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Abstract

25-hydroxyvitamin D [25(OH)D] may not optimally indicate vitamin D receptor activity. Higher 

concentrations of its catabolic product 24,25-dihydroxyvitmin D [24,25(OH)2D] and a higher ratio 

of 24,25(OH)2D to 25(OH)D (the vitamin D metabolite ratio [VMR]) may provide additional 

information on receptor activity. We compared the strength of associations of these markers with 

serum PTH concentrations, hip bone mineral density (BMD), and risk of incident hip fracture in 

community-living older participants in the Cardiovascular Health Study. Among 890 participants, 

the mean age was 78 years, 60% were women, and the mean 25(OH)D was 28 ± 11 ng/ml. In 

cross-sectional analysis, the strength of association of each vitamin D measure with PTH was 

similar; a 1% higher 25(OH)D, 24,25(OH)2D, and VMR were associated with 0.32%, 0.25%, and 

0.26% lower PTH, respectively (p< 0.05 for all). Among 358 participants with available BMD 
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data, we found no associations of 25(OH)D or VMR with BMD, whereas higher 24,25(OH)2D 

was modestly associated with greater hip BMD (1% higher 24,25(OH)2D associated with 0.04% 

[95% CI 0.01−0.08%] higher BMD). Risk of incident hip fracture risk was evaluated using a case-

cohort design. There were 289 hip fractures during a mean follow up time of 8.4 years. Both 

higher 24,25(OH)2D and VMR were associated with lower risk of hip fracture (HR per SD higher, 

0.73 [0.61, 0.87] and 0.74 [0.61, 0.88], respectively) whereas 25(OH)D was not associated with 

hip fracture (HR 0.93 [0.79, 1.10]). We conclude that evaluating vitamin D status by incorporating 

assessment of 24,25(OH)D and the VMR provides information on bone health above and beyond 

25(OH)D alone.
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1. INTRODUCTION

Using current definitions that rely on serum 25-hydroxyvitamin D [25(OH)D] vitamin D 

concentrations, vitamin D insufficiency and deficiency are common among Americans.[1] 

Marked skeletal abnormalities are observed in patients with severe vitamin D deficiency, and 

less severe vitamin D deficiency is widely hypothesized to contribute to osteoporosis, 

fractures and other diseases in the general population.[1–4]

Recent studies suggest that assessing vitamin D status based on concentrations of 25(OH)D 

alone may be suboptimal.[5–8] Studies evaluating the relationship between 25(OH)D and 

bone density and fractures have had mixed findings.[5–7] Additionally, it is unclear how 

well the serum concentration of 25(OH)D reflects the downstream effects of vitamin D 

receptor (VDR) signaling in response to 1,25(OH)2D binding (VDR activity), as 25(OH)D 

may be activated, catabolized, or remain in an inactive form.[8] Furthermore, assays for 

25(OH)D are affected by concentration of vitamin D Binding protein (DBP), which can vary 

between individuals, and may not reflect bioavailable 25(OH)D.[9] Alternative markers have 

been proposed.

1,25-dihydroxyvitamin D [1,25(OH)2D] is the active vitamin D hormone. Intuitively, 

directly measuring 1,25(OH)2D seems appealing. Unfortunately, direct measurement of 

1,25(OH)2D has several limitations. Circulating concentrations of 1,25(OH)2D are 

approximately 1000-fold lower than that of 25(OH)D. Therefore assays require significantly 

more serum and extraction steps are required to account for interfering compounds.[10] 

Second, 1,25(OH)2D has a half-life of approximately 4 hours compared to weeks for 

25(OH)D.[11] Thus 1,25(OH)2D values may vary significantly from measurement to 

measurement. For these reasons routine measurement of 1,25(OH)2D is not currently 

recommended.

As part of vitamin D catabolism, the CYP24A1 enzyme converts 25(OH)D to 24,25-

dihydroxyvitamin D [24,25(OH)2D]; a process stimulated by higher 1,25(OH)2D.[12] This 

feedback mechanism is thought to prevent tissue level vitamin D toxicity.[13] These insights 

provide a novel opportunity to assess adequacy of VDR activity. As a result of increased 
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binding and activation of the VDR in response to 1,25(OH)2D, there is increased CYP24A1 

enzyme expression and increased 24,25(OH)2D.[12] Thus, 24,25(OH)2D concentrations 

may reflect VDR activity. However, like 25(OH)D, 24,25(OH)2D is similarly bound to DBP. 

Therefore, 24,25(OH)2D concentrations may not reflect free 24,25(OH)2D. Other 

investigators have proposed assessment of the 24,25(OH)2D to 25(OH)D ratio; also called 

the vitamin D metabolite ratio (VMR); to assess VDR activity. A higher VMR is proposed to 

reflect greater VDR activity and may not be limited by DBP concentrations as it would 

affect both the numerator and the denominator of the ratio similarly and would cancel out in 

the VMR calculation.[14]

To our knowledge, no prior study has evaluated whether 24,25(OH)2D concentrations or the 

VMR are more strongly associated with bone health than 25(OH)D alone. Moreover, as the 

CYP24A1 enzyme that regulates 24,25(OH)2D generation is expressed in the kidney, 

whether or not the relationship of 24,25(OH)2D concentrations and VMR with bone health 

differs in persons with chronic kidney disease (CKD) is untested. To that end, we set out to 

determine the associations of 24,25(OH)2D and the VMR with bone health in a well 

characterized cohort of older individuals in the Cardiovascular Health Study (CHS). We 

compared the strength of these associations to that of 25(OH)D alone. A priori, we 

hypothesized that the VMR would be more strongly associated with serum parathyroid 

hormone (PTH), hip bone mineral density (BMD), and risk of incident hip fracture, than 

25(OH)D.

2. SUBJECTS AND METHODS

2.1 Study Population

The CHS is a community-based longitudinal observational cohort study of older adults.[15] 

Briefly, enrollment began in 1989 with 5201 participants aged ≥ 65 years recruited from 

Medicare eligibility lists in four locations, Forsyth County, NC; Sacramento County, CA; 

Washington County, MD; and Allegheny County, PA. Due to low participation of African-

Americans, an additional 687 predominantly African-American participants were enrolled in 

1992–93. Participants underwent annual examinations until 1998–99 and a subsequent 

examination was performed in 2005–06. At the 1996–97 examination, 3,233 participants 

provided blood specimens; this visit serves as baseline for this study. Among these, we 

randomly selected a sub-cohort of 1000 participants, of which 890 had a complete set of 

data for this analysis. We investigated three distinct endpoints; each evaluated in a different 

manner. Sampling for each is depicted in Figure 1. All participants in CHS provided written 

informed consent, and the institutional review board at each center approved the study 

protocol.

We first evaluated serum PTH concentrations from samples drawn at the 1996–97 study visit 

concurrent with the vitamin D metabolite measurements, using a cross-sectional design, 

within the randomly selected sub-cohort. Next, we evaluated total hip BMD which was 

measured at 2 of the 4 clinic sites (Pennsylvania and California) at the 1994–95 study visit, 

approximately 2 years before the vitamin D measurements (1996–1997 visit). Among the 

890 participants in the random sub-cohort, 358 provided BMD data.
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Last, we evaluated longitudinal risk of incident hip fracture. For this endpoint, we set the 

1996–97 visit (time of vitamin D measurements) as our baseline, and evaluated future risk of 

hip fracture using a case-cohort design. In addition to the 75 fractures in the randomly 

selected sub-cohort, we identified all CHS participants who had hip fractures after the 1996–

97 visit and obtained vitamin D metabolite measurements in these 214 “cases” per standard 

case-cohort study design. Vitamin D metabolite measurements of the 214 “cases” were 

performed concurrent to the 75 fractures in the sub-cohort, as well as concurrent with all 

individuals in the sub-cohort, so as to avoid any lab batch effect, as described below.

2.2 Vitamin D Measurements

Participants had fasted for ≥ 8 hours at the time of blood sampling. Samples were stored at 

70°C fromcollection in 1996–97 until testing in 2012. Measurements of 25(OH)D2, 

25(OH)D3 and 24,25(OH)2D3 were made using liquid-liquid extraction and subsequent 

liquid chromatography- tandem mass spectrometry.[16] Total 25(OH)D was calculated by 

adding 25(OH)D2 and 25(OH)D3. Coefficient of variation for 25(OH)D assays was <5.6% 

with an analytic range of 1–200 ng/ml.[17] Original concentrations of 24,25(OH)2D were 

divided by two for proper calibration and traceability to NIST SRM 972a.[18] The average 

observed coefficient of variation was 9.9–12.7% at 2.0–5.1 ng/mL with an analytic range of 

0.1–100 ng/mL. All assays measuring 25(OH)D3, 25(OH)D2, and 24,25(OH)2D3 were 

calibrated to standards provided by the National Institute of Standards and Technology.[19] 

The VMR was calculated by dividing serum 24,25(OH)2D3 by serum 25(OH)D3 and then 

multiplying by 100.[14] As there is no spectroscopic evidence of 24,25(OH)2D2 the VMR 

was calculated using 24,25(OH)2D3 and 25(OH)D3 only. Vitamin D measurements were 

made at the University of Washington.

2.3 Outcome Variables: PTH, BMD and Hip Fracture

Serum intact PTH levels were measured at the 1996–97 visit. The Beckman Unicell Dxl 

Clinical Analyzer was used with a reported inter-assay coefficient of variation of <4.5%.(20)

Dual-energy x-ray absorptiometry (DXA) was performed at the 1994–95 visit at the 

Pennsylvania and California sites using a Hologic QDR-2000 densitometers (Hologic, Inc).

[21] Standardized positioning and use of QDR software was based on the manufacturer’s 

recommended protocol. The coefficient of variation for the total hip BMD was <0.75%. 

Interpretation of the scans was performed by investigators blinded to outcomes at the 

University of California San Francisco.

Hip fracture data was obtained through participant report assessed every 6 months and by 

linkage with Medicare files that included all hospital admissions. These participant reports 

were cross-referenced against Medicare claims as well as hospitalization records and 

discharge summaries to identify any fractures not reported by participants. ICD-9 code of 

820.xx without a concomitant code for motor vehicle accident (E810–E819) or pathologic 

fracture (733.1x) noted on discharge summaries constituted hip fracture events. ICD-9 codes 

for hip fractures that occurred in this cohort included the codes 820.0–820.03, 820.08, 

820.09, 820.20, 820.21, 820.22, 820.29, 820.80, and 820.90. Hip fracture data was gathered 

from the initiation of the study until June 2010 with a mean follow up time of 8.4 years.[21]
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2.4 Other Measurements

Trained personnel performed interviews and obtained participant demographics. Participants 

were instructed to bring all medication to study visits, at which time the medication, dose, 

and frequency was recorded by the study personnel. Smoking status was determined by self-

report. Body mass index (BMI) was calculated as weight in kilograms divided by height in 

meters squared. After 5 minutes rest, blood pressure was measured three times, at least 30 

seconds apart. The average of the last two measurements was used to calculate blood 

pressure. Hypertension was defined as a systolic blood pressure ≥ 140 mm Hg, diastolic 

blood pressure ≥ 90 mm Hg, or use of an anti-hypertensive agent. Diabetes status was 

defined by the use of insulin or hypoglycemic agent, or a fasting serum glucose of ≥126 

mg/dl. Estimated glomerular filtration rate (eGFR) was calculated using the CKD-

Epidemiology formula including creatinine and cystatin C. Cystatin C concentrations were 

measured using a BN II nephelometer (Siemens; www.siemens.com).[22,23] Serum calcium 

and phosphate were measured by indirect potentiometry on a DxC Synchron analyzer 

(Beckman-Coulter Inc, Brea, CA) and timed-rate colorimetric reaction method, respectively.

[24] Serum fibroblast growth factor 23 (FGF23) was measured using a carboxy-terminal 

ELISA kit (Immutopics, San Clemente, CA). Urine albumin/creatinine ratio (ACR) was 

performed using a single voided urine sample. Season of lab draw was defined as Winter if it 

occurred from January-March, Spring from April–June, Summer from July–September and 

Fall from October–December.

2.5 Statistical Methods

We compared baseline characteristics within the random sub-cohort across quartiles of VMR 

using either χ2 or ANOVA tests. We used multiple linear regression to assess the 

associations between 25(OH)D, 24,25(OH)2D, and the VMR with PTH. To facilitate 

comparisons, we log transformed both the exposure (VMR, 24,25(OH)2D and 25(OH)D) 

and outcome variable (PTH), such that beta coefficients are interpretable as the percentage 

change in PTH attributable to a one percent change in the predictor variable. In companion 

analyses, we evaluated quartiles of each vitamin D measure, setting the lowest as the 

reference category. We developed a sequence of models. Model 1 was unadjusted. Model 2 

was adjusted for age, sex, race, season of blood sampling, clinic site and BMI. Model 3 was 

additionally adjusted for eGFR, serum calcium, phosphate and FGF-23 concentrations. We 

then assessed race and CKD (eGFR <60 ml/min/1.73m2 vs. higher) interactions by inclusion 

of multiplicative interaction terms in Model 3.

Next we evaluated the association of the vitamin D variables with BMD using multiple 

linear regression adjusting for identical covariates as above. We log transformed both the 

vitamin D and BMD variables such beta coefficients are interpretable as the percentage 

change in BMD attributable to a one percent change in the vitamin D variable.

Lastly, we evaluated the association of the vitamin D variables with incident hip fracture 

using Prentice weighted Cox models to account for the case-cohort design. Sub-cohort 

participants were weighted to the inverse probability of their sampling. All cases within the 

sub-cohort as well as outside the sub-cohort were assigned a weight of 1 at the time of 

failure.[25] We used the same sequence of models as above to assess the hazard ratio (HR) 
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of hip fracture per one standard deviation (SD) higher of the vitamin D variables. In 

companion models, we evaluated quartiles of vitamin D metabolites, setting the lowest as 

the reference category. Last, we developed spline functions using additive models, adjusted 

for Model 3 covariates. The extreme 2.5% of vitamin D measurements were excluded to 

avoid implausible extrapolations from the extremes of the data distribution in splines. 

Analyses were conducted in Stata SE version 14.1 (College Station, TX) for PTH and BMD 

outcomes and R Core Team 2016 (Vienna Austria) for hip fracture. P-values < 0.05 were 

considered statistically significant for all analyses including interaction terms.

3. RESULTS

3.1 Participant Characteristics

The mean age of the 890 individuals in the sub-cohort was 78 years, 60% were women, 16% 

were African-American, and 40% had eGFR < 60 ml/min/1.73 m2 at baseline. The mean 

25(OH)D concentration was 28 ± 11 ng/ml and 58% had levels < 30 ng/ml. The mean 

24,25(OH)2D concentration was 1.7 ± 1.0 ng/ml, and mean VMR was 6.84 ± 2.23 (ng/ml) / 

(ng/ml). Baseline characteristics across quartiles of VMR are shown in table 1. Compared to 

persons in the lowest VMR quartile, those with higher VMR were younger, more often male 

and Caucasian, less likely to have diabetes and hypertension, and they had higher eGFR. 

While 25(OH)D and 24,25(OH)2D concentrations were highest in the Spring and Summer 

(Supplemental Tables 1 and 2), we found that the VMR was highest in the Fall and Winter.

3.2 Relationships of Vitamin D Measurements with PTH

25(OH)D, 24,25(OH)2D, and the VMR were all inversely associated with PTH and these 

associations were of similar strength. The associations were not materially altered across the 

sequence of adjusted models. In the final model, each 1% higher 25(OH)D was associated 

with a 0.32% lower PTH; corresponding percent changes per 1% higher 24,25(OH)2D and 

the VMR were 0.25% and 0.26% lower PTH, respectively (Table 2). When the vitamin D 

variables were evaluated by quartiles, associations appeared fairly linear (Supplemental 

Table 3). In all cases, associations were similar irrespective of race (p-interactions all 

>0.630). Associations between 25(OH)D and PTH were similar irrespective of CKD status 

(p-interaction=0.941). Tests for interactions 24,25(OH)2D and the VMR by CKD status 

approached statistical significance (p-interaction=0.076 and 0.063, respectively). Results 

stratified by CKD status suggested stronger inverse associations between VMR and 

24,25(OH)2D and PTH in the 357 participants with CKD (Supplemental Table 4).

3.3 Relationships of Vitamin D Measurements and Hip Bone Mineral Density

Among those sampled in the random sub-cohort, there were 358 participants who had had 

BMD measurements previously at the 1994–95 study visit; approximately 2 years before 

blood samples were taken for vitamin D measurements. Demographics of this subset were 

similar to the remainder of the sub-cohort (Supplemental Table 5). There was no significant 

association of either 25(OH)D or the VMR with BMD across the sequence of models (Table 

3). In contrast, we observed that higher 24,25(OH)2D was associated with higher BMD, but 

the magnitude of the association was modest. In unadjusted models, each 1% higher 

24,25(OH)2D was associated with a 0.06% higher BMD. This association was modestly 
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attenuated across the sequence of models such that 1% higher 24,25(OH)2D was associated 

with a 0.04% higher BMD in the final model. We found no evidence for effect modification 

by race (all p-interactions > 0.12) or CKD status (all p-interactions > 0.06) with any of the 

vitamin D measures.

3.4 Relationships of Vitamin D Measurements and Hip Fracture Risk

In the case-cohort analysis for hip fracture, we excluded 36 individuals from the sub-cohort 

and an additional 10 hip fracture cases due to missing covariate data. Among the remaining 

1116 participants, there were 902 participants in the sub-cohort, and 289 hip fracture cases 

(75 cases arose from within the random subcohort and 214 occurred in the remaining CHS 

population). The incidence rate of hip fracture was 9.1 events per 1000 person-years within 

the random sub-cohort. We observed no association of 25(OH)D with risk of hip fracture; a 

finding that was consistent across the sequence of models (Table 4). In contrast, each SD 

higher 24,25(OH)2D was associated with 24% lower risk of hip fracture in unadjusted 

models. This strength of association remained similar across the sequence of models such 

that each SD higher 24,25(OH)2D was associated with 27% lower risk of hip fracture in the 

fully adjusted model. Results were similar with the VMR, where each SD higher VMR was 

associated with 26% lower risk of hip fracture in both unadjusted and fully adjusted models. 

Spline functions depicting the nature of the relationships across the range of each marker are 

shown in figure 2; associations were fairly linear across the range of available values. We 

observed no evidence of effect modification by race (p interactions all > 0.22) or CKD status 

(p interactions all >0.31) for the association of any of the vitamin D metabolites with risk of 

hip fracture.

4. DISCUSSION

This study represents the first, to our knowledge, to investigate the relationship of 

24,25(OH)2D and the VMR with bone health in older, community-living adults. We 

demonstrate that while lower serum 25(OH)D was associated with higher serum PTH, we 

observed no association of 25(OH)D with either hip BMD or longitudinal risk of hip 

fracture. 24,25(OH)2D and the VMR were similarly associated with PTH, but in contrast to 

25(OH)D, lower 24,25(OH)2D and VMR were both independently associated with hip 

fracture risk. We hypothesized that VMR would provide the most comprehensive data on 

VDR activity, and thus the strongest associations with PTH, BMD, and hip fracture risk. We 

found that 24,25(OH)2D in isolation had similar associations with PTH and fracture risk, 

and was associated with BMD while VMR was not.

Several prior studies have evaluated the cross-sectional relationship of the VMR with PTH, 

including a prior study from the CHS population. [14,26,27] This prior study evaluated the 

relationship of quartiles of 24,25(OH)2 D and the VMR with PTH and showed a trend of 

lower VMR with higher PTH across quartiles (p=0.08). Our findings are similar, but by 

designing the analyses as per SD change in each vitamin D variable, we were able to 

compare strengths of association across vitamin D markers. We demonstrate that all 3 

markers had similar strengths of association with PTH. Results evaluating the relationship of 

the VMR with PTH are generally similar in most, but not all, prior studies. In the Multi-
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Ethnic Study of Atherosclerosis (MESA), there was an inverse association of the VMR with 

PTH concentrations.[26] Berg et al. evaluated a cohort of 376 community-living adults 

(mean age 48 years) and also found an inverse relationship between VMR and PTH.(14) In 

contrast, Wagner et al. evaluated 80 participants receiving oral vitamin D supplementation 

and reported no association between the VMR or 24,25(OH)2D with PTH concentrations. 

Mean age in this study was 28 years, thus substantially younger than participants in the 

CHS, MESA, or the study by Berg et al. Thus, with regards to VMR and PTH, we confirm 

findings in MESA and by Berg and colleagues. Similarly, we confirm findings by Binkley et 

al. in which they used a vitamin D composite score that sums total 25(OH)D, 25(OH)D3 and 

24,25(OH)D (instead of a ratio), and found it was inversely associated with PTH.[28] 

Beyond this confirmation, we meaningfully extend the findings by comparing strengths of 

association relative to other markers of vitamin D. As the relative strengths of association of 

VMR and 25(OH)D with PTH were of similar strength, we lack evidence to support one 

measure over the other from the perspective of the PTH end-point.

Numerous studies in a variety of settings have evaluated the relationship of 25(OH)D with 

BMD. Results have been conflicting.[7,8,29,30] We found no association between 25(OH)D 

and BMD in our study, consistent with several prior studies in older adults.[7,30] For the 

first time, we evaluated the associations of 24,25(OH)2D and the VMR with BMD. We 

found a direct association of 24,25(OH)2D with BMD. While significant, the association 

was quite modest in strength. We observed no association of VMR with BMD. Our sample 

size for this endpoint was modest (N=358), thus these results should be evaluated within the 

context of the 95% confidence intervals. While it is possible that an association of VMR 

with BMD may exist, our findings suggest that any such association would be modest in 

strength, at best.

Finally, we evaluated the associations of the vitamin D measures with longitudinal risk of 

hip fracture. We found no association between serum 25(OH)D and hip fracture risk, 

consistent with prior studies in CHS.[31] In contrast, we found that each SD higher VMR 

was associated with a 26% lower risk of hip fracture during follow-up, and individuals in the 

highest VMR quartile had nearly half the risk of hip fracture compared to the lowest 

quartile. Thus, the VMR provided more information on fracture risk than 25-hydroxyvitmain 

D alone. We also found that lower 24,25(OH)2D was associated with risk of hip fracture; an 

association that was similar in magnitude of that of the VMR. This suggests that the value of 

the VMR may be driven primarily by information garnered through measurement of 

24,25(OH)2D.

The etiology for the association between VMR and 24,25(OH)2D with bone outcomes are 

not completely understood. We hypothesized that higher VMR and 24,25(OH)2D reflect 

greater VDR activity driving catabolism. This hypothesis was driven in part by experimental 

evidence in dogs. When treated with cholecalciferol, the animals expressed higher 

concentrations of renal 24-hydroxylase as well as higher concentrations of 24,25(OH)2D.

[12] 24,25(OH)2D is typically thought to be an inert catabolic product of vitamin D. 

However, some studies suggest that 24,25(OH)2D may be bioactive itself. Ornoy et al. 

demonstrated improvements in bone health in rachitic chicks after treatment with 

24,25(OH)2D.[32] Additionally, Curtis et al. found that 24,25(OH)2D drives osteoblastic 
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differentiation of mesenchymal stem cells.[33] Thus, while VMR and 24,25(OH)2D may 

reflect VDR activity under the influence of 1,25(OH)D2, it is possible that 24,25(OH)2D and 

the VMR may mark additional biological effects.

Strengths of our study include evaluation of a study sample of older men and women from 

multiple centers across the US. We examined the relationships between 24,25(OH)2D and 

the VMR with BMD and hip fracture for the first time. Availability of PTH, BMD, and hip 

fracture data allowed us the opportunity to comprehensively examine relationships of these 

markers with bone health. The availability of men and women, whites and blacks, persons 

with and without CKD, and detailed measurements of covariates including serum calcium, 

phosphate, and FGF23 are additional strengths.

The study also has important limitations. BMD measurements were made 2 years prior to 

vitamin D measurements. Prior studies demonstrate that BMD changes slowly, thus we 

believe this design feature is unlikely to have biased our results.[34] BMD was only 

available from two clinical centers and the available sample size was modest. Nonetheless, 

the null findings and relatively tight confidence intervals suggest that any missed association 

is likely to be modest in strength, at most. We lack data on bisphosphonates or vitamin D 

supplements use. As such, we do not have data regarding the effect of treatment with 

ergocalciferol, cholecalciferol or calcitriol on 24,25(OH)2D or the VMR. All vitamin D 

metabolites were made in one point in time. Future studies are required to determine 

whether longitudinal changes in these measures provide information on hip fracture risk 

above and beyond measurements at one point in time. Additionally this study is 

observational, hence causality cannot be determined. These important questions require 

future study.

5. CONCLUSION

In summary, we demonstrate that lower 24,25(OH)2D concentrations and lower VMR are 

associated with increased hip fracture risk community-living older men and women. In 

contrast, 25(OH)D was not associated with hip fracture risk. If confirmed, measurement of 

24,25(OH)2D, and potentially calculation of the VMR may provide additional insights to the 

sufficiency of VDR activity and bone health above and beyond 25(OH)D measurements 

alone.
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Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Serum 25-hydroxyvitamin D, 24,25-dihydroxyvitamin D and the vitamin D 

Metabolite ratio (VMR) were similarly inversely associated with serum PTH.

• Higher 24,25-dihydroxyvitamin D, but not 25-hydroxyvitamin D or the VMR, 

was associated with increased bone density.

• The VMR was strongly associated with hip fracture risk while 25-

hydroxyvitamin D has no association with hip fracture risk.
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Figure 1. 
Study Sampling Relative to the Study Endpoints

Study Populations for each endpoint in CHS. There were 3,233 total participants at the 

1996–97 visit in CHS. A random sub-cohort of 1,000 persons (890 with complete data set) 

were evaluated for PTH analysis. 358 participants underwent DXA and were included for 

the BMD analysis. All fractures in CHS were included in the analysis, 75 fractures occurred 

in the random sub-cohort and 214 fractures occurred in the remaining CHS population.
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Figure 2. 
Spline Function Depicting the Relationship of Vitamin D Measurements with Risk of Hip

Figure 2: Spline function of HR of hip fracture by vitamin D metabolite. Solid lines 

represent the spline function. Dashed lines represent 95% CI.
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