
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
An integrated solution for secure group communication in wide-area 
networks

Permalink
https://escholarship.org/uc/item/5bt517bh

Authors
Agarwal, Deborah A.
Chevassut, Olivier
Thompson, Mary
et al.

Publication Date
2001-04-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5bt517bh
https://escholarship.org/uc/item/5bt517bh#author
https://escholarship.org
http://www.cdlib.org/


An Integrated Solution for Secure Group Communication in
Wide-Area Networks �

D. A. Agarwal, O. Chevassuty, M. R. Thompson
Lawrence Berkeley National Lab

DAAgarwal@lbl.gov, OChevassut@lbl.gov,
MRThompson@lbl.gov

G. Tsudik
University of California, Irvine

gts@ics.uci.edu

Abstract

Many distributed applications require a secure reli-
able group communication system to provide coordination
among the application components. This paper describes
a secure group layer (SGL) which bundles a reliable group
communication system, a group authorization and access
control mechanism, and a group key agreement protocol to
provide a comprehensive and practical secure group com-
munication platform. SGL also encapsulates the standard
message security services (i.e, confidentiality, authenticity
and integrity). A number of challenging issues encountered
in the design of SGL are brought to light and experimental
results obtained with a prototype implementation are dis-
cussed.

Keywords: security, group communication, group autho-
rization and access control, group key agreement.

1. Introduction
Many current applications are implemented as dis-

tributed systems. Some are distributed by nature (e.g., col-
laboratory and conferencing software) while others are dis-
tributed to meet load-balancing and fault-tolerance require-
ments (e.g., content servers and fault-tolerant CORBA).
Such applications often rely on reliable group communica-
tion to provide coordination between processes.

One example of an application class that can benefit
from, and make extensive use of, a reliable group communi-
cation platform is scientific collaboration software. Appli-
cations such as distributed white boards, remote instrument
control, messaging systems, electronic notebooks, and data
sharing are natural users of group communication. Appli-
cations of this type normally involve users spread across a

�This work was supported by the Director, Office of Science, Office
of Advanced Scientific Computing Research, Mathematical Information
and Computing Sciences Division, of the U.S. Department of Energy un-
der Contract No. DE-AC03-76SF00098. This document is report LBNL-
47158.

yUniversité Catholique de Louvain, Chevassu@dice.ucl.ac.be

wide-area network and may utilize multiple groups. Un-
fortunately, few group communication systems can operate
over a wide-area network and even fewer incorporate the
access control and other security services that these appli-
cations require.

Although acceptable solutions (e.g., SSL and Kerberos)
are available for securing unicast connections, they do not
extend to securing group communication. One of the main
reasons is key management. Unicast communication in-
volves only two parties and consensus on a shared key is
relatively easy to reach. Each time a new unicast connec-
tion is created the consensus process starts from scratch
and, if either party in a unicast communication session
quits, fails, or drops the connection, the other party also
quits. In group communication, consensus on a shared key
is more complex since group membership is dynamic. Once
a group is formed, members may join or leave the group
due to failures, network partitions and voluntary member-
ship changes.

Controlling access to a group requires authentication of
users and definition of group access policy. Authentication
and authorization for groups present a more complicated
set of problems than the typical client-server access con-
trol. Authentication is more difficult because each group
member must be able to authenticate all the other members.
In a server-based access control model the policy normally
only controls access and is only enforced by the server. The
scope of group security policy is still a research topic as are
the methods of group policy enforcement.

Another challenge in introducing group security services
is how best to provide them to the application. One ap-
proach is to integrate them into the underlying group com-
munication system. This approach makes the security ser-
vices invisible to the applications but makes providing au-
thenticity, authorization and access control based on user
credentials very difficult. This solution also would not be
portable across different group communication systems.

An alternate approach is to interpose a security layer be-
tween the application and the group communication system.



This approach introduces minor changes in the application
to convey a user’s credentials (access privileges and user
identity information) to the secure layer and has the advan-
tage of being largely independent of the group communi-
cation system implementation. This approach also allows
the security layer to leverage off the properties of the group
communication system in transmitting its own messages.

The contribution of this paper is in the design of a se-
cure group layer (SGL) aimed at WAN environments. SGL
protects against attacks like eavesdropping and spoofing1

by integrating a reliable group communication system, a
group authorization and access control mechanism to deter-
mine who knows the key, and a group key agreement proto-
col which facilitates the standard message security services
(i.e. confidentiality, authenticity and integrity). However,
denial of service attacks through corruption of the underly-
ing group communication system can still be a problem.

The remainder of this paper is organized as follow. Sec-
tion 2 defines the group communication terminology. Sec-
tion 3 summarizes the related work. Section 4 describes the
SGL architecture. In section 4.3 for the purpose of this pa-
per we will assume that a simple policy exists but we will
still need to identify the repository for group policies. Fi-
nally Section 5 presents some experimental results obtained
with a prototype implementation.

2. Group Communication
Group communication systems are designed to support

communication between processes cooperating in groups.
The group communication system provides an underlying
layer that does the work of maintaining membership of
the process group and reliably delivering messages sent to
the group in an asynchronous distributed system. Example
group communication systems which provide these proper-
ties include Totem [15], Spread [3], and InterGroup [6].

There are several message ordering properties that group
communication systems provide to the application. A very
basic property is causal ordering of messages. Messages
sent by the same application process are received by the ap-
plication in the order they were sent and messages received
by an application process before sending a new message
(m1) are ordered before m1 at all the members of the group.
Many systems also provide a total order on messages within
the group so that messages are received by the application in
a single linear total order that is the same at all the members
of the group.

Group membership maintenance is a critical component
of the group communication system since the membership
of the group is the basis for the determination of reliable de-
livery of messages and message order. A particular instance

1Spoofing is an integral part of many network attacks. In a group com-
munication setting, spoofing attacks refer to the impersonation of a group
member.

of the group membership is referred to as a view. Each ap-
plication receives messages within the context of a view. It
is important that the delivery order of messages and view
changes are consistent across the members of a particular
view.

There are several consistency definitions that are in use
by group communication systems. Some common consis-
tency definitions are sending view delivery, view synchrony,
and extended virtual synchrony (see [25]). Sending view
delivery means that messages are received in the view in
which they were sent. Virtual synchrony[7] and extended
virtual synchrony[16] (EVS) define message order, message
delivery and view change consistency constraints. In the
case of EVS these consistency constraints are system wide.

3. Related Work
One approach of secure group communication is to se-

cure the group communication system against Byzantine
failures2. Rampart[17] was the first to demonstrate the
feasibility of reliable and atomic group multicast for asyn-
chronous distributed systems in the presence of Byzantine
failures. It uses public key cryptography to establish au-
thenticated communication between a pair of processors
and implements the reliable and atomic group multicast
protocols over a secure group membership protocol [18].
Immune[10] uses public key cryptography to secure the
Totem [15] daemon. Immune secures the low-level ring
protocol against Byzantine failure and hence maintains the
reliable ordered message delivery and group membership
services despite the corruption of some group communi-
cation servers by an attacker. The extension of Rampart
and Immune work from LAN to WAN environments is de-
scribed in [12].

Another approach is to assume that the group commu-
nication servers will not be corrupted and hence focus on
attacks such as eavesdropping and spoofing. Ensemble se-
curity [19] allows application-dependent trust models. The
group key generation and distribution protocols used in En-
semble are extensions of symmetric (i.e. two-party) crypto-
graphic tools such as PGP [14] and Kerberos [20]. Ensem-
ble relies on a trusted group leader to perform and initiate
key generation. The group leader is static and changes only
when the current group leader leaves or becomes unreach-
able. Secure Spread [2] differs from Ensemble since it uses
a fully distributed group key generation protocol [22]. Se-
cure Spread is placed above the Spread group communica-
tion system and relies on the property commonly known as
view synchrony. View synchrony is a stronger property than
the sending view delivery we require for the secure group
layer. Secure Spread also does not provide any authentica-
tion or group access control mechanisms, does not consider

2In the Byzantine threat model the attacker can compromise the under-
lying group communication system and/or run fake group communication
system.

2



the Byzantine failure model, and focuses primarily on LAN
and interconnected LAN environments.

An important aspect of securing group communication
is the group policy issues such as requirements for group
rekeying and levels of message security. The Antigone
framework [13] provides interfaces for the definition and
implementation of policies for secure groups. Policies are
implemented by composition and configuration of mecha-
nisms which provide basic services for secure groups.

4. Secure Group Layer
The design of our secure group layer (SGL) uses the

properties provided by the underlying group communica-
tion system. These properties are a subset of those provided
by extended virtual synchrony and ensure that messages are
consistently ordered and delivered across the group. The
view change events emanating from the group communica-
tion system notify SGL of membership changes due to a
join, leave, fail, partition, or merge event.

In addition to the existing properties of the group com-
munication system, SGL provides applications with the
property of sending view delivery. This property is useful
for implementing group security services since it guaran-
tees the application that messages are delivered in the same
view as they were sent. By using sending view delivery,
SGL can use one group key at a time and change keys with
each new view.

6

? 6 6

? 6

Protocol
Flush

Protocol
Access Control
Protocol

Key Agreement

Record Layer

send recv view chng

Application

send recv view chng

Group Communication System

Figure 1. Protocol stack

The SGL architecture consists of four main components
each implementing a separate protocol (see Fig. 1). The
record layer provides standard message security services
(i.e., confidentiality, integrity and authenticity). The access
control protocol enforces restrictions on group membership.
The flush protocol provides a mechanism for delineating
membership views where each view corresponds to the life-
time of a specific secret group key and any keys derived
from it. The key agreement protocol creates a shared group
secret which is then used to derive a symmetric encryption
key and an authentication (MAC) key. These two keys are
subsequently made available to the record layer.3

4.1. Record Layer
The record layer supports message transmission with

confidentiality, integrity and authenticity. It takes an ap-
plication message, applies an integrity algorithm using the

3The flush, access control, and key agreement protocols are invoked by
each view change event.

MAC group key, encrypts it using the symmetric group en-
cryption key and sends it out using the group communica-
tion system. On receipt, a message is decrypted with the
symmetric group decryption key, verified using the MAC
group key and delivered to the application. The current SGL
implementation uses the Rijndael cipher [8] for encryption
and the HMAC method [11] for MAC computation.
4.2. Flush Protocol

As mentioned above, the flush protocol implements
sending view delivery for SGL and applications. It defines
the end of a membership view and thus guarantees that no
further messages encrypted with a particular session key
will be received. Coordination is attained with special flush
messages marking the end of a view.

The flush protocol is invoked by a view change event.
Recall that sending view delivery means that all messages
that the application believes were sent in a given view must
be received by the application in that same view. Con-
sequently, the flush protocol must send pending messages
(which have been accepted from the application) and block
any new messages from the application before it sends the
flush message.

The protocol waits until a flush message from every pro-
cess in the new view is received and is verified. Receipt of
a flush message represents for the recipient a “promise” by
the sender not to send any more messages encrypted with
the group key corresponding to the old view. When all
flush messages are received, the process can conclude that
no further messages protected by the old group key will be
received. View change events reset and restart the flush pro-
tocol.

It is important to note that, if SGL were to use an un-
derlying group communication system that provided send-
ing view delivery, the flush layer would still be needed.
Otherwise, the group communication system would need
to accept, for sending in the old view, application messages
buffered (e.g., during encryption) in SGL and not yet passed
to the group communication system.
4.3. Access Control Protocol

A group access control mechanism enforces restrictions
on group membership. Without it, other security services
(including key agreement and data integrity/privacy) are ba-
sically ineffective. Our access control approach uses mem-
bership certificates that authorize entry into the key agree-
ment protocol and, hence, the group itself.

The Authorization Authority is responsible for collecting
group policies and using them to determine who is allowed
to join a group. The Akenti server is such an authority. Ak-
enti determines if a user is allowed to join a group and issues
membership certificates containing that information.

A membership certificate (see Figure 2) associates a pub-
lic key with the X.509 identity of a user and contains the ac-
cess privilege granted to the user with respect to the group,

3



the validity period for the certificate as determined from the
policy, the identification of the Authorization Authority that
issued the certificate and additional information for the Au-
thorization Authority’s use, such as a serial number.

Subject: Distinguished Name, Public Key
Access Privilege: Group, Authorized or Denied Access
Issuer: Distinguished Name, Signature
Administrative Information: Version, Serial Number.
Period of Validity: Start and Expire Dates/Times

Figure 2. Membership certificate format.

The Akenti server not only issues membership certifi-
cates, it also manages them. It keeps a list of all non-expired
certificates that have been issued for a group. Akenti also
keeps a list of all the revoked certificates called the Certifi-
cate Revocation List (CRL). When examining membership
certificates for validity, therefore, it is necessary to contact
the issuing Akenti server to check the Certificate Revoca-
tion List. At this time this is not an automated part of the
group access control protocol.

A user needs to first obtain a membership certificate from
the Akenti server or needs to request a new certificate if its
certificate has expired or has been revoked. When a user
wants to join the secure group, he will start by joining the
reliable group. This join causes a view change and intitates
the flush protocol. During the flush protocol each member,
including the new joinee, will broadcast its membership cer-
ticate as part of the flush message. For efficiency’s sake,
the membership certificate is included in the flush message.
Each member will verify each other member certificate by
checking that the message is signed by the subject of the
certificate, that the membership certificate is signed by Ak-
enti, is within its validity period and grants joining access.

Once the group controller has verified all the members,
it will start a new key agreement protocol. The group con-
troller is a group member who enforces group access control
policy by creating and disseminating the group keying ma-
terial to authorized members. The group controller role is
determined by the group key agreement as we will see in the
next section. If any member sees key agreement messages
from a user that it does not trust, it can refuse to participate.

4.4. Key Agreement Protocol
A group key agreement mechanism establishes a secret

key between members of a group. It allows the members to
agree upon and begin computing a key without relying on
any centralized trusted third party (TTP) which could be a
single point of vulnerability for the overall system.

The group Diffie Hellman protocols from the Cliques
[5, 22] protocol suite are such a mechanism. Within the
group Diffie Hellman family we focus on two Initial Key
Agreement protocols: IKA.1 (Fig 3) and IKA.2 [22] which
are shown secure against passive [22] and active [5] attacks.
IKA.1 trades off minimal round (and number of messages)

complexity in return for higher computational cost. In con-
trast, IKA.2 a ”sibling” GDH protocol minimizes compu-
tational cost at the expense of more protocol rounds (and
more messages). These two Initial Key Agreement proto-
cols can be extended to support single-member join opera-
tions and key agreement following a merge event [21].

These protocols [21] dynamically determine one of the
members to serve as the group controller whose main task
is to coordinate the generation of partial keys and to dis-
seminate them to other group members. The group con-
troller is always the newest (or most recent) group member.
This selection criterion has an important benefit as it can
be performed without any message exchange. Note that the
concept of newest is not meaningful in an execution model
where different processes observe group views in differents
orders or with gaps. We postpone further discussion of this
issue until Section 4.4.2.
4.4.1 Performance Analysis
The overall time-to-completion for IKA.1 and IKA.2 is
dominated by two factors: network communications and
cryptographic processing times; primarily, exponentiation
with large numbers which is quite costly. In order to com-
pare the costs of the two protocols we need to consider the
steps of each protocol.

IKA.1 (Fig 3) operates in k rounds and requires k�1 uni-
cast messages followed by a single broadcast. Each round
i (1 � i < k) involves each member Mi performing i

exponentiations. This is followed by Mi unicasting a set
of (i + 1) partial keys on to Mi+1, except for the last (k-
th) round when Mn+k broadcasts the partial keys. Finally,
each Mi performs a single exponentiation upon receipt of
the broadcast. Assuming that all members exponentiate in
approximately the same time, the total protocol delay is thus
COST (IKA:1). Similarly for IKA.2, the total protocol de-
lay is COST (IKA:2).

COST (IKA:1) =
E

2
k
2 + (En+

E

2
+D) k + D

COST (IKA:2) = (2E +D) k + (En� E + 3D)

where D is the network delay, E the cost of a single
exponentiation, n the number of members in the group and
k the number of joining members.

We are now ready to compare the relationship between
the cost of IKA.1 and the cost of IKA.2. We assume a
2ms exponentiation delay4 and a 100ms wide-area network
delay5 and thus obtain the relation represented in Figure 4.
The curve represents the values for which IKA.1 and IKA.2
have the same cost.

In the typical underlying group communication system
most view changes require consensus among the new views.

4The performance for the 512-bit moduli exponentiation was obtained
using the big number library in OpenSSL on a 450MHZ Pentium II PC.

5The average point-to-point delay for a US coast-to-coast round-trip at
the application level.

4



Notation: Let p be a prime and q a prime divisor of p� 1. Let G be
the unique cyclic subgroup of ZZ�

p of order q, and let � be a generator
of G.
In the first stage (n � 1 rounds) contributions are collected from indi-
vidual group members and, then, in the second stage (n-th round), the
group keying material is broadcast. Each member then uses its own
contribution to compute the group key. The actual protocol is as fol-
lows:
Round i (0 < i < n):

1. Mi picks ri at random in ZZ�q .

2. Mi �!Mi+1 : f�
r1���ri
rj jj 2 [1; i]g; �r1���ri

Round n:

1. Mn picks rn at random in ZZ�
q .

2. Mn �! ALL Mi: f�
r1���rn

ri ji 2 [1; n[g

Figure 3. An execution of protocol IKA.1 with n users M =
fM1; : : : ;Mng at the end of which the users share the session key
SK = �r1 :::rn :

For this reason, the time to complete a membership change
becomes prohibitive as the group size grows. This is partic-
ularly true when group members are spread across a wide-
area network (WAN) since a WAN involves an increased
round-trip time between group members and a greater like-
lihood of lost and thus resent messages due to the number
of hops and sheer distances traversed.

We postulate that a practical limit for process group
membership size in a wide-area network is likely to be
around 40. In our experience, current scientific collabo-
rations typically involve even smaller groups for example
less than 20 members. Thus, most membership increases in
a 20 member group are likely to involve a relatively small
number of members merging into an existing group (either
new members or heals of prior network partitions). Figure 4
clearly demonstrates that, under these assumptions, IKA.1
offers better performance than IKA.2.

4

6

8

10

14

16

18

20

0 5 10 15 20 25 30 35 40 45 50

k (Joiners)

n (Group size)

IKA.1

IKA.2

Figure 4. Tradeoff between group size and number of joining
members. In the area below the curve, IKA.1 is faster than IKA.2.

As shown in Figure 4, on one extreme all 20 members
join the collaborative session as soon as it starts. At n = 0
and k = 20, IKA.1 is as fast as IKA.2. Later, members

may leave and join the group or the group may become par-
titioned and such a partioned group may merge. Suppose
a 5 member group and a 15 member group were to merge.
As shown in Figure 4 at n = 5, k = 15 and n=15, k = 5,
IKA.1 is faster than IKA.2.

Figure 4 above is based on our current measurements for
exponentiation and wide-area network delay. The curve in
figure 4 will move up as the time for exponentiation goes
down. In the future, due to faster computers, the exponen-
tiation delay is more likely to decrease than the wide-area
network delay. Moreover faster exponentiation algorithms
exist; Hankerson et al. [9] obtained an exponentiation delay
of 1.5 ms6 with a level of security equivalent to twice (i.e.
1024-bit security) the 512-bit security that we require for
scientific collaboration software.

4.4.2 Group Controller
In the event of a network failure, a group may become par-
titioned into several disjoint components. These compo-
nents may subsequently need to merge when the failure is
repaired (i.e., a partition heals). However, this brings up the
question of how to select the group controller following a
merge event.

In our framework, the new group controller is selected as
the prior controller of the largest merging sub-group (largest
in terms of number of authorized members). Adding mem-
bers from the smaller group into the larger one has some ob-
vious advantages. As an example, consider the merge of a
5-member group and a 15-member group. Assuming all 20
members are previously authorized, a 2ms single exponen-
tiation delay and a 100ms WAN round-trip delay, merging
5 members into a 15-member group costs 0.780 sec, while
merging 15 members into a 5-member group costs 1.900
sec. More generally, COST (IKA:1) grows linearly with
n and is quadratic in k, thus, merging a smaller group into
a larger one is always faster.

The problem now is how to agree on which group has the
larger number of authorized members. Since the underly-
ing group communication system is acting independently of
SGL its membership may be a superset of the secure group
membership. Consequently, relative sizes of the merging
secure groups cannot be determined from the information
provided by the underlying group communication system.
Additionally, there may even be view changes where one of
the merging groups has no authorized members.

With a small modification, our flush protocol can provide
the information about sizes of merging groups. Each mem-
ber adds to the flush (flush.view) a list of the processes in
its secure group communication session that are also in the
new unsecure group view. Thus, on receipt of a flush mes-
sage from each member in the new view, all members can

6Hankerson et al. [9] obtain a 1.5ms exponentiation delay on NIST-
recommended elliptic curves K-163 using the big number library in
OpenSSL on a 400MHZ Pentium II PC.

5



determine the largest secure group and hence dynamically
determine a member to serve as the merged group controller
(using the process identifier to break ties).

5. Experimental results
A prototype implementation of the SGL in the ”C” pro-

gramming language has been completed. It currently runs
on Sun UltraSparc workstations with the Solaris 5.7 operat-
ing system. The Totem system [15] is utilized as the under-
lying group communication system, the Akenti server [24]
serves as the authorization server and the IKA.1 protocol
has been implemented using the functions provided by the
Cliques toolkit [4]. We also use the implementation of DSA
provided by OpenSSL [23].

The Totem system [15] provides all the properties re-
quired by SGL and some additional properties such as to-
tally ordered messages. The Totem system runs as a daemon
and a light-weight user interface layer. The remote users
connect via the light-weight layer to the Totem daemon us-
ing a TCP/IP connection - or through an SSL connection -
across the high latency link since the Totem daemons were
not designed to operate over a high latency link. One ad-
vantage of the Totem system is that it can be replaced, if
needed, by its secure version called Immune [10] which is
designed to protect against Byzantine failures.

The Akenti server issues the membership certificates
used for group admission. For the sake of fault tolerance,
it can be run as a set of mirrored servers. Note that Ak-
enti can be administered independently. Akenti provides
an interface to allow stakeholders to create digitally signed
policy certificates.

Initial performance tests with our prototype implemen-
tation were performed between sites in Berkeley, Califor-
nia (LBNL) and Argonne, Illinois (ANL). In these tests we
measured the performance of the SGL when one member
joins the group (Fig 6), leaves the group, and group merge
operation with various component sizes (Fig 5). In each
case the graphs show the results from the worst case sce-
nario (e.g. the joining member is separated from the group
by a high-latency link).

We now describe our experiments. At Lawrence Berke-
ley Laboratory (Berkeley), one Sun UltraSparc 5s is running
a Totem daemon and one group member. The second Sun
UltraSparc 5 is running a Totem daemon and the rest of the
Berkeley group members. At Argonne, a Sun UltraSparc
2 is running one user who connects to a Totem daemon at
Berkeley. On a Sun UltraSparc 5, a 512-bit moduli expo-
nentiation, DSA signature and DSA verification 7 provided
by OpenSSL [23] costs respectively 0.010 seconds, 0.010
seconds and 0.030 seconds.

7It is worth noting that DSA operations (i.e. signing and verification)
are more symmetric than the RSA operations. RSA verification is roughly
an order of magnitude faster than RSA signing and RSA signing is roughly
as fast as DSA signing. For SGL, DSA is clearly a bottleneck.

1

1.1

1.2

1.3

1.4

(8,7) (10,5) (12,3) (14,1)

t(sec)

(n,k) (Group size, Joiners)

Secure Layer

Figure 5. Performance of SGL on a group merge with variable-
size merging components. The main group size is constant at 15
members. The cost of the flush is not included.

Figure 5 shows the performance of the group merge op-
eration with various partition sizes. As an example a group
with k=3 members is added to an existing group with n=12
members. The 12 members in the existing group are on one
computer and the other group has one member at Argonne
and the other two on a computer in Berkeley. Once the flush
protocol completes, the group controller of the larger group
computes 12 exponentiations, signs the message and sends
the value to the 1st member in the group with 3 members;
0.13 seconds. The 1st member receives the message, ver-
ifies the signature, computes 13 exponentiations, signs the
message and sends it to the member located at Argonne;
0.17 seconds. The member located at Argonne receives the
message, verifies the signature, computes 14 exponentia-
tions, signs the message and sends it to the 3rd member;
0.215 seconds. The 3rd member receives the message, ver-
ifies the signature, computes 14 exponentiations, signs the
message and sends it to the group; 0.215 seconds. At this
point the total is 0.73 seconds. The member located in Ar-
gonne, computes the group secret in a total time of 0.805
seconds. Each of the first group’s 12 members need to get
the message, verify the signature and compute one expo-
nentiation; 0.48 seconds. So, the 1st member computes the
group key in 0.77 seconds while the 12th member computes
the group key in 1.21 seconds. The other two members of
the second group get the message, verify the signature and
compute an exponentiation; 0.81 ms. The graph shows the
average experimental value obtained for this group merge
operation.

0
0.2
0.4
0.6
0.8
1

1.2
1.4

2 4 6 8 10 12 14 16 18 20

t(sec)

n (Group size)

Secure Layer
ush

Figure 6. Performance of SGL when one member located at
Argonne joins the group of size n� 1.

6



The analysis of Fig 6 is straightforward from the above
explanation and is omitted to lack of space. The analysis of
Fig 6 and the performance of SGL when a leave event can
be found in the full version of this paper [1].

The emphasis in building this first prototype was not on
performance. A significant performance improvement can
be realized by exploiting faster platforms to speed-up the
cryptographic operations such as exponentiation and sig-
nature, but also from an extensive study/implementation
of IKA.1 using elliptic curve cryptography [9]. Finally a
more efficient support of groups spread across wide-area
networks would result from using recent group communi-
cation system intended for wide-area networks [6].

6. Conclusions

This paper presented the design of a Secure Group layer
(SGL) aimed at WAN environments. SGL offers protection
against attacks like eavesdropping and spoofing but denial
of service attacks are still a concern.

Since the group key agreement protocol is secure and
the application messages are all encrypted, group informa-
tion is passed securely inside the group. Even the lack of
reliable and ordered delivery of messages will not disclose
this information. However if the reliable group communica-
tion system is corrupted, the application can no longer count
on the reliable delivery of messages, which may cause the
communication to be useless in some settings. SGL could
be used in conjunction with a group communication system
resistant to Byzantine failures, like Immune [10], to reduce
the chances of the communication failing.

Although the SGL prototype has served as a good plat-
form for understanding the issues involved in providing a
secure group layer, there are robustness features, security
issues, efficiency improvements and interface definitions re-
quired before the layer will be a reality.

References

[1] D. Agarwal, O. Chevassut, M. Thompson, and G. Tsudik.
An Integrated Solution for Secure Group Communi-
cation in Wide-Area Networks. In IEEE Sympo-
sium on Computers and Communications, July 2001.
Full version of this paper, available from http://www-
itg.lbl.gov/SecGrpComm/Publications/publications.html.

[2] Y. Amir, G. Ateniese, D. Hasse, Y. Kim, C. Nita-Rotaru,
T. Schlossnagle, J. Schultz, J. Stanton, and G. Tsudik. Se-
cure group communication in asynchronous networks with
failures: Integration and experiments. In IEEE ICDCS, April
2000.

[3] Y. Amir, C. Danilov, and J. Stanton. A low latency, loss
tolerant architecture and protocol for wide area group com-
munication. In 30th IEEE FTCS, June 2000.

[4] G. Ateniese, O. Chevassut, D. Hasse, Y. Kim, and G. Tsudik.
The Design of a Group Key Agreement API. In DARPA
DISCEX 2000, Jan 2000.

[5] G. Ateniese, M. Steiner, and G. Tsudik. New multi-party
authentication services and key agreement protocols. IEEE
JSAC, May 2000.

[6] K. Berket, D. A. Agarwal, P. M. Melliar-Smith, and L. E.
Moser. Overview of the InterGroup Protocols. In Interna-
tional Conference on Computational Science, May 2001.

[7] K. Birman and T. Joseph. Reliable communication in the
presence of failures. In ACM Transactions on Computer Sys-
tems, volume 5(1), pages 47–76, February 1987.

[8] J. Daemen and V. Rijmen. The Rijndael Block Cipher. In
AES Proposal, NIST, 2000.

[9] D. Hankerson, J. Hernandez, and A. Menezes. Software
implementation of elliptic curve cryptography over binary
fields. In CHES 2000, 2000.

[10] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith. The
SecureRing Protocols for Securing Group Communication.
In 31st IEEE HICSS, pages 317–326, Jan 1998.

[11] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-
Hashing for Message Authentication. RFC 2104, Feb 1997.

[12] D. Malkhi, M. Merritt, and O. Rodeh. Secure Reliable Mul-
ticast Protocols in a WAN. In ICDCS’97, May 1997.

[13] P. D. McDaniel, A. Prakash, and P. Honeyman. Antigone:
A flexible framework for secure group communication. In
USENIX Security Symposium, pages 99–114, Aug 1999.

[14] The MIT Press. The Official PGP User’s Guide.
[15] L. Moser, P. Melliar-Smith, D. Agarwal, R. Budhia, and

C. Lingley-Papadopoulos. Totem: A fault-tolerant multi-
cast group communication system. Communications of the
ACM, April 1996.

[16] L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A. Agar-
wal. Extended Virtual Synchrony. In IEEE ICDS, pages
56–65, June 1994.

[17] M. K. Reiter. Secure agreement protocols: Reliable and
atomic group multicast in Rampart. In ACM CCCS, Nov
1994.

[18] M. K. Reiter. Secure Group Membership Protocol. In IEEE
Symposium on Research in Security and Privacy, May 1994.

[19] O. Rodeh, K. Birman, M. Hayden, Z. Xiao, and D. Dolev.
Ensemble security. Technical Report TR98-1703, Cornell,
Sept 1998.

[20] J. Steiner, C. Neuman, and J. Schiller. Kerberos: An au-
thentication service for open networks systems. In Usenix
Winter Conference, pages 191–202, Jan 1998.

[21] M. Steiner, G. Tsudik, and M. Waidner. Diffie-Hellman
Key Distribution Extended to Group Communication. In 3rd
ACM Conference on Computer and Communications Secu-
rity, March 1996.

[22] M. Steiner, G. Tsudik, and W. Waidner. Key Agreement in
Dynamic Peer Groups. IEEE Transactions on Parallel and
Distributed Systems, 2000.

[23] O. P. team. Openssl user’s guide, 2000.
[24] M. Thompson, W. Johnston, S. Mudumbai, G. Hoo, K. Jack-

son, and A. Essiari. Certificate-based access control for
widely distributed resources. In Usenix Security Symposium,
Aug 1999.

[25] R. Vitenberg, I. Keidar, G. Chockler, and D. Dolev. Group
communication specifications: A comprehensive study.
Technical Report MIT-LCS-TR-790, MIT, Sep 1999.

7




