ∣ S(ε0) ∣ > ν4 − αX2 or ν ∣ X ∣ > 0.01 or ν ∣ Y ∣ > 0.01 or ν ∣ W ∣ > 0.01 or ν ∣ V3 ∣ > 0.01 or

max
ε ∈ ( − 2δ∗, 2δ∗)

∣ V4(ε) ∣ > 10w∗
4 ,

which again has probability smaller than Kαν3.

We note that |ε0| ≥ 0.9|νX| on  and we restrict consideration to |δ| < |νX|/4. Then we can 

again bound the slope of δ in the expression for S(ε0 + δ) − S(ε0) to obtain, for all |δ| < |
νX|/4, on the event 

S(ε0 + δ) < S(ε0) − ∣ δX ∣ ν/2

when δ and X have opposite sign and

S(ε0 + δ) > S(ε0) + δXν/2

when they have the same sign. Thus, if we take δ0 := 2Xν3−α, we have

S(ε0 − δ0) < 0 < S(ε0 + δ0),

and we may complete the proof as before.

Our formulas for bias and variance to order 1/n follow because the convergence is also in 

expectation and in mean square. More precisely, since the error term in the above 

approximation is bounded (outside of ) by (2 ∨ |X|)ν3−α, we have
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ν−2 𝔼 ψ − ψ0 − ν2(1 − ψ0) 𝔼 [XY] − ξ𝔼 X2 ≤ 2ν1 − α + Kαν,

ν−2 𝔼 (ψ − ψ0)2 − ν2(1 − ψ0)2𝔼 X2 ≤ (K0 + Kα)ν .

Appendix B: Proof of Theorem 4.2

In the CS model (so, holding η fixed)

𝔼 zi
2 = psi

2𝔼 (V∗u)i
2 + σe

2

= p
k si

2 ∑
j ∈ η

V ji
2 σg

2 + σe
2

= 1
θ

γi
k + 1 ψ0si

2 + 1 − ψ0

= 1
θ

1 − ψ0
wi(ψ0) +

ψ0
k γisi

2 .

Substituting this into the equation (10) yields (12), and completes the proof of Lemma 4.1.

The expression on the right-hand side of (12) is a linear combination of these, hence is 

approximately normal. In fact, since we assume n is large, and the wi(ψ*) are bounded, the 

approximation should be extremely good. The variance of the sum is the sum of the squares 

of the coefficients, multiplied by the common variance 2k. Using the equality

wi(ψ∗)
wi(ψ0) = 1 +

ψ0
1 − ψ0

−
ψ∗

1 − ψ∗
si
2wi(ψ∗)

=
ψ0/(1 − ψ0)
ψ∗/(1 − ψ∗) + 1 −

ψ0/(1 − ψ0)
ψ∗/(1 − ψ∗) wi(ψ∗)

this yields

0 = (ψ∗ − ψ0)τ2(ψ∗) + ψ0(1 − ψ∗)σ(ψ∗)X, (28)

where X, defined as a function of the γi, has standard normal distribution, and

σ(ψ)2: = 2
kn τ1(ψ)2τ2(ψ) − 2τ1(ψ)τ3(ψ) + τ4(ψ) . (29)

We may now perform a perturbation analysis, on the assumption that the discrepancy ε = ψ* 

−ψ0 is small. If this is true, then we can obtain a first-order approximation for ε by solving
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0 = ετ2(ψ0) + ψ0(1 − ψ0)σ(ψ0)X + εψ0X((1 − ψ0)σ′(ψ0) − σ(ψ0)),

leading to

ε ≈ −
ψ0(1 − ψ0)σ(ψ0)

τ2(ψ0) X +
ψ0

2 (1 − ψ0)

τ2(ψ0)2
X2 (1 − ψ0)σ(ψ0)σ′(ψ0) − σ(ψ0)2 .

Assuming σ/τ2 and σ′/τ2 are both small, and that τ3 and τ4 are much smaller than τ2, we 

have the approximation

Var(ψ∗) ≈
2τ1(ψ0)2ψ0

2(1 − ψ0)2

knτ2(ψ0) . (30)

If we restrict attention to the independent setting, and assume that μ = n/p is very small, then 

we may draw on the results in Section 5 and solve the equation explicitly. We have τ1 ≈ 1 

and τ2 ≈ (1 − ψ*)2μ, while τ3 and τ4 are moderate multiples of μ2. We conclude that, to first 

order in n−1,

𝔼n ψ∗ = ψ0,

Varη(ψ∗) =
2pψ0

2

kn2 .

(31)

Regardless of their exact distribution, if the eigenvalues are sufficiently concentrated around 

1 that τk ≪ τ2, then we will have a ratio of variance due to random selection of causal SNPs 

to the variance due to random genetic effects and genetic phenotypes (the variance 

considered in standard analyses, given in (9)) of

2τ1
2ψ0

2(1 − ψ0)2/knτ2
2(1 − ψ0)2/nτ2

=
τ1

2ψ0
2

k . (32)

Appendix C: Proof of Theorem 4.3

Taking UΣV* now to be the singular-value decomposition of Zo/ p, we compute the rotated 

phenotypes
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z = U∗y = U∗Zcu + σeε′ .

where ε′ := U*ε is another vector of i.i.d. standard normal random variables. Thus

𝔼 [zi
2] = σe

2 +
σg

2

k 𝔼 [U∗ZcZc
∗U]

ii
.

Using (10), the estimator ψ* will satisfy

0 = σe
2Cov wi(ψ∗), wi(ψ∗) +

σg
2

k Cov wi(ψ∗), 𝔼 [U∗ZcZc
∗U]

ii
wi(ψ∗) . (33)

We have

U∗ZcZc
∗U = U∗(ZoB + δ) (B∗Zo

∗ + δ∗)U

= U∗ZoBB∗Zo
∗U + U∗δB∗Zo

∗U + U∗ZoBδ∗U + U∗δδ∗U .

Since the rows of δ are uncorrelated with mean 0 we have  [δ] = 0 and

𝔼 δδ∗ = In ∑
ℓ = 1

k
σδℓ

2 .

By definition, U∗Zo = p∑V∗. Thus

𝔼 U∗ZcZc
∗U

ii
= si

2 ∑
ℓ = 1

k
∑
j = 1

p
pV jiB jℓ

2
+ ∑

ℓ = 1

k
σδℓ

2

= γi + k − kσδ
2 si

2 + kσδ
2

(34)

where

γi: = ∑
ℓ = 1

k
σ(ℓ)

2 (ζiℓ
2 − 1), ζiℓ = σ(ℓ)

−1 ∑
j = 1

p
pV jiB jℓ ,
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and so

𝔼 zi
2 = θ−1 1 − ψ0 + ψ0σδ

2 + (
γi
j + 1 − σδ

2)ψ0si
2

= θ−1(1 − ψ0)
1 − σδ

2

wi(ψ0) + 2σδ
2ϕ0 +

ϕ0
k γisi

2 .

Thus (10) becomes

0 = 2σδ
2ψ0ψ∗ + (1 − σδ

2)(ψ∗ − ψ0) Var(wi(ψ∗)) +
ψ∗(1 − ψ0)

k Cov wi(ψ∗), γi(1 − wi(ψ∗)) .

By the same sort of calculation used in the previous proofs, and making use of the fact that 

the ζiℓ are approximately independent standard normal variables, we may write this as

0 ≈ τ2 2σδ
2ψ0

2 + (1 − σδ
2)(ψ∗ − ψ0) + σγX,

where X is approximately standard normal. Solving to first order in σδ
2 yields (20). The result 

then follows immediately, by the same sort of calculation as above.
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Fig 1. 
Estimated variance of average heritability estimate for 1000 random phenotypes, from each 

of 100 randomly selected subsets of k causal SNPs. Points give empirical variance estimates 

taken over simulated datasets and lines give the theoretical predictions from Theorem 4.2.
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