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High-resolution and real-time 3D sensing from cameras is a long standing challenge in the

robotics and computer vision community. This thesis proposes a system wide optimization strategy

for embedded vision systems by providing a software-hardware design approach that jointly

improves multi-camera arrays and reconstruction algorithms for improved 3D reconstruction.

The proposed approach builds on state of the art research efforts of multi-camera systems

and multi-view methods to simultaneously estimate system pose and 3D scene. Existing works

are reviewed and summarized to provide a theoretical baseline of the field. To improve the

robustness and efficiency of the estimation, geometric and epipolar principles of cameras are
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leveraged to formulate configuration decisions, on which the proposed algorithmic methods

are based. These configuration implications are leveraged to formulate highly parallelizable

and scalable reconstruction methods. The first goal of the estimation methods involves sparse

3D solutions for localization and map initialization that in turn serves as a prior for the dense

reconstruction. A set of semi-dense and dense reconstructions algorithms are introduced that

leverage the sensory configuration and ego-motion estimation to improve on state of the art stereo

and partial light-field depth estimation methods, both in terms of estimation performance, and

computational efficiency.

Real-world evaluation of the proposed system design is accomplished through the devel-

opment of an open-source multi-camera sensing system, DevCAM. A heterogeneous FPGA, DSP,

CPU and GPU architecture is used as the basis for an experimentation ground that accommodates

18 high resolution cameras in a trinocular panoramic configuration, an Inertial Nagivation System

with differential GPS and high-performance networking capabilities. On this system, hardware

optimized pre-processing is demonstrated, alongside early results for 3D mapping.
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Chapter 1

Introduction

1.1 Motivation

3D computer vision involves the inverse estimation of scene geometry from a set of 2D

images. This core task is the foundation of two of the most rapidly growing research fields in

modern computer vision: Photogrammetry and Simultaneous Localization and Mapping (SLAM).

The applications for these techniques are widespread: robotics, autonomous vehicles, 3D mapping,

virtual and augmented reality, all of which revolve around a common theme of understanding

where a camera or set of cameras are located in the environment, and what the scene geometry is

which they observe. Many of these applications require this estimation of ego-motion and scene

reconstruction to be completed on a mobile device, and in real-time. This dissertation examines

the system design approach to localize and estimate a 3D environment on devices that are limited

in size, power and computational resources, more broadly known as embedded systems.

The scope of this thesis spans the full-stack system development: from low-level algorith-

mic research of computer vision methods, through physical array designs, hardware architecture

and embedded system development. What may appear more like a set of tasks for different

engineering teams in an established company, is actually the result of a targeted system develop-
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ment philosophy. Computational development has up to now often seen a divided approach to

bringing algorithms to hardware: begin by building great algorithms that prioritize quality and

accelerate them on specific hardware; or build hardware architectures that tackle one or a set

of algorithms. Much of this work idealizes a joint development approach- lets build a system

that simultaneously leverages physical constraints to facilitate both the hardware and software

development, to together improve the system performance, capabilities and reduce engineering

difficulty.

The development of embedded 3D multi-view cameras is motivated by the need of

dense, accurate and scalable scene reconstructions in real-time, results that are unmet between

photogrammetry and SLAM. Photogrammetry leads the geometric accuracy and model density

at the cost of computational time, and SLAM often produces real-time results, but far from the

qualitative results of dense photogrammetric reconstruction as portrayed in Figure 1.1. A set of

applications which will be discussed in the introduction and throughout this thesis motivate the

need ts gap, providing a solution that achieves processing of higher resolution data, on embedded

systems to yield denser and more accurate representations of the world.

Figure 1.1: Comparison of Photogrammetry and SLAM Advantages
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1.2 Problem Formulation

A camera consists of a sensor-lens pair, which when combined with a set of processors can

be considered an embedded vision systems [WBI+19]. Commonly the sensors are accompanied

with a set of Digital Signal Processors (DSPs), which in the imaging field are known as Image

Signal Processors (ISPs) [DD19]. Higher-level processors such as Central Processing Units

(CPUs) and Graphics Processing Units (GPUs) accompany camera systems for a variety of

tasks such as additional processing, interfacing and system control [NJ19]. When images are

acquired by a set of sensors Sk, we receive discreet 2D matrices of pixels I(x,y)t representing

the accumulated light flux over an exposure time at time t. These pixel values can be referred to

as 2D projections of light rays reflected from the points in the 3D world [GW02]. For all image

points xi there exists a 3D world point Xi which lies on the line in space though that point in

the image plane and the camera centre Ck [HZ03]. From a single viewpoint, it is therefore not

possible to determine the exact location of the world point Xi, but it is possible to constrain the

world point to being somewhere on a line defined by the image point, the camera center and the

camera projection matrix P. When two or more cameras see the same world point, it is possible

to recover the location, assuming that the lines defined by each image point and camera centers

converge to a point in 3D space. More commonly, we aim to find the point in 3D space which

minimizes the overall re-projection error of the estimated point for all cameras [HZ03].

A combination of optical and analog sensor performance affects the Signal to Noise Ratio

(SNR) as well as the efficiency by which light rays are converted into optical signals. These factors

all contribute to different types of image noise which is extensively described in [VA13] which

factor into mis-estimations of image point locations affecting 3D reconstruction accuracy [HJ11].

Recent sensor developments have enable for various image processing tasks to take place directly

in the silicon of the sensor instead of requiring them to be computed with other resources. This is

normally for pre-processing tasks such as down-sampling, filtering and rectification.
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Figure 1.2: Single camera geometry assuming a Pinhole camera model

In multi-sensor systems, cross-view correlations are required to compute scene geometry

based on projective geometry. Cognitive matching of areas across multiple viewpoints is com-

monly formulated as a statistical selection problem [Hir05]. We aim to find a point to point match

across images that agrees in a local neighborhood as well as globally across the image. Sparse

reconstructions only address points of particular uniqueness while dense methods commonly

evaluate points for every pixel [Jes09]. In this work, we will discuss both sparse, semi-dense

and dense methods for scene reconstruction. Sparse approaches will mainly be discussed as a

means to estimating relative poses and motion of camera systems, as well as scene initialization.

Semi-dense approaches highlight features in density that vary across the image, often coming

down to contours The computational cost of evaluating every pixel with every other pixel in a set

of images scales quadratically with the number of pixels and has a general complexity of O(N2).

This has fostered the development of 1) algorithms that approach linear complexity with number

of pixels O(N) and 2) hardware acceleration methods that enable the processing to be highly

parallelized [SHW+14].

In embedded camera systems, the system requirements are driven by the application and

as such it is possible to optimize for specific performance characteristics. While an optimization
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in all objectives is often not feasible, we formulate a generalized goal for embedded 3D vision

systems as a minimization problem of the following properties.

• Scene reconstruction error- the Sum of Absolute Differences (SAD) or Sum of Squared

Differences (SSD) (Equation 1.1) of estimated world points X̂ to world points X . This is

a measure of correctness of geometric estimation of world points. When considering a

vision system, we typically consider errors in both image and world points and as such

minimize a weighted sum of both errors as described in Equation 1.2 from [HZ03]. The

dMah represents the Mahalanobis distance with respect to the error covariance matrices for

the measurements xi and Xi.

SSD = ∑
i

d(Xi, X̂i)
2 (1.1)

min
xi,X̂i,P

∑
i

dMah(xi,PX̂i)
2 +dMah(Xi, X̂i)

2 (1.2)

• Reconstruction latency- the duration between when the frame set from the sensors is

captured and when the computed depthmap or world points are estimated.

• Reconstruction throughput- how many world points that are estimated per second. In the

case of depthmap data, this value is in pixel disparity estimates per second.

• Hardware processing- the power efficiency, cost and size of the compute modules accompa-

nying the optical sensors that estimate scene geometry from raw input data. These more

generally also apply to memory requirements, I/O performance specifications and digital

operator performance.

• Engineering development time- while not a system specific objective, being able to rapidly

iterate
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System design requires a selection of design parameters which in the case of passive

vision systems is the hardware configuration, reconstruction algorithm, and choice of hardware

acceleration units for each part of the algorithms. Formulating an objective for each design choice

allows for improved overall performance. This section will introduce the problems related to the

individual parts of the system design choices with common objectives.

The first part of every 3D reconstruction pipeline in physical systems consist of a set of

pre-processing tasks that prepare a raw image for image point matching and triangulation across

multiple sensors. These pre-processing tasks are critical to multi-view reconstruction performance

due to their direct effect on image point accuracy, matching performance and reconstruction

robustness [ACM04]. Debayering algorithms estimate a per pixel RGB value from a sensor where

individual pixels are filtered to different light wavelengths. Due to the interpolating nature of

the algorithms over 3x3 and 5x5 windows, this acts as a low-pass filter [LGS+14] adding noise

to the image point locations and as such reducing reconstruction accuracy. Further processes

such as flat-field corrections, de-noising and rectification all affect pixel intensities I(x,y) and

need to be chosen and built to minimize reconstruction error. While these techniques affect

geometric accuracy, they to a large extent also affect hardware acceleration requirements and

performance. Depending on the algorithms and operation precision it is possible to impact overall

throughput, latency and drive hardware specification such as on-chip memory and operations per

second [QMS+19].

To reconstruct a scene there needs to be knowledge of the camera projection matrix P

which maps a world point to an image point in a camera. This is commonly assumed to be known

as a calibrated prior in the system. The camera matrix P is composed of intrinsic K and extrinsic

matrices [R|t] which describe the internal distortion and camera pose respectively P = K× [R|t].

During the reconstruction, we want to choose the P matrix which minimizes the geometric error as

in equation 1.3 as shown in [HZ03]. The calibration of the system should therefore the geometric

accuracy of the system when completed in advance of system use, or during auto-calibration and
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dynamic re-calibration.

min
P ∑

i
d(xi,PXi)

2 (1.3)

The work [HZ03] summarizes the method of triangulating two images points to one world

point. We can intuitively break down the problem of improving the world point estimate from

two or more views to improving the image point location estimate in each view, and choosing

the correct match between the views. Image point estimates, whether in sparse or dense methods

are therefore targeted at being solved to sub-pixel coordinates in an image I(xi,yi) which is

the most accurate point projection of the world point Xi. In the case of Epipolar imaging such

as in the work by [BBM87, BB89], this extends to sub-pixel accurate 2D line definitions that

describe the Laplacian zero-crossings. The second problem of matching between views assumes

a binary result- it is either a correct or incorrect image point match. The point matches are

determined from heuristic decision of finding the most likely match from a set of potential image

points. Using more sophisticated feature descriptor improves matching performance but also

impacts computation time and complexity negatively [Bau00]. Every incorrect match which is

not rejected by an outlier rejection method, negatively contributes to the reconstruction accuracy.

It is therefore important that the algorithmic choice of image point identification and matching

methods be carefully choices to align with the overall system goals of reducing geometric error

and computational requirements.

1.2.1 Hardware Acceleration Design

A majority of embedded computer vision pipelines leverage functional decomposition

to distribute computational tasks across a set of processing resources. The most common set of

available processing architectures are grouped into general-purpose architectures (CPU, GPU),

dedicated architectures (ASIC, DSP) and configurable architectures (FPGA) [ZSC+17]. Figure
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Figure 1.3: Hardware design trade-offs for ASIC, FPGA, CPU and GPU architectures based on
evaluations from [ZSC+17]

1.3 provides an overview of the hardware architecture trade-offs from a set of commonly available

embedded architectures based on summaries provided by [ZSC+17]. A key factor which plays

into every architecture is the ability for data streaming to be buffered into memory elements

and the input/output capabilities. These frequently bottleneck system throughput and are mostly

architecture manufacturer dependent. We can generalize the goal of the hardware-software

co-design choices as the design space optimization D = H ×A× I ×P where H ,A ,I ,P are

hardware, algorithmic, parameter implementation choices, to achieve minimal power consumption,

smallest form-factor, lowest latency, and highest throughput.
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1.3 Hypothesis

Multi-directional epipolar geometry can be used to improve embedded multi-camera

scene reconstruction accuracy and efficiency.

This thesis will focus on the joint formulation of the design of an embedded depth esti-

mation system from acquisition platform through reconstruction algorithms and implementation

implications. To validate the hypothesis, quantitative and qualitative comparisons will be done

on a novel multi-directional sensor configuration. The hypothesis will be tested in the following

ways:

1. Comparing the reconstruction accuracy of a trinocular camera system and accompanying

algorithm to that of traditional stereo reconstructions. If the estimated depth values are

statistically more accurate across observations in a scene, the reconstruction improvement

is deemed validated.

2. Comparing the pose estimation of a trinocular panoramic system to a stereo panoramic

system. If the pose error is less for the trinocular system, the scene reconstruction accuracy

improvement is also deemed validated.

3. Finally, the proposed geometric camera configuration and it’s associated semi-dense imple-

mentation are compared in efficiency through quantitative spatial resolution per unit time.

If higher resolutions or throughputs are demonstrated, the efficiency is validated to have

been improved.

The scientific impact of validating this hypothesis will positively impact the capabilities of

mobile multi-camera systems in their use of estimating 3D scenes. The improved reconstruction

accuracy will enable systems to achieve greater ranging distances for a given baseline and will

improve the spatial resolution of panoramic systems. Added processing efficiency will reduce

both power and computational resource requirements, making the adoption of such systems as
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imaging and sensing modules easier. These key enabling points would greatly impact how passive

vision sensors fit into the larger 3D sensing ecosystem, capturing more sensing value across more

application domains.

1.4 Applications in Autonomous Vehicles

Figure 1.4: StarCAM Camera Array on the UCSD AVL Autonomous Vehicle Platform

One application domain that is a prime example highlighting the need of scalable and

robust embedded multi-camera systems are autonomous vehicles. The industry at large has faced

a long standing development challenge of 3D sensors with the necessary ranging, resolution and

cost to meet the requirements of widespread adoption in consumer vehicles, rideshare and delivery

systems. Current state of the art vehicles capable of L4 autonomy commonly employ a suite of

sensors including LiDAR, Cameras, Radar and Inertial Navigation Systems (INS) to combine

strengths of the different sensing modalities, while also serving as information redundancy. This

combination of sensors sums to costs, an order of magnitude too high for commercialization,

driving the need for systems that are capable of similar sensing and perception at drastically

more favorable pricing. Due to the affordability and availability of CMOS sensors (largely driven

by mobile telecommunication market), leveraging arrays of these enables us to create sensing

systems favorable in capabilities to high end LiDARs but at a fraction of the cost. Table 1.1

compares the technical sensing capabilities of LiDAR sensors and a research camera array that
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Table 1.1: A comparison of LiDAR and a Proposed Multi-Camera System for 3D sensing

Velodyne-LIDARs DevCAM
Trinocular PanoramicHDL-32 HDL-64E Puck Alpha Puck

Range (m) 100 120 100 300 80
Range Accuracy (cm) 2 2 3 3 5-200
Horizontal FOV (deg) 360 360 360 360 360
Vertical FOV (deg) 41.3 26.9 30 40 86
Refresh Rate (Hz) 5-20 5-20 5-20 5-20 20
Points per Second
(Millions)

0.695 1.3 0.3 2.4 1990

Spatial Resolution
(points/m2@100m)

2.94 8.65 1.78 10.49 914.29

Power Consumption (W) 12 60 8 30 60
Output Speed
(Gb/s)

0.1 0.1 0.1 1 3

Price ($) $70,000 $85,000 $7,999 $100,000+ $20,000

will be introduced in Chapter 6 and is depicted in Figure 1.4.

One of the technical challenges faced in existing Autonomous Vehicle systems is the

robust discernment and tracking of 3D objects in a scene, at distances sufficient to meet stopping

distances and guarantee safe navigation. Assuming a vehicle operates in an urban environments

at speeds of 100 km/h with an overall system reaction time of 1 second, it’s detection distance

for pedestrians, bikers and road construction needs to exceed 100m to reach a full stop. While

these numbers are solely to convey a general sense of requirements, we can now consider the

sensor data requirements. A Velodyne HDL-32 LiDAR would only return a handful of points per

square meter at 100m, a vision system can easily return in the hundreds to thousands of spatial

samples for the same spatial swath. They key to note is that due to the density in sensory samples,

we are able to greatly improve our spatial detection and tracking of objects by leveraging image

sensors. In Chapter 5.1 a review of ranging accuracy will be discussed. While LiDAR sensors

have superior absolute and constant ranging accuracies, multi-camera arrays will be shown to

demonstrate reasonable depth accuracies despite the inverse relationship of the accuracy to the

distance of the detection.
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1.5 Applications in Cultural Heritage

Another application field of 3D sensors is Cultural Heritage documentation. Across

the world, historic sites are subject to environmental and man-incurred degradation, and it is a

matter of time before certain history will forever be lost. Cultural heritage digital documentation

involves the detailed mapping of such sites using non-destructive methods, often in 3D. Different

archaeological and historical context is required for different sites, changing the demand of

spatial resolution and geometric accuracy. Figure 1.8 illustrates a high level workflow for data

acquisition, processing and analysis across various landscape scale, building scale and artifact

scale documentations.

Figure 1.5: A sparse photogrammetric 3D reconstruction of the Templo de Los Guerreros at
Chichen Itza using ground and aerial photography.

While various sensors provide different modalities across the geometric and photometric

(light color and intensity) reconstructions, one of the key challenges throughout is to complete

data acquisition in a thorough and efficient manner at resolutions satisfactory to long-term analysis

needs. Certain remote sites may only allow for a few hours of data acquisition because of weather
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conditions, and others in war zones are subject to days before being permanently destroyed.

Rapid data capture with real-time feedback and coverage is therefore desired. Let us consider

a case study of an iconic Maya site, Chichen Itza, located in Quintana Roo, Mexico. The site

covers a surface area of approximately 5 square kilometers, with hundreds of structures ranging

in size between large pyramids, temples to small single-room sized buildings. Iconography

covers certain walls and ceilings of the structures, with geometric details as small as millimeters.

Archaeologists have studied the site for over a century, investigating the structures, artifacts

and iconography, all to decipher a better understanding of the Maya civilization. Due to strong

regulatory access control and political implications, few field experts get the opportunity to access

many parts of the site in person, and those that do, sometimes only get a handful of hours. This

motivates the digital documentation to complete archaeological research digitally, rather than in

person. The only problem being- how to digitize a site of this size to resolutions required for

meaningful study? Figure 1.5 shows a sparse photogrammetric model of one small section of the

site, derived from ground and aerial imagery. A majority of the site was captured using 120,000

high-resolution images over the course of a week using a 42MP Sony mirror-less camera and a

set of DJI UAVs. While the data collection was carefully planned, there remained areas that were

missed, and others were captured with insufficient resolution for thorough documentation. The

reconstructions alongside camera pose estimates were calculated months later leveraging clusters

of GPU workstations and state of the art photogrammetry packages to derive results as can be

seen in Figure 1.6.

The reality of many reconstructions that happen months after data collection, is that you

realize that acquisition mistakes were made, data is missing, incomplete, and that there isn’t

always a way to go back. Much of this thesis has been motivated by the mistakes faced in the

field. The below points summarize some of the desired imaging system characteristics that would

facilitate the efficient 3D mapping of archaeological sites.

1. The system should be able to localize itself within the environment that it is capturing,
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Figure 1.6: A dense photogrammetric 3D reconstruction of the Templo of the Grupo Inicial at
Chichen Itza using ground and aerial photography.

providing feedback of areas that have already been capture, and those that have not.

2. The system would ideally reconstruct the scene geometry on device, providing real-time

feedback on reconstruction accuracy.

3. The system should be compatible with the logistical acquisition implications of mapping a

large-scale site. Power consumption should be minimal, the system should be compact, the

imaging system should support the available lighting conditions, and capture both detail

and context.

The requirements for a real-time mapping system, as defined, are ambitious, but it is with

these goals in mind, that the set of systems derived within this work are developed.
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1.6 Organization of Material

This thesis follows a set of co-dependent research areas (Figure 1.7), focused on building

an overall multi-view reconstruction infrastructure. In the introductory Chapter 1, the research

focus was introduced with a general formulation of the embedded multi-view design problem. It

was motivated through two application domains: Autonomous Vehicles and Cultural Heritage

Documentation.

Figure 1.7: A summary of material organization within this thesis

Chapter 2 reviews the state of research in the field. It highlights the outstanding challenges

and discusses the difficulties that will be addressed within this work.

Chapter 3 introduces the key epipoplar constraints that are discussed to be leveraged for

the creation of efficient embedded multi-view systems. It discusses the effects of baseline and

disparity on system reconstruction performance, as well as introducing the effect of disparity
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orientation on feature orientation and geometric resolvability. This is discussed in the context of

stereo, trinocular and partial ligh-field arrays. The multi-view configurations are then extended

to cover spherical coverage, to meet the efficient data capture of full panoramic and spherical

capture devices. The final part of this chapter discusses the importance of adequate camera array

calibration and proposes a novel target design to address multi-camera calibration.

Chapter 5.1 introduces different types of image features which are triangulated into space

to provide scene reconstructions. A novel semi-dense edge based feature set is introduced that is

motivated by it’s computational efficiency and the spatial accuracy in both image space and scene.

The edge feature matching and triangulation is illustrated and the feature values are compared

with results to sparse corner features and dense patch based reconstruction.

Chapter 5 introduces the considerations to hardware acceleration and how we can leverage

the efficient algorithmic development to ensure efficient and fast reconstruction within a target

architecture. Specifically, memory optimization is addressed in vision streaming settings, as

well as the importance on control of image pre-processing. Within this Chapter, a novel pre-

processing algorithm and implementation is also introduced to demonstrate the ability of improve

reconstruction dataflow and data-dependency.

Chapter 6 describes the physical implementation considerations of a multi-view embedded

system. It introduces an Open-Source infrastructure that facilitates the re-configurability of

multiple small camera modules connected to processor boards capable of synchronizing all

connected sensors, capturing at full resolution to onboard storage or which can be off-loaded

over a high-speed networking interface. The implementation of a set of multi-camera arrays is

demonstrated leveraging this novel development infrastructure.

The final Chapter 7 leverages the trinocular panoramic camera configuration built in

Chapter 6 to capture and reconstruct real-world data on a moving vehicle. It extends the recon-

struction work to include ego-motion estimation as well as full scene reconstruction. Evaluation

of performance is completed in a number of comparisons. Firstly synthetic ground-truth data
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is generated for an identical system, where pose and depth estimation is compared to ground-

truth. The real-world system is co-located with a LiDAR unit and reconstruction performance is

evaluated for a temporal sequence on an urban road setting.

This thesis is concluded in Chapter 8 by summarizing the contributions to the field, the

limitations of the proposed methods and opens the discussion to future works.

1.7 Acknowledgements
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3D Reconstruction Methods for Multi-Sensor Embedded Vision" in UC San Diego Research
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Figure 1.8: A workflow summary for the digital and non-destructive documentation of cultural
heritage sites using a suite of sensory data acquisition platforms.
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Chapter 2

State of Research of Multi-Sensor 3D

Systems

This chapter reviews the state of research in embedded sensor arrays to reconstruct

scene geometry. Sparse and dense multi-view reconstruction techniques have emphasized the

computational complexity associated with scene reconstruction, which to date do not scale well

to real-time processing on mobile processors. Hardware software co-design for embedded camera

systems plays a critical role in dense scene reconstructions affecting accuracy, robustness and

performance which will be reviewed in this work. The first part of the survey evaluates mechanical

configurations of systems that consist of two or more camera pairs. Special attention is given to

array layouts with respect to epipolar geometry and the resultant reconstruction difficulty and

limitations. The second part of this chapter reviews the algorithmic methods to extract robust,

dense depth from multiple sensors, followed by considerations on implementations and hardware

acceleration techniques for different processor architectures. Existing solutions are evaluated

based on these factors and a summary of state of the art system results are provided along with

outstanding problems.

Sensor trade-offs for different environments and conditions are largely discussed in
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Figure 2.1: a) Trinocular FPGA camera introduced by [JZLA04].b) and c) traditional parallel
configurations which leverage GPU and FPGA processing architectures respectively. d) lightfield
array introduced by [BKM+19] with epipolar constraints as described in Figure 3.1.

[WSK+13, SLK15, NML+13, LD91] and will not be re-visited in this survey. Instead, only

passive multi-camera vision systems will be evaluated with focuses on the following topics: 1)

mechanical sensor layouts for algorithmic reconstruction ease, 2) multi-view algorithms and 3)

underlying hardware architectures to accelerate the reconstruction algorithms.

2.1 Sensor Configurations

The most widely used multi-camera configuration is the stereo camera where two cameras

are placed with an overlapping Field of View (FOV). Proposed systems by [WBJ+07b, Ano,

HWLJ16, Yan06, GEM09, QMS+19, NJ04, How08] all leverage the traditional parallel stereo

layout where the cameras are separated by a fix baseline and each have the same FOV. This

dominant configuration is to uphold the epipolar constraint to reduce the search space in the

stereo matching techniques. No self-contained real-time embedded system was found to have
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been designed to leverage non-parallel configuration as the basis of the design, but many surround

vision systems with large, overlapping FOVs leveraged stereo principles for Visual Intertial

Odometry (VIO) [JO04, KKN+12].

Trinocular camera systems have the added benefit to allow for increased configuration

options. They can be arranged in a co-planar L-configuration, as verteces of an equilateral triangle,

and any configuration which is not co-planar. The L-configuration provides the benefit that both

the camera to the side and the vertical camera with respect to the center camera are constrained

by separate epipolar geometries [ZZW13, JZLA04]. In the case of cameras that are not co-planar,

a common configuration is an object of interest centric set of camera poses (all cameras are

configured inwards). This is shown in [WT99, WW06, MCMOM09, MID02, MK00] and provides

increased viewpoint for object reconstruction when the object has an overall convex geometry

facing the camera system. Finally, the research highlighted in [CCHL95] provides an approach

to solve for an optimal trinocular configuration that minimizes the parallelogram defined search

area of a central camera given the projections of the two epipolar lines from the separate cameras.

When considering more than 3 passive cameras that constitute a vision system, the degrees

of freedom of the configuration grows with each added camera. The general set of configurations

spans three trends: firstly bullet arrays have all cameras facing inwards creating rings [Xu18],

secondly arrays that form a planar grid as seen in [WJV+05, VWJL04, VJM+15], and finally

arrays with a subset of cameras from the grid arrays, where the cameras form co-linear series like

in [BKM+19]. The benefit of inward facing arrays lies in the the ability to view all perspective of

an object for N-view reconstruction whereas co-planar arrays provide the ability leverage epipolar

geometry to robustly estimate geometry.
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2.2 Pre-processing

Pre-processing steps in embedded systems serve to enhance raw image data in advance of

view-point correlation, and play an important role in image point determination and hardware

acceleration performance. The below tasks are a representative subset of demonstrated methods

that are designed improve overall system performance.

• Debayering- For color sensors with a Color Filter Array (CFA), each wavelength color

band is separated for the respective color channels. To reconstruct a color value for every

pixel, a weighted interpolation is used which also acts as a low-pass filter [Reu17b]. Tradi-

tionally debayering is accomplished with a 3x3 or 5x5 weighted bi-linear interpolation with

color weights alternating depending on the pixel location. Each color value is calculated

accordingly, and the interpolation for the green channel is shown in Equation 2.1. More

advanced filtering and enhancements methods are proposed by [MHC04] and [MAC06]

which are widely used in open-source implementations and commercial software packages

such as [Mat17] and [Bra00].

ĝ(i, j)) =
1
4 ∑
(m,n)

g(i+m, j+n)

(m,n) = {(0,−1),(0,1),(−1,0),(1,0)}

(2.1)

The proposed methods by [FZY09, RH13, ZWW13b] summarize FPGA acceleration meth-

ods for such debayering/demosaicing tasks through the use of highly parallelized bilinear

interpolation implementations on FPGAs.

• Image enhancements- In many cases images captured in the world are subject to noise,

areas of under or over exposure and motion blur. A set of filters can be used to improve

image quality and achieve a variety of image enhancement effects such as in works [Lee80],

[OR90]. This is commonly to reduce the noise characteristics and to increase robustness
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in the point matching. Another critical step to finding good features and achieve good

matching is adequate contrast and intensity values distributions. Image stretching techniques

such as [Yan06] and [AF81] are used to improve the image histograms and maximize the

range of values for a certain pixel bit-depth. [SP11b] reviews common image enhancement

algorithms and how they can be accelerated using custom hardware configurations on

FPGAs.

• Rectification- Images are rectified to accommodate for intrinsic parameters such as lens

distortions. Additionally, in the case of multi-camera systems, the images are also rectified

to parallel configurations to satisfy the epipolar constraint. Mechanical manufacturing

limitations prevent systems to be perfectly aligned, so there always needs to be some

amount of rectification to achieve a row-aligned search space. The rectification block in

an embedded vision reconstruction pipeline frequently becomes the throughput bottleneck

due to the memory requirement [HN15a]. Upon pixel stream receipt by the processor

in a FIFO scheme, the processor needs buffer the number of rows of rows the define the

maximum vertical remapping of the rectification. This in the case of sensors with an order

of magnitude of Megapixels requires 10s of Megabytes of on-chip memory footprints

per frame [HN15a]. The method provided by [OK08b] proposes the use of compressed

1D Look up Tables (LUTs) for the rectification, and a block-buffered implementation to

achieve minimal memory utilization in the forward-backward rectification.
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2.3 View-point Correlation

View-point correlation evaluates which points in one image match to image points seen by

all other cameras. Sparse methods use a feature detector such as the Harris corner detector [Der04]

or thresholded gradient eigenvalues [Shi94] along with a descriptor which describes the area in

the image around that corner. By comparing descriptor vectors, it is possible to identify the set

of most likely matches [Bau00]. Dense methods are tasked with finding a matching pixel with

the use of a matching cost. The most basic matching can be done using simple pixel intensities,

and more complex and robust methods evaluate textures and radiometric variation. These are

commonly absolute differences, squared differences, sampling-insensitive absolute differences

or truncated versions [BT98]. Window based approaches frequently use the sum of absolute

or squared differences, normalized cross-correlation and rank and census transforms [ZW94].

Finally more complicated similarity measures leverage mutual information and approximative

segment-wise mutual information [Egn00, Hir05, KKZ03, ZKU+04]. There is a large body of

literature which reviews the trade-offs of different stereo correlation methods, such as the surveys

completed by [SS02, SVdMG04]. This section however will briefly describe the dense stereo

correlation methods that have been implemented on real-time embedded systems.

[HWLJ16] Proposes the use of a Sobel Operator to derive image gradient information

prior to applying a Census operator with adaptive matching window sizes. The authors propose

a slight alteration to the census matching by replacing the center pixel value by the window

pixel average to reduce the center-weighing nature of the matching. The work by Gehrig et

al. [GEM09] leverages the state-of the art semi-global matching algorithm introduced by [Hir05].

This method uses Mutual Information (MI) as a cost function to match un-occluded pixels with

maximal MI while also minimizing the energy function over a global window size which provides

a smoothness constraint. An approximation to minimizing the energy function and as such finding

a match consistent with the global energy minimum is proposed by approaching the image point
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by eight or sixteen symmetrical directions. [LS11]

The works by [BBM87, BB89] have introduce native correspondence between viewpoints

by leveraging the Epipolar constraints. They construct a two-dimensional manifold defined at

the zeros crossings of a 3-dimensional spatiotemporal Laplacian providing geometric surface

continuity over time. While preliminary works demonstrated reconstructions from a single

moving camera, this was later expanded to sensor arrays to achieve full three-dimensional scene

reconstruction for real-time computation [BKM+19]. The benefit of this method is that the

matching across sensors is inherently self-occurring due to the spatio-temporal continuity in the

epipolar planes generated from all the sensors simultaneously.

2.4 Hardware Acceleration Design Optimization

This section will provide hardware acceleration methods which works have provided to

generate real-time dense reconstruction. The work by [HWLJ16] leverages a FPGA architecture

to accelerate the Sobel gradient operator, adaptive thresholding module and stereo matching

module. The implementation uses an off-chip cache window to accelerate the computation and

buffer larger data amount that cannot be contained within on-chip BRAM. [GEM09] Uses a

Xilinx Virtex 4 FPGA linked to a PC CPU to accelerate the image data. The data is pushed

using Direct Memory Access (DMA) to the fabric of the FPGA where one or two SGM blocks

complete the left-right consistent matching. The implementation is pipelined and parallelized to

achieve improved performance at minimal power and clock speed. The DeepSea G2 stereo system

proposed by [WBJ+07b] uses a multi-architecture approach to optimize performance and leverage

the benefits of each respective architecture for different tasks. The stereo rectification, background

model generation (scene segmentation) and projection space (projection of disparity maps into

point clouds) are all completed on an FPGA, while the stereo correlation block is accelerated in

a custom ASIC, the pre-processing is done on a custom DSP and finally all system interfacing
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and user application are running on a PowerPC CPU. The proposed system in [BHF+10b] pairs

a Xilinx Virtex 5 FPGA with an Intel IXP 460 CPU to accomplish co-processing of the image

data stream. The D400 and D420 Realsense systems [Ano] uses a dedicated ASIC to complete

the full image processing and depth reconstruction. Finally Baker et al. [BKM+19] leverage an

MPSoC to compute the depth images in real-time. Part of the preliminary processing such as the

rectification, debayering and filtering happens on the FPGA while the epi-image creation and

surface reconstruction happens in the ARM cores of the CPU. The DRAM where images are

buffered, is shared between both architectures to improve data throughput.
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2.5 Performance Evaluation and Discussion

A number of system goals have this far been introduced. The dominant objective is

arguably the reconstruction accuracy and throughput. Due to the difficulty in knowing the correct

world points Xi and hence derive the system SSD, the evaluation in geometric accuracy remains

a largely unaddressed problem. Most algorithmic evaluation are done using benchmark data

with ground-truth depth values/ scene geometries. The works reviewed within this survey are

summarized in Table I. This provides a high-level overview of the different implementation

approaches for system designs. It is seen that a majority of systems leverage a parallel stereo

camera layout and many use hybrid architectures to achieve the desired frame-rates. The leading

set of systems are by [Ano] and [BKM+19] which are both commercial endeavors leveraging

ASICs and FPGAs respectively to accelerate the processing. Many publications did not state

power consumption for their system making it difficult to consider that as well as cost in the

Figure 2.2: A plot of dense disparity rates found in cited systems over time, taken from Table I
and complemented with an exponential trendline.
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evluation of the systems. The system performance in Table I is plotted over time in Figure 2.2 to

observe the improvement of performance over the last few decades. It is clear that the systems

have gradually improved, but there appears to be no clear trend in standardization of processor

architectures for such systems.
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2.6 Discussion: Open Problems

The development of a fully integrated multi-camera system capable of processing depth/scene

information on-board in real-time is proven to be a difficult task due to the multitude of problems

being addressed. There needs to be a logical hardware-software co-design that maximizes system

performance to achieve the specified requirements. Due to the disjunct efforts in system devel-

opment, largely driven by varying applications, it is difficult to directly compare systems and

methods to improve overall performance. This section will discuss the set of problems that remain

unsolved throughout this research area, and highlight potential avenues for future research.

Stereo matching algorithms have been evaluated over standardized benchmarks [SSG+17]

on both synthetic and real stereo data to provide a fair and platform agnostic ground truth

comparison for performance. As every system is inherently different in the kind of data that it

collects, it is difficult to standardize on a way of validating the geometric estimation performance.

The world points Xi are not easily known and therefore techniques need to be developed to

estimate these with some confiden through non-vision based methods to evaluate new systems.

LiDAR has become a popular tool for creating ground truth depthmaps and scenes representations,

but these have shown many limitations. It is expected that improved and standardized methods

will be developed to easily and critically evaluate embedded multi-view systems. Additionally, an

important part in depth estimation from closely co-located sensors is to understand edges, in what

direction they go, and which of them contribute to occlusions. From a stereo system, an occlusion

manifests itself in a non-match which is normally quantified as a geometric error. It would be

important to introduce an evaluation metric that considers reconstruction performance at edges

and their ability to understand the nature of edges and occlusions. Finally, it is difficult to evaluate

photometric correctness of any camera system. While geometry is more easily approached with

different methods, photometric evaluation requires a full light-field representation. This is most

easily accomplished in simulation but would be important to evaluate in real-world systems.
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A large problem in embedded research is the time commitment to building and validating

systems. While theoretical research lends itself to a scalable approach of researching problems,

involving hardware in the loop frequently limits the extent of research given the same resources.

Many commercial endeavors also assume a faster development time requirement, pushing inte-

gration time as a factor into design optimization. It is important to evaluate whether a design

for a custom ASIC should take place, which increases the development time by at least an order

of magnitude when compared to FPGAs and two orders of magnitude compared to a traditional

CPU implementations. It is therefore invaluable to factor in difficulty, feasibility and timing of

system integration when developing systems.

The evolution of hardware architectures has played a important role in the development

of embedded systems at large. Industry is fostering the continuous target of bringing increased

computational power to smaller and more power efficient processors, largely driven by the mobile

tele-communication industry. The future of embedded camera systems is largely dependent on

the future of computation. Systems are still only operating at very small resolutions (< 2MP) to

achieve real-time performance when compared to sensor resolutions (8+MP) common in systems

found at the time of this survey.

[GEM09] Introduced temporal smoothing in depth estimation to improve depth estimation

over time, however there largely lacks research in multi-view dense optimizations over time.

When only consider a single time step of points, these are subject to larger error than if they were

observed from multiple cameras over time as the cameras move. SLAM and photogrammetry

methods use dense optimization techniques to optimize reconstructions over time but due to the

computational complexity is not even feasible in real-time on large computational systems. This

will become of major interest for embedded research as processor performance improves over

time.

The overall performance in Figure 2.2 show that the field of dense embedded vision is still

largely not keeping up with regular video frame rate RGB captures. The problem for efficiently
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solving depth and scenes in real-time given limited hardware resources will continue to rely on

hardware-software co-design methods to maximize performance.
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Chapter 3

Camera Geometry

3.1 Epipolar Camera Geometry

The common camera converges a set of light rays in the world onto a planar sensor, where

pixels discreetly sample the flux of the light field. Knowing exactly where the camera is, how

the rays pass through the optical assembly, and how these get accumulated in electrical signals,

allows us identify up to scale, where these rays originated. With two or more cameras, we are

then able to find the point in 3D space which fits the intersection of two or more rays [HZ03].

The camera projection matrix P describes the mapping of 3D world points Xi to image points

xi in the 2D image plane and the Fundamental matrix F maps a point x to an epipolar line in

the other image of a stereo pair, on which the corresponding point x′ lies according to epipolar

geometry. Figure 3.1 shows the point projections of a single camera, stereo cameras and multiple

parallel cameras. Assuming we have a calibrated multi-camera system (we know the fundamental

matrices for every respective camera pairs), to get a dense match across images, we need to find

the matching points x′i for every xi. Inherently this poses a 1D search problem for every point

that needs to be matched. The importance in geometric sensor layout affects the matrix F , and as

such, the equation of the epipolar line in the second image [HZ03]. Searching across a single
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row of pixels greatly improves performance when compared to searching for a match with a line

that spans a diagonal in the image where any sub-pixel point may be the matching point. The

computational implications will be further discussed in Section 1.2.1. As such, we aim to choose

a sensor configuration that minimizes the computational cost to solve for multi-view matching.

This almost always implies the requirement for sensors to be parallel with each other, with image

centers co-located on a single axis or plane. Figure 3.1 shows the the effect of multiple sensors

which are parallel and in-line imager centers. We can observe that all epipolar lines are parallel

as well as covering the same row of pixels for sensor respectively. A point in space is therefore

projected in the same pixel row of all sensors, given that it is visible by all cameras.

Figure 3.1: Epipolar principles in single, stereo and multiple camera systems. a) monocular cam-
era observing two world points. b) stereo cameras with parallel and non-parallel configurations
and their epipolar lines. c) co-linear camera array with epipolar planes constraining image points
to the same pixel row.

The second effect of relative sensor placement has to do with a less commonly addressed

issue, but an important note introduced by [MWS+19]. Every physical system assumes me-

chanical and electrical mis-alignments, noise and non-perfections and as such, even state-of-art
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stereo camera integrators such as [Ano], cannot build an ideal stereo camera. Image rectification

serves as a way to remap pixel values according to some transformation which in many cases

is a combination of a perspective transformation and lens un-distortion. This pixel re-mapping

involves either forward-backward mapping with interpolation on the source pixel values [LZ99],

or a forward only mapping with splatting and interpolation on the output [CDK99a]. With

increased pixel mapping distances, the image resolution is affected and therefore it is desired

to minimize perspective transformations and strong distortions to maintain maximum ability

to match the correct sub-pixel points between images. Figure 3.2 demonstrates the change in

re-mapping distances when comparing parallel and outward facing stereo cameras. It is noticeable

that during the rectification process, the resolution is reduced for the outward facing system.

Figure 3.2: Comparison of the perspective transformation associated with non-parallel stereo
cameras compared to parallel cameras from [MWS+19]

When deciding on a sensor configuration we try to achieve two optimizations: firstly we

align the sensors so that the reconstruction accuracy is improved and as such the scene world

points SSD is minimized; and secondly that the algorithmic matching is facilitated to reduce

computational complexity, increasing system throughput and decreasing system latency, hardware

requirements, power and size.
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3.2 Disparity

3.2.1 Baseline, Disparity and Depth

This section will discuss the relationship of stereo camera baseline and it’s affect on

disparity and consequently depth estimation. Human inter-ocular distance is approximately

75mm, allowing us to derive a notion of depth from what we see. While many visual cues are

derived from perceived flow of head movements, the view disparity is arguably one of the primary

notions that allows us to comprehend the geometry of what we are looking at, and the position

of our viewpoint. In machine vision, a similar principle applies, we use the disparity between

observed features to triangulate it’s location in 3D space. This relationship essentially comes

down to the following key equation:

Z = f · b
d

(3.1)

For an image disparity d that we observe between two or more observations, with reference

camera of focal length- f , and stereo baseline b, we obtain a depth Z. This gives rise to a critical

proportionality Z ∝
1
d assuming a constant scale factor f ·b. Given a human inter-ocular distance

of 75mm for a pair of cameras, Figure 3.3 shows how the inverse proportional relationship

of disparity affects the depth estimate. Consequently, near objects, demonstrate a disparity

that can be bounded by a maximum disparity value while objects that appear further approach

zero-disparity.

When deciding on a multi-camera baseline, the distance will affect a number of character-

istics that we must consider. Firstly, it changes the disparity range in the search space is completed.

With larger baselines, the maximum disparity for closer objects will be larger, increasing the 1D

search space for a rectified stereo pair, and consequently costing more computational and memory

resources. The other factor is the effect of depth precision. Assuming that it is possible to localize
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Figure 3.3: Disaprity- depth relationship of an example stereo camera system (dual
See3CAM130) with a baseline of 75mm

image feature to some sub-pixel accuracy, depending on the baseline, that will impact the depth

accuracy. As, such it is important to consider all these factors in the configuration of multi-view

systems.

3.2.2 Directional Disparity

Feature types include corners, edges and patches. While these provide respective ad-

vantages in different image representations and will be discussed further in Chapter 5.1, one

key aspect needs to be considered when deciding on camera geometry- disparity and feature

orientation. In the case of corners, they are well defined in both horizontal and vertical directions

since they lie on areas of both large x and y gradients. In the case of edges or patches however,

it is possible that they are localizable only in one direction, which in the case of multi-view

reconstruction, plays an important role in triangulation. Consider two road markings observed

from both a horizontal and vertical pair of cameras located on a vehicle (presented in figure 3.4).
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The Ref. Camera is shared between the horizontal and vertical stereo pairs, and both respective

pairs are theoretically perfectly aligned with unit intrinsics (no lens distortions). The first lane

marking, 1, is a horizontal line. In the case of of the Ref. Camera and the Right Camera, this

line is coincident with the epipolar line between both cameras. A disparity estimate can therefore

not be achieved, and consequently the depth estimate of that horizontal feature is not possible,

except by interpolating from neighboring areas, where we can estimate the depth from unique

feature matches. Consider now the stereo pair formed between the Ref. Camera and the Top

Camera: the lane marking 1 is perpendicular to the epipolar lines, and can easily be uniquely

defined in that axis, allowing for a robust disparity and depth estimate. While edge features are

naturally ambiguous in one direction, it is also the case in patches that demonstrate weak textures.

In the case of a Census transform that overlaps with a perfectly horizontal edge, unless there is

a unique texture, it is difficult to estimate a disparity from a horizontal stereo pair. The second

feature example in Figure 3.4) is a vertical line as observed from the three camera perspectives.

Figure 3.4: Demonstrating the effect of horizontal and vertical disparity
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In that case, the Ref. Camera and the Top Camera have vertical epipolar lines which align with

the vertical lane marking feature, unable to define a disparity and depth. The horizontal camera

pair is however able to localize the feature perpendicularly to its disparity.

The road marking example has shown, that in cases where perfectly horizontal or vertical

features are observed by horizontal or vertical stereo cameras respectively, it is difficult to estimate

the depth directly. In the event that a diagonal world feature is observed, it should therefore be

possible to constrain it using both a horizontal and vertical stereo pair. This is where we introduce

trinocular camera configurations, leveraging multi-directional disparities to improve our depth

estimation. This thesis introduces a novel constraint which enforces this multi-view prior:

For two ideal stereo pairs orientated perpendicularly, co-planar, and with equal baseline,

directional image features observed from both must have equal disparity (Disphor == Dispver),

equating to the same depth.(Zhor == Zver)

The introduction of this constraint will be further discussed in Chapter 7 where we can

leverage it for outlier detection and improved disparity estimation. With two perpendicular

observation pairs, it should be possible to resolve all directional features in a scene, but what

happens when we over-observe a scene with redundant directional disparities? Figure 3.5 shows

a grid array of 9 cameras (3x3) that observes a sphere in a scene. This configuration approaches

the commonly used light-field arrays where there are upward of 9x9- individual observations.

In this case, we see that the epipolar lines converge around the principal point of the reference

camera, and that the sphere can be triangulated from the circle observations from all cameras.

The problem however with this configuration is that the grid array implies that the baseline

(distance between focal points) does not remain constant for the horizontal, vertical and diagonal

observations, which consequently changes the disparity offset of the observed circles.

Let us now re-arrange these cameras in a circular pattern with equal baseline, Figure 3.6.

What we suddenly see is that the circle observations are all offset by the same disparity, forming a

disparity circle which through triangulation of the array baseline, allows us to estimate the depth.
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Figure 3.5: A grid array of 9 cameras that share a central reference camera. The surrounding
cameras have epipolar lines that converge at the reference camera.

This observation formulation would enable any feature to be robustly triangulated, but with the

disadvantage than diagonal and vertical epipolar lines will be more computationally demanding

to search than horizontal only, since the image sensor dataflow is on a row basis, increasing the

memory buffering requirements to meet both the rectification demands of the system as well as

the rows to fill the maximum disparity search window about the search point in the reference

image. Additional discussion will be provided in Chapter 5.

3.3 Spherical Configurations

Embedded systems often require fields of view (FoV) that extend beyond that of a single

camera, or an array of cameras facing the same direction. While increasing the FoV through

changing the optical lens element, is an option up to approximately 180deg for fisheye lenses, it

comes at the cost of reduced spatial resolution. It is therefore favorable in many cases to increase

the number of cameras and simultaneously capture different FoVs. In the case of a monoscopic

panoramic configuration, it has often been desired to co-locate the focal points of all cameras as

shown in SubFigure 3.7 a), which yields a system that is mechanically unfeasible to assemble,

but that provides a strong constraint for the algorithmic stitching of the images. This constraint
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Figure 3.6: A 9 camera array in circular configuration with equal baseline. The implication is
that the disparities must all be equal, and lie on a disparity circle offset from the central reference
camera principle point projection into all other cameras.

is that the extrinsic parameters are solely defined by a rotation and no translation. Rotating the

cameras with an offset that is as small as possible while allowing it to be physically feasible yields

a configuration as shown in 3.7 b). The implications are however that the set of perspectives do

not share a coincident focal point, and therefore require any algorithmic projection and stitching

methods to consider both a rotation and translation between the respective cameras.

In the case of stereo pairs, the same principles apply. The main choice of stereo-panoramic

configurations comes down to whether the stereo pairs are kept parallel or follow a spoke (radially

outward facing) design. As discussed, parallel stereo pairs provide unique advantages for the

search reduction to image rows (epipolar lines of parallel pairs), and reduce the loss of spatial

resolution. When patterned spherically, these stereo configurations assume a position as shown in

Figure 3.8. Parallel stereo pairs mechanically interfere when spherically patterned unless they are

interleaved with an appropriate baseline.

Overlapping stereo interleaved pairs allows for a fully panoramic view field to be captured,

with depth estimation across it. Figure 3.9 shows how two world points X1,X2 are observed

from one of the 8 stereo pairs in the array x1,x2. When considering the projection into spherical
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Figure 3.7: Monoscopic camera configuration of 4 cameras: a) Co-located camera focal-points
(mechanically unfeasible), b) Offset rotation (mechanically feasible)

Figure 3.8: A comparison of parallel stereo and radial stereo panoramic camera configurations

coordinates, and unwarped to cartesian coordinates, one can see that the image observations form

a continuous panoramic band, with all observed points, being epipolar constrained within each

respective stereo pair.

The number of stereo pairs required to fully observe a panoramic view circle an be
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Figure 3.9: Stereo-Panoramic configuration in the context of a unit sphere projection model

calculated from the horizontal FoV of the sensor, lens pairs. If applications require larger vertical

coverage, up to the a full Spherical FoV, additional camera rings can be tilted upwards and

downwards respectively to increase that vertical coverage. A certain overlap is normally preferred

to account for the lens vignetting that may slightly reduce FoV on corners. Examples of monocular

and stereo, multi-ring panoramic configurations for a embedded cellphone camera modules are

shown in Figures 3.10 and 3.11 respectively.

CamNo.hor = ceiling( 360
FOVhor∗Overlap%)

RingNo.ver = ceiling( 180
FOVver∗Overlap%)
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Figure 3.10: Panoramic configuration with 2 bands of See3CAM130 cameras for a larger vertical
FoV

Figure 3.11: Stereo-panoramic configuration with 2 bands of See3CAM130 cameras for a larger
vertical FoV

3.4 Calibration

Robust multi-camera calibration is a fundamental task for all multi-view camera sys-

tems, leveraging discreet camera model fitting from sparse target observations. Stereo systems,

photogrammetry and light-field arrays have all demonstrated the need for geometrically consis-

tent calibrations to achieve higher-levels of sub-pixel localization accuracy for improved depth

estimation. This work presents a calibration target that leverages multi-directional features to

achieve improved dense calibrations of camera systems. We begin by presenting a 2D target
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that uses an encoded feature set, each with 12 bits of uniqueness for flexible patterning and

easy identification. These features combine orthogonal sets of straight and circular binary edges,

along with Gaussian peaks. Our proposed feature extraction algorithm uses steerable filters

for edge localization, and an ellipsoidal peak fitting for the circle center estimation. Feature

uniqueness is used for associativity across views, which is combined into a 3D pose graph for

nonlinear optimization. Existing camera models are leveraged for intrinsic and extrinsic estimates,

demonstrating a reduction in mean re-projection error of for stereo calibration from 0.2 pixels to

0.01 pixels when using a traditional checkerboard and the proposed target respectively.

Figure 3.12: Matlab stereo calibration toolbox to calibrate a stereo-pair of a stereo-panoramic
array

Geometric camera calibration allows a camera model to be fit to map the geometric

transformation of light through the optical elements of a camera system in addition to relative

extrinsics in the case of multi-camera systems. Such calibrations enable the mapping of observed

world features to image space, often needed in the case of multi-view and geometric computer

vision applications. Despite the emergence of auto-calibration methods which allow systems to
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Figure 3.13: Camera re-projection residual averages from an auto-calibrated photogrammetry
capture

solve for calibration parameters at the time of deployment, explicit calibration is required for

many industrial camera systems with limited computational power, yet real-time estimations

needs.

Camera calibration is divided into two major steps, including intrinsic and extrinsic camera

parameter estimation. Intrinsic calibrations are widely used across applications requiring physical

lens and non-perfect sensor-lens placements to be corrected. Lens distortions, de-centering and

focal lengths are the primary variables of such intrinsic calibrations. For extrinsic parameters of a

system, it is merely a relative pose R|t. Any vision problem involving the mapping or inverse

mapping of 3D world features into the image plane is subject to these physical effects that need

to be accounted for.

The proposed calibration target addresses a set of limitations associated with current
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Figure 3.14: Proposed encoded calibration target.

calibration methods. Firstly, current targets lack dense features that can be uniquely identified

across multiple-views, limiting the image-space feature distribution and hence suffering from

larger calibration errors around the edges and corners of cameras. Furthermore, a predominance

of strategies leverage local corner features that are subject to localization errors larger than if

larger features are used. This work therefore proposes a dense and unique calibration target

alongside a feature extraction algorithm, and formulates the optimization problem to obtain

camera parameters for improved calibration.
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3.4.1 Prior Work

Prior work covers a broad spectrum of approaches to fit a camera model from a calibration

target, ranging from 2D planar targets to 3D rigs, and features of varying type. The most common

approaches adopted across open-source vision libraries such as OpenCV [BK00] and Matlab use

a calibration approach based on a singular planar checkerboard and a traditional corner feature

detection algorithm [Zha00]. These detection methods achieve sub-pixel accuracy by solving for

the local corner features within a window that best represents convergence of tangential gradient

lines [FG87], or the minimum eigenvalue of the local gradient co-variance matrix [Shi94]. Such

checkerboard patterns can however only be detected when all inner corners are visible, making

acquisition of the pattern features difficult across the full Field of View (FoV) of a single camera,

and as such even more challenging for multi-camera systems. Figure 3.15 demonstrates the

coverage issues which arises from limited visibility. In the case of multi-view systems, it is

often desirable to enforce calibration constraints dependent on the system baseline direction.

Checkerboard edges only contain horizontal and vertical edges, which in the case of perpendicular

arrays (trinocular systems in an L-configuration, or lightfield systems with both vertical and

horizontal distribution of cameras) are insufficient to enforce geometric constraints. Augmenting

calibration targets with diagonal edges and circular features, enables such constraints to be further

increased.

Circular features have proven to improve localization accuracy due to their fitting from a

larger neighborhood [Hei00]. While the improved feature localization can improve geometric

calibrations, overall calibration quality is still subject to having full FoV coverage of features

to ensure the calibration accounts for corner aberrations in a set of observations. In the case

of circular patterns without unique encoding, these still require all features to be visible, again

introducing the visibility limitation shown in Figure 3.15.

Alternatively, a fractal target encoding local square patches of decreasing size has been

used [SDG+16], with the work emphasizing the importance of sampling density and uniqueness
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Figure 3.15: Calibration target visibility with partially overlapping stereo field of views. Left-
traditional checkerboard target requiring full observations for detection. Right- proposed target
with unique local feature patches allowing for partial visibility.

to enable feature samples across the full camera FoV to achieve improved calibration. Despite

the coverage improvement from this target, the corner feature localization is still limited to the

accuracy of corner detection methods.

3.5 Calibration Target

This paper proposes a calibration target (Figure 3.14) designed to address limitations of

current calibration patterns and methods. Specifically it features uniquely encoded patches that

allow partial visibility and enable complete sampling across camera FoVs. The target leverages

diverse straight edges and circular features to improve the localization accuracy of feature fitting

and enables multi-view constraint enforcement.

Each target is divided into a set of arbitrary number of user-defined patches with a spatial

sizing chosen to match camera resolution and FoV for reliabale detection. Target dimensions

49



should be selected such that the size of the smallest circle features observed by a given camera

system results in reliable feature detection. The square patches as shown in Figure 3.16 consist of

large triangle-circle pairs that anchor the patch and enforce rotational in-variance. The rest of the

patch is composited with smaller triangle sets with circles of opposite gradient. The encoding for

each patch is achieved using this set of twelve smaller triangles and circles where the gradient

direction defines the binary value. This approach supports up to 212 = 4096 unique patches,

containing thirteen circular features each, resulting in up to 53,248 unique circle features.

Figure 3.16: Annotated sections of the calibration target patches.

Additional features can be added in a fractal pattern by sub-dividing each small triangle

by 4, enabling the spacing of 6 additional features per small triangle as can be seen in Figure 3.17.

Since complete patches need to be detected to identify the patch identifier, and with the desired

objective to have maximum image coordinate coverage of features, it is preferable to have more

smaller patches over increased fractal levels of circular features.

The square patches contain diagonals introduced through the triangular features. These

angled edges enable 8 different local gradient orientations (black to white transitions). Addition-
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ally the circle edges have 2π angular range forming close contour ellipses when observed. The

circular patches contain a continuous spherical gradients that assume a Gaussian distribution.

This gradient defines the local orientation of each circle that is used to derive the directions of the

peaks and may in the future serve as areas way for a secondary peak fitting method [WWW+18].

Figure 3.17: Example of a unique patch for a 3-level fractal target.

To ensure that the features are uniformly distributed with both white and black peaks

and edges of all directions, the patch identifiers are randomly sampled without replacement.

Furthermore each patch is randomly rotated pi radians to ensure a random distribution of large

circles across the target. At the time of detection, this orientation is recovered from the large

anchor circle and set of locations of smaller circles.

3.6 Detection and Calibration

The circular features in the proposed calibration target and patch encoding scheme require

a detection pipeline which leverages high sub-pixel localization accuracy to achieve reliable
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calibrations. We begin by an edge detection, followed by feature linkage to separate straight

lines from ellipses. Once all features have been fit, the patches are recognized from the feature

locations and identifiers to provide a dictionary of feature-coordinate pairs used by the model

fitting within the calibration. The full pipeline is depicted in Figure 3.18 and will be discussed

within this section.

3.6.1 Feature Detection

The importance of feature localization accuracy on calibration quality imposes the re-

quirement for good edge fitting, in turn used for the ellipse fitting and centroid finding. Sub-pixel

edge algorithms can use first and second order image gradients, with the first requiring additional

optimization to find local ridges and the latter explicitly being defined as the roots of second order

gradients. We use the steerable filtering approach introduced by [FA91] with user-tunable Gaus-

sian kernel sizes to locally steer the second order derivatives to the locally dominant orientation.

This provides an image gradient and an orientation image which is then used for solving for the

real roots of the bi-linear surface yielding continuous edges. Edges are linked to provide edge

point groups which belong to continuous feature contours as shown in Figure 3.19. With the help

of the feature fitting described in the next step, these are then separated into ellipses and lines,

rejecting any remaining outliers that do not meet fitting requirements and a minimum contour

Figure 3.18: Target detection pipeline.
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length.

Figure 3.19: Proposed calibration target edge point clustering.

The target uses circles as its primary features, which when subject to a projective transfor-

mation assume elliptical geometries [Hei00]. While locally non-linear lens distortions may affect

that assumption, it holds true as long as projected circles are small with respect to the overall lens

distortions. The ellipse fitting is done using a direct least squares approach proposed in [FPF96].

All contributing points within a linked contour are used for the fitting, and a secondary pass is

used to merge disjoint ellipse segments for an optimized fitting. All fit ellipses have a major and

minor axis diameter, eccentricity, with a center point and a fitting quality metric (mean point to

ellipse distance from edge points). These metrics are used to validate only reliable ellipse fits,

and the diameter is used to separate large from small ellipses with an Otsu threshold biased by

the ratio of large to small circles.
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The edge gradient directions of the ellipses are used to extract whether the ellipse is white

or black on an oppositely shaded triangle. This direction is identified from the ellipse curvature

normal direction and the locally dominant orientation from the image filtering. If they are in

agreement, both vectors point towards the ellipse center implying a white peak, and if they have

opposite directions, they imply a black peak.

3.6.2 Target Extraction

To implicitly match features across image views for the calibration, a direct identifier is

associated to each feature, stemming from the patch and identifier they lie in. These patches are

extracted from the local distribution of ellipse centers, which are referenced from the large ellipses.

Each patch is extracted only if all ellipses within the patch are confirmed valid. The features are

Figure 3.20: Evaluating localization accuracy of ground truth fractal target. The target circles are
detected in the original (a), target subject to projective distortion (b) and target subject to radial
distortion (c). Detected features are shown as green crosses in red circles, overlayed on the target.
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linked to the 3D world points from the target plane by associating the feature image coordinates

and world coordinates via their identifiers. A complete extraction of patches is demonstrated in

Figure 3.20a.

3.6.3 Model Fitting & Calibration

We leverage the located and matched correspondences to formulate the optimization

problem as a bundle adjustment problem: given the 3D points and the observed 2D locations

in each view, simultaneously optimize for the camera parameters (intrinsics and distortion

parameters) and the pose at each view such that the reprojection error is minimized. This bundle

adjustment problem can be solved using a variety of non-linear optimization strategies, with the

Levenberg-Marquardt optimization being commonly chosen to combine the convergence benefits

of both Gauss-Newton and gradient descent [Zis04]. For this problem, we utilize OpenCV’s

implementation of the Levenberg-Marquardt based calibration to optimize over intrinsics and

extrinsics.

Based on empirical evidence, it has been observed that it is beneficial to perform the

calibration process in two stages: In the first stage, for each camera separately, we estimate

and optimize the intrinsic parameters and pose at each view, minimizing the reprojection error

computed by projecting the world points to image space using the intrinsics and pose estimates.

Then, in the second stage, we use these intrinsics estimates to optimize for the relative extrinsics

between the left and right camera, by estimating and optimizing the pose of each view in

both cameras so that the relative pose between left and right camera remains constant, and the

reprojection error using these pose estimates and the fixed intrinsics is minimized. It has been

observed that separating the intrinsic and extrinsic calibration optimizations ensures convergence

to a better optima.
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3.7 Calibration Results

The results are divided into two sets of experiments with separate objectives: validating

the localization accuracy of elliptical features and evaluating the camera calibration performance

for monocular and stereo camera calibrations. We summarize these as:

• Sub-pixel localization accuracy of spatial images features given synthetically rendered

images with varying degrees of geometric distortions, to demonstrate target and algorithmic

reliability at extracting correct feature locations.

• Demonstrable and real-world results for the intrinsic and pose estimation of a stereo camera

moved around a checkerboard and fractal target. Evaluating the reprojection error residuals

across the images using a) only a monocular approach for intrinsic calibration and b) a

stereo calibration to solve the relative pose using the monocular estimated intrinsics.

3.7.1 Localization of Features in Synthetic Targets

For the first experiment, we generated a synthetic fractal target and its ground truth

sub-pixel level feature locations. To compare the feature localization accuracy, we subjected

the target, and the ground truth feature locations, to different kinds of distortions: projective

homographies (to yield targets similar to Figure 3.20b), radial and tangential distortions (to yield

targets similar to Figure 3.20c), and then ran our feature extractor on the warped targets.

For projective distortions, we create a projective transformation matrix of the form:

T =


cos(θ) sin(θ) 0

−sin(θ) cos(θ) 0

0 0 1

 (3.2)

and varied θ between −15 and 15 degrees.

56



For radial distortions, we considered the 2-variable model for radial distortion:

xdistorted = x(1+ k1r2 + k2r4 + k3r6) (3.3)

ydistorted = y(1+ k1r2 + k2r4 + k3r6) (3.4)

r2 = x2 + y2 (3.5)

Where x,y are the undistorted normalized image coordinates. For our experiment, we set

k1 = k,k2 = k2,k3 = 0, where k varied logarithmically between 1e−5, and 0.33.

For each of the tests, we compute the ground truth feature locations in the warped image

by applying the same transformations to the ground truth feature locations, and computing the

mean L2 distance between the detected feature locations and the ground truth locations.

We present both qualitative and quantitative comparisons to demonstrate the performance

of the feature extractor. Figures 3.20b and 3.20c show that our model can accurately detect most

Figure 3.21: Feature localization error (in pixels) as a function of the image distortion, on our
target vs min-eigen feature detector on checkerboard.
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of the features seen in the ground truth target image (Figure 3.20a, even under large distortions.

Quantitative results are shown in Figures 3.21 and 3.22, where we compute the mean feature

localization error vs distortion magnitude.

We observe that our feature extractor can localize features to accuracies greatly smaller

than 0.1 pixels even under extreme image distortions while the traditional corner extractor for

the checkerboard only reached accuracies in minimal distortions conditions of 0.15 pixels with a

rapidly degrading localization when either projective and radial distortions were increased.

3.7.2 Real-world Camera Calibration

The second set of experiments evaluated real-world performance of the proposed cali-

bration routine. For data capture, we used dual TRI120S Lucid machine vision cameras (Sony

IMX304 sensor) with fixed 12mm Computar lenses (V1226-MPZ), shot at an aperture of f/5.6.

The acquisitions were separated into 3 datasets, each with 50 frames- one with the checkerboard

(see Figure 3.23a), one with the fractal calibration target fully seen in all views (see Figure 3.23b),

Figure 3.22: Feature Localization error (in pixels) as a function of the radial distortion, on our
target vs min-eigen feature detector on checkerboard.
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Figure 3.23: Sample calibration frames used to evaluate the checkerboard (left) and fractal
(center- full, occluded- right) calibration targets.

and one with only a partial/occluded views of the fractal target (see Figure 3.23c). The targets

were displayed using a 65 inch 4k TV with an aspect ratio of 16:9.

For each of the target frames, we extracted the features with their identifiers and matched

them across different views to establish feature point correspondences. The checkerboard ones

leveraged the OpenCV pipeline with the findChessboardCorners and cornerSubPix functions for

feature extraction (these use the algorithm proposed by [Shi94]), while the fractal target ones used

the proposed feature extractor from the previous section. Then, using OpenCV’s calibrateCamera

function, we estimated the intrinsic and extrinsic camera parameters for the cameras.

All evaluations were done with the True Pixel Error (TPE) metric, which compares the

reprojected world points with the 2D image features given an estimated camera pose. This metric

is used across multi-view bundle adjustment problems such as photogrammetry, and is considered

a good measure of consistency for pose estimation and feature localization [FW16].

Monocular and Stereo Calibration

The monocular calibration considered the left and right cameras of the stereo captures

independently, with the results presented in Table 3.24.

We pose the stereo camera calibration as a non-linear optimization of the camera intrinsics,

extrinsics, and the relative poses between the left and right stereo cameras given the 3D world

coordinates of the feature points and the 2D image coordinates of the features seen in each frame
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Figure 3.24: Results table for the mean re-projection error (pixels) of checkerboard and fractal
target calibrations in both monocular and stereo configurations.

by both cameras. For an efficient and accurate implementation, we first leverage the intrinsic

parameters for both the left and right cameras using OpenCV’s calibrateCamera previously

calculated in a monocular seeting, and utilize these estimates to optimize for the extrinsics using a

Levenberg-Marquardt based non-linear optimization, using OpenCV’s stereoCalibrate function.

Both monocular and stereo calibrations are evaluated using the checkerboard and fractal

targets. The mean reprojection error is calculated for each 3D world point back projected into

image coordinates from observed views. The statistical distributions of the mean reprojection

errors is summarized in Table 3.24 and the errors are plotted over the image coordinates in Figure

3.25.

We validate the coverage of the respective targets from the various calibration views in

Figure 3.25. The plots include the image coverage of points across the full dataset of 50 frames

for both the checkerboard and fractal data. The shear difference in number of points indicates

that the fractal target better samples the space, providing improved data for the calibration. The

color magnitude shows the reprojection error for the estimated points. Despite the significantly

improved coverage with the proposed fractal target, there remain small areas in the corners that

lack points. This is likely due to the patches in those areas not being fully detected, eliminating

them from being used for the calibration.
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Figure 3.25: Image coverage of points detected from Checkerboard (left) and Fractal target
(right) over accumulated 50 frames. Color magnitude represents the reprojection error (pixels).

3.8 Discussion

The previously introduced re-projection error is an important metric to validate geometric

camera calibration. During the calibration optimization, pose and intrinsic parameters are adjusted

to minimize this error resulting in the camera parameters and the respective error for them. Across

the photogrammetry community, this error is widely used to evaluate to global consistency

and quality of the reconstruction [FW16]- a lower error indicates improved reconstruction

and camera localization. In the case of calibration, we can similarly use it to evaluate the

calibration performance. Since this error is often on the order of sub-pixel values, it is necessary

to verify both that the localized image features are accurately localized before evaluating the

calibration. The first set of experiments that tested the effect of projective (Figure 3.20b) and

radial distortions (Figure 3.20c) on the localization accuracy highlighted that traditional corner

localization techniques only approach accuracies of around 0.2 pixels at best. The ellipse based

detections from this work are able to reach localization accuracies nearly an order of magnitude

better, localizing centers to around 0.01 pixels. Furthermore, the results suggest that increasing

the magnitude of geometric distortions affects both localization performances of corner points and

elliptical features, with the latter remaining more robust over greater distortions. It is likely that

extreme distortions which would yield worse localizations are rejected through the feature quality
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metric of elliptical fitting, a particular advantage over corner features that are more difficult to

validate. These results conclude that the localization performance of elliptical features is greatly

superior over corner features.

The second component of calibration evaluation focuses on the calibration quality which

were evaluated separately on monocular and stereo calibrations in a real-world setting. From the

results, we note that:

• Our feature extractor allows us to set up better feature point correspondences across different

frames, which gives us a significantly lower mean reprojection error as compared to the

standard checkerboard based calibrator (0.06 pixels vs 0.3 pixels).

• The uniquely identifiable patches allow the target to be partially visible, providing easier

sampling of feature points across corners and edges of the FoV. Figure 3.25 shows the

feature distribution for the checkerboard and fractal target respectively.

• Despite the improved and validated feature localization, there remains larger reprojection

errors across corner and edge segments of the image coordinates, indicative of an outstand-

ing systematic error in the camera model fitting. Additional radial parameters and local

surface deformations may be a future improvement to address the calibration performance.

The overall reduction in this error is indicative of improved overall calibration since there

is more local agreement to the solution. While the solution is limited to numerical optimization

methods such as the Levenberg-Marquardt, there may be cases where the converged minimum is

a solution that is not indicative to ideal geometry.

3.9 Conclusion

This paper introduced a fractal calibration target that uniquely encodes circular features for

robust multi-view camera systems. Elliptical feature detection is used to improve the localization
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accuracy over traditional corner features. Projective and radial distortion experiments confirmed

the ability of the detector to localize to 0.01 pixels, improving from around 0.2 pixel localization

accuracy in traditional corner detection methods. Monocular and stereo calibrations were tested

using a proposed fractal target, improving the reprojection errors compared to a checkerboard

calibration. Despite the improvements in calibration performance, systematic errors indicate the

limitation of existing camera models for geometric calibration.
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Chapter 4

3D Estimation and Localization

4.1 Feature Detection and Localization

At the core of all multi-view reconstruction algorithms lies the matching of image features

across views or time. In this section, an introduction of a novel semi-dense feature space will

be introduced, and compared to fully sparse and dense approaches. In the previous geometric

section, we have introduced the relationship of disparity and depth for a given system. While

the disparity is simply a distance between a feature of one image projected into another, and

the matched feature of that other image, this disparity turns out to be highly influential on the

derivative depth. Let us take a corner feature, that we localize to within 0.25px in both images,

that gives us a disparity accuracy of ±0.5px. This accuracy for an object at 10m distance from a

stereo camera will yield a depth accuracy on the sub-meter order. Consider now a world point

50m in away, the same disparity accuracy will yield a depth accuracies of many meters. The

accuracy relationship can be summarized in equation 4.2, and is plotted in figure 4.1. We can

therefore conclude that for accurately triangulating points, we need to maximize our localization

accuracy in image space, such as to minimize the disparity error, and therefore our depth error.
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Z = f · b
d

(4.1)

δZ = f · (b
d
+

b
d±δd

) (4.2)

4.1.1 Feature Purpose

Features are chosen to be uniquely identifiable so that they can be matched across views

and represent an estimation of the observed world. This opens the question of what features best

represent the scene- points, lines, curves, surfaces or volumes? In the design of 3D multi-camera

systems, we must choose our derivative representation to maximize our value in the data and with

it, the quality of that data. In light of uniqueness and representation, semi-dense edge features

provide a unique set of advantages over sparse corners and dense patch features:

Figure 4.1: The effect of disparity accuracy on depth accuracy assuming a 75mm stereo pair with
a 0.5 disparity accuracy
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1. They are well localizable due to areas of high gradient.

2. They often form a perimeter of geometries in an observed scene, providing the strongest

constraint on what that geometry is.

3. They are sparse enough to be handled scalably, while being dense enough to form a

reasonable representation of the scene.

4. They form continuities by associativity in image space, as well as over-time.

4.1.2 Subpixel edge localization

To extract edges, we must find areas of high-gradient, and fit the exact 2d line/curve

where this biggest change in the image happens. A number of first order derivative approaches

have been proposed, including the popular Canny detector [Can86]. The challenge with first

order methods, is that fitting splines to ridges is numerically more difficult than solving for the

roots of second order derivatives. Figure 4.2 highlights the difference in edge behavior between

original images, 1st order and 2nd order images. One can see that in the original image, it is

hard to localize the exact location of the edge. In the 1st order derivative case, an optimization

must be completed to fit a peak to the signal and consequentially, localize the maxima. Finally,

the second order derivative clearly shows that the zero-crossing is at the point of maximum

gradient, or the point in the image where the edge is located. As will be discussed, this root can be

solved for analytically using a least squares solution rather than being optimized over, reducing

computational complexity.

Image Derivatives

When taking image gradients, they have to be oriented to the local edge direction. The

common approach to estimate image derivatives is through a convolution with a set of gradient

kernels. Creating a kernel for each orientation is unrealistic, but Freeman [FA91] has shown
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Figure 4.2: Comparing edges of a) original image, b) 1st order derivative and 2) 2nd order
derivative. The second row plots the 1D samples of red lines depicted in the images.

that using of a set of basis filters to retrospectively steer the filtered response to any input kernel

orientation, is feasible. This section leverages Freeman’s steerable filter to derive both image

gradients steered to the locally dominant orientation, and the image roots of these second order

derivatives.

A set of 2D basis filters are designed using Gaussian derivatives with a standard deviation

σ and are plotted in Figure 4.3. The larger σ, the more smoothing that takses place, reducing

the filter sensitivity to noise. The input images are convolved with these basis filters and used to

reconstruct the dominant orientation and filters

The locally dominant orientation is extracted from the second order basis functions and

their respective Hilbert functions (used to offset DC component of the complex signals):

θd =
arg[C2,C3]

2
(4.3)
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where C1,C2,C3... are the constants in the Fourier series of the oriented energy E(θ):

EG2H2(θ) =C1 +C2cos(2θ)+C3sin∗ (2θ)+ ... (4.4)

In addition to directly obtaining the dominant orientation from the basis functions, we are

also able to extract an orientation strength:

S =
√

C2
2 +C2

3 (4.5)

Finally, to obtain the 2nd order derivative image, we steer the 2nd order Gaussian to the

locally dominant direction θd:

Gθd
2 = k1(θd)G2a + k2(θd)G2b + k3(θd)G2c (4.6)

Figure 4.3: A set of basis filters used to convolve the input images to estimate the 1st and 2nd
order gradients steered to locally dominant directions: a) G1a, b) G1b, c) G2a, d) G2b, e) G2c
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Root Finding

To find the roots of the image second derivatives, we consider a local interpolation which

for simplicity is kept to bi-linear interpolation. While a cubic interpolation improves smoothing

and reduces artifacting of the interpolation, it would require a 4x4 pixel window rather than a 2x2

for bi-linear interpolation. As such we leverage the linear intersection in both dimensions, in line

of the pixel center values, which yields a non-linear surface within it. A linear interpolation with

its root of the 2nd order of an image patch is shown in Figure 4.4.

For each unit square w(i+ 0.5, j+ 0.5), cast by the four adjacent pixels, we solve the

bi-linear system 4.7 of equations for the roots 4.9.

f (x,y) = a0 +a1x+a2y+a3xy (4.7)

Figure 4.4: 1D Image root/ zero-crossing of second derivative signal
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x =
−a0−a2y
a1 +a3y

(4.8)

The root of the image is guaranteed to be continuous to adjacent pixels if they share the same

edge crossing of a set of 4 pixels, forming a set of roots that form a contour. The set of edges

extracted from these image derivatives are shown in Figure 4.5 and 4.6.

Finally, this method also allows one to extract the curvature K and respective gradient K′

of each root:

K =
2a3(a1a2−a3a0)(a2 +a3x)3

((a2 +a3x)4 +(a3a0−a1a2)2)3/2 (4.9)

Figure 4.5: The location of an image root on 2nd order derivatives

Figure 4.6: Image roots on a synthetic stereo light post image, localized to sub-pixel accuracy
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The roots of the derivative of the curvature 4.10 are validated to be within the local

window range x ∈ [i : i + 1],y ∈ [ j : j + 1] to guarantee function correctness. The window

maximum curvature as the point along the contour with highest rate in change of local orientation,

may in certain cases be identifiable as a unique corner feature.

x =− c
d
,
±
√

bcd2−ad3− cd
d2 ,

±
√

ad3−bcd2− cd
d2 (4.10)

Most current methods leverage the Marching Cubes approach [LC87] which assumes

straight lines within the intersecting areas. Given that this approach achieves to match contours to

better sub-pixel accuracy in areas of high curvatures, it provides the benefit of reducing disparity

when applied to multi-view methods.

4.2 Matching

Feature matching is used to estimate disparities across stereo viewpoints of the camera

system, alongside temporal motion. We decompose the problem to a set of two independent

matches- the stereo match of the contours, and the 2D track of the image points.

The computational nature of matching is expensive due to the search space and candidate

matches. We therefore employ the epipolar constraint of the calibrated stereo pairs to constrain

the 2D search to a 1D search for contour intersections. Since contours are continuous, we find

the integer row intercept from the roots of the function that allow us to consider only a handful

of match candidates within a maximum disparity range. A Census transform ε(p, p′) = {0 ∈

p > p′,1 ∈ p ≤ p′} on a window centered about the root intersection candidates is obtained

to compute the Hamming distance cost C = εrightn − εle f t . A winner takes it all strategy is

used for independent curvelets, however, secondary matches are considered during a continuity

enforcement. Since curves are likely to be continuous in disparity, any roots of neighboring

curvelets, are re-evaluated to choose the consistent match candidate that minimizes cost and
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disparity change within a local neighborhood.

4.3 Triangulation

We triangulate feature depths using the intrinsic focal length f , stereo baseline b and

matched stereo disparity d using equation 4.11. Given that the contour disparities are continuous,

we have the choice of discretely sampling the contours are vertical image values, or to analytically

compute the 3D curvelets from the disparity.

Z = f · b
d

(4.11)

The following equation is the analytical solution to the disparity D(y) between two contour

curvelet solutions (a→ le f t,b→ right). It is important to note as seen in Figure 4.7 that the valid

range of the disparity is defined by the valid range of the curvelet. In the case where the left or

Figure 4.7: Curvelet reconstruction in 3D space from a set of matched image roots
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right curvelet maps to a right or left curvelet respectively, that crosses multiple pixel boundaries,

the disparities must be separated into two separate disparity/depth equations.

D(y) =
(b0a1 +a0b1)+(b1a2 +b3a0−b2a1−b0a3)y+(b3a2−b2a3)y2

b1a1 +(b3a1 +b1a3)y+b3a3y2 (4.12)

4.4 Ego-motion Estimation

We first use sparse feature matching between the cameras in the stereo pair, and using the

computed disparity, compute the 3D locations of each 2D feature in the image plane. We then

match the 2D features across different time steps and use the 2D-3D correspondences generated

from stereo to get 3D point correspondences between two timesteps. We use Umeyama’s

algorithm ( [Ume91]) to generate absolute pose estimates between the two timesteps, and use

these as our initialization for the pose between each frame.
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Chapter 5

Hardware Acceleration

5.1 Hardware Mapping of Vision Algorithms

Chapter introduced a set of algorithms that we would like to map to hardware architectures

for efficient and real-time processing. While there are extensive arguments to go with one

architecture over another, previously highlighted in Chapter 2, it is important to consider the

data flow of a camera system. The two main types of sensors: rolling shutter and global shutter

differ in the way they bin pixels. The first reads them one row at a time, while the latter bins

all pixel charges simultaneously. When the pixel data is streamed out to a connected processor

(often physically connected over high-speed data lanes on a PCB or serial cables), it is done

sequentially. As such, we cannot receive the last pixel of an image (bottom-right most pixel),

until we have received all other pixels in an image. When an algorithm operates on a set of pixels

simultaneously, it needs to be able to access them all before it can complete the computational

operation. This leads to an inherent data dependency issue, burdening any and every embedded

vision system. Images are dense samplings of a light-field, with charges being synonymous to

integration time of accumulated light flux. It is therefore necessary for us to keep intensity values

at each pixel, and keep a certain number of pixel samples for our computation. These physically
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translates to a per-pixel bit-depth (typically in the range of 8 to 12 bits) and an image resolution

(hundreds to thousands in each dimension). When combined, this naturally gives rise a large

data footprint ImageSize(bits) = bitdepth(bits)× resolution(pixels). These two fundamental

principles of image processing is what we will uphold and worry about when designing and

mapping our algorithms to hardware- 1) data is received sequentially from sensors, and 2) co-

dependent data must be available at the same time to be operated on, often requiring large data

buffers.

Figure 5.1 illustrates a general embedded vision system block diagram. We interface with

a set of image sensors over a serialized data interface such as MIPI or SLVS, decode the data

using de-serializers, and then have the choice of leveraging a set of operation blocks and memory

to compute our image processing task, before outputting it to somewhere. The big question is-

how do we design the algorithms, and map these to the resources (operators and storages) such

as to maximize throughput and minimize the latency of the whole system? If we have to buffer

whole frames, our on-chip storage is often too small, forcing us to cache to off-chip memory

(DRAM), with increased latency, and limited memory bandwidth. If on the other hand we only

cache to on-chip memory, we face the problem that we cannot store more than a few dozen image

rows, limiting our algorithmic options.

Figure 5.1: Dataflow of an embedded camera system
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Recall our goal to reconstruct the 3D geometry from a set of images captured by multiple

sensors simultaneously- we can now leverage the set of concepts introduced in the previous

chapters to optimize specifically this system data-flow. To summarize, we have thus far concluded

that: arranging our sensors in a parallel fashion reduces re-mapping requirements for image

rectification to achieve horizontal epipolar lines in a stereo case; direct feature extraction and

matching can be done on a sequential row basis, eliminating the need to buffer full frames for

the processing; leaving us the final task of mapping this efficiently to our limited resources to

minimize memory, latency and maximize the system throughput.

This chapter will begin by providing a high-level strategy to effective image processing

handling for the purposes of system performance, followed by a detailed investigation and proposi-

tion of a joint pre-processing algorithm for multi-view systems, accelerated on the programmable

logic of an FPGA. This pre-processing task is the largest data-dependency in the system since it

aligns input images to meet the epipolar constraint, facilitating the remainder of the processing

tasks.

5.2 Memory efficiency

Image streams arriving from the sensors are packaged in pixels chunks, or sets of pixel

chunks. Since both Bayered and monochrome sensors output single channel data, these are

represented with some bit-depth. In the case of 8-bits per pixel , this fits nicely in byte chunks,

however for 12-bits per pixel, it requires 2 bytes per pixel, with the second byte only being half

used, providing an overall packing efficiency of 75%. Alternatively, one can stack together 2

sequential 12 bit pixels, to use 3 bytes and have a packing efficiency of 100%. Once Debayered,

multiple color channels are similarly packaged, with the same goal to improve our pixel packaging.

In the case of embedded on-chip communication, it is common to use the Advanced eXtensible

Interface (AXI) to transfer data efficiently, which supports direct data packet formatting to custom
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or standard formats. For FPGAs specifically, we employ discrete or joint computation blocks

linked by such communication interfaces, allowing for fully pipelined processing architectures

with customizability on parallelism. Pixel values are cascaded down registers and operators, often

without needing to cache them. In the case of general purpose processors (CPUs), operations are

often handled asynchronously but sequentially with images stored in off-chip memory.

5.3 Splatty- unified demosaicing and rectification

5.3.1 Introduction

Image demosaicing and rectification are key tasks within multi-view computer vision

systems. To date, however, their implementations have been plagued with large memory require-

ments and inconvenient dataflow, making it difficult to scale them to real-time, high resolution

settings. This has motivated the development of joint demosaicing and rectification algorithms

and implementations that resolve the backward mapping dataflow for improved hardware imple-

mentation. Towards this purpose, we propose Splatty: an algorithmic solution to pipelined image

stream demosaicing and rectification for memory bound applications requiring computational

efficiency.

We begin by introducing a polynomial Look-up-Table (LUT) compression scheme that

can encode any arbitrarily complex lens model for rectification while keeping the remapping

errors below 1E-10 pixels, and reducing the memory footprint to O(min(m,n)) from O(mn) for

an m× n sized image. The core contribution leverages this LUT for a unified, forward-only

splatting algorithm for simultaneous demosaicing and rectification. We demonstrate that merging

these two steps into a single, forward-only splatting pass with interpolation, provides distinctive

dataflow and performance efficiency benefits while maintaining quality standards when compared

to state-of-the-art demosaicing and rectification algorithms.

Vision algorithms inherently depend on input pixel values and correctness of model
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assumptions that are used for higher-level cognitive and heuristic interpretations. A common use

case of image preprocessing is stereo depth estimation where two sensor streams, as illustrated in

Figure 5.2, are demosaiced and rectified before stereo matching can be used to extract pixel-wise

depth estimates using the epipolar constraint [Hal10].

The data dependency should in theory allow for the data to be operated on sequentially, one

pixel row at a time, without the need to temporarily store whole frames to calculate the output. In

reality however, most of the preprocessing pipeline implementations separate the stages whereby

full images are buffered between the steps. Additionally, both the demosaicing and rectification

can each be interpreted as a lossy interpolation step, which when stacked together result in an

unnecessary loss of data [HGG+11], which can be mitigated if we used one interpolation step

which did both of these tasks simultaneously. This work is motivated with a two-fold set of

objectives. Firstly, it is to create an algorithm that approaches ideal color and re-mapping results,

and secondly, it is to have it be optimized for a streaming, forward only mapping and First-in,

First-out (FIFO) data flow. By achieving this proposed flow, the hardware mapping becomes

inherently efficient. This results in a computational strategy that allows the data to be processed

using minimal buffer memory, thereby reducing the processing and memory requirements which

are often limited in embedded systems.

This section proposes a novel preprocessing algorithm and architecture, Splatty, that

simplifies rectification and demosaicing into a single forward mapping pass. At the time of this

publication, this unification has not been explored and it is the goal that the advancement of

video stream processing will enable accelerated image stream processing across systems with

ever growing sensor resolutions and frame rates.

5.3.2 Rectification

Rectification is a general image re-mapping process, used for correcting a set of distortions

that are introduced in the image capturing process: lens distortion, camera tilts, offset from focal
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Figure 5.2: Stereo Pipeline- top: traditional preprocessing, bottom: Splatty preprocessing

axes; as well as compensating for non-perfect placement of stereo camera pairs. This is common

in stereo depth systems [HJCE+16], where two cameras in a bifocal stereo apparatus are not

coplanar or row-aligned, and require re-mapping so that the epipolar lines in both the images are

pixel row aligned. It is usually the most computationally demanding step in stereo processing

pipelines (for eg., see Table 1 in [GHGB11]), and hence the focus of optimization, to improve

resource utilization.

There are two methods to perform rectification: forward mapping, and backward mapping,

with the latter being the dominant method. In forward mapping, each pixel in the input image

is mapped to a location in the output image, and the input pixel’s intensity value is used to

calculate the intensities at the image pixels in the neighbourhood of the output pixel, as shown

in top part of Figure 5.3. There are various methods to perform this extrapolation: the simplest

method is to map the output pixel to the nearest pixel location in the output image. However,

this approach leads to so called “holes” in the output image [CW93]. An improvement over this

approach is to use a bleeding or splatting technique, which extrapolates the pixel values from the

forward-mapped pixel to all its neighbourhood pixels, and depending on the distance it bleeds

over, it’s value is more or less dampened using a decay function. For example, in the method
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described in [She68], the intensity value falls off inversely with the square of the distance from

the mapped location.

Figure 5.3: Forward and Backward Mapping
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Stream (xi, yi, Ixy) Output Buffer

Forward Mapping
+ 

Channel selection

R, G, B

~50 rows
Debayered + Rectified 
Output Image StreamCamera
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Ch == R

Ch == B

Ch == G

Figure 5.4: Proposed algorithm architecture

Backward mapping aims to overcome the problems of holes in the output image, by

performing a reverse mapping: for each pixel in the output image, it finds the sub-pixel level

accurate location of a point in the input image which maps to it. Then, it fills up the output image

pixel by interpolating the intensity at the sub-pixel level accurate location from the intensities of

the pixels in its neighbourhood [MSH04]. This is shown in Figure 5.3. This approach yields good

results, but is difficult to implement in a streaming setting, where the input image is coming in

one row at a time, and buffering large number of rows is not feasible. The locations of backward

mapped pixels may not vary uniformly, and this necessitates buffering multiple rows for both

input and output images. [FMR+08].
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Adapting rectification to a streaming setting to operate in real-time is shown to be a

difficult endeavor by many academic and industry efforts. [BHF+10a] attempts to create a real-

time 3D vision system, where it uses rectification as a first step in their 3D vision pipeline.

However, their results are limited to small image sizes (640x480 px). Larger image sizes at 30fps

frame rates are not feasible on their systems, due to memory constraints. The work in [HN15a]

demonstrates that on state-of-the-art FPGA systems, it is still necessary to buffer image data to off-

chip DDR memory instead of having it all on the on-chip BRAM memory, which means there’s

signification I/O overheads involved. Furthermore, the remapping step of the full stereo pipeline,

is by a factor of 5, the slowest stage in the system throughput. One implementation by [OK08a]

has highlighted the feasibility to perform a radial only rectification with a backward mapping,

but this implementation and architecture does not allow for more general rectifications to take

place, and the output does not respect a FIFO order. [JHRN19] describe a lossy compression and

subsampling based rectification method, which can handle more general cases of rectification, but

it trades off reconstruction accuracy for reduced memory usage. We show in our results section

that we utilise even less memory than [JHRN19] (we use O(min(M,N)) space for LUT storage

vs O(M×N) for theirs, for an M×N pixels image), while keeping the reconstruction errors low.

5.3.3 Unifying rectification- Splatty

We propose that combining rectification and debayering into one will provide improved

dataflow as it reduces the in between buffering requirements, and may lead to improved accuracy.

This is because both debayering and rectification can be interpreted as interpolation steps, and

both these steps aren’t perfectly lossless. In that scenario, performing one lossy, joint debay-

ering+rectification step can be better than performing those two lossy steps, one after another,

especially if our performance on both these tasks is as good as the existing methods for each task.

We start off by decoupling the three channels and performing rectification on each channel

separately through one forward splatting pass. A Lookup Table informs the destination location
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of the splatting and a decay functions weighs the splatting to neighboring pixels in a set of output

buffer rows. These get divided out depending on a count that is accumulated by the splatting

contributions. Then, to improve the rectification result, we use the information of the green

channel to improve the results of the blue and red channels, taking inspiration from the method

proposed by [Cok]. This allows us to improve the reconstruction in areas with high frequency,

such as sharp edges.

5.3.4 Implementation Overview

We implement rectification using a forward mapping based approach. Not only does this

allows us to simplify the ordering of incoming stream of input pixels, it makes it easier for us

to perform debayering along with rectification in one go on the stream of pixels, since they are

ordered properly. It also allows us to map the input pixels as they come, and then discard them,

allowing minimal buffering at the input side. For the output image, we need to buffer a few rows;

the number depends on the extent of image distortion introduced by the rectification mapping.

For most of the cases of stereo rectification that we’ve encountered, the maximum width of the

output buffer does not exceed 50 rows. We present the algorithm flow in Figure 5.4, and lay out

the complete algorithm in Algorithm 1

5.3.5 LUT Compression

We note that the LUT compression is important because the full look up table size grows

with the size of the image. We compress LUT using a polynomial curve fitting scheme. In the

most general setting, a LUT is the value of the function f (xin,yin) at discrete points xin,yin, which

are the coordinates of the pixels in the input image. To perform LUT compression, we assume

that the output y coordinate, (yout) depends only on the input y coordinate (yin) as an nth order

polynomial function of yin: yout = a0 +a1 · yin +a2 · y2
in...an · yn

in. These coefficients will then be a
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Algorithm 1 Forward mapping based debayering and rectification
for each row in input image do

for each pixel, (xi,yi), in input row buffer do
The color channel at (xi,yi) in the bayer pattern: c
Find polynomial coefficients Px = LUTx[xi],Py = LUTy[xi]
Compute output coordinates: xo = Px(yi),yo = Py(yi)
Splat to the neighbourhood of (xo,yo), but only in the channel c

end for
if Top row in output buffer was not splatted to then

Normalise row, adjust the values in 3 channels, and pop it out
else

Do nothing
end if

end for

function of Xin, the input x coordinate. We store the coefficients in a table whose size is max(Xin)

For compression of the x coordinate LUT, we assume that even the output x coordinate xout

depends on the input y coordinate, yin, as a nth order polynomial, whose coefficients depend on

Xin, and can be found as above. We have assumed here that max(Xin)< max(Yin). If that’s not the

case, then we can flip the values and coefficient dependencies to be on xin and yin, instead of on

yin and xin, respectively. This way, we will be able to compress the LUT from size (xmax ∗ymax) to

(2∗min(xmax,ymax)∗ (n+1)), where n is the order of the polynomial we use for curve fitting. For

a full HD image (1080x1920), with even a 6th order polynomial, we see the memory footprint

decrease by > 100x, with minimal increase in the computational expense for calculating the

locations in the output image.

5.3.6 Splatting

We use a simplified version of the approach taken by [ZPVBG01], and [CDK99b] to

define an isotropic splatting function, since computing the parameters for an anisotropic gaussian

distribution at each pixel will be too computationally intensive for the demands of real-time

processing on FPGAs. The splatting function, which describes how the a pixel’s intensity
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Figure 5.5: Illustration of splatting mechanism. Note that we splat each pixel only to it corre-
sponding channel in the output image

contributes to the intensities of pixels in its neighbourhood, is defined as follows: For all pixels,

Po in the neighbourhood N(P
′
o) of pixel P

′
o, we can describe the contribution of Po to the intensity

of P
′
o as

S(P
′
o,Po) = IPo ∗ f (d(Po,P

′
o)) (5.1)

where IPo is the intensity of the pixel at location Po, f (.) is the fall-off function, which describes

the variation in the contribution as a function of distance, d(.).

Once we have the contribution of all neighbouring pixels, to the intensity at pixel P
′
o, we

normalize by dividing with the weights assigned to each of the neighbour’s contribution. This

can be expressed as follows:

IP′o
=

∑Po∈N IPo ∗ f (d(Po,P
′
o))

∑Po∈N f (d(Po,P
′
o))

(5.2)

We tested functions of the form f (d) = e−(d
p) and f (d) = 1

1+dp , for varying exponents p, and in

section 5.3.10, we show how varying the functional forms affected the reprojection performance.
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5.3.7 Rectification

The rectification step is automatically accounted for in the splatting destination. The

decoded LUT table provides the destination pixel address to where the weighted values need to to

be splatted to, and as such, there is no need for additional interpolation.

5.3.8 Debayering

To perform debayering, we start with the assumption that the channels can be decoupled,

and each channel is debayered and rectified together independently. After getting an initial

estimate of the channels, we correct our estimates for each channel by using the intensities of the

other channels, in a fashion similar to the method proposed by [Cok] Since each channel is being

filled out by the same input pixel, we can perform this correction as we are pushing the rows out

of the buffer. This ensures that each pixel of the output image stream is coming out debayered

and rectified.

5.3.9 Dataflow

The major novelty of Splatty manifests itself in the dataflow optimization of the algorithm

that lends itself to streaming processing. Image streams are generally transmitted as pixel rows,

which are buffered into row buffers. Our method operates sequentially on pixels as they are

incoming, directly deriving forward mapping coordinates through the polynomial LUT decoding.

The LUT memory footprint is of order N×O×B× 2, where N is the image height, O is the

polynomial order and B is the coefficient bit-depth. The decoding of the LUT is accomplished

through a decoding block, which evaluates the polynomial at the pixel location. Using the

destination pixel coordinates, a distance calculation block is used to calculate either the L1 or L2

distance norm. This gets passed to a decay function that calculates the splatting coefficient for the

neighboring pixels, which in turn multiply accumulate the results in the output buffer. Once the
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output row has been completely contributed to, a row state releases the row. This implies that

the number of output buffer rows needed is equal to the largest vertical remapping difference per

row defined by the LUT. As this can be precomputed after a camera calibration, logic synthesis

and architecture can be optimally adapted. This architecture lends itself to pipelining and block

parallelism that scales due to the eliminated data dependency issue that is present with a backward

mapping approaches.

5.3.10 Results

Look Up table compression

In order to find the polynomial order which best fits the rectification maps, we find

the mean squared error distance between the values predicted by the polynomial-compressed

rectification maps and the uncompressed maps for all pixels in the input image for each polynomial

order. This way we can find the smallest order polynomial which fits the mapping well (i.e. which

has MSE below a threshold, which we set to 1e-10).

Once we find the polynomial coefficients which best fit the mapping, we don’t have to

compute them again till we change the mapping itself. Therefore, the polynomial compression of

the Look Up Table needs to happen only when we’re calibrating the system.

In Figure 5.6, we present the mean squared reconstruction error as a function of the order

of polynomial used for polynomial curve fitting. We observe that a 6th order polynomial is

sufficient for compression of LUT for this type of rectification. For orders greater than 6, we see

that the errors do not decrease, and hence, in order to be as memory efficient as we can, we use

order = 6.
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Figure 5.6: Mean squared Reconstruction Error vs polynomial order

Splatting Function

For our splatting function defined in Equation 5.1, we vary the falloff function f and the

distance metric between two pixels, and choose the parameters which yield the highest average

PSNR scores on the Kodak dataset [Com20].

For each value of any parameter, we find the average PSNR over all the possible values of

the other parameters, over all images in the dataset. From these, the value of the parameter with

the highest PSNR value is chosen. We show the results in Figure 5.7. From the figure, we find

that the optimal splatting function would look like the following:

S(P
′
o,Po) = IPo ∗ exp(−‖Po−P

′
o‖4

1) ∀Po ∈ N8(P
′
o) (5.3)
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Figure 5.7: Variation of Average PSNR scores as we modify different parameters in the splatting
function
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where ‖.‖1 is the l1 norm, and Nk is the set of k nearest neighbours.

5.3.11 Debayering

Since most of the debayering algorithms in use have been proposed for the general

CPU+GPU architecture, we compare them with our C++ implementation in Table 5.1, comparing

their reconstruction accuracy (via Peak Signal to Noise Ratio values) on the Kodak Images

Dataset [Com20], along with the memory usage as a function of the image size, and the effective

number of passes that each algorithm takes to produce the final output. The last two metrics are

important, since multi-pass algorithms which need the full intermediate images in memory to

produce outputs cannot be used effectively in a pipelined setting, where we would want to buffer

the data, and use as few input and intermediate rows to produce an output row as we can. Because

of this reason we only present the PSNR vs passes and memory usage order-of-magnitude for

spatial domain based demosaicing algorithms, and skip the frequency domain and neural network

based algorithms, since passes and memory usage order-of-magnitude make little sense in those

scenarios. We also provide a more thorough comparison between all the different algorithms, by

looking at average PSNR score on Kodak dataset vs the memory usage for processing 1920x1080

images, in Figure 5.9. The results show that our algorithm is better than the existing single pass

algorithms, and some of the multi-pass algorithms ( [XO01]), while being orders of magnitude

more memory efficient than every other algorithm.

In the interest of space, we show the qualitative results from our algorithm and [MLC04]

on the complete Kodak dataset, and several close ups, in the supplementary material. The

qualitative results show that our algorithm produces fewer, or about the same visual artifacts in

high frequency regions (sharp edges) as the other approach ( [MLC04]).
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Table 5.1: Debayering performance of various algorithms on Kodak Dataset, measured by PSNR
in decibels, the effective number of passes to produce the output, and the order of memory
consumed.

Algorithm Avg. PSNR (dB) Num Passes Memory
Bilinear 30.889 1 O(mn)

Cnst. Hue 33.259 2 O(mn)
Malvar 34.337 1 O(mn)

Li 34.388 2 O(mn)
Kimmel 35.61 2 O(mn)

Hamilton 36.9 2 O(mn)
Gunturk 35.8 2 O(mn)
Proposed 34.937 1 O(min(m,n))

5.3.12 Rectification

To test our algorithm’s rectification performance in a real world setting, we use a series of

images from a stereo camera pair introduced in [MWS+19], and test our algorithm’s performance

on performing stereo rectification. As a implementation reference, we created a pipeline that uses

the works by ( [MLC04], [Har99], and [Zha00]), implemented in the OpenCV library debayering

and rectification functions. We also use [Har99] to create our uncompressed LUT. The rectified

outputs from the reference pipeline and from our Splatty algorithm are showing in Figure 5.8.

From the qualitative results from Figures 5.8 along with the reconstruction errors in Figure 5.6

we can see that our rectification is on par with the standard rectification algorithm in use today

( [Har99]), having a variation of less than 1e-10 in RMSE between pixel locations calculated

by [Har99] and ours, even though we use a fraction of the memory for rectification (as seen from

Table 5.4).

We also present a quantitative comparison between [Har99] and our implementation,

by comparing their performance on rectifying radial, tangential and projective distortions, and

their combinations. We use OpenCV’s initUndistortRectifyMap function to create uncompressed

LUTs from lens distortion parameters, which we then invert for use in forward mapping setting,

and [Har99] to create uncompressed LUTs from projective transformation matrices. We take a

high density checkerboard pattern, apply said distortions, and use both rectification pipelines to
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Table 5.2: Mean Absolute Error in corner detection after rectifying distortions using backward
mapping based approach ( [Har99]) and our forward mapping based approach

Distortions\Algorithm Bwd Mapping ( [Har99]) Proposed
Radial 0.8473 0.7177

Radial + Tangential 0.831 0.6998
Tangential 0.4831 0.2021
Projective 0.7678 0.9013
Average 0.7323 0.630225

undistort the images, and then compute the mean absolute distance between corner points in the

ground truth and the undistorted outputs from both pipelines (Table 5.2). Images generated in this

experiment are present in the supplementary material.

(a) Bayer Input (b) [MLC04] + [Zha00] (c) Our Algorithm

(d) RAW Bayer input (e) [MLC04] + [Zha00] (f) Our algorithm

Figure 5.8: (a),(d) Raw, unrectified image from right camera of a stereo pair, (b),(e) Debayered,
then Stereo Rectified Image using [MLC04], and [Zha00] (c)Debayered + Stereo Rectified Output
from our algorithm, (d)-(f) Close ups from respective images

Table 5.3: Splatty Implementation Resources on a Xilinx ZU15EG FPGA

Name BRAM DSPs FF LUT
Splatty 266 63 136954 113436
ZU15EG Total 1488 3528 682560 341280
Utilization % 17 1 20 33
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5.3.13 Memory footprint

To the best of our knowledge, no other algorithm performs joint debayering and rectifica-

tion in a streaming based approach. Therefore, we consider multiple rectification and debayering

algorithms, and create a pipeline by stacking the most memory efficient rectification and debay-

ering algorithms together. Since many of the debayering algorithms are multi-pass algorithms

which cannot work efficiently in a buffering setting, it is infeasible to implement them on FPGAs

and compare their memory utilisation directly. We present a theoretical estimate on the memory

utilisation of each algorithm, taking into account only the memory needed to store the input,

output (as unsigned 8 bit integer values) and intermediate stages or LUTs (if any) (as float32

values), and buffering when possible, to highlight the feasibility of each algorithm for use on an

edge compute device. We then show the approximate usage for processing a 1920x1080 image

for non-deep-learning based methods in Table 5.4. In order to also compare the recent deep

learning based demosaicing methods, we consider the memory usage of storing the parameters,

and any intermediate feature maps that need to be stored to produce output at inference time (for

eg., feature maps used in skip connections). We compute the memory usage for these methods

and present a plot of demosaicing + rectification performance (in terms of PSNR scores) vs

memory utilization for processing 1920x1080 image, in Figure 5.9. We also show the total

on-chip memory available on a commonly used reference FPGA, the Xilinx Ultrascale+ ZU15EG,

and the commercially available FPGA with the largest amount of on-chip memory, the Xilinx

Virtex Ultrascale+ VU19P. The algorithms on the right of these lines will need to store their pa-

rameters/intermediate outputs onto off-chip memory, which is a hinderance in real-time systems,

since I/O from off-chip memory is slow. We validate the algorithm using High-Level-Synthesis

(HLS) tools for synthesized and routed RTL on a Xilinx ZU15EG FPGA. The resource utilization

is shown in Table 5.3, which delivers an overall throughput of 16FPS and can accommodate up

to 3 full 1080p pipelines on a single device. No off-chip memory or UltraRAM is used for this

implementation and the video streams are implemented using an AXi4-Stream. Our algorithm
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takes 4x less memory than the next most efficient combined, debayering and rectification pipeline,

and performs better than the most memory-efficient debayering algorithms, evident from the

PSNR scores in Table 5.1. This proves that for edge scenarios, where efficiency and accuracy need

to be balanced, our algorithm is the best choice for debayering and rectification preprocessing

steps.

Figure 5.9: Memory Utilization by a theoretical debayering + rectification pipeline, constructed
from various debayering algorithms and the most efficient rectification algorithm considered
[OK08a]

5.4 Discussion

The results provide a valuable justification that rectification and demosaicing performance

can be maintained despite the drastic gains in memory and dataflow efficiency. Firstly, we

highlight that the splatting process is largely dependent on the splatting radius and decay function.

Sharper fall-offs yield crisper images, but are slightly more expensive to compute in the decay

function block, and larger splatting radii eliminate holes in more extreme rectification cases, but
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Table 5.4: Theoretical estimates of memory consumption of different Debayering and Rectifica-
tion algorithms, while processing a 1920x1080 pixels image, in kilobytes

Rectification Debayering

Bwd Mapping 8100
Bilinear 15.12

Malvar [MLC04] 15.12
Smooth Hue [Cok] 15.12

Oh, Kim 2044.72 Hamilton [JFHJ] 75
Gunturk [GAM02] 15693

Junger 2120.63
Kimmel [Kim99] 14175

Li, Orchard [XO01] 35.63
Best 2044.72 Best 15.12

Rectification + Debayering Best 2059.84
Ours 513.00

also comes at the cost of needing to splat to more pixels, that is hardware expensive. The LUT

results are promising, and it can be concluded that we can achieve minimal reconstruction errors

using even a low order polynomial approximation. Also, since our rectification method relies only

on a general LUT to model distortions, we can incorporate more complex lens models, or refine a

LUT created from simpler models to improve rectification accuracy. Future research may include

color channel coupling to be adopted as a terminal stage of the pipeline and additional filtering

operations to be incorporated within the decay function. While the works that outperform Splatty

in terms of PSNR, all use more complex and multi-pass demosaicing, these concepts can in future

also be applied to the post-splatting operations of Splatty, to similarly, improve output qualities.

We present a novel forward mapping algorithm that merges two common image prepro-

cessing steps - demosaicing and rectification, for improved streaming feasibility. Embedded

camera systems often are limited by their throughput capabilities due to hardware resource

limitations, namely memory and computational blocks. We have shown that it is possible to

maintain state of the art- demosaicing and rectification results by reducing the memory footprint

to O(min(m,n)) from O(mn) by merging these steps. We have also validated a polynomial

rectification LUT that maintains remapping accuracies to 1E-10 RMSE. We hope that enabling

efficient preprocessing through unified splatting will allow future systems to increase resolution
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and frame-rate operations while reducing hardware resources.
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Figure 5.10: A dataflow architecture of Splatty implemented in an FPGA context
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Chapter 6

Embedded Design of Multi-Camera

Systems

6.1 System Development Objective

Computer vision algorithms are often burdened for embedded implementation due to

the system development and complexity. Many commercial systems prevent low-level image

processing customization and hardware optimization due to the largely proprietary nature of the

algorithms and architectures, hindering research development by the larger community. This

chapter highlights a hardware implementation of a research development system, designed to

facilitate the research, development and deployment of such kind of systems: DevCAM- an open-

source Multi-Processor System on Chip (MPSoC) based system, targeted at hardware-software

research for vision systems, specifically for co-located sensor processor systems. The objective

being to facilitate the integration of multiple latest generation sensors, abstracting interfacing

difficulties to high-bandwidth sensors, enable user defined hybrid processing architectures on

FPGA, CPU and GPU, and to unite multi-module systems with 40Gb/s networking and 12Gb/s off-

chip NVMe storage. The system can accommodate up to six 4-lane MIPI sensor modules which
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are electronically synchronized to an embedded RTK-GPS receiver and 9-axis IMU. Furthermore,

the system is compatible with existing GPU/ARM CPU platforms such as the Xavier systems to

allow for easy computational comparison and flexibility. We demonstrate a number of available

configurations that can be achieved for stereo, 360, and partial light-field image acquisition tasks.

The development framework includes mechanical, PCB, FPGA and software components for the

rapid integration into any system. System capabilities are demonstrated with the focus on opening

new research frontiers such as distributed edge processing, inter system synchronization sensor

synchronization using GPSDO, and hybrid hardware acceleration of image processing tasks.

Figure 6.1: DevCAM V1.0 system with a single IMX577

This work spans a set of evolving fields within the electronic imaging community: Image

Signal Processors (ISP), multi-view reconstruction, hardware acceleration, image/video compres-

sion, visual-inertial Simultaneous Localization and Mapping (SLAM), robotics and light-field

arrays. Across these fields, there has been an ever evolving need to improve the hardware imple-

mentation of the latest algorithms, which are often demonstrated on desktop-class processors, but
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unable to be run in real-time, and on mobile platforms. This limitation is two-fold: algorithms are

commonly implemented with the goal to achieve superior qualitative results compared to state of

the art rather than to perform within a deployed system, and underlying hardware architectures

prevent cross-architecture acceleration. We are therefore after creating a development ecosystem

that facilitates the porting of pre-developed algorithms to hardware platforms with minimal effort,

and to leverage pre-established camera interfaces for systems to be deployed.

The DevCAM development platform has been designed as an application agnostic system,

opening research possibilities beyond industry furnished development kits. The system leverages

existing open-source tools for high-level synthesis of C/C++ code into RTL deployable in the

FPGA fabric and easily configurable mechanical components to enable research at any level-

array configuration optimization, hardware acceleration and algorithmic optimization for systems.

Commonly, embedded vision systems are designed for dedicated applications, by a team

of engineers that each focus on their area of expertise- optics, mechanical design, electrical

hardware, FPGA logic, and fimware/software. The problem being that the development stack

implies the requirement of such teams, with information gaps across members, and global design

goals that need to be set. The DevCAM system’s approach is to unite the stack into a more

approachable system design (Figure 6.2, where all components are pre-assembled, but remain

configurable for any one person to tackle the full system. This is critical in environments such

as academia and research, since limited resources make it difficult to tackle problems such as

multi-view camera design.

The DevCAM Open-source project unites a set of full-stack features to enable advanced

vision research within the electronic imaging community- specifically embedded vision. The

major technical challenges that are addressed are: 1) Onboard synchronization between image

sensors, IMU, GPS, and synchronization between non-connected systems leveraging GPSDO for

simultaneous large baseline, multi-view capture. 2) Distributed image processing across multiple

hybrid hardware architectures. 3) ISP algorithm development on multi-camera systems. 4) High
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Figure 6.2: DevCAM Development Stack

bandwidth image acquisition and processing 5) Compact camera array configuration for epipolar

constrained and spherical imaging.

6.2 Physical Integration

Many practical factors play a role in the effectiveness of an end system and it is with that

in mind that this system was designed. Firstly, the mechanical compactness, weight and power

efficiency all affect where the system can be used. Whether being deployed on an autonomous

vehicle in an urban setting, or on a pole in Maya temples, the deployment envelope is defined by

the system capabilities. We wanted the system to be as flexible as possible, enabling both data

collection for post-processing and on-board compute opportunity to transition algorithms to run

in real-time on the system. Finally, what is arguably the most important feature we targeted, is

the co-location of the sensors to do our data acquisition. From the image sensors, IMUs, and

GPS modules, these are normally found on separate modules and have to be connected, to form

a bundle of sensors- cumbersome to design, operate and suffer from physical separation. The

packaging that this system is able to achieve is an order of magnitude more compact that some
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deployed research system, while resulting in similar resolutions, sensory acquisition packages

and onboard storages/processing. An example is shown in Figure 6.3, comparing the Google

street view spherical camera array to the DevCAM monocular panoramic system.

Figure 6.3: Comparison of the Google StreetView platform and the DevCAM panoramic imple-
mentation, with similar resolution, and sensor features

In camera systems, the most important components are the sensors and lenses, since

they dictate resolution, FoV, sensitivity and dynamic range. The two main types of sensors

include rolling shutter and global shutter sensors, that differ in the binning- the first binning pixel

rows sequentially, while the latter bins whole frames synchronously. Up until recently, global

shutter sensors were sparse, expensive and did not reach higher image resolutions compared

to rolling shutter sensors. These global shutter sensors are greatly preferred in the computer

vision community since they allow the assumption of a fix focal point over the exposure, while

rolling shutters do not. The development of back-illuminated CMOS sensors has enabled the

improvement of these pain points in global shutter sensors, bringing to the markets sensors with

both favorable resolution and light sensitivity, at a reasonable price point.

The other choice in sensors is the sizing, which dictates the surface area available to

integrate the light-flux. Generally, larger sensors with large pixel pitches, are able to acquire
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better low-light imagery. The problem associated with that is that they consequently also require

large optics, which are cumbersome and expensive to integrate, especially when you need many

of them. As such, we focus on sensors that are able to fit M12 lens optics, small enough that they

can be easily assembled into arrays, yet still capable enough that they can reliably resolve scenes

in diverse conditions. These fit in the size range from 1/2.3" to 2/3" sensors.

Within the proposed systems, we highlight 2 sensors that have demonstrated excellent

performance and that are easily integratable within multi-camera systems. Firstly the IMX264

is a global shutter sensor with 5 megapixels of resolution in a 2/3" form factor, leveraging 3.3

µm pixel pitch and a bit-depth of 12 bits per pixel. The second being the IMX577 rolling shutter

sensor in a 1/2.3" form factor, with 1.55 µm pixerl pitch and a 12 bits per pixel bit-depth. The

important note about why this rolling shutter sensor was deemed reasonable is due to the ability

for it to be synchronized across multiple sensors to do synchronized rolling shutter captures.

What this means is that the pixel rows are binned simultaneously across the sensors. This is

important in cases where the camera system is in motion during acquisition, so that the relative

extrinsic parameters are correctly assumed to be constant. The same applies to global shutter

sensors, where the exposure and binning is synchronized.

To match these sensors, M12 lenses were selected to best meet the integration of multiple

cameras into a single system. More sensor-lens modules allow for narrower FoVs, and higher

spatial resolutions, but with increased processor count, cost and integration difficult to cover full

panoramic and spherical FoVs. Wider lenses in fewer modules on the other hand suffer from

larger lens distortions, increasing memory requirements in the rectification stage of multi-view

systems and consequently enabling larger throughputs.

The final integration consideration is the use of multiple processing modules, in a syn-

chronized fashion. The physical integration of more than 6 MIPI sensors per DevCAM processor

board is unfeasible due to the limited high-speed I/O pins available on the package. Since we

want to leverage the full capability of 4 MIPI lanes per sensor, that makes a total of 24 differential
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pairs, it is not easily possible to add more sensor modules to the FPGA package. Furthermore,

the computation resource limitations are quickly limiting the addition of more sensor processing

pipelines, encouraging the distribution across multiple processor packages. This integration flexi-

bility is enabled through timing synchronization interfaces between multiple processing boards,

allowing unlimited boards to be daisy-chained for simultaneous data capture and processing.

6.3 Open-Source Environment

An important aspect of the design of this system, is that it applies to both research

efforts and deployed systems across different applications. The DevCAM environment is fully

open-sourced, to enable larger community adoption and facilitate the experiments in this field.

Figure 6.4: DevCAM V1.1 Schematics Example

The development infrastructure is broken down into physical, and software components,

104



which are tightly coupled. On the physical side, the design features all system schematics, linking

the PCB components and connectors together- Figure 6.4. The design is implemented on a

small form factor PCB board, with double sided population. The board has dimensions of 100

x 100mm, making it small enough to integrate into a compact package. All trace routes, vias,

and PCB specifications have been carefully designed in a flexible, specification adherent manner

to allow for easy re-configuration. The Altium design files are shared part of the open-source

project, allowing researchers to leverage it for re-customization, or for direct re-production.

Figure 6.5 highlights the high-density in the PCB design, and the trace design for high-speed

buses such as the MIPI lanes or the PCIe interfaces. While the initial design complexity was on

the order of designing a computer motherboard, future iterations and alterations can easily be

done, without having to re-design the full system. Flexible power distribution enables additional

sensors and components to be add on 0.8V, 1.2V, 3.3V, 5V and 12V power rails, with interfaces

ranging from ethernet, I2C, CAN-BUS, PCIe and many more. The mechanical variants and

integration guidelines are described later in this chapter and also allow for easy integration and

re-configuration.

The software component of the environment leverages design templates in the Xilinx

Vivado design suite as well as the open-source High Level Synthesis (HLS) tools. This allows

users to use existing designs such as that shown in Figure 6.6 to create customized image

processing pipelines. A set of IP blocks derived from hardware optimized C++ implementations

with HLS are also contained within the environment, and can serve as backbone to developed

systems.

The environment also features compatibility with the Nvidia Xavier systems, leveraging

a carrier adapter board offered by Leopard Imaging. While these Xavier systems are mostly

closed source, they offer high performance to power ratios, and dedicated ISP components to

achieve high- performance video capture, with great ease of rapid integration. The Xavier AGX

does support sensor synchronization on exposure but handles all ISP processing and compression
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Figure 6.5: DevCAM V1.1 Electrical layout

asynchronously, implying a consistent pain-point to re-aggregate frames in a synchronized manner.

Due to the closed source scheduling details of the ISP handler, it was deemed unfeasible to re-

aggregate these frames at capture, leaving the requirement to do so after storage into compressed

video frames. Figure 6.7 demonstrates the shutter synchronization of the IMX577 sensors to

monitor timing precision, while Figure 6.8 emphasizes that as soon as you are dealing with >10E5

frames, captured by multiple cameras on multiple systems with dynamic video encoding, the

re-aggregation of frames often requires an external strobe. This issue is directly addressed on

the DevCAM FPGA system since capture is synchronized at both the exposure level and on the

processing.
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Figure 6.6: DevCAM V1.1 Vivado FPGA Pipeline Template for a single MIPI camera

Figure 6.7: 6 camera synchronization Test using the Xavier Capture infrastructure. Due to a
monitor frame-rate of 60 HZ, synchronization could only be physically validated to within +-
17ms
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Figure 6.8: Time re-aggregation example from Xavier compatible system. Red arrows indicate
the light intensity spikes associated with strobe light to align the timing of the individual captures.
Frame timings are extracted from H.265 video encoded frames with variable encoding rate.

6.4 Processing Infrastructure

The DevCAM system uses Enclustra System on Modules (SoM) that are small-form factor

PCBs with the Xilinx processor chip, high-quality power filtering, and off-chip memory. On

those, are found the core chip architecture, based on an Xilinx Ultrascale+ System on Chip (SoC)

that offers a offers a versatile reconfigurable hardware aspect for easy hardware-software co-

development. A variety of SoMs are compatible with this development environment, enabling the

easy alteration of FPGA/processor size, depending on the desires pipeline and required memory.

All image sensors are connectable directly to the fabric where a MIPI interface converts the image

streams to a customizable and standardized video streaming format. Furthermore, all these image

sensors, IMU and RTK-GPS are also hardware synchronizable to achieve nanosecond timing

synchronization. This can be expanded to achieve synchronization between multiple DevCAM

systems, over direct hardware connections, or by the use of an inbuilt GPS disciplined oscillator

(GPSDO) framework.

The heterogeneous Xilinx architecture has facilitated the interfacing of many different

sensors to different parts of the chip. This is largely driven by the interface bandwidth: the
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Programmable Logic (PL) is used where high parallelism and high-speed capture is required, and

direct connection to the ARM cores is done for sensors with low data-rates, but that benefit from

easier driver and software support. A high-level connection is outlined Figure 6.9.

Figure 6.9: DevCAM V1.1 System interfaces and features

A full set of physical interfaces is specified in Figure 6.10. These include a M.2 connector

with PCIe 2.0, 4 lanes, routed to the ARM cores (PS) PCIe host controller, and a QSFP module

supporting 40G Ethernet networking via the PL. This networking interface requires MAC and

PHY modules to be instantiated in the PL of the system, allowing for networking development. A

lower-speed 1G ethernet interface is connected to the PS ethernet controller, allowing for easy

monitoring and operation of the device. All MIPI camera connectors are directly connected to the

FPGA so that the data can be de-serialized and synchronized. All system timing is done using

clock domains derived from the GPS PPS signal, allowing for multi-module synchronization

down to the microsecond. This time synchronization also allows the IMU, GPS and cameras to

be perfectly synchronized.
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Figure 6.10: DevCAM V1.1 System interfaces and features

6.5 Variants

Figure 6.11: DevCAM Mechanical Configuration Variants- from left to right: Quadnocular,
Co-linear Lightfield, Trinocular Panoramic, Panoramic

In this section, a set of mechanical system variants are introduced that are based on the

DevCAM development environment. This enables research to be completed using these different
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camera layouts, based on the geometries highlighted in Chapter 3. Figure 6.11 summarizes the

variants, showing that using the same processor board and camera sensor-lens modules, a large set

of experimental platforms can be developed. This section will highlight some configurations that

have been built and demonstrated, with emphasis on research opportunities these configurations

have to offer.

6.5.1 Quadnocular

The first configuration is a quadnocular array as depicted in Figure 6.12. It leverages 4

of the IMX264 or the IMX577 sensors arranged in a square pattern with a baseline of 70mm

between adjacent modules. The system can act purely as a visual-inertial capture device, without

an integrated GPS antenna. This configuration provides redundant vertical and horizontal disparity,

allowing for the merging of directional disparities and redundant agreement of the observations.

Works like [KEFW20] have emphasized the value of trinocular (L-shaped) arrays, which this is

the extension of. The configuration allows for the creation of 6 individual stereo pairs (horizontal,

vertical and diagonal) for drastic view-point constraining. The system depicted in Figure 6.12

features 4 IMX577s sensors with a square baseline of 8cm.

Figure 6.12: DevCAM system in a quadnocular configuration with a four IMX577 sensors
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A sample capture of calibration data and real-world scene allowed for validation of the

quadnocular system, shown in Figure 6.13. The cameras were calibrated and rectified as separate

stereo pairs- horizontally and vertically, forming 4 pairs. The disparity maps were computed

with Semig Global Matching (SGM), showing robust matching most areas of the image. These

disparity maps were then aggregated based on their mean value across view, that were validly

estimated. A 3D reconstruction of the point cloud is shown in the center of the figure.

Figure 6.13: Quadnocular Camera Matching and Reconstruction Example Leveraging Semi-
Global Matching.

6.5.2 Co-linear Array

Co-linear arrays are a natural extension to the stereo case, due to the constraint of epipolar

planes forming epipolar lines across pixel rows of the sensors. This constrains the matching with
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the benefit of having view redundancy. Diminishing returns have been noted in 4-camera multi-

baseline cases [AN15] and [HSP17]. The proposed 6-camera array features a a 4cm inter-sensor

spacing, forming a 20cm overall baseline. Due to the flexibility of connecting/disconnecting

sensors, it can serve as an excellent research platform for continuing to evaluate co-linear camera

arrays with varying baselines and number of cameras.

Figure 6.14: 6 Camera Linear Array to Capture single direction light-field scenes.

The linear distribution of sensors has been a favorable constraint in light-field research

proposed by [BB89]. Forming Epi-polar Plane Images (EPIs) as shown in Figure 6.16 can be

done by taking rectified image data (Figure 6.15) and re-shaping it into stacks of pixel rows from

all sensors. The slope δs
δx of any observed features manifests itself as epipolar lines with where

the depth can be directly derived from the focal-length and the slope value (Equation 6.1). This

often facilitates the matching, improving the depth estimation reliability over stereo.

Z =− f
δs
δx

(6.1)

6.5.3 Panoramic

A monocular panoramic configuration shown in Figure 6.17. This simple, yet powerful

configuration provides a simple array to capture a full surround scene with IMU and GPS data
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Figure 6.15: Sample data capture of linear 6 camera array with the DevCAM system.

Figure 6.16: Epipolar line example demonstrating the disparity relationship across views. The
slope of the features is directly proportional to the depth of the feature.

in a compact form-factor. Applications include street-view style captures for panoramic video

creation, or indoor/outdoor scene capture. In this configuration, the sensors are rotated into

portrait mode to allow for a wider vertical FoV to be captured in additional to the fully panoramic

horizontal FoV. Every camera module’s FOV overlaps a total of 24 degrees to ensure full coverage.

Due to the high per-sensor resolution, an array of this sort is able to achieve signiicantly higher

spatial resolution over conventional Pan-Tilt Zoom cameras, without any mechanically moving

components, and at higher-frame rate. A prior intrinsic calibration can allow us to rectify frames

with a naive projection to an infinite sphere using the CAD extrinsics.

Figure 6.18 shows an example of a single frame capture and stitch using the panoramic

DevCAM system.
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Figure 6.17: DevCAM system in a monocular panoramic configuration with a six IMX577
sensors

Figure 6.18: Monocular panoramic stitch result from the 6 camera, DevCAM system

6.5.4 Trinocular Panoramic

The final configuration introduced in this package is a trinocular panoramic system. This

array leverages a total of 18 sensors packaged into 6 sets of trinocular views. This novel layout

features the benefit that each viewpoint is observed from at least 3 cameras, that use a dual

disparity constraint- horizontal and vertical. Similar to the panoramic configuration, this array has

portrait oriented sensors to increase vertical FoV while keeping a full panoramic horizontal FOV.
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Figure 6.19: Trinocular Panoramic configuration with 18 IMX577 sensors, connected to 3
separate DevCAM processor boards which are can be electronically or network synchronized.

The array and it’s respective FoV cones are shown in Figure 6.19. The sensor module disparity in

this implementation is 110mm, limited by the camera arrangement to allow interleaving, as well

as case manufacturing feasibility on an additive manufacturing printer. This system has to use a

total of 3 DevCAM boards to interface with the 18 sensors, leveraging inter-board synchronization.

Each board drives 6 cameras, which is 2 trinocular sets. The system can also feature a roof-

mounted RTK-GPS antenna with a 100mm ground-plane and respective IMUs on the PCBs,

resulting in a total of 6 IMUs in the system, mounted at 45 degrees to each other. A central

air-flow column guarantees the evacuation of heat from the system. A mechanically rotating

LiDAR can also be mounted in lieu of the GPS antenna, allowing for geometric comparison of
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vision reconstructed data to active sensing. Figure 6.20 shows an Ouster OS0-128 co-located on

the system- all timing synchronization is done over PTP network time.

The extrinsics of the system are known from the mechanical CAD design. This allows

us to directly know the transformations between respective trinocular sets, as well as that of the

LiDAR and any IMUs.

Figure 6.20: Trinocular Panoramic configuration as built. Left- system with an Ouster OS0-128
LiDAR. Right- CAD based extrinsic camera plotting.

This trinocular panoramic array serves as the foundation for all data capture and view

reconstruction described in the final Chapter 7. Sample data and reconstructions will be shown

there.
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Chapter 7

Trinocular-Panoramic Reconstruction

7.1 Introduction

This final chapter unifies the various components formulated within this dissertation to

validate the hypothesis and demonstrate real-world results. It leverages the trinocular epipolar

geometry introduced in Chapter 3, the feature matching described in Chapter 5.1, on data captured

using a custom multi-camera system proposed in Chapters 5 and 6.

Throughout the autonomous driving community, there has been an ever standing debate

on the provided value of LiDAR and cameras for scene perception. A plethora of research areas

have emerged from sensor development, including LiDAR, stereo cameras, and radar, through re-

construction algorithms such as Simultaneous Localization and Mapping (SLAM), Sceneflow and

detection and tracking algorithms. Notable datasets [GLU12], [GLSU13], [CBL+20], [COR+16]

have evolved to include an ever growing number of different sensors, all to encourage the ex-

ploration through an exhaustive search of methods to answer a set of simple questions: how is

the system moving in the world, and what is surrounding it? Cameras have the disadvantage of

providing only 3D world projections in the form of images over an optically constrained FoV,

loosing the necessary 3D surround geometry to plan navigation. LiDARs on the other hand
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Figure 7.1: Semi-dense Variant of the Stereo Panoramic Mapping Workflow

suffer from poor spatial resolution, reducing the visual cues to semantically understand scenes.

This work leverages a small-baseline, trinocular panoramic camera array to unite the existing

pain-points and investigate the potential of vision-only sensing and perception.

Systems have up to now been dominated by LIDAR sensing, in order to meet the depth

accuracy required for safe navigation. In multi-view systems, the reconstruction accuracy is

directly dependent on the estimate of camera locations, and the matched feature localization

in image space. Depth ranging is highly sensitive to disparity accuracy for stereo pairs, and as

such, a key aspect to the proposed work focus is on achieving the highest feature localization

accuracy to estimate right disparities, and consequently directly reconstruct geometric features in

3D space. While the degree of sub-pixel spatial accuracy in image processing varies between

camera calibrations, image rectification and matching, we argue and demonstrate that it is possible

to achieve spatially correct reconstructions up to more than 20 meters when leveraging small

inter-ocular baseline cameras, all while reconstructing a full-surround scene, without sacrificing

spatial resolutions and maintaining computational efficiency.

To begin, we must revisit the overarching objectives that have been covered thus far. We

desire a geometry within our rig which facilitates computation, allowing us to strongly constrain

the system such as to directly estimated geometry from a view-matching approach. To reduce

mis-matching errors, we leverage view redundancy in the form of trinocular sets, that have a pre-

defined baseline for mechanical integration. Since the array is contained within a single system,
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Figure 7.2: Data inputs and derivatives from the trinocular panoramic system. Top to bottom:
Reference sensor views; Disparity Maps; Surround spherical projections of reconstructed scenes
as colormaps and depthamps; Bird’s Eye View of 3D point cloud; 3D point cloud rendering.

121



we are able to robustly calibrate it prior to deployment and predict the ranging performance as a

cost function from the disparity accuracy, optics and baseline. While the baseline for this system

was at 11cm- a comparatively narrow baseline to the 50+cm normally used on vehicles, this

allowed us to package the system into that single unit. Despite this physically small baseline

constraint, we are able to demonstrate that it proves sufficient for ranging up to approximately 20m

due to the high sensor resolution of 12MP per. Finally, our desire for omniscopic vision prescribes

our design to pattern the trinocular sets in an interleaved fashion to cover a surround view circle.

In this work we explore the assembly of the system components, spanning hardware and software

to evaluate the value of constrained multi-view arrays for efficient scene reconstruction in an

outdoor navigation setting.

A unified vision framework for fast 3D localization and mapping of stereo panoramic

camera systems using semi-dense and dense features is presented. Parallel interleaved trinocular

arrays are used to geometrically constrain the stereo matching of semi-dense and dense features

for ego-motion and scene geometry estimation. The semi-dense contours are formed from a

novel set of spatial curvelets which were introduced in Chapter 5.1, derived from matched local

roots of steered Gaussian second order derivatives. The reconstructions achieve favorable depth

accuracy due to the improved spatial localization compared to state-of-the-art dense energy

minimization approaches at reduced computational complexity. Dense evaluation is performed

with the well accredited Semi-Global Matching (SGM) algorithm proposed by [Hir05]. Temporal

associativity and full-surround localization is done using traditional sparse corner features,

matched over frames, with a global bundle adjustment formulation for optimization. This final

bundle adjustment is formulated to leverage the array constraint to optimize both pose and world

reconstruction. Qualitative results are shown on both synthetic data rendered using CARLA as

well as data captured from the trinocular panoramic camera sets to demonstrate reconstruction

within a real-world setting.
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Figure 7.3: Interior, high-angle calibration procedure for the trinocular panoramic camera array

7.2 System Calibration and Data recification

The trinocular panoramic system leveraged cameras with sensor-lens combinations that

casted a wide, 86 degree horizontal FoV, with a minimum, fixed focus distance of 3m. As such

the system was calibrated using a calibration target, with motion to maximize the FoV sampling

coverage, with a minimum imaging distance of 3m. These practical requirements made it such

that the Fractal target proposed in Chapter 3 was not feasible due to the resultant small size of

the observed features which were unreliably detected in tests. A checkerboard calibration was

therefore chosen, with the trinocular sets being calibrated independently. The inter-set extrinsics

were assumed ideal from CAD design and were not calibrated.

The calibration resulted in real-world scaled intrinsic and extrinsic parameters which were

sequentially used to rectify internal distortions κ, and secondly to align sensors due to mechanical

manufacturing tolerances. This was done for every trinocular set sequentially resulting in image

frames that have equal number of rows and columns of pixels for all images. All relative poses

between trinocular sets remained un-calibrated prior to processing, and the CAD designs were

used as as-built values. Calibration within each trinocular set defines the disparity accuracy
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which directly affects the depth estimation. A small deviation from design would lead to a large

reconstruction error, defining the need for correct multi-view calibration. The relative poses of

the sets are however less stringent on this requirement as they are solely used for re-aligning the

respective point cloud together.

7.3 Data acquisition

The datasets were split into synthetic and real-world datam, with the goal to quantify and

validate the algorithms with ground-truth depths and motion of the synthetic, and to validate

the system capabilities in a real-world setting. This section describes the approaches taken to

capture/generate these datasets.

7.3.1 Synthetic Data

For synthetic data generation, we used CARLA ( [DRC+17]) version 0.9.10, an open-

source simulator, to render photo realistic scenes. We use the City 10 HD simulation model,

and generate data from a vehicle mounted camera rig that is driven around the simulated city

containing pedestrian, motorcycle and vehicle actors. For our panoramic camera module, we

leverage the CAD designed camera parameters and data-sheet provided focal-length for FoV

estimates. We collected 1,000 images at 30 frames per second. For each trinocular set and at

every time-step, we also generate ground truth depth maps and semantic segmentation maps for

the reference sensor (top-left), collect the absolute pose/dynamics of each camera and the vehicle

in world coordinate frame, serving as our ground truth data.

7.3.2 Real-world Data

Real-world data was captured using the trinocular panoramic array introduced in Chapter

6. The system consists of 18 cameras, broken down into 6 separate trinocular sets. All images
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Figure 7.4: Synthetic Panoramic Data from CARLA simulator. From top to bottom: top-
left camera views; top-right camera views;bottom-left camera views; ground-truth depthmaps;
semantic segmentation maps
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Figure 7.5: Trinocular Panoramic System Data Acquisition on an Urban Road

were captured simultaneously while the system was statically mounted on a rigid tripod (Figure

7.5. Further tests with high-frame rates captures were completed, but synchronization tests

highlighted bugs which did not guarantee perfect synchronization. Future work will include

processing data at the full capture capabilities of 30fps for the whole system, once the DevCAM

hardware outlined in Chapter 6 has proven stable. At each capture timestep, frames are aggregated

into a folder on a central compute host, alongside timestamps and a LiDAR scan. A sample

dataset from a single time-step is shown in Figure 7.6. For this dataset, 2 sequences were captured:

the first keeping the camera stationary with an actor moving away from the system, and with the

second, the system moving in a linear fashion down a road, with no scene motion. All image data

is rectified using the previously estimated parameters.
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Figure 7.6: Real-world data at timestep 0. From top to bottom: top-left camera views; top-right
camera views;bottom-left camera views; horizontal disparity maps; vertical disparity maps
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Figure 7.7: Semi-dense edge extraction using steerable filtering on top stereo set of trinocular
panoramic camera

7.4 Reconstruction

This section is divided into a summary of multi-view matching approaches used for the

surround reconstruction of the scenes

7.4.1 Semi-dense

The first matching approach used is that introduced in Chapter 5.1. Second order steerable

filters are used with a sigma of 1.5 to find the roots of the derivative image. These roots are then

matched in 1D, across epipolar lines within the disparity range, such as to provide a continuous

disparities with sub-pixel accuracy. Figure 7.7 shows a sample crop of the root extraction for

the top stereo pair of set 0 in the trinocular panoramic array. Due to ISP inconsistencies on the

capture system, certain frames suffer from reduced sharpness, leading non-similar edges across

views.

Figure 7.8 shows an example of this semi-dense reconstruction using a single stereo pair
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Figure 7.8: Sample Semi-Dense Stereo reconstruction: a) Original Left image from stereo
pair, b) Semi-dense Depthmap of Contours, c) Original contours, d) Semi-dense Point cloud
reconstruction.

from the Starcam system, outlined in Chapter 5.1. While the output is largely sparse, the main

scene components such as the outlines of visible objects are clearly resolved.

7.4.2 Dense

The second core component of the reconstruction involves the commonly used Semi

Global Matching algorithm (SGM) that matches patches to maximize the Mutual Information

(MI). The global optimization stage of the algorithm imposes smoothness constraints such as to

minimize the allowed change in disparities across local neighborhoods. While this smoothness

constraint handles continuous surfaces decently, it often fails at discontinuities such as edges.

Furthermore, this matching approach relies on texture to ensure the macthes are correct. If

there is no texture information to work off, there is no reliable way of matching an area. In the

case of the trinocular panoramic system, capturing a road environment, nearby surfaces such as
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the tarmac and cracks reliably reconstruct, while distant, smoothed surface such as sky, house

walls and reflective car surfaces often fail. This algorithm is readily implemented with hardware

acceleration on GPUs, becoming a decent choice for intergation for a surround reconstrution

mechanism.

7.4.3 Disparity Aggregation

The benefit of view redundancy is up to this point unused. We want to enforce the known

constraint that the disparity for equal-baseline system, with horizontal and vertical views, must

be equal. In reality, the slight difference in calibrated baselines makes us constrain the system as

follows:

Zhor = Zver = FLhor ∗
baselinehor

disparityhor
= FLver ∗

baselinever

disparityver
(7.1)

From this constraint, we can choose our matches in both semi-dense and dense matching

cases, such as to minimize the combined cost of both horizontal and vertical matching. The

work by [KEFW20] has demonstrated the added benefit of doing so, with the limitation that they

do not consider a confidence and consequential outlier rejection. There are also cases where

averaging the disparity cost would incorrectly weigh towards the less reliable direction. The most

robust matches are generally those where the dominant gradient direction is perpendicular to the

matching direction.

7.5 Results

Both the synthetic and real-world results were processed to evaluate the reconstruction

performance. Ground-truth data only exists for the synthetic captures, so quantitative eval-

uation could only be performed on the synthetic set. Due to the difficulty in measuring the
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Figure 7.9: Synthetic Reconstruction Evaluation in Bird’s Eye View and Side-view: (top) Semi-
dense contour reconstruction, (middle) Dense Semi-Global Matching, (bottom) Ground Truth.

correct reconstruction, we focus on the disparity correctness- the most common metric in stereo

reconstruction.

7.5.1 Synthetic Validation

The first evaluation is done using the synthetic CARLA dataset, by looking at the depth

estimation accuracy. The same timestep’s data was reprojected using both the semi-dense and

dense methods, and compared to the ground truth depths. Figure 7.9 shows projections in

both Bird’s Eye View (BEV) and side point cloud renderings. The semi-dense reconstruction

is noticeably sparser than the dense reconstruction, While all sets of projections, including

the ground-truth, suffer from the spatial resolution fall-off associated with distance, it is more

drastically accentuated with the semi-dense due to the lesser features to begin with.

The evaluation of correctness of disparity is done on a per-pixel metric for both the dense

and semi-dense. Since only certain pixels are valid for the dense reconstruction, and the same
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Figure 7.10: Evaluating SGM Dense Disparity by Comparison to Ground-truth Disparity

with the semi-dense, only those valid pixels are compared to the ground truth. Figures 7.10 and

7.11 summarize the metrics on a single frame. The 2 major considerations are as follows: firstly

it is important to evaluate the number of pixels with a large error, which are cases of mis-matches.

The second being the magnitude of the noise for small- error disparity values, these assume a

correct match, but that are subject to the systematic noise, linked to the sub-pixel estimation

accuracy of the disparity.

The histograms of both semi-dense and dense pixel disparity errors summarize statistics

as follows: The SGM-dense maps has a mean disparity error of 0.67px, with a standard deviation

of 1.49px, while the semi-dense have a mean error of 1.21px and a standard deviation of 2.57px.

This shows that the average disparity error is more favorable with the SGM matching approach.

Observing the histograms also emphasize that the semi-dense shows an increased outlier count

with errors greater than 2px, compared to that of the SGM dense matching approach.
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Figure 7.11: Histogram of disparity errors of valid semi-dense adn SGM dense disparities
compared to ground-truth. Evaluation on a single frame.
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Figure 7.12: Trinocular Panoramic Image Data with Respective Depth Maps

7.5.2 Real-world Results

We now illustrate the real-world results from the trinocular panoramic system. In these,

there are no ground-truth depths/disparities, so the evaluation will be constrained to a qualitative

review. All reconstructed scenes are projected to 3D point cloud, which are then either back-

projected to a unit sphere, centered about the system origin, or into a 3D rendering of the

reconstructions. Figure 7.12 shows re-mapped RGB and Depthmaps in spherical projections.

These are visual representations that easily allow for visual evaluation of estimation validity.

These spherical projections can be plotted over time to show motion from the system’s surround

perspective.

The next valuable representation consists of a Bird’s Eye View (BEV) map, thresholded

to within a height range above the dominant plane in the scene. This representation is often used

on 2D lidar clustering of objects. The geometric estimation and top-down rendering explicitly

implies the homography to go from image projections into the ground plane. Figure 7.13 shows

the bird’s eyeview for 3 timesteps of the dynamic motion sequence- where the camera rig is

moved between frames. The white car to the top of the system center is a useful representation
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Figure 7.13: Bird’s Eye View of Respective Timesteps- t= 1, 10, 20

point, which the system moves towards and next to. This data representation is synonymous to

that of LiDARs and therefore may serve as direct drop-in replacements in future works.

The final real-world reconstruction results are renderings of the derivative point clouds.

Figure 7.14 shows 2 different perspective renderings of the same point cloud reconstruction.

All mis-matches are visible, resulting in cloudy patches. Despite the noise, the reconstruction

is visibly representative of the scene, including the nearby vehicles, actor, road surface and

structures.

7.5.3 Processing Performance

To evaluate the feasibility of embedded real-time deployment, a simple benchmark of

the reoncstruction pipeline was performed at a timestep. The times stated in Table 7.1 were

broken down into the following sub-tasks: Image rectification, Disparity Estimation, Point cloud

projection and transformation to global coordinate system. The benchmark was completed on a

i9-9900k CPU, with single threaded, non accelerated implementation within matlab. The timing

results totalled 30.3 sec for a full surround reconstruction, with the by far largest time commitment

being associated with the matching for the disparity estimation. Despite this timing, it remains

feasible to consider this running in real-time on an FPGA, as was highlighted in Chapter 5.
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Figure 7.14: 3D Point Cloud Renderings

Table 7.1: Processing Time Breakdown for the Dense Recontruction of a single timestep of the
trinocular panoramic system (all 18 images simultaneously).

Task Processing Time
(sec)

Rectification 3.57
Disparity Estimation 26.40

Projection to Point Cloud 0.615
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7.6 Discussion

This work on trinocular panoramic vision for sensing and perception has opened discussion

into a field largely uncharted research topics. Compared to leveraging a mechanically rotating

LiDAR that provides reliable ranging measurements, matching images to estimate depth, definitely

carries it’s challenges. All the way from optics, mechanical configurations, sensor performance,

through image ISP algorithms, and matching algorithms, the places where things may deviate

from ideal are large. The final reconstruction renderings in Figure 7.14 are comparably noisy to

LiDAR point clouds, but they do originate from consumer grade image sensors, at price points

significantly more attainable than active sensors will likely ever be. The ability to reconstru a

full surround view at every time-step highlights that there is a foreseeable path to vision only

navigation on road environments. We can derive a holistic spatial view of objects, and there

distances, up to some range defined by our sensor configuration and capabilities. In this case, we

have been able to reliably range an actor up to a distance of 15m, simply using a system with a

11cm baseline.

Comparing the semi-dense and dense reconstructions, it is notable that the dense approach

outperforms the direct contour matching of the semi-dense. While theoretically the sub-pixel

localization of the contours to be superior in areas of high gradient, the texture matching approach

performs all around better by reducing the number of outliers. It will be interesting to find

future ways to improve dense performance on the edges, where gradient matching will play a

bigger role. Furthermore, the importance of matching confidence becomes an important one

when we want to solely keep the reliable point estimates in derivative models. Despite the

superior performance of the SGM Dense reconstruction, considering the computational efficiency

and inherent downsampling associated with dealing with edges, this remains a viable route for

real-time implementaion.
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Chapter 8

Concluding Remarks

8.1 Concluding remarks

This dissertation has explored the full design space of an embedded multi-camera system

with the goal of efficiently and accurately estimating a 3D scene. The work has introduced

key relationships between system disparities, directionalities and depth estimation accuracy.

Building on the geometric priors, it has formulated a novel semi-dense feature triangulation

approach which allows for the robust geometric estimation from a set of cameras. A physical

FPGA processor system was designed to hardware accelerate tasks within the reconstruction

pipeline, advancing the system capabilities closer to real-time operation. The final results of a

fully integrated trinocular panoramic system are demonstrated within a reconstruction framework,

which proves the benefits of leveraging multi-directional disparities to reconstruct scene geometry,

and doing so efficiently.
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8.2 Principle Contributions

The key research contributions presented within this dissertation are summarized as

following:

• A novel concept of circular disparity is proposed in Chapter 3, providing distinct beneficts

when estimating world geometry of features with varying directionalities.

• A novel interleaved trinocular panoramic camera array is proposed, designed and built

across Chapters 3, 6 and 7. This array is demonstrated to capture real-world data and

outperform a stereo counterpart in terms of reconstruction accuracy and system localization.

• A dataflow architecture for efficient image demosaicing and rectification is presented and

justified that enables the efficient multi-view processing on embedded systems.

• An open source multi-camera development infrastructure has been developed to enable

future students, researchers and enthusiasts to test and improve on integrated visual-inertial

multi-camera arrays.

8.3 Future Work

This work has opened many questions in the space of camera arrays, and it will undoubt-

edly take many papers and years of continued research work to expand on the discussed topics. A

large portion of this work will surely become resolved with computational advances, improving

the amount of processing that is achievable on an embedded system. What will however remain

a key challenge, is the formulation of the model representations of the world in a way that they

are most useful. Considering autonomous vehicles for examples, simply creating denser point

clouds that span larger ranges is definitely not sustainable due to the increased data footprint

and the requirement for further perception. Moving towards higher levels of abstraction, highly

influenced by contextual cues will be critical.
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The final results presented within this dissertation focused on semi-dense reconstructions.

These 3D edge contours are excellent wire-frame representation of the world, but lack the visual

density associated with fully dense reconstructions. It would be valuable to, in the future, explore

filling uniform areas bounded by these contours with contextual information.

One of the major outstanding difficulties is auto-calibration on embedded devices. The

calibration proposed in Chapter 3 requires a dedicated calibration pattern, and is computationally

too expensive to run continuously in real-time while a system is in normal operation mode. It

is with certainty, that solving this problem to be done on the fly, using real-world features, and

achieving reconstruction performance equal or better than what are shown in this work, will be

invaluable.

Another interesting research avenue which has up to now not been explored is the radial

disparity circles that can be created by positioning in a circular pattern about a reference camera

as seen in Chapter 3. This arrangement is a valuable alternative to linear arrays from light-field

systems, and is guaranteed to augmented confidence on directional features.

8.4 Final Thoughts

This work is the culmination of many years of passionate systems engineering research.

It has spanned about as full-stack as is possible- from mechanical design, electrical integration,

hardware mapping, and finally software algorithmic innovation. It has been a fascinating explo-

ration to evaluate every part of a camera system, which has resulted in building what turns out to

be versatile and capable multi-camera systems with many diverse applications. I would like to

thank all co-authors, advisors, colleagues and friends for your endless support to have made this

happen, and I look forward to the continued worked with everyone to continue and evolve the

presented concepts.
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