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The past few decades have witnessed rapid and unprecedented theoretical progress on

the science of causal inference. Most of this progress, however, relies on strong, exact

assumptions, such as the absence of unobserved confounders, or the absence of certain direct

effects. Unfortunately, more often than not these assumptions are not only untestable, but

also very hard to defend in practice. This dissertation develops new theory, methods, and

software for drawing causal inferences under more realistic settings. These tools allow applied

scientists to both examine the sensitivity of their causal inferences to violations of their

underlying assumptions, and also to draw robust (albeit also more modest) conclusions from

settings in which traditional methods fail. Specifically, our contributions are the following:

(i) novel powerful, yet simple, suite of sensitivity analysis tools for popular methods, such as

confounding adjustment and instrumental variables, that can be immediately put to use to

improve the robustness and transparency of current applied research; (ii) the first formal,

systematic approach to sensitivity analysis for arbitrary linear structural causal models; and,

(iii) novel (partial) identification results that marry two apparently disparate areas of causal

inference research—the generalization of causal effects and the identification of “causes of

effects.” These methods are illustrated with examples from the social and health sciences.
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CHAPTER 1

Introduction

Causal inference plays a vital role in the sciences, as it lies at the core of the most pressing

issues facing society. How much racial bias is there in policing? Was this specific climate

event due to global warming? Or, how many lives would have been saved from COVID-19,

had mandatory mask use been implemented? These types of questions are impossible to

answer from passive observations alone—no matter how big the data, or how sophisticated

the machine learning system. To answer such questions, scientists need to rely on causal

models. Toward this end, the past few decades have witnessed rapid and unprecedented

theoretical progress on the science of causal inference, ranging from the popularization of

certain “identification strategies” in the social and health sciences [6, 51], to the development of

graphical causal models along with a complete solution to several non-parametric identification

problems [109, 16]. These results have presented applied scientists with several conditions

under which causal questions can be answered.

Most of this theoretical progress, however, relies on strong, exact assumptions about

the data generating process, such as the absence of unobserved confounders (ignorability

conditions), or the absence of certain direct effects (exclusion restrictions). Unfortunately,

more often than not these assumptions are hard to defend in practice. This leads to two

undesirable consequences for applied quantitative work: (i) important research questions may

be neglected, simply because they do not exactly match the requirements of current methods;

or, (ii) researchers may succumb to making the required “identification assumptions” (e.g,

assuming ignorability of the treatment assignment or of the instrument) simply to justify the

use of available methods, but not because these assumptions are truly believed (or understood).

How much can we trust results based on doubtful—and often untestable—assumptions?
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This dissertation develops new theory, methods, and software for drawing causal inferences

under more realistic settings. These tools allow scientists, and policy makers to both examine

the sensitivity of causal inferences to violations of its underlying assumptions, and also to

draw robust (albeit also more modest) conclusions from settings in which traditional methods

fail.1 Specifically, our contributions are as follows.

Suite of sensitivity analysis tools for widely used methods (Chapters 2 and 3).

The bulk of current applied work in causal inference with observational data still relies

(perhaps unfortunately) on only a handful of identification results, namely: (i) adjusting for

observed confounders (also known as “selection on observables”); (ii) instrumental variable

methods; (iii) panel data methods (e.g, differences in differences, synthetic control); and,

(iv) regression discontinuity designs. However, these methods require strong assumptions

that most often are violated in practice. On the other hand, these assumptions need not

hold precisely for an observational study to still be informative about the causal effect under

investigation. In such cases, sensitivity analyses play an essential role, by allowing researchers

to quantify how strong the violations of assumptions need to be in order to substantially

change a research conclusion, and by aiding in determining whether such strong violations

are plausible.

In Chapters 2 and 3, we develop flexible suite of sensitivity analysis tools fine-tuned for

two of these widely used methods—confounding adjustment via regression models [35] and

instrumental variable regression [36, 38]—along with accompanying software [31]. The benefits

of these new methods are several. Not only are they conceptually easy to understand, but

they also: (i) do not require any extra modeling assumptions; (ii) flexibly handle multiple or

non-linear violations; (iii) exploit expert knowledge to bound the worst bias due to violations;

and, (iv) are easy to compute using standard software. In particular, we introduce novel

sensitivity statistics suited for routine reporting—such as the robustness value—describing

1For instance, it can be the case that we conclude the study is too fragile to plausible violations of its
assumptions, and thus not sufficiently informative to answer the question it was supposed to address. An
example is the study of Card [23] that uses “proximity to college” as an instrumental variable to investigate
the causal effect of education on earnings. This is discussed on Section 3.5.
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the minimum strength of violations needed to overturn the conclusions of a study. We

also introduce the idea of adjusted critical values, in which researchers can easily perform

inferences that are robust to systematic biases of any postulated strength, by simply replacing

the usual critical threshold for a test statistic, (such as 1.96, for a 5% significance t-test) with

a new, easy to compute adjusted threshold. Although recent, the results of these chapters

have already been applied in several empirical studies across different fields, ranging from

political science, economics, epidemiology and genetics.

An algorithmic approach to sensitivity analysis (Chapter 4). As discussed, cur-

rently there is a mismatch between the types of assumptions traditional causal inference is

able to handle, and the types of assumptions scientists are willing to realistically defend. As

current practices produce a steady stream of published results, it is important to handcraft

the tools needed to bridge this gap for widely used models, as we do in Chapters 2 and 3. But

going forward, we need to address the essence of this mismatch in a general way. This calls for

a flexible, systematic approach to causal inference, that allows researchers to easily incorporate

credible and realistic constraints in their models. For example, traditional identification

results rely on exact assumptions about the absence of certain causal relationships. Our task

is thus to systematically relax some of these assumptions, by allowing the possible presence

of such relationships, albeit with limited strength.

In Chapter 4 we do this for the class of linear structural causal models. We develop an

efficient, graph-based identification algorithm that leverages non-zero constraints on error

covariances or path coefficient in arbitrary linear systems [37]. This technical result has several

uses in itself (such as combining experimental data with observational data) but in particular

it also allows the algorithmic derivation of sensitivity curves. Our results not only subsume

several previous sensitivity analysis for canonical models (e.g, we can automatically derive

sensitivity formulas for back-door adjustment, instrumental variable regression, front-door

adjustment, mediation analysis—provided the relationships among variables are assumed to

be linear), but it greatly expands the applicability of such type of analyses to many cases.
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Generalizing experimental results, and causes of effects (Chapter 5). Two impor-

tant areas of causal inference research are the generalization of causal effects across populations

[113, 16, 78] and the identification of “causes of effects” [108, 137, 111, 112]. In Chapter 5

we show how these two apparently disparate areas of research can be merged for mutual

benefit, unveiling important results in both areas [40]. We demonstrate how certain functional

constraints may entail the invariance of probabilities of causation [108, 137] across domains,

thus allowing the transport of causal effects (sometimes in the form of bounds) in settings

where non-parametric generalization is otherwise impossible. The results of this chapter can

thus be used both to transport (or bound) experimental findings from one population to

another, as well as to quantify the percentage of individuals that are harmed by (or benefit

from) a treatment, even when the average effect of this treatment is positive (or negative)

in the population. These counterfactual probabilities may be important on their own right,

and play a role in many applications of the social and health sciences, legal settings, and the

production of explanations.

Chapter 6 concludes with some final remarks and directions for future work.
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CHAPTER 2

Making Sense of Sensitivity: Extending Omitted Variable

Bias

2.1 Introduction

Observational research often seeks to estimate causal effects under a “no unobserved confound-

ing” or “ignorability” (conditional on observables) assumption (see e.g. 125, 109, 83). When

making causal claims from observational data, investigators marshal what evidence they can

to argue that their result is not due to confounding. In “natural” and “quasi”-experiments,

this often includes a qualitative account for why the treatment assignment is “as-if” random

conditional on a set of key characteristics (see e.g. 6, 51). Investigators seeking to make

causal claims from observational data are also instructed to show “balance tests” and “placebo

tests.” While, in some cases, null findings on these tests may be consistent with the claim

of no unobserved confounders, they are certainly not dispositive: it is unobserved variables

that we worry may be both “imbalanced” and related to the outcome in problematic ways.

Fundamentally, causal inference always require assumptions that are unverifiable from the

data [109].

Thus, in addition to balance and placebo tests, investigators are advised to conduct

“sensitivity analyses” examining how fragile a result is against the possibility of unobserved

confounding.1 In general, such analyses entail two components: (1) describing the type of

unobserved confounders—parameterized by their relation to the treatment assignment, the

outcome, or both—that would substantively change our conclusions about the estimated causal

1Researchers may also wish to examine sensitivity to the choice of observed covariates, see [90, 91, 92].
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effect, and (2) assisting the investigator in assessing the plausibility that such problematic

confounding might exist, which necessarily depends upon the research design and expert

knowledge regarding the data generating process. A variety of sensitivity analyses have been

proposed, dating back to [42], with more recent contributions including [124, 118, 58, 120,

81, 21, 60, 76, 80, 141, 17, 61, 26, 50, 100, 104], and [62].

Yet, such sensitivity analyses remain underutilized.2 We argue that a number of factors

contribute to this reluctant uptake. One is the complicated nature and strong assumptions

many of these methods impose, sometimes involving restrictions on or even a complete

description of the nature of the confounder. A second reason is that, while training, convention

and convenience dictate that users routinely report “regression tables” (or perhaps coefficient

plots) to convey the results of a regression, we lack readily available quantities that aid in

understanding and communicating how sensitive our results are to potential unobserved

confounding. Third, and most fundamentally, connecting the results of a formal sensitivity

analysis to a cogent argument about what types of confounders may exist in one’s research

project is often difficult, particularly with research designs that do not hinge on a credible

argument regarding the (conditionally) “ignorable”, “exogeneous”, or “as-if random” nature

of the treatment assignment. To complicate things, some of the solutions offered by the

literature can lead users to erroneous conclusions (see Section 2.6 for discussion).

In this chapter we show how the familiar “omitted variable bias” (OVB) framework can be

extended to address these challenges. We develop a suite of sensitivity analysis tools that do

not require assumptions on the functional form of the treatment assignment mechanism nor

on the distribution of the unobserved confounder, and can be used to assess the sensitivity to

multiple confounders, whether they influence the treatment and outcome linearly or not.

We first introduce two novel measures of the sensitivity of linear regression coefficients: (i)

2In political science, out of 164 quantitative papers in the top three general interest publications (American
Political Science Review, American Journal of Political Science, and Journal of Politics) for 2017, 64 papers
clearly described a causal identification strategy other than a randomized experiment. Of these only 4 (6.25%)
employed a formal sensitivity analyses beyond trying various specifications. In economics, [103] reports that
most of non-experimental empirical papers utilized only informal robustness tests based on coefficient stability
in the face of adding or dropping covariates. See also [29].
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the “robustness value” (RV), which provides a convenient reference point to assess the overall

robustness of a coefficient to unobserved confounding. If the confounders’ association to the

treatment and to the outcome (measured in terms of partial R2) are both assumed to be less

than the robustness value, then such confounders cannot “explain away” the observed effect.

And, (ii) the proportion of variation in the outcome explained uniquely by the treatment,

R2
Y∼D|X , which reveals how strongly counfounders that explain 100% of the residual variance

of the outcome would have to be associated with the treatment in order to eliminate the

effect. Both measures can be easily computed from standard regression output: one needs

only the estimate’s t-value and the degrees of freedom. To advance standard practice across a

variety of disciplines, we propose routinely reporting the RV and R2
Y∼D|X in regression tables.

Next, we offer graphical tools that investigators can use to refine their sensitivity analyses.

The first is close in spirit to the proposal of [81]—a bivariate sensitivity contour plot,

parameterizing the confounder in terms of partial R2 values. However, contrary to Imbens’

maximum likelihood approach, the OVB-based approach makes the underlying analysis

simpler to understand, easier to compute, and more general. It side-steps assumptions on

the functional form of the treatment assignment and on the distribution of the (possibly

multiple, non-linear) confounders, and it easily extends contour plots to assess the sensitivity

of t-values, p-values, or confidence intervals. This enables users to examine the types of

confounders that would alter their inferential conclusions, not just point estimates. The

second is an “extreme-scenario” sensitivity plot, in which investigators make conservative

assumptions about the portion of otherwise unexplainend variance in the outcome that is due

to confounders. One can then see how strongly such confounders would need to be associated

with the treatment to be problematic. In the “worst-case” of these scenarios, the investigator

assumes all unexplained variation in the outcome may be due to a confounder.

Finally, we introduce a novel bounding procedure that aids researchers in judging which

confounders are plausible or could be ruled out, using the observed data in combination

with expert knowledge. While prior work (58, 81, 76, 17, 50, 26, 100, 75) has suggested an

informal practice of benchmarking the unobserved confounding by comparison to unadjusted
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statistics of observables, we show that this practice can generate misleading conclusions due

to the effects of confounding itself, even if the confounder is assumed to be independent of

the covariate(s) used for benchmarking. Instead, our approach formally bounds the strength

of unobserved confounding with the same strength (or a multiple thereof) as a chosen

observable or group of observables. These bounds are tight and may be especially useful

when investigators can credibly argue to have measured the most important determinants (in

terms of variance explained) of the treatment assignment or of the outcome.

In what follows, Section 2.2 describes the running example that will be used to illustrate

the tools throughout the chapter—a study of the effect of violence on attitudes toward peace

in Darfur, Sudan. Section 2.3 introduces the traditional OVB framework, how it can be used

for a first approach to sensitivity analysis, and some of its shortcomings. Next, Section 2.4

shows how to extend the traditional OVB with the partial R2 parameterization and Section 2.5

demonstrates how these results lead to a rich set of tools for sensitivity analysis. We conclude

by discussing how our proposal seeks to increase the use of sensitivity analyses in practice,

how it compares to existing procedures, and highlighting important caveats when interpreting

sensitivity results. Open-source software for R and Stata implements the methods presented

here.3

2.2 Running example

In this section we briefly introduce the applied example used throughout the chapter.4 This

serves as a background to illustrate how the tools developed here can be applied to address

problems that commonly arise in observational research. We emphasize that the information

produced by a sensitivity analysis is useful to the extent that researchers can wield domain

knowledge about the data generating process to rule out the types of confounders shown to

3R package sensemakr [34] available on CRAN: https://cran.r-project.org/package=sensemakr.
Stata module [32] available on SSC: https://econpapers.repec.org/software/bocbocode/s458773.htm.
Web application available on: https://carloscinelli.shinyapps.io/robustness_value/. For details on
how to use the software, we refer readers to [31].

4We only describe the most relevant details, further information is available in [72].
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be problematic. Thus, a real world example helps to illustrate how such knowledge could be

employed.

2.2.1 Exposure to violence in Darfur

In Sudan’s western region of Darfur, a horrific campaign of violence against civilians began

in 2003, sustaining high levels of violence through 2004, and killing an estimated 200,000

[55]. It was deemed genocide by then Secretary of State Colin Powell, and has resulted in

indictments of alleged genocide, war crimes, and crimes against humanity in the International

Criminal Court.

In the current case, we are interested in learning how being physically harmed during

attacks on one’s village changed individual attitudes towards peace. Clearly, we cannot

randomize who is exposed to such violence. However, the means by which violence was

distributed provide a tragic natural experiment. Violence against civilians during this time

included both aerial bombardments by government aircraft, and attacks by a pro-government

militia called the Janjaweed. While some villages were singled out for more or less violence,

within a given village violence was arguably indiscriminate. This argument is supported by

reports such as

The government came with Antonovs, and targeted everything that moved. They

made no distinction between the civilians and rebel groups. If it moved, it was

bombed. It is the same thing, whether there are rebel groups (present) or not...The

government bombs from the sky and the Janjaweed sweeps through and burns

everything and loots the animals and spoils everything that they cannot take5

One can further argue that attacks were indiscriminate within village on the basis that

the violence promoted by the government was mainly used to drive people out rather than

target individuals. Within village, the bombing was crude and the attackers had almost no

information about who they would target, with one major exception: while both men and

5Transcript from interview taken by Darfurian Voices team. Interview code 03072009_118_cf2009008.
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women were often injured or killed, women were targeted for widespread sexual assault and

rape by the Janjaweed.

With this in mind, an investigator might claim that village and gender are sufficient for

control of confounding and estimate the linear model,

PeaceIndex = τ̂resDirectHarm + β̂f,resFemale + Villageβ̂v,res +Xβ̂res + ε̂res (2.1)

where PeaceIndex is an index measuring individual attitudes towards peace, DirectHarm a

dummy variable indicating whether an individual was reportedly injured or maimed during

such an attack, Female is a fixed effect for being female, and Village is a matrix of village

fixed effects. Other pre-treatment covariates are included through the matrixX, such as: age,

whether they were a farmer, herder, merchant or trader, their household size and whether or

not they voted in the past. The results of this regression show that, on average, exposure to

violence (DirectHarm) is associated with more pro-peace attitudes on PeaceIndex.

Despite these arguments, not all investigators may agree with the assumption of no

unobserved confounders. Consider, for example, a fellow researcher who argues that, although

bombings were impossible to target finely, perhaps those in the center of the village were

more often harmed than those on the periphery. And might not those nearer the center of

each village also have different types of attitudes towards peace, on average? This suggests

that the author ought to have instead run the model,

PeaceIndex = τ̂DirectHarm + β̂fFemale + Villageβ̂v +Xβ̂ + γ̂Center + ε̂full (2.2)

That is, our earlier estimate τ̂res would differ from our target quantity τ̂ . But how badly?

How “strong” would a confounder like Center need to be to change our research conclusions?

A simple violation of unconfoundedness such as this one can be handled in a relatively

straightforward manner by the traditional OVB framework, as we will see in Section 2.3.

However, other skeptical researchers may question the claim that violence was conditionally

indiscriminate with more elaborate stories, worrying that unobserved factors such as Wealth
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or Political Attitudes remain as confounders, perhaps even acting through non-linear functions

such as an interaction of these two. Additionally, we may also have domain knowledge about

the determinants of the outcome or the treatment assignment that could be used to limit

arguments about potential confounding. For example, considering the nature of the attacks

and the special role that gender played, one may argue that, within village, confounders are

not likely to be as strongly associated with the treatment as the observed covariate Female.

How strong would these confounders need to be (acting as a group, possibly with non-

linearities) to change our conclusions? And how could we codify and leverage our beliefs about

the relative importance of Female to bound the plausible strength of unobserved confounders?

In Sections 2.4 and 2.5, we show how extending the traditional OVB framework provides

answers to such questions.

2.3 Sensitivity in an Omitted Variable Bias Framework

The “omitted variable bias” (OVB) formula is an important part of the mechanics of linear

regression models and describes how the inclusion of an omitted covariate changes a coefficient

estimate of interest. In this section, we review the traditional OVB approach, and illustrate

its use as a simple tool for sensitivity analysis through bivariate contour plots showing how

the effect estimate would vary depending upon hypothetical strengths of the confounder.

This serves not only as an introduction to the method, but also to highlight limitations we

will address in the following sections.

2.3.1 The traditional Omitted Variable Bias

Suppose an investigator wishes to run a linear regression model of an outcome Y on a

treatment D, controlling for a set of covariates given by X and Z, as in

Y = τ̂D +Xβ̂ + γ̂Z + ε̂full (2.3)
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where Y is an (n× 1) vector containing the outcome of interest for each of the n observations

and D is an (n× 1) treatment variable (which may be continuous or binary); X is an (n× p)

matrix of observed (pre-treatment) covariates including the constant; and Z is a single (n× 1)

unobserved covariate (we allow a multivariate version of Z in Section 2.4.5). However, since

Z is unobserved, the investigator is forced instead to estimate a restricted model,

Y = τ̂resD +Xβ̂res + ε̂res (2.4)

where τ̂res, β̂res are the coefficient estimates of the restricted OLS with only D andX, omitting

Z, and ε̂res its corresponding residual.

How does the observed estimate τ̂res compare to the desired estimate, τ̂? Let us define as

b̂ias the difference between these estimates, b̂ias := τ̂res − τ̂ , where the hat, (̂·), clarifies

that this quantity is a difference between sample estimates, not the difference between the

expectation of a sample estimate and a population value. Using the Frisch-Waugh-Lovell

(FWL) theorem (63, 93, 94) to “partial out” the observed covariates X, the classic omitted

variable bias solution is

τ̂res =
cov(D⊥X , Y ⊥X)

var(D⊥X)

=
cov(D⊥X , τ̂D⊥X + γ̂Z⊥X)

var(D⊥X)

= τ̂ + γ̂

(
cov(D⊥X , Z⊥X)

var(D⊥X)

)
= τ̂ + γ̂δ̂ (2.5)

where cov(·) and var(·) denote the sample covariance and variance; Y ⊥X , D⊥X and Z⊥X are

the variables Y , D and Z after removing the components linearly explained by X and we

define δ̂ := cov(D⊥X ,Z⊥X)
var(D⊥X)

. We then have

b̂ias = γ̂δ̂ (2.6)
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While elementary, the OVB formula in Equation 2.6 provides the key intuitions as well as a

formulaic basis for a simple sensitivity analysis, letting us assess how the omission of covariates

we wished to have controlled for could affect our inferences. Note that it holds whether or not

Equation 2.3 has a causal meaning. In applied settings, however, one is typically interested

in cases where the investigator has determined that the full regression, controlling for both

X and the unobserved variable Z, would have identified the causal effect of D on Y ; thus,

hereafter we will treat Z as an unobserved “confounder” and continue the discussion as if the

estimate τ̂ , obtained with the inclusion of Z, is the desired target quantity.

A note on identification via covariate adjustment

Conditions that endow regression estimates with causal meaning are extensively discussed

in the literature: identification assumptions can be articulated in graphical terms, such as

postulating a structural causal model in which {X, Z} satisfy the backdoor or adjustment

criterion for identifying the causal effect ofD on Y [109, 127]; or, equivalently, in counterfactual

notation, stating that the treatment assignment D is conditionally ignorable given {X, Z},

that is Yd ⊥⊥ D|{X, Z}, where Yd denotes the potential outcome of Y when D is set to d (see

109, 6, 127, 83). To illustrate, Figure 2.1 shows the causal diagrams of three distinct models

in which the set {X,Z} satisfy the backdoor criterion for identifying the causal effect of D

on Y , and thus conditional ignorability, Yd ⊥⊥ D | {X,Z}, holds. We further note the effect

of D on Y may be non-linear, in which case a regression coefficient may be an incomplete

summary of the causal effect of interest [6]. Finally, indiscriminate inclusion of covariates can

induce or amplify bias (see [110, 47, 100, 134] for related discussions; see also [33] for a visual

summary of simple graphical criteria to distinguish “good” from “bad” controls, both for

deciding which set of variables should be adjusted for to identify the causal effect of interest,

as well as deciding which, among a set of valid adjustment sets, would yield more precise

estimates). Here we assume the researcher is interested in the estimates one would obtain

from running the regression in Equation 2.3, controlling for both observed variables X and

an unobserved variable Z (generalization to a multivariate Z is given in Section 2.4.5).
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Figure 2.1: Different causal diagrams in which the set {X,Z} satisfy the backdoor criterion for
identifying the causal effect of D on Y and thus Yd ⊥⊥ D | {X,Z} holds. Dashed bi-directed
edges stand for latent confounders between variables.

2.3.2 Making sense of the traditional OVB

One virtue of the OVB formula is its interpretability. The quantity γ̂ describes the difference

in the linear expectation of the outcome, when comparing individuals that differ by one unit

on the confounder, but have the same treatment assignment status as well as the same value

for all remaining covariates. In broader terms, γ̂ describes how looking at different subgroups

of the unobserved confounder “impacts” our best linear prediction of the outcome.6

By analogy, it would be tempting to think of δ̂ as the estimated marginal “impact” of the

confounder on the treatment. However, causal interpretation aside, this is incorrect because

it refers instead to the coefficient of the reverse regression, Z = δ̂D + Xψ̂ + ε̂Z , and

not the regression of the treatment D on Z, and X. That is, δ̂ gives the difference in the

linear expectation of the confounder, when comparing individuals with the same values for

the covariates, but differing by one unit on the treatment. This quantity will be familiar to

empirical researchers who have used quasi-experiments in which the treatment is believed to

6While a causal interpretation here is tempting, whether this difference in the distribution of the outcome
within strata of the confounder can be attributed to a direct causal effect of the former on the latter depends
on structural assumptions. Suppose, for example, the “true” outcome model is assumed to be a linear
structural equation where strict exogeneity holds, i.e., Y = τD +Xβ + γZ + ε and E[ε|D,X, Z] = 0. Then,
γ̂ could be interpreted as an estimate of the direct causal impact of a unit change of the confounder on
the expected value of the outcome Y , holding the other covariates fixed. In many scenarios, however, this
is unrealistic—since the researcher’s goal is to estimate the causal effect of D on Y , usually Z is required
only to, along with X, block the back-door paths from D to Y [109], or equivalently, make the treatment
assignment conditionally ignorable. In this case, γ̂ could reflect not only its causal effect on Y (if it has any)
but also other spurious associations not eliminated by standard assumptions. One such example is provided
by the causal diagram of Figure 2.1b. Heuristically, however, referring to γ̂ as the marginal “impact” of the
confounder on the outcome is useful, as long as the reader keeps in mind that it is an associational quantity
with causal meaning only under certain circumstances.
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be randomized only conditional on certain covariates X. In that case we may then check for

“balance” on other (pre-treatment) observables once conditioning is complete. Hence, we can

think of δ̂ as the (conditional) imbalance of the confounder with respect to the treatment—or

simply “imbalance”.

Thus, a useful mnemonic is that the omitted variable bias can be summarized as the

unobserved confounder’s “impact times its imbalance”. Note that the imbalance component

is quite general: whatever the true functional form dictating E[Z|D,X] (or the treatment

assignment mechanism), the only way in which Z’s relationship to D enters the bias is

captured by its “linear imbalance”, parameterized by δ̂. In other words, the linear regression

of Z on D and X need not reflect the correct expected value of Z—rather it serves to capture

the aspects of the relationship between Z and D that affects the bias.

2.3.3 Using the traditional OVB for sensitivity analysis

If we know the signs of the partial correlations between the confounder with the treatment and

the outcome (the same as the signs of γ̂ and δ̂) we can argue whether our estimate is likely to

be underestimating or overestimating the quantity of interest. Arguments using correlational

direction is common practice in econometrics work.7 Often, though, discussing possible

direction of the bias is not possible or not sufficient, and magnitude must be considered. How

strong would the confounder(s) have to be to change the estimates in such a way to affect

the main conclusions of a study?

Sensitivity contour plots

A first approach to investigate the sensitivity of our estimate can be summarized by a

two-dimensional plot of bias contours parameterized by the two terms γ̂ and δ̂. Each pair

of hypothesized “impact” and “imbalance” parameters corresponds to a certain level of bias

7e.g. “Using a similar omitted-variables-type argument, we note that even if there are other confounders
that we haven’t controlled for, those that are positively correlated with private school attendance are likely
to be positively correlated with earnings as well. Even if these variables remain omitted, their omission leads
the estimates computed with the variables at hand to overestimate the private school premium.” [8, p.8-9]
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(their product), but given an initial treatment effect estimate τ̂res, we can also relabel the

bias levels in terms of the “adjusted” effect estimate, i.e τ̂ = τ̂res − γ̂δ̂, the estimate from the

OLS regression we wish we had run, if we had included a confounder with the hypothesized

level of impact and imbalance.

In our running example, a specific confounder we wish we had controlled for is a binary

indicator of whether the respondent lived in the center or in the periphery of the village. How

strong would this specific confounder have to be in order for its inclusion to substantially

affect our conclusions? Figure 2.2 shows the plot of adjusted estimates for several hypothetical

values of impact and imbalance of the confounder Center.
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Figure 2.2: Sensitivity contours of the point estimate—traditional OVB.

Hypothetical values for the imbalance of the confounder lie on the horizontal axis. In

this particular case, they indicate how those who were harmed are hypothesized to differ

from those who were not harmed in terms of the proportion of people living in the center

of the village. Values for the hypothetical impact of the confounder on the outcome lie on

the vertical axis, representing how attitudes towards peace differ on average for people living

in the center versus those in the periphery of the village, within strata of other covariates.
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The contour lines of the plot give the adjusted treatment effect at hypothesized values of the

impact and imbalance parameters. They show the exact estimate one would have obtained

by running the full regression including a confounder with those hypothetical sensitivity

parameters. No other information is required to know how such a confounder would influence

the result. Notice that here, and throughout the chapter, we parameterize the bias in a way

that it hurts our preferred hypothesis by reducing the absolute effect size.8

This plot explicitly reveals the type of prior knowledge one needs to have in order to be

able to rule out problematic confounders. As an example, imagine the confounder Center has

a conditional imbalance as high as 0.25—that is, having controlled for the observed covariates,

those who were physically injured were also 25 percentage points more likely to live in the

center of the village than those who were not. With such an imbalance, the plot reveals that

the impact of living in the center on the outcome (Peace Index) would have to be over 0.40

in order to bring down the estimated effect of DirectHarm to zero.

Determining whether this is good or bad news remains difficult and requires contextual

knowledge about the process that generated the data. For instance, one could argue that,

given the relatively homogeneous nature of these small villages and that their centers are

generally not markedly different in composition than the peripheries, it is hard to believe

that being in the center was associated with a 0.40 higher expected score on Peace Index

(which varies only from 0 to 1). Regardless of whether the investigator can make a clear

argument that rules out such confounders, the virtue of sensitivity analysis is that it moves

the conversation from one where the investigator seeks to defend “perfect identification” and

the critic points out potential confounders, to one where details can be given and discussed

about the degree of confounding that would be problematic.

8Investigators may also argue that accounting for omitted variable bias would increase the effect size, in
the sense that the current estimate is conservative. Our tools apply to these cases as well, the arguments
would just work in the opposite direction. For simplicity of exposition, in the chapter we focus on the case
where accounting for omitted variable bias reduces the effect size.

17



Shortcomings of the traditional OVB

The traditional OVB has some benefits: as shown, with sound substantive knowledge about

the problem, it is a straightforward exercise. But it also has shortcomings. In the previous

example, Center was a convenient choice of confounder because it is a binary variable, and

the units of measure attached to “impact” and “imbalance” are thus easy to understand as

changes in proportions. This is not in general the case. Imagine contemplating confounders

such as Political Attitudes : in what scale should we measure this? A doubling of that scale

would halve the required “impact” and double the required “imbalance”. A possible solution

is standardizing the coefficients, but this does not help if the goal is to assess the sensitivity

of the causal parameter in its original scale.

Furthermore, the traditional OVB, be it standardized or not, does not generalize easily

to multiple confounders: how should we assess the effect of confounders Political Attitudes

and Wealth, acting together, perhaps with complex non-linearities? Or, more generally, how

should we consider all the other unnamed confounders acting together? Can we benchmark

all these confounders against Female? Finally, how can we obtain the sensitivity of not only

the point estimate, but also the standard errors, so that we could examine t-values, p-values

or confidence intervals under hypothetical confounders?

2.4 OVB with the partial R2 parameterization

We now consider a reparameterization of the OVB formula in terms of partial R2 values. Our

goal is to replace the sensitivity parameters γ̂ and δ̂ with a pair of parameters that uses an R2

measure to assess the strength of association between the confounder and the treatment and

between the confounder and the outcome, both assuming the remaining covariates X have

been accounted for. The partial R2 parameterization is scale-free and it further enables us to

construct a number of useful analyses, including: (i) assessing the sensitivity of an estimate

to any number or even all confounders acting together, possibly non-linearly; (ii) using the

same framework to assess the sensitivity of point estimates as well as t-values and confidence
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intervals; (iii) assessing the sensitivity to extreme-scenarios in which all or a big portion of

the unexplained variance of the outcome is due to confounding; (iv) applying contextual

information about the research design to bound the strength of the confounders; and (v)

presenting these sensitivity results concisely for easy routine reporting, as well as providing

visual tools for finer grained analysis.

2.4.1 Reparameterizing the bias in terms of partial R2

Let R2
Z∼D denote the (sample) R2 of regressing Z on D. Recall that for OLS the following

holds, R2
Z∼D = var(Ẑ)

var(Z) = 1− var(Z⊥D)
var(Z) = cor(Z, Ẑ)2 = cor(Z,D)2, where Ẑ are the fitted values

given by regressing Z on D. Notice the R2 is symmetric, that is, it is invariant to whether one

uses the “forward” or the “reverse” regression since R2
Z∼D = cor(Z,D)2 = cor(D,Z)2 = R2

D∼Z .

Extending this to the case with covariates X, we denote the partial R2 from regressing

Z on D after controlling for X as R2
Z∼D|X . This has the same useful symmetry, with

R2
Z∼D|X = 1− var(Z⊥X,D)

var(Z⊥X)
= cor(Z⊥X , D⊥X)2 = cor(D⊥X , Z⊥X)2 = R2

D∼Z|X .

We are now ready to express the bias in terms of partial R2. First, by the FWL theorem,

b̂ias = δ̂γ̂

=

(
cov(D⊥X , Z⊥X)

var(D⊥X)

)(
cov(Y ⊥X,D, Z⊥X,D)

var(Z⊥X,D)

)
=

(
cor(D⊥X , Z⊥X)sd(Z⊥X)

sd(D⊥X)

)(
cor(Y ⊥X,D, Z⊥X,D)sd(Y ⊥X,D)

sd(Z⊥X,D)

)

=

cor(Y ⊥X,D, Z⊥X,D)cor(D⊥X , Z⊥X)
sd(Z⊥X,D)
sd(Z⊥X)

(sd(Y ⊥X,D)

sd(D⊥X)

)
(2.7)

Noting that cor(Y ⊥X,D, Z⊥X,D)2 = R2
Y∼Z|X,D, that cor(Z

⊥X , D⊥X)2 = R2
D∼Z|X , and that

var(Z⊥X,D)
var(Z⊥X)

= 1−R2
Z∼D|X = 1−R2

D∼Z|X , we can write 2.7 as

|b̂ias| =

√√√√R2
Y∼Z|D,X R2

D∼Z|X

1−R2
D∼Z|X

(
sd(Y ⊥X,D)

sd(D⊥X)

)
. (2.8)
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Equation 2.8 rewrites the OVB formula in terms that more conveniently rely on partial R2

measures of association rather than raw regression coefficients. Investigators may be interested

in how confounders alter inference as well, so we also examine the standard error. Let df

denote the regression’s degrees of freedom (for the restricted regression actually run). Noting

that

ŝe(τ̂res) =
sd(Y ⊥X,D)

sd(D⊥X)

√
1

df
(2.9)

ŝe(τ̂) =
sd(Y ⊥X,D,Z)

sd(D⊥X,Z)

√
1

df− 1
, (2.10)

whose ratio is

ŝe(τ̂)

ŝe(τ̂res)
=

(
sd(Y ⊥X,D,Z)

sd(Y ⊥X,D)

)(
sd(D⊥X)

sd(D⊥X,Z)

)√
df

df− 1
, (2.11)

we obtain the expression for the estimated standard error of τ̂

ŝe(τ̂) = ŝe(τ̂res)

√√√√1−R2
Y∼Z|D,X

1−R2
D∼Z|X

(
df

df− 1

)
. (2.12)

Moreover, with this we can further see the bias as

|b̂ias| = ŝe(τ̂res)

√√√√R2
Y∼Z|D,X R2

D∼Z|X

1−R2
D∼Z|X

(df). (2.13)

2.4.2 Making sense of the partial R2 parameterization

Equations 2.12 and 2.13 form the basis of the sensitivity exercises regarding both the point

estimate and the standard error, with sensitivity parameters in terms of R2
Y∼Z|D,X and

R2
D∼Z|X . These formulae are computationally convenient—the only data dependent parts are

the standard error of τ̂res and the regression’s degrees of freedom, which are already reported

by most regression software. In this section, we provide remarks that help making sense of

these results, revealing their simplicity in terms of regression anatomy. We also review some
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partial R2 identities that may prove useful when reasoning about the sensitivity parameters.

Sensitivity of the point estimate

In the partial R2 parameterization, the relative bias,
∣∣∣ b̂ias
τ̂res

∣∣∣, has a simple form:9

relative bias =

bias factor︷ ︸︸ ︷
|RY∼Z|D,X × fD∼Z|X |

|fY∼D|X |︸ ︷︷ ︸
partial f of D with Y

=
BF

|fY∼D|X |
. (2.14)

The numerator of the relative bias contains the partial Cohen’s f of the confounder with

the treatment, “amortized” by the partial correlation of that confounder with the outcome.10

Collectively this numerator could be called the “bias factor” of the confounder, BF =

|RY∼Z|D,X×fD∼Z|X |, which is determined entirely by the two sensitivity parameters R2
Y∼Z|D,X

and R2
D∼Z|X . To determine the size of the relative bias, this is compared to how much variation

of the outcome is uniquely explained by the treatment assignment, in the form of the partial

Cohen’s f of the treatment with the outcome. Computationally, fY∼D|X can be obtained

by dividing the t-value of the treatment coefficient by the square-root of the regression’s

degrees of freedom—fY∼D|X = tτ̂res/
√
df. This allows one to easily assess sensitivity to any

confounder with a given pair of partial R2 values.

Equation 2.14 also reveals that, given a particular confounder (which will fix BF), the

only property needed to determine the robustness of a regression estimate against that

confounder is the partial R2 of the treatment with the outcome (via fY∼D|X). This serves to

reinforce the fact that robustness to confounding is an identification problem, impervious to

sample size considerations. While t-values and p-values might be informative with respect to

the statistical uncertainty (in a correctly specified model), robustness to misspecification is

determined by the share of variation of the outcome the treatment uniquely explains.

9See appendix for details.

10Cohen’s f2 can be written as f2 = R2/(1−R2), so, for example, f2D∼Z|X = R2
D∼Z|X/(1−R

2
D∼Z|X).
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A subtle but useful property of the partial R2 parameterization is that it reveals an

asymmetry in the role of the components of the bias factor. In the traditional OVB formulation,

the bias is simply a product of two terms with the same importance. The new formulation

breaks this symmetry: the effect of the partial R2 of the confounder with the outcome on

the bias factor is bounded at one. By contrast, the effect of the partial R2 of the confounder

with the treatment on the bias factor is unbounded (via fD∼Z|X). This allows us to consider

extreme scenarios, in which we suppose the confounder explains all of the left-out variation

of the outcome, and see what happens as we vary the partial R2 of the confounder with the

treatment (Section 2.5.3).

Sensitivity of the variance

How the confounder affects the estimate of the variance has a straightforward interpretation as

well. The relative change in the variance, v̂ar(τ̂)
v̂ar(τ̂res)

, can be decomposed into three components,

relative change in variance =

VRF︷ ︸︸ ︷(
1−R2

Y∼Z|D,X
)( 1

1−R2
D∼Z|X

)
︸ ︷︷ ︸

VIF

change in df︷ ︸︸ ︷(
df

df− 1

)

= VRF× VIF× change in df. (2.15)

That is, including the confounder in the regression reduces the estimate of the variance of the

coefficient of D by reducing the residual variance of Y (variance reduction factor—VRF). On

the other hand, it raises the estimated variance of the coefficient via its partial correlation

with the treatment (the traditional variance inflation factor—VIF). Finally, the degrees of

freedom must be adjusted to formally recover the answer one would obtain from including

the omitted variable. The overall relative change of the estimated variance is simply the

product of these three components.
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Reasoning about R2
Y∼Z|D,X and R2

D∼Z|X

For simplicity of exposition, throughout the chapter we reason in terms of the sensitivity

parameters R2
Y∼Z|D,X and R2

D∼Z|X directly. However, here we recall some identities of the

partial R2 scale that can aid interpretation depending upon what can best be reasoned about

in a given applied setting.

First, as noted in Section 2.4.1, researchers accustomed to thinking about or evaluating

the strength of (partial) correlations can simply square those values to reason with the

corresponding partial R2s. Next, in some circumstances, researchers might prefer to reason

about the relationship of the unobserved confounder Z and the outcome Y without conditioning

on the treatment assignment D.11 This can be done by noting that, for a choice of RY∼Z|X and

RD∼Z|X , we can reconstruct RY∼Z|D,X using the recursive definition of partial correlations,

RY∼Z|D,X =
RY∼Z|X −RY∼D|XRD∼Z|X√

1−R2
Y∼D|X

√
1−R2

D∼Z|X

. (2.16)

Therefore, if needed, one can reason directly about sensitivity parameters R2
Y∼Z|X and

R2
D∼Z|X .

Finally, it may be beneficial to reason in terms of how much explanatory power is added

by including confounders. To this end, recall the partial R2’s are defined as,

R2
Y∼Z|D,X =

R2
Y∼D+X+Z −R2

Y∼D+X

1−R2
Y∼D+X

, R2
D∼Z|X =

R2
D∼X+Z −R2

D∼X

1−R2
D∼X

. (2.17)

That is, plausibility judgments about the partial R2 boil down to plausibility judgments

about the total (or added) explanatory power that one would have obtained in the treatment

and the outcome regressions, had the unobserved confounder Z been included. This may be

particularly useful when contemplating multiple confounders acting in concert (as we will

11For instance, since D will usually be a post-treatment variable with respect to Z, this can make the
association of Y and Z conditional on D harder to interpret, especially when one wants to attach a causal
meaning to the parameter [119]. As argued in footnote 6, however, recall that a causal interpretation of the
association of Z with Y requires more assumptions than the ones usually invoked for the identification of the
causal effect of D on Y .
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discuss in Section 2.4.5), in which case other parameterizations (such as simple correlations

or regression coefficients) become unwieldy.

2.4.3 Sensitivity statistics for routine reporting

Detailed sensitivity analyses can be conducted using the previous results, as we will show in

the next section. However, widespread adoption of sensitivity analyses would benefit from

simple measures that quickly describe the overall sensitivity of an estimate to unobserved

confounding. These measures serve two main purposes: (i) they can be routinely reported in

standard regression tables, making the discussion of sensitivity to unobserved confounding

more accessible and standardized; and, (ii) they can be easily computed from quantities

found on a regression table, allowing readers and reviewers to initiate the discussion about

unobserved confounders when reading papers that did not formally assess sensitivity.

The robustness value

The first quantity we propose is the robustness value (RV), which conveniently summarizes the

types of confounders that would problematically change the research conclusions. Consider

a confounder with equal association to the treatment and the outcome, i.e. R2
Y∼Z|X,D =

R2
D∼Z|X = RVq∗ . The RVq∗ describes how strong that association must be in order to reduce

the estimated effect by (100× q∗)%. By Equation 2.14 (see appendix 7.1.1),

RVq∗ =
1

2

(√
f 4
q∗ + 4f 2

q∗ − f 2
q∗

)
(2.18)

where fq∗ := q∗|fY∼D|X | is the partial Cohen’s f of the treatment with the outcome multiplied

by the proportion of reduction q∗ on the treatment coefficient which would be deemed

problematic. Confounders that explain (100× RVq∗)% of the residual variance both of the

treatment and the outcome are sufficiently strong to change the point estimate in problematic

ways, while confounders with neither association greater than (100× RVq∗)% are not.

The RV thus offers an interpretable sensitivity measure that summarizes how robust the
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point estimate is to unobserved confounding. A robustness value close to one means the

treatment effect can handle strong confounders explaining almost all residual variation of

the treatment and the outcome. On the other hand, a robustness value close to zero means

that even very weak confounders could eliminate the results. Note that the RV can be easily

computed from any regression table, recalling that fY∼D|X can be obtained by simply dividing

the treatment coefficient t-value by
√
df.

With minor adjustment, robustness values can also be obtained for t-values, or lower and

upper bounds of confidence intervals. Let |t∗α,df−1| denote the t-value threshold for a t-test with

significance level of α and df− 1 degrees of freedom, and define f ∗α,df−1 := |t∗α,df−1|/
√
df− 1.

Now construct an adjusted fq∗,α, accounting for both the proportion of reduction q∗ of the

point estimate and the boundary below which statistical significance is lost at the level of α,

fq∗,α := fq∗ − f ∗α,df−1 (2.19)

If fq∗,α < 0, then the robustness value is zero. If fq∗,α > 0, then a confounder with a

partial R2 of,

RVq∗,α =
1

2

(√
f 4
q∗,α + 4f 2

q∗,α − f 2
q∗,α

)
, (2.20)

both with the treatment and with the outcome is sufficiently strong to make the adjusted t-test

not reject the null hypothesis H0 : τ = (1− q∗)|τ̂res| at the α level (or, equivalently, to make

the adjusted 1−α confidence interval include (1−q∗)|τ̂res|). When RVq∗,α > 1−1/f 2
q∗ then, as

with the RVq∗ , we can conclude that no confounder with both associations lower than RVq∗,α

is able to overturn the conclusion of such a test. In the rare cases when RVq∗,α ≤ 1− 1/f 2
q∗ ,

setting RVq∗,α = (f 2
q∗ − f ∗2α,df−1)/(1 + f 2

q∗) restores the property that no confounder weaker on

both associations would change the conclusion.12 Note that, since we are considering sample

uncertainty, RVq∗,α is a more conservative measure than RVq∗ . For a fixed |t∗α,df−1|, RVq∗,α

12This occurs when the variance reduction due to an increase in R2
Y∼Z|D,X dominates its effect on the bias.

Such cases are unlikely in practice, see appendix 7.1.1 for details.
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converges to RVq∗ when the sample size grows to infinity.

The R2
Y∼D|X as an extreme scenario analysis

The second measure we propose is the proportion of variation in the outcome uniquely

explained by the treatment—R2
Y∼D|X . Consider the following question: “if an extreme

confounder explained all the residual variance of the outcome, how strongly associated with

the treatment would it need to be in order to eliminate the estimated effect?” As it happens,

the answer is precisely the R2
Y∼D|X .

Specifically, a confounder explaining all residual variance of the outcome implies we have

RY∼Z|D,X = 1. By Equation 2.14, to bring the estimated effect down to zero (relative bias = 1),

this means |fD∼Z|X | needs to equal |fY∼D|X |, which implies R2
D∼Z|X = R2

Y∼D|X . Thus,

R2
Y∼D|X is not only the determinant of the robustness of the treatment effect coefficient, but

can also be interpreted as the result of an “extreme scenario” sensitivity analysis.

2.4.4 Bounding the strength of the confounder using observed covariates

Arguably, the most difficult part of a sensitivity analysis is taking the description of a

confounder that would be problematic from the formal results, and reasoning about whether

a confounder with such strength plausibly exists in one’s study, given its design and the

investigator’s contextual knowledge. In this section, we introduce a novel bounding approach

that can help alleviate this difficulty. The rationale for the method is the realization that,

while in some cases an investigator may not be able make direct plausibility judgments about

the strength of an unobserved confounder Z, she might still have grounds to make judgements

about its relative strength, for instance, claiming that Z cannot possibly account for as much

variation of the treatment assignment as some observed covariate X. How can we formally

codify and leverage these claims regarding relative strength (or importance) of covariates for

sensitivity analysis?

Clearly, there is not a unique way to measure the relative strength of variables [88]. For
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the task at hand, however, any proposal must meet the minimal criterion of solving the correct

identification problem—essentially, this means the chosen measure of relative strength must

be sufficient to identify (or bound) the bias, and a new function (or bound) in terms of that

measure must be derived [37]. Previous work has proposed informal benchmarking procedures

that fail this minimal criterion and can generate misleading sensitivity analysis results, even if

researchers had correct knowledge about the relative strength of Z (58, 81, 60, 17, 50, 26, 100).

We elaborate on the pitfalls of this informal approach in Section 2.6.2 of the Discussion.

Additionally, simply obtaining a formal identification result is not enough for it to be

useful in applied settings—investigators must still be able to reason cogently about whether

confounders are “stronger” than observed covariates using the chosen measure of relative

strength. Since this depends on context, it is highly desirable to have a variety of measures

for those relative comparisons (allowing researchers to choose the ones that are best suited for

a given analysis) and that those measures have relevant interpretations [88]. An example of

the risks entailed by ignoring this requirement can be found in the coefficient of “proportional

selection on observables” advanced by [104], which will be discussed in Section 2.6.3.

With this in mind, here we offer three main alternatives to bound the strength of the

unobserved confounder, by judging: (i) how the total R2 of the confounder compares with

the total R2 of a group of observed covariates; (ii) how the partial R2 of the confounder

compares with the partial R2 of a group of observed covariates, having taken into account

the explanatory power of remaining observed covariates; or, (iii) how the partial R2 of the

confounder compares with the partial R2 of a group of observed covariates, having taken

into account the explanatory power of remaining observed covariates and the treatment

assignment. These are natural measures of relative importance for OLS, and can be interpreted

as comparisons of the consequences of dropping a (group of) variable(s) in variance reduction

or prediction error [88].

The choice of bounding procedures one should use depends on which of these quantities

the investigator prefers and can most soundly reason about in their own research. In our

running example, within a given village, one may argue that Female is the most important
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visible characteristic that could be used for exposure to violence, and it likely explains more

of the residual variation in targeting than could any unobserved confounder. For this reason

(as well as simplicity of exposition) in the main text we illustrate the use of the third type of

bound, but we refer readers to appendix 7.1.3 for further discussion and derivations of the

other two variants.13

Assume Z ⊥X, or, equivalently, consider only the part of Z not linearly explained by X.

Now suppose the researcher believes she has measured the key determinants of the outcome

and treatment assignment process, in the sense that the omitted variable cannot explain

as much residual variance (or cannot explain a large multiple of the variance) of D or Y in

comparison to a observed covariate Xj. More formally, define kD and kY as,

kD :=
R2
D∼Z|X−j

R2
D∼Xj |X−j

, kY :=
R2
Y∼Z|X−j ,D

R2
Y∼Xj |X−j ,D

. (2.21)

Where X−j represents the vector of covariates X excluding Xj. That is, kD indexes how

much variance of the treatment assignment the confounder explains relative to how much

Xj explains (after controlling for the remaining covariates). To make things concrete, for

example, if the researcher believes the omission of Xj would result in a larger mean squared

error of the treatment assignment regression than the omission of Z, this equals the claim

kD ≤ 1. The same reasoning applies to kY .

Given parameters kD and kY , we can rewrite the strength of the confounders as,

R2
D∼Z|X = kDf

2
D∼Xj |X−j, R2

Y∼Z|D,X ≤ η2f 2
Y∼Xj |X−j ,D (2.22)

where η is a scalar which depends on kY , kD and R2
D∼Xj |X−j , (see appendix 7.1.3 for details).

These equations allow us to investigate the maximum effect a confounder at most “k times” as

strong as a particular covariate Xj would have on the coefficient estimate. These results are

13Another reason we employ this type of bound in the main text is that it is most closely related to
approaches used by other sensitivity analyses to which we contrast our results. These include the informal
benchmarks of [81] as well as the bounding proposal of [104], discussed in Section 2.6.
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also tight, in the sense that we can always find a confounder that makes the second inequality

an equality. Further, certain values for kD and kY may be ruled out by the data (for instance,

if R2
D∼Xj |X−j = 50% then kD must be less than 1).

Our bounding exercises can be extended to any subset of the covariates. For instance,

the researcher can bound the effect of a confounder as strong as all covariates X or any

subset thereof. The method can also be extended to allow different subgroups of covariates

to bound R2
D∼Z|X and R2

Y∼Z|D,X— thus, if a group of covariates X1 is known to be the most

important driver of selection to treatment, and another group of covariates X2 is known to

be the most important determinant of the outcome, the researcher can exploit this fact.

2.4.5 Sensitivity to multiple confounders

The previous results let us assess the bias caused by a single confounder. Fortunately, they

also provide upper bounds in the case of multiple unobserved confounders.14 Allowing Z to

be a set (matrix) of confounders and γ̂ its coefficient vector, the full equation we wished we

had estimated becomes

Y = τ̂D +Xβ̂ +Zγ̂ + ε̂full. (2.23)

Now consider the single variable Z∗ = Zγ̂. The bias caused by omitting Z is the same as

omitting the linear combination Z∗, and one can think about the effect of multiple confounders

in terms of this single confounder. Estimating the regression with X and Z∗ instead of X

and Z gives the same results for τ̂ ,

Y = τ̂D +Xβ̂ + Z∗ + ε̂full. (2.24)

Accordingly, Z∗ has the same partial R2 with the outcome as the full set Z. However, the

partial R2 of Z∗ with the treatment must be less than or equal to the partial R2 of Z with

14See [76], Section 4.1, for an alternative proof.
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the treatment—this follows simply because the choice of the linear combination γ̂ is the one

the maximizes the R2 with the outcome, and not with the treatment. Hence, the bias caused

by a multivariate Z must be less than or equal the bias computed using Equation 2.13.

A similar reasoning can be applied to the standard errors. Since the effective partial R2

of the linear combination Z∗ with the treatment is less than that of Z, simply modifying

sensitivity Equation 2.12 to account for the correct degrees of freedom (df − k instead of

df− 1) will give conservative adjusted standard errors for a multivariate confounder. From a

practical point of view, however, we note that further correction of the degrees of freedom

might be an unnecessary formality—we are performing a hypothetical exercise, and one can

always imagine to have measured Z∗.

Finally, note the set of confounders Z is arbitrary, thus it accommodates nonlinear

confounders as well as misspecification of the functional form of the observed covariates X.

To illustrate the point, let Y = τ̂D + β̂X + γ̂1Z + γ̂2Z
2 + γ̂3(Z × X) + γ̂4X

2 + ε̂full, and

imagine the researcher did not measure Z and did not consider that X could also enter the

equation with a squared term. Now just call Z = (Z1 = Z,Z2 = Z2, Z3 = Z ×X,Z4 = X2)

and all the previous arguments follow.

2.5 Using the partial R2 parameterization for sensitivity analysis

Returning to our running example of violence in Darfur, we illustrate how these tools can be

deployed in an effort to answer the following questions: (i) How strong would a particular

confounder (or group of confounders) have to be to change our conclusions? (ii) In a worst

case scenario, how vulnerable is our result to many or all unobserved confounders acting

together, possibly non-linearly? (iii) Are the confounders that would alter our conclusions

plausible, or at least how strong would they have to be relative to observed covariates?
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2.5.1 Proposed minimal reporting

Table 2.1 illustrates the type of reporting we propose should accompany linear regression

models used for causal inference with observational data. Along with traditionally reported

statistics (point estimate, standard error and t-value), we propose researchers present (i) the

partial R2 of the treatment with the outcome, and (ii) the robustness value, RV, both for

where the point estimate and the confidence interval would cross zero (or another meaningful

reference value).15 Finally, in order to aid user judgment, we encourage researchers to provide

plausible bounds on the strength of the confounder. These may be based upon bounds

employing meaningful covariates determined by the research context and design (Section

2.4.4), or in principle may be available from theory and previous literature.

Outcome: Peace Index
Treatment: Estimate Std. Error t-value R2

Y∼D|X RV RVα=0.05

Directly Harmed 0.097 0.023 4.18 2.2% 13.9% 7.6%
df = 783, Bound (Z as strong as Female): R2

Y∼Z|D,X = 12%, R2
D∼Z|X = 1%

Table 2.1: Proposed minimal reporting on sensitivity to unobserved confounders.

For our running example of violence in Darfur, Table 2.1 shows an augmented regression

table, including the robustness value (RV) of the Directly Harmed coefficient, 13.9%. This

means that unobserved confounders explaining at least 13.9% of the residual variance of

both the treatment and the outcome would explain away the estimated treatment effect. It

also means that any confounder explaining less than 13.9% of the residual variance of both

the treatment and the outcome would not be strong enough to bring down the estimated

effect to zero. For cases where one association is over 13.9% and the other is below, we

conduct additional analyses illustrated in the next subsection. Nevertheless, the RV still

fully characterizes the robustness of the regression coefficient to unobserved confounding—it

provides a quick, meaningful reference point for understanding the minimal strength of bias

necessary to overturn the research conclusions.16

15For convenience, we refer to the RVq∗ or RVq∗,α with q∗ = 1 as simply the RV or RVα
16That is, any confounder with an equivalent bias factor of BF = RV/

√
1− RV.
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Adjusting for confounding may not bring the estimate to zero, but rather into a range

where it is no longer “statistically significant.” Therefore, the robustness value accounting

for statistical significance, RVα=0.05, is also shown in the table. For a significance level of

5%, the robustness value goes down from 13.9% to 7.6%—that is, confounders would need

to be only about half as strong to make the estimate not “statistically significant.” Finally,

the partial R2 of the treatment with the outcome, R2
Y∼D|X , in Table 2.1 gives a sensitivity

analysis for an extreme scenario: if confounders explained 100% of the residual variance of the

outcome, they would need to explain at least 2.2% of the residual variance of the treatment

to bring down the estimated effect to zero.

Confronted with those results, we now need to judge whether confounders with the

strengths revealed to be problematic are plausible. If one can claim to have measured the

most important covariates in explaining treatment and outcome variation, it is possible to

bound the strength of the confounder with the tools of Section 2.4.4 and judge where it

falls relative to these quantities. The lower right corner of Table 2.1 shows the strength

of association that a confounder as strong as Female would have: R2
Y∼Z|D,X = 12% and

R2
D∼Z|X = 1%. As the robustness value is higher than either quantity, the table readily

reveals that such a confounder could not fully eliminate the point estimate. In addition, since

the bound for R2
D∼Z|X is less than R2

Y∼D|X = 2.2%, a “worst case confounder” explaining

all of the left-out variance of the outcome and as strongly associated with the treatment as

Female would not eliminate the estimated effect either.

Domain knowledge about how the treatment was assigned or regarding the main de-

terminants of the outcome is required to make any such comparisons meaningful. In our

running example, a reasonable argument can be made that gender is one of the most visually

apparent characteristic of an individual during the attacks, and that, within village, gender

was potentially the most important factor to explain targeting due to the high level of sexual

violence. Thus, if one can argue that total confounding as strongly associated with the

treatment as Female is implausible, those bounding results show it cannot completely account

for the observed estimated effect.

32



These sensitivity exercises are exact when considering a single linear unobserved confounder

and are conservative for multiple unobserved confounders, possibly acting non-linearly—this

includes the explanatory power of all left out factors, even misspecification of the functional

form of observed covariates. It is worth pointing out that sensitivity to any arbitrary

confounder with a given pair of partial R2 values (R2
Y∼Z|D,X , R

2
D∼Z|X) can also be easily

computed with the information on the table.

2.5.2 Sensitivity contour plots with partial R2: estimates and t-values

The next step is to refine the analysis with tools that visually demonstrate how confounders

of different types would affect point estimates and t-values, while showing where bounds on

such confounders would fall under different assumptions on how unobserved confounders

compare to observables.17
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Figure 2.3: Sensitivity contour plots in the partial R2 scale with benchmark bounds.

17Here we focus on the plots for point estimates and t-values, but note p-values can be obtained from the
t-values, and the confidence interval end-points by adjusting the estimate with the appropriate multiple of
the standard-errors.
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Perhaps the first plot investigators would examine would be one similar to Figure 2.2,

but now in the partial R2 parameterization (Figure 2.3a). The horizontal axis describes the

fraction of the residual variation in the treatment (partial R2) explained by the confounder;

the vertical axis describes the fraction of the residual variation in the outcome explained by

the confounder.18 The contours show the adjusted estimate that would be obtained for an

unobserved confounder (in the full model) with the hypothesized values of the sensitivity

parameters (assuming the direction of the effects hurts our preferred hypothesis).

While the contour plot used in illustrating the traditional OVB approach focused on a

specific binary confounder—Center—the contour plot with the partial R2 parameterization

allows us to assess sensitivity to any confounder, irrespective of its unit of measure. Addi-

tionally, since the sensitivity equations give an upper bound for the multivariate case, the

same plot can be used to assess the sensitivity to any group of confounders, here including

non-linear terms, such as the example of Political Attitudes and Wealth acting together.

Notice that if we choose a contour of interest (such as where the effect equals zero), and

find the point with equal values on the horizontal and vertical axes (i.e. where it crosses a

45-degree line), this correspond to the robustness value. That is, the RV is a convenient,

interpretable summary of a critical line of the contour plot.

Further, the bounding exercise results in points on the plot showing the bounds on the

partial R2 of the unobserved confounder if it were k times “as strong” as the observed covariate

Female. The first point shows the bounds for a confounder (or group of confounders) as

strong as Female, as was also shown in Table 2.1. A second reference point shows the bounds

for confounders twice as strong as Female, and finally the last point bounds the strength

of confounders three times as strong as Female. The plot reveals that the sign of the point

estimate is still relatively robust to confounding with such strengths, although the magnitude

would be reduced to 77%, 55% and 32% of the original estimate, respectively.

18As discussed in Section 2.4.2, axes could be transformed to show instead (i) the total R2 including
the confounders R2

Y∼D+X+Z and R2
D∼X+Z , (ii) the difference in the total R2 including the confounders,

i.e., R2
Y∼D+X+Z − R2

Y∼D+X and R2
D∼X+Z − R2

D∼X , (iii) the partial correlations (by simply taking the
square-root), (iv) the partial R2 of the confounder with the outcome not conditioning on the treatment,
among other options that may aid interpretation.
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Moving to inferential concerns, Figure 2.3b now shows the sensitivity of the t-value of

the treatment effect. As we move along the horizontal axis, not only the adjusted effect

reduces, but we also get larger standard-errors due to the variance inflation factor of the

confounder. If we take the t-value of 2 as our reference (the usual approximate value for

a 95% confidence interval), the plot reveals the statistical significance of Directly Harmed

is robust to a confounder as strong as, or twice as strong as Female. However, whereas

confounders three times as strong as Female would not erode the point estimate to zero, we

cannot guarantee the estimate would remain “statistically significant” at the 5% level.

Altogether, these bounding exercises naturally lead to the questions: are such confounders

plausible? Do we think it possible that confounders might exist that are three times as strong

as Female? If so, what are they? While one may not have complete confidence in answering

such questions, we have moved the discussion from a qualitative argument about whether any

confounding is possible to a more disciplined, quantitative argument that entices researchers

to think about possible threats to their research design.

2.5.3 Sensitivity plots of extreme scenarios

Even with a good understanding of the treatment assignment mechanism, investigators may

not always be equipped to convincingly limit the association of the confounder with the

outcome. In such cases, exploring sensitivity analysis to extreme-scenarios is still an option.

If we set R2
Y∼Z|D,X to one or some other conservative value, how strongly would such a

confounder need to be associated with the treatment in order to problematically change our

estimate? While in some cases this exercise could reveal that confounders weakly related

to the treatment would be sufficient to overturn the estimated effect, survival to extreme

scenarios may help investigators demonstrate the robustness of their results.

Applying this to our running example, results are shown in Figure 2.4. The solid curve

represents the case where unobserved confounder(s) explain all the left-out residual variance

of the outcome. On the vertical axis we have the adjusted treatment effect, starting from the

case with no bias and going down as the bias increases, reducing the estimate; the horizontal
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Figure 2.4: Sensitivity analysis to extreme scenarios.

axis shows the partial R2 of the confounder with the treatment. In this extreme scenario, as

we have seen, R2
D∼Z|X would need to be exactly the same as the partial R2 of the treatment

with the outcome to bring down the estimated effect to zero—that is, it would need to be

at least 2.2%, a value below the bound for a confounder once or twice as strong as Female

(shown by red tick marks), which in this case is arguably one of the strongest predictors of

the treatment assignment. In most circumstances, considering the worst case scenario of

R2
Y∼Z|D,X = 1 might be needlessly conservative. Hence, we propose plotting other extreme

scenarios, as shown in Figure 2.4, where we consider different values of the partial R2 of the

unobserved confounder with the outcome, including 75% and 50%.

2.6 Discussion

2.6.1 Making formal sensitivity analysis standard practice

Given that ruling out unobserved confounders is often difficult or impossible in observational

research, one might expect that sensitivity analyses would be a routine procedure in numerous

disciplines. Why then are they not commonplace? We surmise there are three main obstacles,
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which we directly address in this chapter.

Strong parametric assumptions

First, the assumptions that many methods impose on the nature and distribution of unobserved

confounders as well as on the treatment assignment mechanism may be difficult to sustain in

some cases. For instance, [124], [81], [26] and [50] require specifying the distribution of the

confounder as well as modeling the treatment assignment mechanism; in another direction,

the methods put forward in [118], [21], [17] need to directly specify a confounding function

parameterizing the difference in potential outcomes among treated and control units. While

assessing the sensitivity to some forms of confounding is an improvement over simply assuming

no confounding (and users may be able to make suitable parameteric assumptions in some

circumstances), widespread adoption of sensitivity analysis would benefit from methods that

do not require users to make those restrictions a priori. Our derivations are rooted in the

traditional OVB precisely to avoid those simplifying assumptions. As we have seen, the

partial R2 parameterization allows a flexible framework for assessing the sensitivity of the

point estimate, as well as t-values and confidence intervals, allowing for multiple (possibly

nonlinear) confounders, even including mispecification of the functional form of the observed

covariates.

Lack of simple sensitivity measures for routine reporting

A second obstacle to a wider adoption of sensitivity analysis is the lack of general, yet simple

and interpretable sensitivity measures users can report alongside other regression summary

statistics. Our minimal reporting recommendation for regression tables (see Table 2.1) aims

to fill this gap for regression models with: (i) the robustness value, which conveniently

summarizes the minimal strength of association a confounder needs to have to change the

research conclusions, and (ii) the R2
Y∼D|X , which works as an extreme-scenario sensitivity

analysis. Regarding the robustness value in particular, we now discuss its relation to two other

proposals advocated in the literature: the impact thresholds of [58] and the E-value of [142].
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Frank [58] proposes characterizing the strength of the unobserved confounder Z with

what he denotes as its impact, defined as the product RY∼Z|X ×RD∼Z|X .19 This is then used

to determine impact thresholds, defined as the minimum impact of the unobserved confounder

necessary to not reject the null hypothesis of zero effect. However, as Equation 2.14 reveals,

the determinant of the bias is the bias factor BF = RY∼Z|D,X × fD∼Z|X , which does not have

a one-to-one mapping with the confounder’s impact. This can be made clear by rewriting the

relative bias showing the product RY∼Z|X ×RD∼Z|X explicitly,

relative bias =
|

Frank’s impact︷ ︸︸ ︷
RY∼Z|XRD∼Z|X −RY∼D|XR

2
D∼Z|X |

|RY∼D|X(1−R2
D∼ZX)|

. (2.25)

Equation 2.25 reveals that: (i) an unobserved confounder with zero impact can still

cause non-zero (downward) bias; (ii) an unobserved confounder with a non-zero impact can

nevertheless induce zero bias (when impact = RY∼D|XR
2
D∼Z|X); and, (iii) the two terms

that compose the product RY∼Z|X ×RD∼Z|X do not enter symmetrically in the bias equation,

hence confounders with the same impact can cause widely different biases. This creates

difficulties when trying to generalize the impact thresholds proposed in [58] to arbitrary

non-zero null hypothesis of regression coefficients.20 Note this is not a problem for the

robustness value, since it acts as a convenient reference point uniquely characterizing any

confounder with a bias factor of BF = RVq∗/
√

1− RVq∗ .

As to [142], the authors have recently advanced the E-value, a sensitivity measure suited

specifically for the risk ratio. For other effect measures, such as risk differences, the E-value

is an approximation, whereas if the researcher uses linear regression to obtain an estimate,

the robustness value is exact. Also, while the robustness value parameterizes the association

of the confounder with the treatment and the outcome in terms of percentage of variance

19Not to confuse with γ̂ of the “impact times imbalance” heuristic, as discussed in Section 2.3.2.

20Let q∗ denote the relative bias of interest and consider biases that move the effect toward (or through)
zero. Solving Equation 2.25 for impact gives us impact = RY∼D|X(q∗ − (q∗ − 1)R2

D∼Z|X). Note that, given
q∗ and RY∼D|X , the impact necessary to bring about a relative bias of magnitude q∗ still depends on the
sensitivity parameter R2

D∼Z|X—except when q∗ = 1. For a numerical example, see appendix 7.1.2.1.
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explained (the partial R2), the E-value parameterizes these in terms of risk ratios. Whether

one scale is preferable over the other depends on context, and researchers should be aware

of both options. Overall, we believe the dissemination of measures such as the E-value and

the robustness value is an important step towards the widespread adoption of sensitivity

analysis to unobserved confounding. In current practice, robustness is often informally or

implicitly linked to t-values or p-values, neither of which correctly characterizes how sensitive

an estimate is to unobserved confounding. The extension of the robustness value to non-linear

models is worth exploring in future research.

Difficulty in connecting sensitivity analysis to domain knowledge

Finally, the third and perhaps most fundamental obstacle to the use of sensitivity analysis is

the difficulty in connecting the formal results to the researcher’s substantive understanding

about the object under study. This can be only partially overcome by statistical tools, as

it relies upon the nature of the domain knowledge used for plausibility judgments. In this

chapter we have showed how one can formally bound the strength of an unobserved confounder

with the same strength (or a multiple thereof) as a chosen group of observed covariates, using

three different types of comparisons. This allows researchers to exploit knowledge regarding

the relative importance of observed covariates: when researchers can credibly argue to have

measured the most important determinants of the treatment assignment and of the outcome

(in terms of variance explained), this bounding exercise can be a valuable tool. As we discuss

next, previous attempts to make such comparisons have been problematic, either due to

informal benchmarking practices that do not warrant the claims they purport to make, or by

relying on inappropriate parameterization choices.

2.6.2 The risks of informal benchmarking

While prior work has suggested informal benchmarking procedures using statistics of observed

covariates X to help researchers “calibrate” their intuitions about the strength of the unob-

served confounder Z (58, 81, 76, 50, 26, 100, 75), this practice has undesirable properties and
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can lead users to erroneous conclusions, even in the ideal case where they do have the correct

knowledge about how Z compares to X. This happens because the estimates of how the

observed covariates are related to the outcome may be themselves affected by the omission of

Z, regardless of whether one assumes Z to be independent of X. To illustrate this threat

concretely, let us first consider a simple simulation where there is no effect of D on Y , Z

is orthogonal to X and, more importantly, Z is exactly like X.21 The results are shown in

Figure 2.5.

Note the informal benchmark point is still far away from zero, leading the investigator to

incorrectly conclude that a confounder “not unlike X” would not be sufficient to bring down

the estimated effect to zero—when in fact it would. This incorrect conclusion occurs despite

the investigator correctly assuming both that the unobserved confounder is “no worse” than

X (in terms of its strength of relationship to the treatment and outcome) and that Z ⊥ X.

Figure 2.5 also shows the formal bounds obtained with the procedures given in Section 2.4.4.

Note these would lead the researcher to the correct conclusion: an unobserved confounder

with the same strength as X would be powerful enough to bring down the estimate to zero.

Why exactly does this happen? Consider for a moment the difference between the

coefficient on X in the full Equation 2.3, β̂, and its estimate in the restricted Equation 2.4,

β̂res. Using the same OVB approach of “impact times imbalance”, we arrive at β̂res− β̂ = γ̂ψ̂,

where ψ̂ is obtained from the regression Z = δ̂D +Xψ̂ + ε̂Z . Note that ψ̂ can be non-zero

even if X ⊥ Z, because D is a collider [109], and conditioning on D creates dependency

between Z and X. The reasoning holds whether one is using the regression coefficients

themselves or other observed statistics, such as partial correlations, partial R2 values or

t-values. This renders claims of the type “a confounder Z not unlike X could not change the

research conclusions” unreliable when observed statistics without proper adjustment are used

for benchmarking.

We can use the formal bounds derived in Equation 2.22 to quantify how misleading claims

21We use structural equations, Y = X + Z + εy, D = X + Z + εd, X = εx, Z = εz where all disturbances,
are independent standard normal random variables. See also appendix 7.1.4.
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Figure 2.5: Sensitivity contours, point estimate. Informal benchmarking versus proper bound.

using informal benchmarks would be. In the partial R2 parameterization, this amounts

to using as benchmarks kDR2
D∼Xj |X−j and kYR

2
Y∼Xj |X−j ,D, instead of the proper bounds

kDf
2
D∼Xj |X−j and η2f 2

Y∼Xj |X−j ,D. There are, thus, two discrepancies: (i) an adjustment

of baseline variance to be explained, when converting the partial R2 to partial Cohen’s

f 2 = R2/(1−R2), which affects both coordinates of the benchmark; and, (ii) the collider bias

due to the association of Xj with D, which affects only the bound on R2
Y∼Z|D,X via η2 ≥ kY .22

Therefore, the stronger the association of Xj with the treatment, and the larger the multiples

used for comparisons (“k times as strong”), the more misleading informal benchmarks will

be.23 We thus advise against informal benchmarking procedures, and previous studies relying

upon these methods may warrant revisiting, especially those where benchmark points have

strong association with the treatment assignment.

22The adjustment of baseline variance may affect informal benchmarks based on correlational [58], partial
R2 [81], and t-value [76] measures. The collider bias may affect informal benchmarks that condition on D.
Benchmarks that do not condition on D (such as in 58) are not affected by collider bias.

23In our running example, since female explains less than 1% of the residual variance of the treatment,
informal benchmarks would not be markedly different from the formal ones.
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2.6.3 On the choice of parameterization

The approach of [76] is also rooted in the OVB framework, but it suffers from two main

deficiencies. The first is the central role informal benchmarking plays in their proposal,

which can be seriously misleading as discussed in the previous section. The second issue

is more subtle, but equally important: the choice of parameterization. [76] ask researchers

to “calibrate intuitions” about the strength of the confounder with the treatment using a

t-value. This is a problematic choice because the t-value incorporates information on both

the strength of association and the sample size, the latter being irrelevant for identification

concerns. What constitutes a large t-value for “statistical significance” does not map directly

to what constitutes a large strength of a confounder, as this mapping varies significantly

depending on sample size.24

An alternative bounding argument has also been presented in [104] which, unlike the

informal benchmarking practices previously discussed, provides a formal identification result.

Nevertheless, the proposed procedure asks users to reason about a quantity that is very

difficult to understand. More precisely, [104] asks researchers to make plausibility judgments

on two sensitivity parameters, Rmax and δOster. The Rmax parameter is simply the maximum

explanatory power that one could have with the full outcome regression, i.e., Rmax =

R2
Y∼D+X+Z . As discussed in Section 2.4.2 (Equation 2.17) this has a one to one relationship

with R2
Y∼Z|X,D,

R2
Y∼Z|X,D =

Rmax −R2
Y∼D+X

1−R2
Y∼D+X

(2.26)

By contrast the second sensitivity parameter, δOster, is not easily interpretable in sub-

24The t-value in the expression of the bias is an artifact of both multiplying and dividing by the degrees
of freedom, as in our Equation 2.12. While t-values can be useful for computational purposes (to utilize
quantities routinely reported in regression tables), their dependence on sample size makes them inappropriate
for contemplating how strongly related a confounder is to the treatment. Consider a t-value of 200. With 100
degrees of freedom, the confounder explains virtually all the residual variance of the treatment (partial R2 of
0.9975), while with 10 million degrees of freedom, the confounder explains less than 0.5%. These are clearly
confounders with very different strengths, and the partial R2 clarifies this distinction.
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stantive terms. Following [1], [104] defines “indices” W1 := Xβ̂ and W2 := Zγ̂, where

X is a matrix of observed covariates and Z a matrix of unobserved covariates. Critically,

β̂ and γ̂ are chosen such that Y = τ̂D + W1 + W2 + ε̂full.25 The δOster parameter equals

cov(W2, D)/var(W2)× var(W1)/cov(W1, D), and is intended as a measure of “proportional

selection”, i.e. how strongly the unobservables drive treatment assignment, relative to the

observables. The problem here is that constructing indices W1 and W2 based on relationships

to the outcome is not innocuous: δOster captures not only the relative influence of X and Z

over the treatment, but also their association with the outcome. To examine the simple case

with only one covariate and one confounder and assuming X ⊥ Z, we have,

δOster =
cov(W2, D)

var(W2)

var(W1)

cov(W1, D)
=

cov(γ̂Z,D)

var(γ̂Z)

var(β̂X)

cov(β̂X,D)
=

cov(Z,D)

γ̂var(Z)

β̂var(X)

cov(X,D)
=
λ̂

γ̂

β̂

θ̂
,

(2.27)

where λ̂ and θ̂ are the coefficients of the regression, D = θ̂X + λ̂Z + ε̂D. Consequently, claims

that δOster = 1 implies “the unobservable and observables are equally related to the treatment”

[104, p.6] can lead researchers astray, as this quantity also depends upon associations with

the outcome. To see how, let the variables be standardized to mean zero and unit variance,

and pick β̂ = θ̂ = p, γ̂ = λ̂ = p/2, and τ̂ = 0. In this case, the confounder Z has either

half or one fourth of the explanatory power of X (as measured by standardized coefficients or

variance explained), yet δOster = 1. While researchers may be able to make arguments about

relative explanatory power of observables and unobservables in the treatment assignment

process, the δOster parameter does not correspond directly to such claims.26 By contrast, the

25[104] uses population values. Here we use sample values to maintain consistency with the rest of the
chapter, but this has no consequence for the argument in question.

26Indeed, arguments made by researchers applying [104] suggest they believe they are comparing the
explanatory power of observables and unobservables over treatment assignment in terms such as correlation
or variance explained, e.g. “Following the approach suggested by Altonji, Elder, and Taber (2005) and
Oster (2017), we estimate that unobservable country-level characteristics would need to be 1.44 times more
correlated with treatment than observed covariates to fully explain the apparent impact of grammatical
gender on the level of female labor force participation; unobserved factors would need to be 3.23 times more
closely linked to treatment to explain the impact of grammatical gender on the gender gap in labor force
participation.” [84, p.4]
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parameter kD we introduce in our bounding procedure (Section 2.4.4) captures precisely this

notion of the relative explanatory power of the unobservable and observable over treatment

assignment, in terms of partial R2 or total R2, depending on the investigator’s preference.

Such parameterization choices are more than notional when they drive a wedge between

what investigators can argue about and the values of the parameters these arguments imply.

It is thus important that the sensitivity parameters used in these exercises be as transparent

as possible and match investigators’ conception of what the parameters imply. Hence, we

employ R2 based parameters, rather than t-values or quantities relating indices. The resulting

sensitivity parameters not only correspond more directly to what investigators can articulate

and reason about, but also lead to the rich set of sensitivity exercises we have discussed. Of

course, further improvements may be possible and future research should investigate whether

such flexibility can be achieved with yet more meaningful parameterizations.

The tools we propose here, like any other, have potential for abuse. We thus end with

important caveats, in particular emphasizing that sensitivity analysis should not be used for

automatic judgment, but as an instrument for disciplined arguments about confounding.

2.6.4 Sensitivity analysis as principled argument

Sensitivity analyses tell us what we would have to be prepared to believe in order to accept the

substantive claims initially made [121, 122, 123]. The sensitivity exercises proposed here tell

the researcher how strong unobserved confounding would have to be in order to meaningfully

change the treatment effect estimate beyond some level we are interested in, and employ

observed covariates to argue for bounds on unobserved confounding where possible. Whether

we can rule out the confounders shown to be problematic depends on expert judgment. As a

consequence, the research design, identification strategy as well as the story explaining the

quality of the covariates used for benchmarking all play vital roles.

For this reason, we do not propose any arbitrary thresholds for deeming sensitivity statistics,

such as the robustness value or the partial R2 of the treatment with the outcome, sufficiently

large to escape confounding concerns. In our view, no meaningful universal thresholds of
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the sort is possible to establish. In a poorly controlled regression on observational data,

with no clear understanding of what (unobservables) might influence treatment uptake, it

would be difficult to credibly claim that a robustness value of 15% is “good news”, since

the investigator does not have the necessary domain knowledge to rule out the strength of

unobserved confounders down to this level. On the other hand, in a quasi-experiment where

the researcher knows the treatment was assigned in such a way that observed covariates

account for almost any possible selection, a more credible case may be made that the types

of confounders that would substantially alter the research conclusions are unlikely.

Similarly, we strongly warn against blindly employing covariates for bounding the strength

of confounders, without the ability to argue that they are likely to be among the strongest

predictors of the outcome or treatment assignment. A particular moral hazard is that weak

covariates can make the apparent bounds look better. It is thus imperative for readers and

reviewers to demand that researchers properly justify and interpret their sensitivity results,

after which such claims can be properly debated. Sensitivity analysis is best suited as a

tool for disciplined quantitative arguments about confounding, not for obviating scientific

discussions by following automatic procedures.

This transition from a qualitative to a quantitative discussion about unobserved confound-

ing can often be enlightening. As put by [123, p. 171], it may “provide grounds for caution

that are not rooted in timidity, or grounds for boldness that are not rooted in arrogance.” A

sensitivity analysis raises the bar for the skeptic of a causal estimate—not just any criticism

is able to invalidate the research conclusions. The hypothesized unobserved confounder now

has to meet certain standards of strength; otherwise, it cannot logically account for all the

observed association. Likewise, it also raises the bar for defending a causal interpretation

of an estimate—proponents must articulate how confounders with certain strengths can be

ruled out.

A final point of concern is the potential misuse of sensitivity analysis in the gatekeeping

of publications. Sensitivity analysis should not be misappropriated as a tool for inhibiting

“imperfectly identified” research on relevant topics. Studies on important questions using
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state-of-the-art research design, which turn out to not be robust to reasonable sources of

confounding, should not be dismissed. On the contrary, with sensitivity analyses, we can

conduct imperfect investigations, while transparently revealing how susceptible our results

are to unobserved confounders. This gives future researchers a starting point and roadmap

for improving upon the robustness of these answers in their following inquiries.
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CHAPTER 3

An Omitted Variable Bias Framework for Sensitivity

Analysis of Instrumental Variables

3.1 Introduction

Unobserved confounding often complicates efforts to make causal claims from observational

data (109, 83, 123). Instrumental variable (IV) regression offers a powerful and widely used

tool to address unobserved confounding, by exploiting “exogenous” sources of variation of

the treatment [145, 19, 4, 6]; IV methods have also become a vital tool in the analysis of

randomized experiments with imperfect compliance [117, 12, 13, 4]. These qualities have

made instrumental variables “a central part of the econometrics canon since the first half of

the twentieth century” [82, p.324]. Beyond economics, instrumental variables are prominent

tools in the arsenal of investigators seeking to make causal claims across the social sciences,

epidemiology, medicine, genetics, and other fields (see e.g. 74, 46, 10, 22).

Yet, IV methods carry their own set of demanding assumptions. Principally, conditionally

on certain observed covariates, an instrumental variable must not itself be confounded

with the outcome, and it should influence the outcome only by influencing uptake of the

treatment. These assumptions can be violated by omitted confounders of the instrument-

outcome association, and by omitted “side-effects” of the instrument, which then influence the

outcome through channels other than through the treatment.1 Although in certain cases the

1In the recent IV literature, the first assumption is usually called exogeneity, ignorability, unconfoundedness
or independence of the instrument, whereas the second assumption is called the exclusion restriction
[6, 109, 83, 135]. In earlier econometric works, these two assumptions were often combined into one, also
labeled the “exclusion restriction” [82].
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IV assumptions may entail testable implications [107, 135, 87], they are often unverifiable and

must be defended by appealing to domain knowledge and theoretical arguments. Whether a

given IV study identifies the causal effect of interest, then, turns on debates as to whether

these assumptions hold.

Particularly in recent years, economists and other scholars have adopted a more skeptical

posture towards IV methods, emphasizing the importance of both defending the credibility

of these assumptions as well as assessing the consequences of its failures (see e.g., 45, 73).

For instance, recent extensive reviews of many instrumental variables widely-used in applied

work, such as weather, religion, sibling structure or ethnolinguistic fractionalization, have

cataloged several plausible violations of the exclusion restriction for such instruments [65, 99].

More worrisome, if the IV assumptions fail to hold, it is well known that the bias of the IV

estimate may be worse than the original confounding bias of the simple regression estimate

that the IV was supposed to address [18]. Therefore, researchers are also advised to perform

sensitivity analyses to assess the degree of violation of the IV assumptions that would be

required to alter the conclusions of an IV study. Although a variety of sensitivity methods

for IV have been proposed [49, 1, 129, 131, 41, 143, 85, 37], such sensitivity analyses are still

rare in practice.

In this chapter, we develop an omitted variable bias (OVB) framework for assessing

the sensitivity of IV estimates against violations of its underlying assumptions.2 Building

on the results of Chapter 2, we develop a suite of sensitivity analysis tools for IV that:

(i) has correct test size (or confidence interval coverage) regardless of instrument strength;

(ii) naturally handles violations due to multiple “side-effects” and “confounders;” (iii) exploits

2We focus on the “just-identified” case with one treatment and one instrument. One reason for our
focus is that a thorough consideration of the identification assumptions and how they may be violated is
already complicated enough with a single instrument [6]. Second, and relatedly, in most applied settings, the
single-instrument and single-treatment setup is the most common. For example, in a broad review of papers
in the American Economic Review and 15 other journals of the American Economic Association, Young
(2018) finds that 80% of IV regressions were of this type. Finally, in many “multiple instrument” studies, it is
not uncommon for researchers to also report and give special focus on the analysis of their “best” instrument
[6], or to combine multiple instruments into a single instrument, such as, for example, constructing an allele
score in Mendelian Randomization [22]. Extension of the tools we develop here to the scenario with multiple
instruments and treatments is object of future investigations.
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expert knowledge to bound sensitivity parameters; and, (iv) can be easily implemented with

standard software.

We first introduce two sensitivity statistics for IV estimates: (i) the robustness value

describes the minimum strength of association (in terms of partial R2) that omitted variables

(side-effects or confounders) need to have, both with the instrument and with the untreated

potential outcome, such that they are capable of changing the conclusions of the study; and

(ii) the extreme robustness value, which describes the minimal strength of association that

omitted variables need to have with the instrument alone (regardless of their association

with the untreated potential outcome) in order to be problematic. We propose the routine

reporting of those quantities to improve the transparency and facilitate the assessment of the

credibility of IV studies. Next, we offer intuitive graphical tools for investigators to assess how

postulated confounding of any degree would alter the IV hypothesis tests, as well as lower or

upper limits of confidence intervals. Finally, these tools can be supplemented with formal

bounds on the worst possible bias that side-effects or confounders could cause, under the

assumption that the maximum explanatory power of these omitted variables are no stronger

than a multiple of the explanatory power of one or more observed variables.

Conveniently, considering that investigators are already advised to carefully examine

their “first stage” (the effect of the instrument on the treatment) and “reduced form” (the

effect of the instrument on the outcome) (e.g. 5, 6), we show that many pivotal conclusions

regarding the sensitivity of the IV estimate can in fact be reached simply through separate

sensitivity analyses of these two familiar auxiliary OLS estimates. First, if researchers are

interested in the null hypothesis of zero effect, all the OVB tools developed developed in

Chapter 2 can simply be directly applied to the reduced-form regression, and confounders or

side-effects shown to be problematic there are equally problematic for IV. Second, if interest

lies in assessing not just the null of zero, but biases that bring the estimate partway to zero

or beyond it, then the robustness of the IV estimate formally reduces to the minimum of the

robustness of the reduced-form and the robustness of the first-stage regressions.

A final contribution of this chapter is that, while developing OVB tools for IV, we extended
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the previous OVB results for OLS providing a new way to perform sensitivity analysis that

simply replaces a conventional critical value (e.g. 1.96) with a novel “OVB-adjusted” critical

value that accounts for a postulated degree of omitted variable bias. These new critical values

depend only on the hypothetical partial R2 of the omitted variables with the dependent and

independent variables of the OLS regression. Researchers can thus easily perform sensitivity

analysis with any standard regression software by substituting traditional thresholds with

OVB-adjusted thresholds, when testing a particular null hypothesis, or when constructing

confidence intervals. We believe the extreme simplicity of implementing this approach will

further aid in the widespread adoption of sensitivity analysis in applied work.

In what follows, Section 3.2 introduces the running example and provides the essential

background on the main IV estimators, all of which depend upon OLS. Next, Section 3.3

refines and extends the OVB framework of Chapter 2, which not only improves the sensitivity

tools for OLS, but greatly simplifies the analysis for the IV setting. Section 3.4 then develops

an OVB framework for IV, first showing what can be gleaned from the first-stage and

reduced-form regressions alone, then establishing the necessary OVB-type results in the

Anderson-Rubin approach. Section 3.5 returns to our running example to show how these

results can can be deployed in practice. Finally, we offer concluding remarks in Section 3.6.

Open-source software for R and Stata implements the methods discussed in this chapter.3

3.2 Background

In this section we introduce the running example and use it to briefly review the required

background on instrumental variables and the main approaches to IV estimation.

3Sensitivity analysis of the reduced form, first stage, and Anderson-Rubin regression for a specific null
hypothesis can already be performed using the R and Stata package sensemakr [31]. Additional functionality,
such as contour plots with lower and upper limits of the Anderson-Rubin confidence interval, is forthcoming.

50



3.2.1 Running example: estimating the returns to schooling

Ordinary least squares and the OVB problem

Many observational studies have established a positive and large association between educa-

tional achievement and earnings using regression analysis [24]. Here we consider the work of

[23], which employed a sample of 3,010 individuals from the National Longitudinal Survey of

Young Men (NLSYM). Considering the following multivariate linear regression

Earnings = τ̂OLS,resEducation +Xβ̂OLS,res + ε̂OLS,res (3.1)

where Earnings measures the log transformed hourly wages of the individual,4 Education is

an integer-valued variable indicating the completed years of education of the individual and

the matrix X comprises race, experience, and a set of regional factors, Card concluded that

each additional year of schooling was associated with approximately 7.5% higher wages (i.e,

τ̂OLS,res ≈ 0.075) (see column “OLS” of Table 3.1).

Educational achievement, however, is not randomly assigned; perhaps individuals who

obtain more education have higher wages due to other reasons, such as coming from wealthier

families, or having higher levels of some unobserved characteristic, such as “ability” or

“motivation.” If data on these variables were available, then multivariate regression, further

adjusting for such variables, would be able to capture the causal effect of educational

attainment on schooling, as in

Earnings = τ̂OLSEducation +Xβ̂OLS +U γ̂OLS + ε̂OLS (3.2)

where U denotes a set of variables that, along with X, is sufficient to eliminate confounding

concerns. Such detailed information on individuals, however, is not available, and researchers

will not even agree upon which variables U are needed. In the absence of such variables,

4In this case, regression coefficients can be conveniently interpreted, approximately, as percent changes in
earnings.
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regression estimates that adjust for only a partial list of characteristics (such as X) may

suffer from “omitted variable bias” [6, 35] and are likely to overestimate the “true” returns to

schooling.

Dependent variable:

Education Earnings (log)

FS RF OLS IV

(1) (2) (3) (4)

Proximity 0.320∗∗∗ 0.042∗∗
(0.088) (0.018)

Education 0.075∗∗∗ 0.132∗∗
(0.003) (0.055)

Black −0.936∗∗∗ −0.270∗∗∗ −0.199∗∗∗ −0.147∗∗∗
(0.094) (0.019) (0.018) (0.054)

SMSA 0.402∗∗∗ 0.165∗∗∗ 0.136∗∗∗ 0.112∗∗∗
(0.105) (0.022) (0.020) (0.032)

Other covariates yes yes yes yes

Observations 3,010 3,010 3,010 3,010
R2 0.477 0.195 0.300 0.238

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3.1: Results of [23]. Columns show estimates and standard errors (in parenthesis) of
the First Stage (FS), Reduced Form (RF), Ordinary Least Squares (OLS) and Two-Stage
Least Squares (IV).

Instrumental variables as a solution to the OVB problem

Instrumental variable methods offer an alternative route to estimate the causal effect of

schooling on earnings without having data on the unobserved variables U . The key for such

methods to work is to find a new variable (the “instrument”) that changes the incentives to

educational achievement, but is associated with earnings only through its effect on education.
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To that end, [23] proposed exploiting the role of geographic differences in college accessi-

bility. In particular, consider the variable Proximity, encoding an indicator of whether the

individual grew up in an area with a nearby accredited 4-year college. Students who grow

up far from the nearest college may face higher educational costs, discouraging them from

pursuing higher level studies. Next, and most importantly, [23] argues that, conditional on

the set of observed variables X (available on the NLSYM), whether one lives near a college

is not itself confounded with earnings, nor does proximity to college affect earnings apart

from its effect on years of education.

If we believe such assumptions hold it is possible to recover a valid estimate of the (local)

average treatment effect of Education on Earnings by simply taking the ratio of two OLS

coefficients, one measuring the effect of Proximity on Earnings, and another measuring the

effect of Proximity on Education.5 More precisely, consider the two OLS models

Education = θ̂resProximity +Xψ̂res + ε̂d,res (3.3)

Earnings = λ̂resProximity +Xβ̂res + ε̂y,res (3.4)

Throughout the chapter we refer to these equations as the “first stage” (Equation 3.3) and

the “reduced form” (Equation 3.4), as these are now common usage [6, 7, 83, 3].6 The results

of both regressions are also shown in Table 3.1 (columns “FS” and “RF”).

The coefficient for Proximity on the first-stage regression, θ̂res ≈ 0.32, reveals that those

who grew up near a college indeed have higher educational attainment, having completed an

additional 0.32 years of education, on average. Likewise, the coefficient for Proximity on the

reduced-form regression, λ̂res ≈ 0.042, suggests that those who grew up near a college have

5This identification result requires further functional restrictions on the data-generating process, such as
linearity or monotonicity. Conditions that allow a causal interpretation of the IV estimand are extensively
discussed elsewhere, and will not be reviewed here. See [4], [6] and [82] for further discussion.

6Though now well established, these labels abuse the original meaning of the terminology, since both
regressions are in their “reduced form.” Equation 3.3 is called the “first stage” due to its operational role on
two-stage least squares estimation, as we see next. See also [82] and [3].
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4.2% higher earnings. The IV estimate is then given by the ratio of these two coefficients,

τ̂res :=
λ̂res

θ̂res
≈ 0.042

0.319
≈ 0.132 (3.5)

The value of τ̂res ≈ 0.132 suggests that, contrary to the OLS estimate of 7.5%, and perhaps

surprisingly, each additional year of schooling instead raises wages by much more—13.2%

(Table 3.1, column “IV”).

The IV estimate itself may suffer from OVB

The previous IV estimate relies on the assumption that, conditional on X, Proximity and

Earnings are unconfounded, and the effect of Proximity on Earnings must go entirely through

Education. As it is often the case, neither assumption is easy to defend in this setting.

First, some of the same factors that might confound the relationship between Education and

Earnings could similarly confound the relationship of Proximity and Earnings (e.g. family

wealth or family connections). Second, as argued in [23], the presence of a college nearby

may be associated with high school quality, which in its turn also affects earnings. Finally,

other geographic confounders can make some localities likely to both have colleges nearby

and lead to higher earnings. These are only coarsely conditioned on by the observed regional

indicators, and residual biases may still remain.

In sum, instead of adjusting only for X as in the previous Equations 3.4 and 3.3, we

should have adjusted for both the observed covariates X and unobserved covariates W as in

Education = θ̂Proximity +Xψ̂ +W δ̂ + ε̂d (3.6)

Earnings = λ̂Proximity +Xβ̂ +W γ̂ + ε̂y (3.7)

Where W stands for all unobserved factors necessary to make Proximity a valid instrument

for the effect of Education on Earnings (e.g, Family Wealth, High School Quality, Place of
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Residence, etc). The IV estimate we wished we had is then given by

τ̂ :=
λ̂

θ̂
(3.8)

Our previous estimate τ̂res deviates from the target estimate τ̂ , but how badly? How strong

would the omitted variables W have to be so that it would change our research conclusions?

To develop a precise algebraic answer to this question, we must first review the mechanics of

the main approaches to IV estimation.

3.2.2 The mechanics of IV estimation

Let the random variable Yi denote the outcome, Di the treatment, Zi the instrumental

variable, Xi = [Xi1, . . . ,Xip] a vector of p observed covariates, and Wi = [Wi1, . . . ,Wil] a

vector of l unobserved covariates for an individual. The target quantity of IV estimation

consists of a ratio of two population regression coefficients,

τ :=
λ

θ
(3.9)

where θ is the population regression coefficient of Zi on Di (the first stage) and λ the

population regression coefficient of Zi on Yi (the reduced form), both adjusting for Xi and

Wi. We call the ratio τ the IV estimand. Here we briefly review the commonly used

approaches to make inferences regarding this ratio.

3.2.2.1 Indirect Least Squares and Two-Stage Least Squares

Throughout the chapter we consider exact algebraic results that holds for sample estimates.

Denote by Y the (n × 1) vector of the outcome of interest with n observations; by D the

(n× 1) treatment vector; by Z the (n× 1) vector of the instrument; by X an (n× p) matrix

of observed covariates (including a constant), and by W an (n × l) matrix of unobserved

covariates.
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Indirect Least Squares. The first and perhaps most straightforward approach to instru-

mental variable estimation was outlined above: run two OLS models capturing the effect of

the instrument on the treatment (first stage) and the effect of the instrument on the outcome

(reduced form),

First stage: D = θ̂Z +Xψ̂ +W δ̂ + ε̂d (3.10)

Reduced form: Y = λ̂Z +Xβ̂ +W γ̂ + ε̂y (3.11)

Where θ̂, ψ̂ and δ̂ are the OLS estimates of the regression of D on Z, X and W , and ε̂d its

corresponding residuals; analogously, λ̂, β̂ and γ̂ are the OLS estimates of the regression of

Y on Z, X and W , and ε̂y its corresponding residuals. The estimator for τ is constructed

by simply using the plug-in principle and taking the ratio of λ̂ and θ̂

τ̂ILS :=
λ̂

θ̂
(3.12)

The ratio τ̂ILS may be called the indirect least squares (ILS) estimator, or the “ratio of

coefficients” estimator. Inference in the ILS framework can be performed using the delta-

method, resulting in the estimated variance

v̂ar(τ̂ILS) :=
1

θ̂2

(
v̂ar(λ̂) + τ̂ 2ILSv̂ar(θ̂)− 2τ̂ILSĉov(λ̂, θ̂)

)
(3.13)

Where v̂ar(λ̂), v̂ar(θ̂) and ĉov(λ̂, θ̂) are the usual OLS variance and covariance estimates (see

appendix).

Two-Stage Least Squares. A closely related approach for instrumental variable estimation

is denoted by “two-stage least squares” (2SLS). As its name suggests, this involves two nested

steps of OLS estimation: a first-stage regression given by Equation 3.10 to produce fitted

values for the treatment (D̂), then regressing the outcome on these fitted values,

Second stage: Y = τ̂2SLSD̂ +Xβ̂2SLS +W γ̂2SLS + ε̂2SLS (3.14)
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The 2SLS estimate corresponds to the coefficient τ̂2SLS in Equation 3.14, called the “second-

stage” regression. By the Frisch-Waugh-Lovell (FWL) theorem (63, 93, 94), one can readily

show that τ̂2SLS and τ̂ILS are numerically identical,

τ̂2SLS =
cov(Y ⊥X,W , D̂⊥X,W )

var(D̂⊥X,W )
=
θ̂ × cov(Y ⊥X,W , Z⊥X,W )

θ̂2 × var(Z⊥X,W )
=
λ̂

θ̂
(3.15)

Where Y ⊥X,W ,D̂⊥X,W and D⊥X,W denote the variables Y , D̂ and D after removing the

components linearly explained by X and W , and cov(·) and var(·) denote the sample

covariance and variance of those variables. As with ILS, inference in 2SLS is performed by

resorting to the asymptotic normality of the ratio, with estimated variance

v̂ar(τ̂2SLS) :=
var(Y ⊥X,W − τ̂2SLSD

⊥X,W )

var(D̂⊥X,W )
× df−1 (3.16)

Where df denotes the appropriate degrees of freedom. Using the FWL theorem one can

further show that v̂ar(τ̂2SLS) and v̂ar(τ̂ILS) are also numerically identical (see appendix).

3.2.2.2 Anderson-Rubin regression and Fieller’s theorem

The methods of ILS and 2SLS make use of a normal approximation to the sampling distribution

of the ratio λ̂/θ̂, which may prove unreliable when θ is “close” to zero, relative to the sampling

variability of θ̂—this is known as the “weak instrument” problem. Two alternatives that allow

constructing confidence intervals with correct coverage, regardless of the “strength” of the

first stage, are the proposals of [2] and [52] (e.g. see 3).

Anderson-Rubin. The Anderson-Rubin approach starts by creating the random variable

Yτ0 := Y − τ0D in which we subtract from Y a “putative” causal effect of D, namely, τ0. If Z

is a valid instrument, under the null hypothesis H0 : τ = τ0, we should not see an association

between Yτ0 and Z, conditional on X and W . In other words, if we run the OLS model

Anderson-Rubin: Yτ0 = φ̂τ0Z +Xβ̂τ0 +W γ̂τ0 + ε̂τ0 (3.17)
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we should find that φ̂τ0 is equal to zero, but for sampling variation. To test the null hypothesis

H0 : φτ0 = 0 in the Anderson-Rubin regression is thus equivalent to test the null hypothesis

H0 : τ = τ0. The 1− α confidence interval is constructed by collecting all values τ0 such that

the null hypothesis H0 : φτ0 = 0 is not rejected at the chosen significance level α:

CI1−α(τ) := {τ0; t2φ̂τ0 ≤ t∗2α,df} (3.18)

Where tφ̂τ0 is the t-value of the coefficient φ̂τ0 , and t∗α,df the usual α level critical threshold

for the t statistic, with the appropriate degrees of freedom. It is also convenient to define the

point estimate τ̂AR as the value τ0 which makes φ̂τ0 exactly equal to zero

τ̂AR := {τ0; φ̂τ0 = 0} (3.19)

By the FWL theorem, we can write φ̂τ0 as a linear combination of λ̂ and θ̂,

φ̂τ0 =
cov(Y ⊥X,W − τ0D⊥X,W , Z⊥X,W )

var(Z⊥X,W )
= λ̂− τ0θ̂ (3.20)

Thus resulting in τ̂AR = λ̂

θ̂
, a point estimate numerically identical to the previous estimators.

Fieller’s theorem. The connection between Fieller’s theorem and the Anderson-Rubin

approach follows from Equation 3.20. The central test statistic of Fieller’s theorem is precisely

the linear combination φ̂τ0 = λ̂− τ0θ̂. Under the null hypothesis H0 : τ = τ0, if the estimators

λ̂ and θ̂ are asymptotically normal, it follows that φ̂τ0 is also asymptotically normal with

mean zero, and estimated variance

v̂ar(φ̂τ0) := v̂ar(λ̂) + τ 20 v̂ar(θ̂)− 2τ0ĉov(λ̂, θ̂) (3.21)

Confidence intervals are then constructed exactly as in Equation 3.18, and the two approaches

are numerically identical.
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3.2.3 Problem statement

As we have seen, all main approaches for IV estimation result in the same point estimate—the

ratio of the reduced-form and first-stage regression coefficients. They differ only in how to

perform inference, with ILS/2SLS resorting to the asymptotic normality of the ratio estimator,

and the Anderson-Rubin/Fieller approach inverting the test of the linear combination of both

coefficients.

Restricted IV regressions Full IV regressions
First stage D = θ̂resZ +Xψ̂res + ε̂d,res D = θ̂Z +Xψ̂ +W δ̂ + ε̂d

Reduced form Y = λ̂resZ +Xβ̂res + ε̂y,res Y = λ̂Z +Xβ̂ +W γ̂ + ε̂y

Anderson-Rubin Yτ0 = φ̂τ0,resZ +Xβ̂τ0,res + ε̂τ0,res Yτ0 = φ̂τ0Z +Xβ̂τ0 +W γ̂τ0 + ε̂τ0

Table 3.2: The omitted variable bias problem for instrumental variable regressions.

The regression equations discussed in Section 3.2.2, summarized in the third column of

Table 3.2, stand for the IV regressions our analyst wished she had run, adjusting for both

X and W . However, since W is unobserved, the investigator is forced to run instead the

restricted models in the second column of Table 3.2. Our task is thus to characterize how

point estimates and confidence intervals for the IV estimate, given by these regressions, would

have changed due to the inclusion of W . Since, at their core, all these IV approaches rely

on OLS estimation, we should be able to leverage all OVB tools for OLS for examining the

sensitivity of IV.

A note on identification with instrumental variables

Before proceeding, it is worth making a brief note on the identification of causal effects using

instrumental variables. There are many different sets of assumptions that allow different causal

interpretations of the IV estimand given by Equation 3.9 [4, 20, 109, 135]. The causal diagram

of Figure 3.1 shows some of the most used “canonical” models illustrating the main traditional

assumptions of IV. Equivalent assumptions can be articulated in the potential outcomes

framework [109, 135]. Beyond those assumptions of exclusion and independence restrictions,

59



Z D Y

X

(a)

Z D

W

Y

X

(b)

Z D

W

Y

X

(c)

Figure 3.1: Causal diagrams illustrating the traditional IV assumptions. In Figure 3.1a,
X is sufficient for rendering Z a valid instrumental variable. In Figures 3.1b and 3.1c,
however, W is also needed to render Z a valid IV (in Figure 3.1b W is a confounder of the
instrument-outcome relationship, whereas in Figure 3.1c W is a side-effect of the instrument).
Graphically, conditional on a set of covariates {X,W}, a variable Z is a valid instrument for
the causal effect of a treatment D on an outcome Y , if the set {X,W} blocks all paths from
Z to Y on the graph where the edge D → Y is removed [20].

some functional constraint is also needed for point-identification. For instance, under certain

assumptions of effect homogeneity (e.g., linearity), the IV estimand can be interpreted as

the average treatment effect; another widely used example is the binary setting with the

assumption of monotonicity, in which case the IV estimand can be interpreted as a local

average treatment effect [4, 6, 135]. Here we do not commit to a specific causal interpretation,

and simply assume the researcher is interested in the IV estimand of Equation 3.9, adjusting

for both X and W . All sensitivity results we present here are thus valid for any set of IV

assumptions, so long as the resulting estimand is still given by Equation 3.9.

3.3 Omitted variable bias with the partial R2 parameterization

In this section, we extend the results of Chapter 2 regarding the partial R2 parameterization

of the OVB formula for OLS. In particular, we introduce the notion of OVB-adjusted critical

values, and show how sensitivity analysis can be performed by simply substituting traditional

critical values with the adjusted ones. We also introduce the idea of a set of compatible

inferences given bounds on the strength of confounding, and formalize sensitivity statistics

for routine reporting as answering an inverse question regarding those sets. These extensions

are not only useful for the sensitivity of OLS estimates themselves, but will greatly simplify

the generalization of these results to the IV setting in Section 3.4. To fix ideas, here we
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discuss the OVB framework in the context of the reduced-form regression coefficient, but the

reader should have in mind that all results presented here are algebraic, and hold for any

OLS estimate.

3.3.1 Sensitivity in an omitted variable bias framework

The OVB framework starts with a target coefficient obtained from a full regression equation

that the analyst wished she could have estimated (such as those in the third column of

Table 3.2). For concreteness, suppose we are interested in the coefficient λ̂ of the regression

equation of the outcome Y on the instrument Z, adjusting for a set of observed covariates X

and a single unobserved covariate W (we generalize to multivariate W below),

Y = λ̂Z +Xβ̂ + γ̂W + ε̂y (3.22)

However, when W is unobserved, estimating the full regression equation is infeasible. Instead,

the investigator is forced to estimate the restricted model given by

Y = λ̂resZ +Xβ̂res + ε̂y,res (3.23)

Where λ̂res and β̂res are the coefficients of the restricted OLS adjusting for Z andX alone, and

ε̂y,res its corresponding residual. The OVB framework seeks to answer the following question:

how do the inferences for λres from the restricted OLS model (omitting W ), compare with

the inferences for λ from the full OLS model (adjusting for W )?

3.3.1.1 Adjusted estimates and standard errors

Let R2
Y∼W |Z,X denote the partial R2 of W with Y , after controlling for Z and X, and let

R2
Z∼W |X denote the partial R2 of W with Z after adjusting for X. Given the estimates of

the restricted model, λ̂res and ŝe(λ̂res), the values R2
Y∼W |Z,X and R2

Z∼W |X are sufficient to

recover λ̂ and ŝe(λ̂) as we have seen in Chapter 2. More precisely, define b̂ias(λ) := λ̂res − λ̂
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as the difference between the restricted estimate and the full estimate. We then have,

|b̂ias(λ)| =

√√√√R2
Y∼W |Z,XR

2
Z∼W |X

1−R2
Z∼W |X

df × ŝe(λ̂res) = BF
√

df × ŝe(λ̂res) (3.24)

Where hereafter df = n − p − 1 stands for the degrees of freedom of the restricted model

actually run. For notational convenience, and to aid interpretation, we define the term

BF :=

√√√√R2
Y∼W |Z,XR

2
Z∼W |X

1−R2
Z∼W |X

(3.25)

as the “bias factor” of W , which is the part of the bias solely determined by R2
Y∼W |Z,X and

R2
Z∼W |X . Likewise, the standard error of the full model can be recovered with

ŝe(λ̂) =

√√√√1−R2
Y∼W |Z,X

1−R2
Z∼W |X

(
df

df −1

)
× ŝe(λ̂res) = SEF

√
df /(df −1)× ŝe(λ̂res) (3.26)

Where again, for convenience, we define

SEF :=

√√√√1−R2
Y∼W |Z,X

1−R2
Z∼W |X

(3.27)

as the “standard error factor” of W , summarizing the factor of the adjusted standard error

which is solely determined by the sensitivity parameters R2
Y∼W |Z,X and R2

Z∼W |X . Note again

that SEF consists of the square-root of the product of the familiar “variance inflation factor,”

1/
(

1−R2
Z∼W |X

)
and what could be labeled the “variance reduction factor,” 1−R2

Y∼W |Z,X ,

as discussed in Section 2.4.2. As we have seen, although simple, Equations 3.24 and 3.26

form the basis of a rich set of sensitivity exercises regarding point estimates, standard errors

and t-values in terms of sensitivity parameters R2
Y∼W |Z,X and R2

Z∼W |X .

Multiple unobserved variables. For simplicity of exposition, throughout the chapter

we usually refer to a single omitted variable W . These results, however, can be used for
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performing sensitivity analyses considering multiple omitted variablesW = [W1,W2, . . . ,Wn],

and thus also non-linearities and functional form misspecification of observed variables. In

such cases, barring an adjustment in the degrees of freedom, the equations are conservative,

and reveal the maximum bias a multivariate W with such pair of partial R2 values could

cause, as discussed in Section 2.4.5.

3.3.1.2 Adjusted lower and upper limits of confidence intervals

We now closely examine how the confidence interval of a regression coefficient changes due to

the inclusion of W . Traditional confidence intervals account for sampling uncertainty, and are

constructed by multiplying the standard error of the coefficient by a critical value (for example,

in large samples, 1.96 for a 95% confidence level). We show that replacing this traditional

critical value with an OVB-adjusted critical value, which we introduce here, accounts for both

sampling uncertainty and systematic biases due to the omission of W . Although simple, this

perspective will prove useful for deriving and understanding OVB-type results for OLS in

general, and for instrumental variables in particular, such as in the Anderson-Rubin approach

of Section 3.4.

Specifically, let t∗α,df −1 denote the critical value for a standard t-test with significance level

α and df −1 degrees of freedom. Now let LL1−α(λ) be the lower limit and UL1−α(λ) be the

upper limit of a 1− α confidence interval for λ in the full model, i.e.,

LL1−α(λ) := λ̂− t∗α,df −1 × ŝe(λ̂), UL1−α(λ) := λ̂+ t∗α,df −1 × ŝe(λ̂), (3.28)

Considering the direction of the bias that further reduces the lower limit, or, alternatively, a

direction that further increases the upper limit, Equations 3.24 and 3.26 imply that both

quantities can be written as a function of the restricted estimates and a new multiplier (see

appendix)

LL1−α(λ) = λ̂res − t†α,df −1,R2 × ŝe(λ̂res), UL1−α(λ) = λ̂res + t†α,df −1,R2 × ŝe(λ̂res) (3.29)
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where t†α,df −1,R2 stands for the OVB-adjusted critical value

t†α,df −1,R2 := SEF
√

df /(df −1)× t∗α,df −1 + BF
√

df. (3.30)

The subscript R2 = {R2
Y∼W |Z,X , R

2
Z∼W |X} conveys the fact that t†α,df −1,R2 depends on both

sensitivity parameters. The adjusted critical value t†α,df −1,R2 uniquely determines the extreme

points of the confidence interval for λ that one could obtain after adjusting for an omitted

variable W with a given pair of partial R2. Equivalently, given any hypothetical strength of

W , to test the general null hypothesis of a change of (100 × q∗)% of the current estimate

λ̂res at the α level, it suffices to rescale the original t-value by q∗ and compare this to the

adjusted critical threshold t†α,df −1,R2 .7

3.3.1.3 Compatible inferences given bounds on partial R2

Given hypothetical values for R2
Y∼W |Z,X and R2

Z∼W |X , the previous results allow us to

determine the exact changes in inference regarding a parameter of interest due to the

inclusion of W with such strength. Often, however, the analyst does not know the exact

strength of omitted variables, and wishes to investigate the worst possible inferences that

could be induced by a W with bounded strength, for instance, R2
Y∼W |Z,X ≤ R2max

Y∼W |Z,X and

R2
Z∼W |X ≤ R2max

Z∼W |X . That is, we wish to find the maximum adjusted critical value due to

an omitted variable W with at most such strength. Writing t†α,df −1,R2 as a function of the

sensitivity parameters R2
Y∼W |Z,X and R2

Z∼W |X , we solve the maximization problem

max
R2
Y∼W |Z,X ,R2

Z∼W |X

t†α,df −1,R2 s.t. R2
Y∼W |Z,X ≤ R2max

Y∼W |Z,X , R2
Z∼W |X ≤ R2max

Z∼W |X (3.31)

7For a numerical example of an adjusted critical value, consider a case with 100 degrees of freedom and a
significance level of α = 5%. The traditional critical value, assuming no omitted variables, is t∗.05,100 ≈ 1.98.
If we now allow for an omitted variable with strength given by R2

Y∼W |Z,X = R2
Z∼W |X = .1, this leads to

an increased OVB-adjusted critical value of t†.05,100,.1,.1 ≈ 3.05. Further note t†α,df −1,R2 increases the larger
the sample size—for instance, if the degrees of freedom were instead 1,000, the adjusted critical value would
increase to approximately 5.30.
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Note that, although this maximum is often reached at the extrema of both coordinates,

this is not always the case. Due to the variance reduction factor, increasing R2
Y∼W |Z,X

may reduce the standard error more than enough to compensate for the increase in bias,

resulting in tighter confidence intervals. Denoting the solution to the optimization problem

in expression (3.31) as t†max
α,df −1,R2 , the most extreme possible lower and upper limits after

adjusting for W are given by

LLmax
1−α,R2(λ) = λ̂res − t†max

α,df −1,R2 × ŝe(λ̂res), ULmax
1−α,R2 = λ̂res + t†max

α,df −1,R2 × ŝe(λ̂res) (3.32)

The interval composed of such limits,

CImax
1−α,R2(λ) =

[
LLmax

1−α,R2(λ), ULmax
1−α,R2(λ)

]
(3.33)

retrieves all inferences for λ which are compatible with an omitted variable with such

strengths. In other words, without imposing further constraints on W , for any value λ0 inside

CImax
1−α,R2(λ), we can find a W such that R2

Y∼W |Z,X ≤ R2max
Y∼W |Z,X and R2

Z∼W |X ≤ R2max
Z∼W |X

and the confidence interval for λ after adjusting for W includes λ0. Moreover, if the true

partial R2 of W lies within the posited bounds, then CImax
1−α,R2(λ) is the union of all confidence

intervals that would be obtained by including an omitted variable with that strength or less,

and thus constitutes itself a confidence interval with at least 1 − α coverage (provided, of

course, our “target” confidence interval adjusting for W has nominal coverage).

3.3.2 Sensitivity statistics for routine reporting

Widespread adoption of sensitivity analysis benefits from simple and interpretable statistics

that quickly convey the overall robustness of an estimate. To that end, in Chapter 2 we

proposed two sensitivity statistics for routine reporting: (i) the partial R2 of Z with Y ,

R2
Y∼Z|X ; and, (ii) the robustness value (RV). Here we generalize the notion of a partial R2

as a measure of robustness to extreme scenarios, by introducing the extreme robustness

value (XRV), for which the partial R2 is a special case. We also recast these sensitivity
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statistics as a solution to an “inverse” question regarding the interval of compatible inferences,

CImax
1−α,R2(λ)—that is, given a threshold of inference for λ deemed to be of scientific importance

(say, zero), what is the minimum strength of the sensitivity parameters R2 that could lead

CImax
1−α,R2(λ) to include such threshold? This framework facilitates extending these metrics to

other contexts, in particular to the IV setting, as we show in Section 3.4.2.3.

3.3.2.1 The extreme robustness value

One benefit of the partial R2 parameterization is that the parameter R2
Y∼W |Z,X can be left

completely unconstrained; i.e, in the optimization problem of expression 3.31, one can set

the bound for R2
Y∼W |Z,X to its trivial bound of 1, and this still results in non-trivial bounds

on the set of possible inferences. This leads to our first inverse question: what is the bare

minimum strength of association of the omitted variable W with Z that could bring its

estimated coefficient to a region where it is no longer statistically different than zero (or

another threshold of interest)?

To answer this question, we can see CImax
1−α,R2(λ) as a function of the bound R2max

Z∼W |X

alone, obtained from maximizing the adjusted critical value in expression 3.31 where: (i)

the parameter R2
Y∼W |Z,X is left completely unconstrained (i.e, R2

Y∼W |Z,X ≤ 1); and, (ii) the

parameter R2
Z∼W |X is bounded by XRV (i.e, R2max

Z∼W |X ≤ XRV). The Extreme Robustness

Value XRVq∗,α(λ) is defined as the greatest lower bound XRV such that the null hypothesis

that a change of (100× q∗)% of the original estimate, H0 : λ = (1− q∗)λ̂res, is not rejected at

the α level,

XRVq∗,α(λ) := inf
{

XRV; (1− q∗)λ̂res ∈ CImax
1−α,1,XRV(λ)

}
(3.34)
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The solution to this problem gives,

XRVq∗,α(λ) =


0, if fq∗(λ) ≤ f ∗α,df−1

f 2
q∗(λ)− f ∗2α,df−1

1 + f 2
q∗(λ)

, otherwise.

(3.35)

Where fq∗(λ) := q∗|fY∼Z|X | (here fY∼Z|X stands for the partial Cohen’s f and we define

the critical threshold f ∗α,df −1 := t∗α,df −1/
√

df −1).8 Note XRVq∗,α(λ) can be interpreted as an

“adjusted partial R2” of Z with Y . To see why, let us first consider the case of the minimal

strength to bring the point estimate (α = 1) to exactly zero (q∗ = 1). We then have that

f ∗α=1,df −1 = 0 and f 2
q∗=1(λ) = f 2

Y∼Z|X , resulting in

XRVq∗=1,α=1(λ) =
f 2
Y∼Z|X

1 + f 2
Y∼Z|X

= R2
Y∼Z|X (3.36)

This recovers the result of Section 2.4.3, and shows that, for an omitted variable W to bring

down the estimated coefficient to zero, it needs to explain at least as much residual variation

of Z, as Z explains of Y . For the general case, we simply perform two adjustments that

dampens the “raw” partial R2 of Z with Y . First we adjust it by the proportion of reduction

deemed to be problematic q∗ through fq∗ = q∗|fY∼Z|X |; next, we subtract the threshold for

which statistical significance is lost at the α level (via f ∗2α,df−1).

The extreme robustness value establishes thus the equivalent of a “Cornfield condition” [42]

for OLS estimates, and delineates the bare minimum strength of omitted variables necessary

to overturn a certain conclusion—if W cannot explain at least XRVq∗,α(λ) of the residual

variation of Z, then such variable is not strong enough to bring about a change of (100× q∗)%

on the original estimate, at the significance level of α, regardless of its association with Y .

8Cohen’s f2 can be written as f2 = R2/(1−R2).
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3.3.2.2 The robustness value

Placing no constraints on the association of the omitted variable W with Y may be too

conservative an exercise. An alternative measure of robustness of the OLS estimate is to

consider the minimal strength of association that the omitted variable needs to have, both

with Z and Y , so that a 1− α confidence interval for λ will include a change of (100× q∗)%

of the current restricted estimate.

Write CImax
1−α,R2(λ) as a function of both bounds varying simultaneously, that is, con-

struct CImax
1−α,RV,RV(λ) by maximizing the adjusted critical value with bounds given by

R2
Y∼W |Z,X ≤ RV and R2

Z∼W |X ≤ RV. The Robustness Value RVq∗,α(λ) for not reject-

ing the null hypothesis that H0 : λ = (1 − q∗)λ̂res, at the significance level α, is defined

as

RVq∗,α(λ) := inf
{

RV; (1− q∗)λ̂res ∈ CImax
1−α,RV,RV(λ)

}
(3.37)

We then have that,

RVq∗,α(λ) =



0, if fq∗(λ) ≤ f ∗α,df−1

1

2

(√
f 4
q∗,α(λ) + 4f 2

q∗,α(λ)− f 2
q∗,α(λ)

)
, if f ∗α,df−1 < fq∗(λ) < f ∗−1α,df−1

XRVq∗,α(λ), otherwise.

(3.38)

Where fq∗,α(λ) := q∗|fY∼Z|X | − f ∗α,df −1. In the appendix we show the conditions of Equa-

tion 3.38 are equivalent to those we had previously derived, with the advantage of being simpler

to verify. The first case occurs when the confidence interval already includes (1− q∗)λ̂res or

the mere change of one degree of freedom achieves this. The second case occurs when both

associations of W reach the bound. Finally, in the last case the solution is an interior point—

this happens when the bound is large enough such that the constraint on the association

with the outcome is not binding; in this case the RV reduces to the XRV.
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The robustness value offers a simple interpretable measure that summarizes the strength

of omitted variables necessary to change the estimate in problematic ways. If W explains

RVq∗,α(λ) of the residual variance of both Z and Y , then such variable is sufficiently strong

to bring about a (100× q)% change in the estimate at the significance level of α, while any

omitted variable that does not explain RVq∗,α(λ) of the residual variance, neither of Z nor of

Y , is not sufficiently strong to do so.

A visual depiction of the RV and XRV

Visually depicting the RV and the XRV in a sensitivity contour plot may be helpful. Consider

Figure 3.2. The horizontal axis describes R2
Z∼W |X and the vertical axis describes R2

Y∼W |Z,X .

The contour lines show the adjusted t-value for testing the null hypothesis of zero effect for

the reduced form regression (of Table 3.1), had we adjusted for W with such hypothetical

strength (considering that adjustment reduces the t-value). The red dashed line shows a

critical contour of interest, such as statistical significance at the α = 0.05 level. The RV

(when both values reach their bounds) summarizes the point of equal values on both axis of

the critical contour, whereas the XRV summarizes the vertical line tangent to the critical

contour, which will never be crossed.
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Figure 3.2: Sensitivity contours of the reduced form of [23] depicting the RV and the XRV.
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3.3.3 Bounding the strength of the omitted variable using observed covariates

One further result is required before turning to the sensitivity of IV estimates. Let Xj be a

specific covariate of the set X, and define

kZ :=
R2
Z∼W |X−j

R2
Z∼Xj |X−j

, kY :=
R2
Y∼W |Z,X−j

R2
Y∼Xj |ZX−j

. (3.39)

where X−j represents the vector of covariates X excluding Xj. These new parameters, kZ

and kY , stand for how much “stronger” W is relatively to the observed covariate Xj in terms

of residual variation explained of Z and Y . Our goal in this section is to re-express (or

bound) the sensitivity parameters R2
Z∼W |X and R2

Y∼W |Z,X in terms of the relative strength

parameters kZ and kY .

We start by restating the bounds derived in Section 2.4.4. These are particularly useful

when contemplating Xj and W both confounders of Z (violations of the ignorability of

the instrument). Let R2
W∼Xj |X−j = 0 (or, equivalently, consider the part of W not linearly

explained by X). Then the previous sensitivity parameters can be written as

R2
Z∼W |X = kZf

2
Z∼Xj |X−j , R2

Y∼W |Z,X ≤ η2f 2
Y∼Xj |Z,X−j (3.40)

where η is a function of both parameters kY , kZ and R2
Z∼Xj |X−j .

In the instrumental variable setting, however, W and Xj may be side-effects of Z, instead

of causes of Z (violations of the exclusion restriction). In such cases, reasoning about the

orthogonality of X and W may not be natural, as the instrument itself is a source of

dependence between these variables. Therefore, here we additionally provide bounds under

the alternative condition R2
W∼Xj |Z,X−j = 0. We then have that

R2
Z∼W |X = η′f 2

Z∼Xj |X−j , R2
Y∼W |Z,X ≤ kY f

2
Y∼Xj |Z,X−j (3.41)

where η′ is a function of kZ and R2
Z∼Xj |X−j (see appendix for details).
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These results allow investigators to leverage knowledge of relative importance of variables

[88] when making plausibility judgments regarding sensitivity parameters. For instance, if

researchers have domain knowledge to argue that a certain observed covariate Xj is supposed

to be a strong determinant of the instrument and the outcome variation, and that the omitted

variable W is not likely to explain as much residual variance of Z and Y as that observed

covariate, such results can be used to set plausible bounds on the maximum bias due to the

omission of W .

3.4 An omitted variable bias framework for the sensitivity of IV

Having established the tools for analyzing the sensitivity of conventional OLS estimates,

we are now in a position to develop a suite of sensitivity analysis tools for instrumental

variable analyses. As explained, an OVB-approach to sensitivity begins by assuming that

the researcher measured and included observed covariates X, but would also have liked

to adjust for W in order for the IV conditions to hold. In this section, we first show how

separate sensitivity analysis of the reduced form and first stage is already sufficient to draw

valuable conclusions regarding the sensitivity of IV. We then construct a complete OVB

framework for sensitivity analysis of IV within the Anderson-Rubin approach, allowing one

to investigate the sensitivity of tests to a specific null hypothesis, the sensitivity of lower and

upper limits of confidence intervals, to define and compute sensitivity statistics for routine

reporting for IV, such as (extreme) robustness values, as well as providing bounds on the

sensitivity parameters, on the basis of comparison to observed covariates.

3.4.1 Sensitivity analysis of the reduced form and of the first stage

The recent literature on instrumental variables places strong emphasis on the first-stage and

the reduced-form estimates. Not only are the first stage and reduced form often substantively

meaningful on their own, but their critical examination plays an important role for motivating

the causal story behind a particular instrumental variable. For example, in the “local average
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treatment effect” interpretation of the IV estimand, both the first stage and the reduced form

must be unconfounded so that the resulting estimate can be interpreted as the average causal

effect among compliers [4]. Therefore, beyond a means to the final IV estimate, researchers

are advised to report and to interpret the first stage and the reduced form by, for example,

assessing whether those results are in accordance to the postulated mechanisms that justify

the choice of instrument [5, 6, 82, 7, 83]. While investigating these separate regressions,

researchers can deploy all sensitivity analysis results discussed in the previous section.

Fortunately, such sensitivity analyses also provide answers to many pivotal sensitivity

questions regarding the IV estimate itself. In particular, if the investigator is interested in

assessing the strength of confounders or side-effects needed to bring the IV point estimate to

zero, or to not reject the null hypothesis of zero effect, the results of the sensitivity analysis

of the reduced form is all that is needed. If interest lies in also determining whether the IV

estimate could be arbitrarily large in either direction, then the sensitivity of the first stage

must also be assessed, as omitted variables capable of changing the direction of the first stage

can lead to unbounded IV estimates. We now give a more precise meaning to these claims.

3.4.1.1 What the reduced form and first stage reveal about the IV point esti-

mate

First let us consider the sensitivity of the point estimate. Recall that all estimators under

consideration are algebraically equivalent, and are equal to the ratio of the reduced-form and

the first-stage coefficients,

τ̂ := τ̂ILS = τ̂2SLS = τ̂AR =
λ̂

θ̂
(3.42)

This simple algebraic fact allows us to draw two important conclusions regarding the sensitivity

of τ̂ from the sensitivity of λ̂ and θ̂ alone.

First, residual biases can bring the IV point estimate to zero if, and only if, they can

bring the reduced-form point estimate to zero. Therefore, if sensitivity analysis of the reduced
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form reveals that omitted variables are not strong enough to explain away λ̂, then they also

cannot explain away the IV point estimate τ̂ . Or, more worrisome, if analysis reveals that it

takes weak confounding or side-effects to explain away λ̂, the same holds for the IV estimate

τ̂ . In sum, for all IV estimators considered here, to assess the strength of biases needed to

bring the IV point estimate to zero, one needs only to perform a sensitivity analysis on the

reduced-form regression coefficient.

Second, if we cannot rule out confounders or side-effects that are sufficiently strong to

change the sign of the first-stage point estimate θ̂, then we also cannot rule out that the IV

point estimate τ̂ could be arbitrarily large in either direction, even if not exactly equal to

zero. This can be immediately seen by letting θ̂ approach zero on either side of the limit.

Thus, whenever we are interested in biases as large or larger than a certain amount, the

robustness of the first stage to the zero null puts an upper bound on the robustness of the IV

point estimate.

3.4.1.2 What the reduced form and first stage reveal about IV hypothesis tests

Contrary to the point estimate, the different approaches presented here may lead to different

conclusions regarding how omitted variables would have changed inferences. Let us start

by examining the Anderson-Rubin/Fieller approach, as not only it has nominal coverage

regardless of instrument strength, but its conclusions match the intuition of current guidelines

when assessing the first-stage and reduced-form estimates [5, 6, 7].

Consider again the IV estimand

τ =
λ

θ

Note that the same arguments we used before for the estimator hold for the estimand.

Logically, provided the ratio is well defined (θ 6= 0), we have that τ = 0 ⇐⇒ λ = 0.

Therefore, a test of the null hypothesis H0 : λ = 0 in the reduced-form regression is logically

equivalent to a test of the null hypothesis H0 : τ = 0 for the IV estimand. Similarly, for

a fixed λ, if we cannot rule out that θ is arbitrarily close to zero in either direction, then,
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logically, we also cannot rule out that τ is arbitrarily large in either direction—a test for the

null hypothesis H0 : θ = 0 is thus logically equivalent to testing whether arbitrarily large sizes

for τ can be ruled out.

The Anderson-Rubin/Fieller approach is coherent with respect to these logical implications.

Recall the Anderson-Rubin test for the null hypothesis H0 : τ = τ0 is based on the test of

H0 : φτ0 = 0. By the FWL theorem, the point estimate and (estimated) standard error for

φ̂τ0 are given by

φ̂τ0 =
cov(Y ⊥X,W

τ0
, Z⊥X,W )

var(Z⊥X,W )
, ŝe(φ̂τ0) =

sd(Y ⊥Z,X,W
τ0

)

sd(Z⊥X,W )

√
1

df −1
(3.43)

Which can be expressed in terms of the first-stage and reduced-form estimates (see appendix)

φ̂τ0 = λ̂− τ0θ̂, ŝe(φ̂τ0) =

√
v̂ar(λ̂) + τ 20 v̂ar(θ̂)− 2τ0ĉov(λ̂, θ̂) (3.44)

Testing H0 : φτ0 = 0 requires comparing the t-value for φ̂τ0 with a critical threshold t∗α,df −1,

and the null hypothesis is not rejected if |tφ̂τ0 | ≤ t∗α,df −1. Squaring and rearranging terms we

obtain the quadratic inequality which must hold for non-rejection:

(
θ̂2 − v̂ar(θ̂)× t∗2α,df −1

)
︸ ︷︷ ︸

a

τ 20 + 2
(
ĉov(λ̂, θ̂)× t∗2α,df −1 − λ̂θ̂

)
︸ ︷︷ ︸

b

τ0 +
(
λ̂2 − v̂ar(λ̂)× t∗2α,df −1

)
︸ ︷︷ ︸

c

≤ 0

(3.45)

When considering the null hypothesis H0 : τ0 = 0, only the term c remains, and c is less or

equal to zero if, and only if, one cannot reject the null hypothesis H0 : λ = 0 in the reduced-

form regression. The Anderson-Rubin approach thus comports with the recommendation of

[5] that “if you can’t see the causal relation of interest in the reduced form, it’s probably not

there.” Also note that arbitrarily large values for τ0 will satisfy the inequality in Equation 3.45

if, and only if, a < 0, meaning that we cannot reject the null hypothesis H0 : θ = 0 in the

first-stage regression. This supports the recommendation that, if one is unsure about the

direction of the first stage, it is likely that very little can be said about the magnitude of the
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IV estimate.

Within the Anderson-Rubin framework, we thus reach analogous conclusions regarding

hypothesis testing as those regarding the point estimate: (i) when interest lies in the zero null

hypothesis, the sensitivity of the reduced form is exactly the sensitivity of the IV—no other

analyses are needed. Confounders or side-effects sufficiently strong to bring the reduced form

to a region where it is not statistically different than zero can also bring the IV estimate to a

region where it is not statistically different than zero, and only omitted variables with such

strength are capable of doing so; and, (ii) if one is interested in biases of a certain amount,

or larger, then the sensitivity of the first stage to the zero null hypothesis needs also to be

assessed. Specifically, for any null hypothesis of interest H0 : τ = τ0, omitted variables that

are strong enough to make the first stage not statistically different from zero may also lead

us to not reject values arbitrarily “worse” than τ0.9

As is well known, it is not uncommon for frequentist statistical tests to lead to logically

incoherent decisions [64, 126, 105, 56]. While inferences made in the Anderson-Rubin approach

have the expected behavior in this setting, inferences using ILS or 2SLS, however, do not

necessarily comply with these logical expectations. Cases can be found for ILS and 2SLS

where, for instance, one fails to reject the null hypothesis H0 : λ = 0, yet still rejects the null

hypothesis H0 : τ = 0 (and vice-versa). Such claims do not conform to current guidelines for

interpreting the first-stage and reduced-form regressions [6].

3.4.2 Sensitivity analysis of the IV in the Anderson-Rubin approach

We now apply the OVB framework for assessing the sensitivity of the IV estimate directly.

We focus on the Anderson-Rubin approach for this task because: (i) it allows performing

sensitivity analysis of the IV with only two interpretable sensitivity parameters; (ii) it has

correct test size regardless of “instrument strength”; and, (iii) its conclusions conform to

current recommendations regarding the interpretation of the first-stage and reduced-form

9Similar observations regarding the importance of the robustness of the first stage for hidden biases have
been made before in the context of randomization inference [131, 123].
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regressions.

3.4.2.1 Sensitivity for testing a specific null hypothesis

We begin by examining the sensitivity of the t-value for testing a specific null hypothesis

H0 : τ = τ0, as this is a straightforward application of the tools of Section 3.3. Recall that, in

the Anderson-Rubin approach, a test for the null hypothesis H0 : τ = τ0 is a test for the null

hypothesis H0 : φτ0 = 0 in the regression of Yτ0 on the instrument Z and covariates X and

W . Therefore, standard OLS sensitivity analysis for testing the null hypothesis H0 : φτ0 = 0

on the Anderson-Rubin regression gives the desired results for H0 : τ = τ0.

In detail, a sensitivity analysis for the null hypothesis that the IV estimate τ equals some

τ0 can be performed as follows:

1. Construct Yτ0 = Y − τ0D under the null value H0 : τ = τ0;

2. Run the OLS model Yτ0 = φ̂res,τ0Z +Xβ̂res,τ0 + ε̂τ0,res;

3. Perform regular OLS sensitivity analysis for the null H0 : φτ0 = 0.

This procedure can both tell us how omitted variables no worse thanR2 = {R2
Z∼W |X , R

2
Yτ0∼W |Z,X

}

would alter inferences regarding the null H0 : τ = τ0, or what is the minimal strength of R2

that is required to not reject the null H0 : τ = τ0, as given by the RV or XRV.

Making sense of the sensitivity parameters. While separate analyses of the first

stage and reduced form regressions may suggest the need of three sensitivity parameters

for the sensitivity of IV (e.g, R2
Z∼W |X , R2

D∼W |Z,X and R2
Y∼W |Z,X), note how within the

Anderson-Rubin approach one is able to perform sensitivity with only two parameters

(R2
Z∼W |X , R

2
Yτ0∼W |Z,X

). The meaning of the parameter related with the instrument (R2
Z∼W |X)

is unchanged and straightforward, ie., the share of residual variation of the instrument

explained by the omitted variableW . The main difference concerns the parameter R2
Yτ0∼W |Z,X

,

which stands for the share of residual variance of Yτ0 explained by W . The substantive
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interpretation of Yτ0 depends on the causal assumptions the researcher is willing to defend.

For instance, under H0 : τ = τ0 and a constant treatment effects model, we have that

Yτ0 = Y − τ0D equals the untreated potential outcome Y0 and thus R2
Yτ0∼W |Z,X

could be

interpreted as the share of residual variance of Y0 explained byW . For simplicity of exposition,

we adopt this interpretation throughout the chapter.

3.4.2.2 Compatible inferences given bounds on partial R2

Instead of assessing the sensitivity of the test statistic for specific a null hypothesis, investiga-

tors may be interested in recovering the whole set of inferences compatible with plausibility

judgments on the maximum strength ofW . As discussed in Section 3.2, for a critical threshold

t∗α,df −1, the confidence interval for τ in the Anderson-Rubin framework is given by

CI1−α(τ) = {τ0; t2φτ0 ≤ t∗2α,df −1} (3.46)

Now consider bounds on sensitivity parameters R2
Yτ0∼W |Z,X

≤ R2max
Y0∼W |Z,X (which should be

judged to hold regardless of the value of τ0) and R2
Z∼W |X ≤ R2max

Z∼W |X . Let t†max
α,df −1,R2 denote

the maximum OVB-adjusted critical value under the posited bounds on the strength of W .

The set of compatible inferences for τ , CImax
1−α,R2(τ) is then simply given by

CImax
1−α,R2(τ) =

{
τ0; t

2
φ̂res,τ0

≤
(
t†max
α,df −1,R2

)2}
(3.47)

This interval can be found analytically using the same inequality as in Equation 3.45, now

with the parameters of the restricted regression actually run, and the traditional critical value

replaced by the OVB-adjusted critical value t†max
α,df −1,R2

(
θ̂2res − v̂ar(θ̂res)×

(
t†max
α,df −1,R2

)2)
︸ ︷︷ ︸

a

τ 20 + 2

(
ĉov(λ̂res, θ̂res)×

(
t†max
α,df −1,R2

)2
− λ̂resθ̂res

)
︸ ︷︷ ︸

b

τ0

+

(
λ̂2res − v̂ar(λ̂res)×

(
t†max
α,df −1,R2

)2)
︸ ︷︷ ︸

c

≤ 0 (3.48)
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Note that users can easily obtain CImax
1−α,R2(τ) with any software that computes Anderson-

Rubin or Fieller’s confidence intervals by simply providing the modified critical threshold

t†max
α,df −1,R2 .

It is now useful to discuss the possible shapes of CImax
1−α,R2 as this will help understanding

the robustness values for IV we derive next. Let r = {rmin, rmax} denote the roots of

the quadratic equation, which can be written as r = −b ±
√

∆/2a, with ∆ = b2 − 4ac.

If a > 0 (i.e, we have a statistically significant first stage), the quadratic equation will

be convex, and thus only the values between the roots will be non-positive. This leads

to the connected confidence interval CImax
1−α,R2 = [rmin, rmax]. When a < 0 (i.e, the null

hypothesis of zero for the first stage is not rejected), the curve is concave and this leads to

unbounded confidence intervals. Here we have two sub-cases: (i) when ∆ < 0, the quadratic

curve never touches zero, and thus the confidence interval is simply the whole real line

CImax
1−α,R2 = (−∞,+∞); and, (ii) when ∆ > 0 the confidence interval will be union of two

disjoint intervals CImax
1−α,R2 = (−∞, rmin] ∪ [rmax,+∞).10

3.4.2.3 Sensitivity statistics for routine reporting

Armed with the notion of a set of compatible inferences for IV, CImax
1−α,R2(τ), we are now able

to formally define and derive (extreme) robustness values for instrumental variable estimates.

Extreme robustness values for IV. The extreme robustness value XRVq∗,α(τ) for the

IV estimate is defined as the minimum strength of association of omitted variables with the

instrument so that we cannot reject a reduction of (100× q∗)% of the original IV estimate;

that is,

XRVq∗,α(τ) := inf
{

XRV; (1− q∗)τ̂res ∈ CImax
1−α,1,XRV(τ)

}
(3.49)

10See [98] for an intuitive graphical characterization of Fieller’s solutions using polar coordinates.
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It then follows immediately from Equation 3.47 that

XRVq∗,α(τ) = XRV1,α(φτ∗) (3.50)

where τ ∗ = (1−q∗)τ̂res. As in the general case, the extreme robustness value can be interpreted

as a “dampened” partial R2 of the instrument Z with the “putative” untreated potential

outcome Yτ0 . Also of interest is the special case of the minimum strength to bring the IV

estimate to a region where it is no longer statistically different than zero (q∗ = 1), in which we

obtain XRV1,α(τ) = XRV1,α(λ). That is, for the null hypothesis of H0 : τ = 0, the extreme

robustness value of the IV estimate equals the extreme robustness value of the reduced-form

estimate, as we discussed in the last section.

The XRVq∗,α(τ) computes the minimal strength of W required to not reject a particular

null hypothesis of interest. We might be interested, instead, in asking about the minimal

strength of omitted variables to not reject a specific value or worse. When confidence

intervals are connected, such as the case of standard OLS, the two notions coincide. But

in the Anderson-Rubin case, as we have seen, confidence intervals for the IV estimate can

sometimes consist of disjoint intervals. Therefore, let the upper and lower limits of CImax
1−α,R2(τ)

be LLmax
1−α,R2(τ) and ULmax

1−α,R2(τ) respectively. The extreme robustness value XRV≥q∗,α(τ)

for the IV estimate is defined as the minimum strength of association that confounders or

side-effects need to have with the instrument so that we cannot reject a change of (100× q∗)%

or worse of the original IV estimate;

XRV≥q∗,α(τ) := inf
{

XRV; (1− q∗)τ̂res ∈
[
LLmax

1−α,1,XRV(τ), ULmax
1−α,1,XRV(τ)

]}
(3.51)

Now note that, whenever CImax
1−α,df −1(τ) is connected, we must have that XRV≥q∗,α(τ) =

XRVq∗,α(τ). On the other hand, recall that CImax
1−α,df −1(τ) will be disjoint only if t2

θ̂res
≤

(t†max
α,df −1)

2, which is precisely the condition for the extreme robustness value of the first stage.
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Therefore,

XRV≥q∗,α(τ) = min{XRV1,α(φτ∗), XRV1,α(θ)} (3.52)

This corroborates our previous conclusion that, when we are interested in biases as large or

larger than a certain amount, the robustness of the IV estimate is bounded by the robustness

of the first stage assessed at the zero null.

Robustness values for IV. The definitions of the robustness value for IV follow the same

logic discussed above, but now considering both bounds on CImax
1−α,R2 varying simultaneously.

That is,

RVq∗,α(τ) := inf
{

RV; (1− q∗)τ̂res ∈ CImax
1−α,RV,RV(τ)

}
(3.53)

Again from Equation 3.47 we have that

RVq∗,α(τ) = RV1,α(φτ∗) (3.54)

Which for the special case of q∗ = 1 simplifies to RV1,α(τ) = RV1,α(λ), as before. We can also

define robustness values for not rejecting the null hypothesis of a reduction of (100× q∗)% or

worse

RV≥q∗,α(τ) := inf
{

RV; (1− q∗)τ̂res ∈
[
LLmax

1−α,RV,RV(τ), ULmax
1−α,RV,RV(τ)

]}
(3.55)

By the same arguments articulated above, RV≥q∗,α(τ) must be the minimum of the robustness

value of the Anderson-Rubin regression evaluated at τ ∗ = (1 − q∗)τ̂res and the robustness

value of the first-stage regression evaluted at the zero null

RV≥q∗,α(τ) = min{RV1,α(φτ∗), RV1,α(θ)} (3.56)
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For the special case of q∗ = 1 (zero null hypothesis), RV≥q∗,α(τ) simplifies to the mini-

mum of the robustness value of the first stage and of the reduced form, RV≥q∗=1,α(τ) =

min{RV1,α(λ), RV1,α(θ)}.

3.4.2.4 Bounds on the strength of omitted variables

The bounds discussed in Section 3.3.3 work without any major modifications in the Anderson-

Rubin setting. When testing a specific null hypothesis H0 : τ = τ0 in the AR regression, we

have kZ as before, and instead of kY we now have kYτ0

kYτ0 :=
R2
Yτ0∼W |Z,X−j

R2
Yτ0∼Xj |ZX−j

. (3.57)

The plausibility judgment one is making here is that of how strong unobserved confounders

or side-effects are, relative to observed covariates, in explaining the residual variance of the

untreated potential outcome and of the instrument, under the null hypothesis H0 : τ = τ0.

Since the judgment is made under a specific null, the bounds will be different when testing

different hypotheses. Therefore, it may be useful to compute bounds under a slightly more

conservative assumption. More precisely, consider

kmax
Yτ0

:=
maxτ0 R

2
Yτ0∼W |Z,X−j

maxτ0 R
2
Yτ0∼Xj |ZX−j

. (3.58)

That is, we can posit that the omitted variables are no stronger than (a multiple of) the

maximum explanatory power of an observed covariate, regardless of the value of τ0. This has

the useful property of providing a unique valid bound for any value of the null hypothesis,

and can be used to place bounds on sensitivity contours of the lower and upper limit of the

AR confidence intervals, as we show next.
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3.5 Using the OVB framework for the sensitivity analysis of IV

In this section we return to our running example of estimating the returns to schooling and

show how these tools can be deployed to assess the robustness of those findings to violations

of the IV assumptions. We propose investigators begin their sensitivity analysis by examining

the robustness of the first-stage and reduced-form estimates. Not only are these analyses

usually important on their own right, but in many cases—including this one—this exercise

will be sufficient to establish that the instrumental variable estimate is not very informative

of the causal effect of interest, since one is not in a position to rule out confounders or

side-effects that can explain away those auxiliary estimates. We then turn to the sensitivity

of the IV itself, and further show how sensitivity contour plots of the adjusted lower and

upper limits of the AR confidence interval, supplemented with benchmark bounds, give a

succinct yet complete picture of the whole range of sensitivity of the IV estimate.

3.5.1 Minimal reporting and sensitivity plots of the reduced form

Outcome: Earnings (log)
Instrument Estimate Std. Error t-value R2

Y∼Z|X XRVq∗,α RVq∗,α

Proximity 0.042 0.018 2.33 0.18% 0.05% 0.67%
Bound (1x SMSA): R2

Y∼W |Z,X = 2%, R2
W∼Z|X = 0.6%, t†max

α,df −1,R2 = 2.55

Note: df = 2994, q∗ = 1, α = 0.05

Table 3.3: Minimal sensitivity reporting of the reduced-form regression.

We start by examining the sensitivity of the reduced-form estimate, namely, the effect of

Proximity on Earnings. Recall that if we cannot rule out that the reduced form is zero, we

also cannot rule out the IV estimate is zero. In our running example we focus the discussion

on violations of the ignorability of the instrument due to confounders, as this is the main

threat of the study under investigation. Readers should keep in mind, however, that all

analyses performed here can be equally used to assess violations of the exclusion restriction

(or both). Table 3.3 shows the minimal sensitivity reporting we proposed in Section 2.5.1,

but now incorporating the new results of Section 3.3. Beyond the usual statistics such as
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the point estimate, standard-error and t-value, we recommend that researchers also report

the: (i) partial R2 of the instrument with the outcome (R2
Y∼Z|X = 0.18%), as well as (ii) the

robustness value (RVq∗,α = 0.67%), and (iii) the extreme robustness value (XRVq∗,α = 0.05%),

both for where the confidence interval would cross zero (q∗ = 1), at a chosen significance level

(here, α = 0.05).

For our running example, the robustness value reveals that confounders that explain 0.67%

of the residual variation both of proximity and of (log) Earnings are sufficiently strong to

make the reduced-form estimate statistically insignificant, whereas confounders that explain

less than 0.67% of the residual variation of both the instrument and of the outcome are not

strong enough to do so. The extreme robustness value and the partial R2 show that, if we

are not willing to impose constraints on the strength of confounders with the outcome, then

they would need to explain less than 0.05% or 0.18% of the instrument to escape concerns of

eliminating statistical significance or fully eliminating the point estimate, respectively. To aid

users in making plausibility judgments, the note of Table 3.3 provides the maximum strength

of unobserved confounding if it were as strong as SMSA (an indicator variable for whether

the individual lived in a metropolitan region) along with the OVB-adjusted critical value for

a confounder with such strength, t†max
α,df −1,R2 = 2.55. Since the observed t-value (2.33) is less

than the adjusted critical threshold of 2.55, the table immediately reveals that confounding as

strong as SMSA (for example, in the form of residual geographic confounding) is sufficiently

strong to be problematic.

Beyond the results of Table 3.3, we also advise researchers to provide a sensitivity contour

plot of the t-value for testing the null hypothesis of zero effect, while also showing different

bounds on strength of confounding, under different assumptions of how they compare to the

observed variables. This is shown in Figure 3.3a. The horizontal axis describes the partial

R2 of the confounder with the instrument whereas the vertical axis describes the partial R2

of the confounder with the outcome. The contour lines show the t-value one would have

obtained, had a confounder with such postulated strength been included in the reduced-form

regression. The red dashed line shows the statistical significance threshold, and the red
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(a) Sensitivity contours of the reduced form.
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(b) Sensitivity contours of the first stage.

Figure 3.3: Sensitivity contour plots with benchmark bounds for the t-value of: (a) the
reduced form; and, (b) the first stage.

diamonds places bounds on strength of confounding as strong as Black (an indicator for

race) and, again, SMSA. As we can see, confounders as strong as either Black or SMSA are

sufficient to bring the reduced form, and hence also the IV estimate, to a region which is not

statistically different from zero. Since it is not very difficult to imagine residual confounders

as strong or stronger than those (e.g., parental income, finer grained geographic location,

etc), these results for the reduced form are sufficient to call into question the reliability of

the instrumental variable estimate.

3.5.2 Minimal reporting and sensitivity plots of the first stage

Outcome: Education (years)
Instrument Estimate Std. Error t-value R2

D∼Z|X XRVq∗,α RVq∗,α

Proximity 0.32 0.088 3.64 0.44% 0.31% 3.02%
Bound (1x SMSA): R2

D∼W |Z,X = 0.5%, R2
Z∼W |X = 0.6%, t†max

α,df −1,R2 = 2.26

Note: df = 2994, q∗ = 1, α = 0.05

Table 3.4: Minimal sensitivity reporting of the first-stage regression.
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We now turn to the sensitivity analysis of the first-stage regression. Table 3.4 performs

the same sensitivity exercises as before, but now for the regression of Education (treatment)

on Proximity (instrument). As expected, the association of proximity to college with years

of education is stronger than its association with earnings, and this is also reflected in the

robustness statistics, which are slightly higher (R2
D∼Z|X = 0.44%, XRVq∗,α = 0.31% and

RVq∗,α = 3.02%). As the note of Table 3.4 shows, confounding as strong as SMSA would not

be sufficiently strong to bring the first-stage estimate to a region where it is not statistically

different than zero. Figure 3.3b supplements those analysis with the sensitivity contour plot

for the t-value of the first-stage regression. Here the horizontal axis still describes the partial

R2 of the confounder with the instrument, but now the vertical axis describes the partial

R2 of the confounder with the treatment. The plot reveals that, contrary to the reduced

form, the first stage survives confounding once or twice as strong as Black or SMSA. The

contrast of both sensitivity results suggests that, in our running example, the most prominent

risk to the validity of the IV estimate comes from residual confounding on the reduced-form

estimate.

3.5.3 Minimal reporting and sensitivity plots of the IV

Outcome: Earnings (log)
Treatment Estimate LL1−α UL1−α t-value XRV≥q∗,α RV≥q∗,α
Education (years) 0.132 0.025 0.285 2.33 0.05% 0.67%
Bound (1x SMSA): R2

Y0∼W |Z,X = 2%, R2
W∼Z|X = 0.6%, t†max

α,df −1,R2 = 2.55

Note: df = 2994, q∗ = 1, α = 0.05

Table 3.5: Minimal sensitivity reporting of IV estimate (Anderson-Rubin).

Finally, we turn our attention to the sensitivity analysis of the IV, and Table 3.5 shows

our proposed minimal sensitivity reporting. We start with the IV point estimate (0.132),

as well as the lower limit (LL1−α = 0.025) and the upper limit (UL1−α = 0.285) of the

Anderson-Rubin confidence interval. The t-value for testing the null hypothesis of zero effect

is also shown (2.33). Next, we propose researchers to report the extreme robustness value

XRV≥q∗,α and the robustness value RV≥q∗,α for bringing the lower limit of the confidence
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interval to or beyond zero (or another meaningful threshold), at the 5% significance level. As

derived in Section 3.4.2.3, we have that the (extreme) robustness value of the IV estimate for

bringing the lower limit of the confidence interval to or below zero is the minimum of either

the (extreme) robustness value of the reduced form and the (extreme) robustness value of the

first stage. Therefore, the sensitivity statistics of Table 3.5 essentially reproduce the results

of Table 3.3.
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(a) Sensitivity contours for the lower limit.
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Figure 3.4: Sensitivity contour plots for the lower (a) and upper (b) limits of the 95%
confidence interval for the IV estimate.

After examining the sensitivity of the first stage and reduced form it is thus more

informative to assess the sensitivity of the IV for null hypotheses other than zero. To that

end, investigators may wish to examine sensitivity contour plots similar to those of Figure 3.3,

but with contours now showing the adjusted lower and upper limits of the confidence interval.

These contours are shown Figure 3.4. Here, as usual, the horizontal axis describes the partial

R2 of the confounder with the instrument, but now the vertical axis describes the partial R2

of the confounder with the untreated potential outcome. The contour lines show the worst

lower (or upper) limit of the set of compatible inferences considering confounders bounded

by such strength. Red dashed lines shows a critical contour line of interest (such as zero) as
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well as the boundary beyond confidence intervals become unbounded. As the plot reveals,

even confounding as strong as SMSA could lead to an interval of compatible inferences for

the causal effect of CImax
1−α,R2(τ) = [−0.02, 0.40], which includes not only the original OLS

estimate (7.5%), but also implausibly high values (40%), or even negative values (-2%), and

is thus too wide for any meaningful conclusions regarding the “true” returns to schooling.

That is, if we are concerned that omitted variables as strong as SMSA might exist, then we

are unable to reject any estimates in this range, calling into question the strength of evidence

provided by this IV study.

3.6 Conclusion

In this chapter we developed a suite of sensitivity analysis tools for IV that naturally handles

multiple “side-effects” and confounders of the instrument, does not require assumptions on

the functional form of such omitted variables, and allows exploiting expert knowledge to

bound sensitivity parameters. In particular, we introduced new sensitivity statistics for IV

estimates that are suited for routine reporting, such as (extreme) robustness values, describing

the minimum strength that omitted variables need to have, both with the instrument, and

with the untreated potential outcome, to overturn the conclusions of an IV study. We also

introduced a novel “OVB-adjusted” critical value that allows researchers to easily perform

hypothesis tests or construct confidence intervals that accounts for omitted variable bias of

any postulated strength, by simply replacing traditional critical values with the adjusted

ones. Finally, we showed how intuitive visual displays can be deployed to fully characterize

the sensitivity of IV to violations of its standard assumptions. Extension of these sensitivity

analysis tools beyond the “just-identified” case is an interesting direction for future work.

87



CHAPTER 4

Sensitivity Analysis of Linear Structural Causal Models

4.1 Introduction

Randomized controlled trials (RCT) are considered the gold standard for identifying cause-

effect relationships in data-intensive sciences [69]. In practice, however, direct randomization

is often infeasible or unethical, requiring researchers to combine non-experimental observations

with assumptions about the data generating process in order to obtain causal claims. These

assumptions are usually encoded as the absence of certain causal relationships, or as the

absence of association between certain unobserved factors. Conclusions based on causal models

are, therefore, provisional: they depend on the validity of causal assumptions, regardless of

the sample size [109, 133].

In many real settings, it is not uncommon that these assumptions are subject to uncertainty

or dispute. Scientists may posit alternative causal models that are equally compatible with

the observed data; or, more mundanely, researchers can make identification assumptions

for convenience, simply to proceed with estimation.1 Regardless of the motivation, the

provisional character of causal inference behooves us to formally assess the extent to which

causal conclusions are sensitive to violations of those assumptions.

The importance of such exercises is best illustrated with a real example, which directly

impacted public policy. During the late 1950s and early 1960s, there was a fierce debate

regarding the causal effect of cigarette smoking on lung cancer. One of its most notable skeptics

was the influential statistician Ronald Fisher, who claimed that, without an experiment,

1As noted by [86], “such assumptions are usually made casually, largely because they justify the use of
available statistical methods and not because they are truly believed.”
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one cannot rule out unobserved common causes (e.g. the individual’s genotype) as being

responsible for the observed association [53, 54]. Technically speaking, Fisher’s statement

was accurate; data alone could not refute his hypothesis. Yet, although no RCT measuring

the effect of cigarette smoking on lung cancer was performed, currently there exists a broad

consensus around the issue. How could such a consensus emerge?

An important step towards the current state of affairs was a sensitivity analysis performed

by [42]. Their investigation consisted of the following hypothetical question: if Fisher’s

hypothesis were true, how strong would the alleged confounder need to be to explain all the

observed association between cigarette smoking and lung cancer? The analysis concluded

that, since smokers had nine times the risk of nonsmokers for developing lung cancer, the

latent confounder would need to be at least nine times more common in smokers than in

nonsmokers—something deemed implausible by experts at the time.

Cornfield’s exercise reveals the fundamental steps of a sensitivity analysis. The analyst

introduces a violation of a causal assumption of the current model, such as positing the

presence of unobserved confounders that induce a non-zero association between two error

terms. Crucially, however, we are willing to tolerate this violation up to a certain plausibility

limit dictated by expert judgment (e.g., prior biological understanding, pilot studies). The

task is, thus, to systematically quantify how different hypothetical “degrees” of violation

(to be defined) affect the conclusions, and to judge whether expert knowledge can rule out

problematic values.

The problem of sensitivity analysis has been studied throughout the sciences, ranging from

statistics [124, 130, 122, 35, 62] to epidemiology [21, 141, 48, 9], sociology [58], psychology

[97], political science [80, 17], and economics [90, 81, 104, 96]. Notwithstanding all this

attention, the current literature is still limited to specific model structures and solved on a

case-by-case basis. As current practices produce a steady stream of published results, it is

important to handcraft sensitivity analysis tools for widely used models, such as what we

have done in Chapters 2 and 3 for identification via covariate adjustment and instrumental

variable regression. However, moving forward, a formal algorithmic framework to deal with

89



violations of causal assumptions is needed.

Causal modeling requires a formal language where the characterization of the data

generating process can be encoded explicitly. Structural Causal Models (SCMs) [109] provide

such a language and, in many fields, including machine learning, the health and social sciences,

linearity is a popular modeling choice. In this chapter, we focus on the sensitivity analysis

of linear acyclic semi-Markovian SCMs. We allow violations of exclusion and independence

restrictions, such as (i) the absence or presence of unobserved common causes; and, (ii) the

absence, presence or reversal of direct causal effects. Our contributions are the following:

1. We introduce a formal, algorithmic approach for sensitivity analysis in linear SCMs

and show it can be reduced to a problem of identification with non-zero constraints,

i.e, identification when certain parameter values are fixed to a known, but non-zero,

number.

2. We develop a novel graphical procedure, called PushForward, that reduces identifi-

cation with a known error covariance to vanilla identification, for which a plethora of

algorithms are available.

3. We develop an efficient graph-based constrained identification algorithm that takes

as input a set of sensitivity parameters and returns a sensitivity curve for the effect

estimate. The algorithm is theoretically sound and experimental results corroborate its

generality, showing canonical sensitivity analysis examples are a small subset of the

cases solved by our proposal (within the class of linear SCMs).

This chapter is structured as follows. Section 4.2 reviews basic terminology and definitions

that will be used throughout the chapter. Section 4.3 shows how sensitivity analysis in

the context of linear SCMs can be reduced to a constrained identification problem. In

Section 4.4 we develop a novel approach that allows researchers to systematically incorporate

constraints on error covariances of linear SCMs. Section 4.5 utilizes these results to construct

a constrained identification algorithm for deriving sensitivity curves. Finally, Section 4.6

presents experimental results to evaluate our proposals.
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4.2 Preliminaries

In this chapter, we use the language of structural causal models as our basic semantic

framework [109]. In particular, we consider linear semi-Markovian SCMs, consisting of a

set of equations of the form V = ΛV + U , where V represent the endogenous variables, U

the exogenous variables, and Λ a matrix containing the structural coefficients representing

both the strength of causal relationships and lack of direct causation among variables (when

λij = 0). The exogenous variables are usually assumed to be multivariate Gaussian with

covariance matrix E , encoding independence between error terms (when εij = 0).2 We focus

on acyclic models, where Λ can be arranged to be lower triangular.

The covariance matrix Σ of the endogenous variables induced by model M is given by

Σ = (I − Λ)−1E(I − Λ)−>. Without loss of generality, we assume model variables have been

standardized to unit variance. For any three variables x, y and z, we denote σyx to be the

covariance of x and y, σyx.z to be the partial covariance of y and x given z, and Ryx.z the

regression coefficient of y on x adjusting for z. Causal quantities of interest in a linear SCM

are usually entries of Λ (or functions of those entries), and identifiability reduces to checking

whether they can be uniquely computed from the observed covariance matrix Σ.

Causal graphs provide a parsimonious encoding of some of the substantive assumptions of

a linear SCM. The causal graph (or the path diagram) of model M is a graph G = (V,D,B),

where V denotes the vertices (endogenous variables), D the set of directed edges (non-zero

entries of Λ) and B the set of bidirected edges (non-zero entries of E). Missing directed

edges represent exclusion restrictions—a variable is not a direct cause of the other. Missing

bidirected edges denote independence restrictions, representing the fact that no latent common

causes exist between two observed variables. When clear from context, we may treat model

coefficients and their corresponding edges on the graph interchangeably. We use standard

graph notation, where Pa(y) denotes the parents, Ch(y) the children, Anc(y) the ancestors,

and De(y) the descendants of node y.

2Gaussianity is not necessary for the results of this chapter.
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4.3 Sensitivity analysis and identification

In this section we demonstrate the pervasiveness of identification problems in sensitivity

analysis in the context of a simple example. Suppose a scientist hypothesizes model GO

shown in Figure 4.1a with the goal of estimating the direct effect of a treatment x on an

outcome y (structural coefficient λxy). By the single-door criterion (Pearl 2000), she verifies

λxy is identifiable in GO and equal to the regression estimand Ryx.z, licensing her to proceed

with estimation.

Another investigator, however, is suspicious of the bold assumption that no common

causes (confounders) exist between z and x in GO. She goes on, therefore, and constructs

an alternative model GA (Figure 4.1b) such that the bidirected edge z ↔ x is included to

account for that possibility. A question now naturally arises: how wrong could one be using

Ryx.z to estimate λxy if the true causal model were given by graph GA? Answering this

question requires defining a measure of “wrongness” of the estimand, and perhaps the simplest

such measure is its bias in the additive scale.3

Definition 1 (Bias of ES with respect to Q). Let Q be a computable quantity given a fully

specified linear structural causal model, and let ES be any estimand (a functional of the

covariance matrix Σ). The bias of ES with respect to Q is the difference between the two

quantities, B = ES −Q.

In our example, the proposed estimand is ES = Ryx.z, the target quantity is Q = λxy, and

to compute the bias, B = Ryx.z − λxy, one needs to identify λxy. Computing the bias, thus,

entails an identification problem (Proposition 1).

Proposition 1. The bias of estimand ES with respect to target quantity Q is identifiable iff

Q is identifiable.

In GA, however, the presence of the bidirected edge x↔ z renders λxy unidentifiable, and

computation of B is not possible. How could one circumvent this impediment?

3Note this refers to the bias of an estimand (not an estimator), and it is the difference between the
proposed estimand and the desired (causal) target quantity in the population.
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Figure 4.1: Original model GO and two alternative models, GA and GB. In GA any of the
remaining parameters (λzx, εzx or εzy) can be used as a sensitivity parameter for λxy, whereas
GB rules out εzx as a sensitivity parameter. Adding a bidirected edge x↔ y in GA does not
prevent εzy from being a valid sensitivity parameter, whereas in GB it does.

As in [42], the impossibility of computing the exact bias of Ryx.z with respect to λxy

calls for another strategy—expressing the bias as a function of the “strength” of the omitted

confounders. In this way, the analyst can predict for any hypothetical strength of the

confounders whether it would be enough to change the research conclusions. This allows the

analyst to bring new substantive knowledge to bear, by submitting these quantitative results

to a judgment of plausibility and ruling out some scenarios.

Implementing this idea requires a precise definition of how to measure the “strength” of

the omitted confounders. In our example, a possible candidate for measuring such strength is

the structural parameter εzx of the added bidirected edge z ↔ x. The task then becomes: (i)

to determine whether knowledge of εzx allows the identification of λxy; and, (ii) if so, to find

a parameterized estimand for λxy in terms of εzx. This 2-step procedure can be seen as an

identification problem with non-zero constraints (Definition 2).4

Definition 2 (θ-identifiability). Let M be a linear SCM and θ a set of parameters of M with

known (non-zero) values. A causal quantity Q is said to be θ-identifiable if Q is uniquely

computable from Σ and θ.

We call any functional of Σ and θ, which identifies Q, a θ-specific estimand (or sensitivity

curve) for Q with respect to sensitivity parameters θ. These estimands are the workhorse for

sensitivity analysis; they allow us to investigate how strong certain relationships must be

4Note the relationship to z-ID [15], in which case constraints are imposed on experimental distributions in
the non-parametric setting.
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(as parameterized by θ) in order to induce significant bias in our estimates. In other words,

identifying a bias function in terms of θ (and the observed data) for sensitivity analysis is

equivalent to the constrained identification problem of Definition 2 (Proposition 2).

Proposition 2. The bias of ES with respect to Q can be expressed as a function of θ (and

Σ) iff Q is θ-identifiable.

Going back to GA, it is indeed possible to construct an εzx-specific estimand for λxy (see

Section 4.4):

λxy(εzx) =
σxy − (σzx − εzx)σyz
1− (σzx − εzx)σzx

(4.1)

Equation 4.1 allows one to compute the bias of Ryx.z with respect to the target quantity λxy,

for any given hypothetical value of εzx, if the true model were given by GA. Similarly, it allows

one to determine how strong the unobserved confounder would need to be (as parameterized

by εzx) such that the association Ryx.z is completely explained by the unobserved confounder

(i.e., the value of εzx such that λxy(εzx) = 0).

Still, what if the analyst has no knowledge to plausibly bound the strength of εzx?

Even though the violation introduced in model GA was the addition of the bidirected edge

x↔ z, corresponding to εzx, there is no reason to limit our attention to that parameter, and

any θ-specific estimand could be used for sensitivity analysis. In fact, the two remaining

parameters of the model also yield valid θ-specific estimands (Section 4.5 provides an

algorithmic solution),

λxy(λzx) =
σxy − λzxσyz
1− λzxσzx

(4.2)

λxy(εzy) =
σzy − εzy
σzx

(4.3)

Having a diverse option of sensitivity curves is important, because sensitivity analysis relies

on plausibility judgments. One could argue, for instance, that assessing the plausibility of εzx

could be hard because it involves judging the effect of confounders of unknown cardinality,
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and perhaps, previous studies give plausible bounds on the direct causal effect of z on x (i.e.,

λzx), making a λzx-specific estimand more attractive. Regardless of the specific scenario,

it is clear that the choice of sensitivity parameters should be guided by the availability of

substantive knowledge.

Remarkably, several subtleties arise when deriving θ-specific estimands, even in simple

models with three variables. For instance, a natural approach for tackling the problem in our

example could be the re-expression of Ryx.z in terms of the covariance matrix implied by GA,

yielding,

Ryx.z = λxy −
(σzx − λzx)εzy

1− σ2
zx

= λxy −
εzxεzy

1− σ2
zx

(4.4)

One may surmise upon the examination of such expression that two sensitivity parameters

are needed. As shown in Equations 4.1 to 4.3, this conclusion would be misleading.

These subtleties also appear when solving several variations of a model. Imagine the

alternative model is now GB, instead of GA, as shown in Figure 4.1c. Is εzx an admissible

sensitivity parameter in this case? Is the εzy-specific estimand derived in GA still valid if the

model were GB? If we include another violation in both models, a bidirected arrow x ↔ y,

would the previously obtained εzy-specific estimands still be valid? Despite the apparent

similarity of both models, the answers to these questions reveal their sensitivity curves behave

quite differently. The tools developed in this chapter not only provide an algorithmic solution

to these questions, but also allow researchers to swiftly answer them by simple inspection

of the graph.

The above examples demonstrate several of the identification problems entailed by a

sensitivity analysis. If in small models these tasks are already complex, once we move

to models with more than three or four variables, an informal, case-by-case approach to

sensitivity analysis is simply infeasible. Therefore, we need a formal framework and efficient

algorithms to incorporate constraints in linear SCMs.
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4.4 Incorporating constraints in linear SCMs

Existing methods for identification in linear SCMs, such as the qID algorithm from [28],

are able to incorporate constraints on directed edges and can be used to derive sensitivity

curves such as the λzx-specific estimand of Equation 4.2. The qID algorithm exploits a

known edge λab by creating an auxiliary variable (AV) b∗ = b − λaba [30]. Subtracting out

the direct effect of a on b in this way may help with the identification of other coefficients

in the model. For instance, the λzx-specific estimand can be computed using AVs in the

following way: (i) create x∗ = x− λzxz; (ii) use x∗ as an instrument for λxy, resulting in

λxy(λzx) = σyx∗/σxx∗ = (σxy − λzxσyz)/(1− λzxσzx).5

However, neither the εzx-specific nor the εzy-specific estimands can be derived using qID;

in fact, there is no current identification algorithm that offers a principled and efficient way

to exploit knowledge of bidirected edges.6 As this is critical for the derivation of sensitivity

curves (see Section 4.6), one of the core contributions of this work is the development of a

novel graphical procedure that allows one to systematically incorporate constraints on error

covariances.

Conventional linear SCMs already impose one type of constraint on error covariances:

a lack of a bidirected edge between two variables a and b encodes the assumption that the

structural parameter εab is zero. The identification problem imposed by sensitivity analysis,

nonetheless, sets a different type of constraint—the error covariance εab is fixed to a known

but non-zero number. The essence of our method is to represent this knowledge in the graph.

Considering a graph G, covariance matrix Σ, and a known error covariance εab, our strategy

consists of performing a “manageable” transformation of G such that the bidirected edge

a↔ b is removed from the graph. By “manageable” we mean the implied covariance matrix Σ′

5The qID algorithm extends generalized instrumental sets [20] using a bootstrapping procedure whereby
complex models can be identified by iteratively identifying coefficients and using them to generate new
auxiliary variables. It takes as inputs a graph G, covariance matrix Σ and known directed edges D, and it
returns the new set of identified directed edges.

6Methods from computer algebra offer a complete solution but are computationally intractable. See
Section 4.6 and the discussion in the appendix.
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of the transformed graph G′ can still be derived from Σ and the known value εab; otherwise, we

would have no connection between G′ and the data, making inference in G′ impossible. Once

this graphical transformation is applied, we can exploit any existing graphical identification

method on the modified model G′, and solutions in G′ can be transfered back to solutions in

the original model G. In short, we manipulate the graph to reduce an identification problem

with a non-zero constraint to a standard one.

The easiest way to introduce our method, which we call PushForward, is via an example.

Consider again graph GA in Figure 4.1b, and assume εzy is known. Path-tracing [146] results

in the following covariances, where the known parameter εzy is highlighted in red,

σzx = λzx + εzx (4.5)

σzy = λzxλxy + εzxλxy + εzy (4.6)

σxy = λxy + λzxεzy (4.7)

Ideally, we could create an alternative model G∗A where the bidirected edge z ↔ y is fully

removed from the graph. For this to be useful, we need to be able to express the new implied

covariance matrix Σ∗A in terms of the original covariance matrix ΣA and the known error

covariance εzy. While expressing σ∗zy in terms of ΣA and εzy is straightforward (since, trivially,

σ∗zy = σzy − εzy), it is not immediately clear how to write σ∗xy = σxy − λzxεzy = λxy in terms

of ΣA and εzy, for this requires identifying either λxy or λzx in the original model.

Thus, rather than fully removing z ↔ y, we “push it forward” to the children of z, as

shown in graph G′A of Figure 4.2b. Note the bidirected edge is moved from being between

z and y to being between x (a child of z) and y, with new structural parameter ε′zy = λzxεzy.

Path-tracing of G′A shows its implied covariance matrix Σ′A is exactly the same as ΣA, except
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Figure 4.2: Pushing forward εzy in GA renders z a valid instrument in G′A. Pushing forward
εzy in GB renders z single-door admissible in G′B.

for σ′zy, which can be obtained by subtracting εzy from σzy,

σ′zx := σzx =λzx + εzx (4.8)

σ′zy := σzy − εzy =λzxλxy + λxyεzx (4.9)

σ′xy := σxy =λxy + λzxεzy (4.10)

Since G′A has the same structural coefficients as G and we know how to compute the covariance

matrix induced by G′A from the known values Σ and εzy, we can use G′A to identify the

coefficients in our original model. In this case, z is an instrument for λxy in G′A, resulting in

the estimand λxy(εzy) = σ′zy/σ
′
zx = (σzy − εzy)/σzx of Equation 4.3.

Applying the same logic to graph GB in Figure 4.1c, assume εzy is known. Since z has

no other descendants except y, pushing forward εzy simply removes the bidirected edge

z ↔ y. This results in the modified graph G′B of Figure 4.2d with the amortized covariance

of z and y, σ′zy = σzy − εzy. Note εzy enters in no other covariances of the system. The graph

G′B renders z single-door admissible for the identification of λxy, giving us the estimand

λxy(εzy) = R′yx.z = (σyx − σxz(σzy − εzy))/(1 − σ2
xz).

This simple graphical manipulation also makes it clear why adding a bidirected edge

x ↔ y as a further violation in the original graphs GA and GB has different consequences

for the identification of λxy. In G′A, z still remains a valid instrument even if the original

graph had x↔ y; this would only change the value of the structural coefficient ε′xy, which

would now read ε′xy = εxy + λzxεzy. In G′B, however, adding x↔ y renders z inadmissible for
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Figure 4.3: Pushing forward εzx in GA requires adjusting σyz. If the adjustment is possible,
y is kept in the graph as in Figure 4.3b; if not, y is marginalized (pruned) as in Figure 4.3c.

single-door identification of λxy, since this backdoor path cannot be blocked.

Sometimes it might be necessary to prune variables from G′ to guarantee Σ′ is computable.

Consider again GA and assume εzx is known. Pushing forward εzx results in Figure 4.3b

where, as before, we know σ′zx = σzx − εzx. However, path-tracing of Figure 4.3b shows

the covariance of z with y would also need adjustment, σ′zy = σzy − λxyεzx. Thus, we have

two cases: (i) if λxy is known, the adjustment is feasible and we are done; (ii) if λxy is not

(yet) known, the adjustment cannot be made; but, since y is a leaf node, it can be pruned

from G′ [138], avoiding this problem (Figure 4.3c). In this case, note the pruned graph is

still helpful—now λzx can be identified. As previously discussed, knowledge of λzx permits

identification of λxy using AVs, giving us the εzx-specific estimand of Equation 4.1.

The graphical manipulation of PushForward is general, and can be performed whenever

we have knowledge of a known error covariance. Theorem 1 formalizes the procedure to

arbitrary models. Given any bidirected edge x↔ y with known value εxy, we remove it from

the graph and register the new amortized covariance σ′xy = σxy − εxy. Next we repair the

covariances of the descendants of x with y by, for every c ∈ Ch(x), adding (or modifying) the

bidirected edge c↔ y with the direct causal effect λxc times εxy. Finally, for any descendant

z of y, we either (i) amortize its covariance with x, if all edges that compose the total causal

effect δyz of y on its descendant z are known, or (ii) marginalize z out by pruning the graph.

The final output is a modified model 〈G′,Σ′〉 where any graphical identification method can

be applied; and, estimands in terms of Σ′ can be converted back to estimands in terms of Σ

and εxy.

Theorem 1 (PushForward). Given a linear SCM with graph G, covariance matrix Σ, a set
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of known directed edges D, and known bidirected edge εxy, let the pair 〈G′,Σ′〉 be constructed

from G and Σ as follows:

1. x↔ y is removed and σ′xy = σxy − εxy;

2. ∀c ∈ Ch(x), c 6= y, the bidirected edges c ↔ y are added if they do not exist, and

ε′cy = εcy + λxcεxy;

3. ∀z ∈ De(y), z 6= x, if there is an edge on any directed path from y to z that is not in

D, then z is removed from G′. For the remaining z, σ′xz = σxz − εxyδyz, where δyz is

the sum of all directed paths from y to z;

4. All other parameters and covariances remain the same.

Then, if λab is identifiable in G′, it is (εxy,D)-identifiable in G.

We denote by PF(G,Σ,D, εxy, x) the function that returns the modified model 〈G′,Σ′〉

as per Theorem 1. Pseudocode for PF (which closely follows the steps of the theorem) as

well as the proof can be found in the appendix.

4.5 Algorithmic derivation of sensitivity curves

In this section, we construct a graph-based constrained identification algorithm for linear

SCMs which systematically exploits knowledge of both path coefficients and error covariances

efficiently. Our algorithm relies on the PushForward method to incorporate constraints on

bidirected edges, and on the AV technique (via the qID algorithm) to incorporate constraints

on directed edges. This allows the algorithmic derivation of sensitivity curves for a target

query λxy in arbitrary linear models, with an arbitrary set of directed and bidirected edges

as sensitivity parameters.

Although the graphical modification of PushForward is defined for one bidirected edge,

the modified graph G′ is a valid model in which any graphical operation can be performed. We

can thus extend PushForward to handle multiple bidirected edges by iteratively applying
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Figure 4.4: PF multiple edges in topological order.

it whenever a bidirected edge of the modified graph is still known—what remains to be

decided is the order in which to perform these operations. Note that testing all possible

orders of graphical manipulations can result in an algorithm with exponential computational

complexity, even when initially pushing forward a single bidirected edge εxy. This happens

because new bidirected edges are created for each c ∈ Ch(x) and, if all the λxc are identifiable,

all subsets of those bidirected edges may be eligible to be pushed forward again. Thus, here

we propose an efficient procedure using topological ordering, which performed as well as a

brute-force approach in our computational experiments (Section 4.6).

Consider the example given in Figure 4.4a. The task is to decide whether θ = (εxz, εxy, εzy)

(in red) is an admissible set of sensitivity parameters for the target coefficient λxy (in blue)

and, if so, to find the corresponding sensitivity curve. Our strategy consists of, for each node

v, listing its ancestors a ∈ An(v), and, in topological order, iteratively push forward εav if it

is still known in the modified graph. By performing operations in this way, we are guaranteed

to visit each ancestor of v only once. Starting with node v = z, it has only one ancestor x

and a single known bidirected edge to be removed, εxz. This can be handled with a one-step

PushForward operation (pruning y), resulting in the modified graph G′z of Figure 4.4b, in

which λxz can be trivially identified. Next, return to the original graph and consider v = y,

with ancestors x and z. Following a topological order, we first push forward εxy, giving us

the modified graph G′y of Figure 4.4c with new bidirected edge ε′zy = εzy + λxzεxy. Note all

components of ε′zy are known, we can thus push forward ε′zy in G′y, obtaining the graph G′′y in

Figure 4.4d, in which λxy is identified with sensitivity curve R′′yx.z.

In the previous example we demonstrated how to systematically deal with bidirected
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Algorithm 1 cID(G,Σ,D,B)

1: initialize VB ← Vertices(B)
2: repeat
3: D ← D ∪ qID(G,Σ,D)
4: for each v ∈ VB do
5: 〈G′,Σ′〉 ← 〈G,Σ〉
6: for each a ∈ An(v) in topological order do
7: if ε′av is known then
8: 〈G′,Σ′〉 ← PF(G′,Σ′,D, ε′av, a)
9: D ← D ∪ qID(G′,Σ′,D)
10: end if
11: end for
12: end for
13: for each εab ∈ B do
14: 〈G′,Σ′〉 ← PF(G,Σ,D, εab, a)
15: D ← D ∪ qID(G′,Σ′,D)
16: end for
17: until all directed edges have been identified or no edge has been identified in the last

iteration

edges connected to ancestors of a node v; however, in linear models, descendants of v can also

help with the identification of direct causal effects λav. Consider, for instance, Figure 4.5a.

The task is to find a sensitivity curve for λxy in terms of θ = (εxw, εyw). Start with node w

and, as before, push forward εxw as in Figure 4.5b. Here, λzw can be identified with x as

an instrument. Returning to the original graph, now consider node y and push forward the

bidirected edge εyw with its descendant w, as in Figure 4.5c. Since λzw has been identified,

we can create the AV w∗ = w − λzwz which is a valid instrument for λxy.
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Figure 4.5: Instruments with ancestors and descendants.
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Figure 4.6: In Fig 4.6a note that, although not connected to x nor y, εzw is an admissible
sensitivity parameter for λxy. Figure 4.6b shows the sensitivity curve of λxy in terms of εzw
for a numerical simulation of the model in Figure 4.6a.

These two cases illustrate our general procedure for handling multiple bidirected edges,

which in combination with the qID algorithm forms our constrained identification algorithm

cID, provided in Algorithm 1. Lines 4 to 12 perform PushForward (PF) in topological

ordering, each time applying qID in the modified model to verify if new directed edges can

be identified; lines 13 to 16 perform a single PushForward operation on each bidirected

edge, which may free descendants to be used as instruments as in Figure 4.5. Since new

identified edges can help both PushForward as well as qID, this process is repeated until

all or no new directed edges are identified in the last iteration. The complexity of cID is

dominated by qID, which is polynomial if the degree of each node is bounded [28].

An interesting 4-node example is shown in Figure 4.6a, where εzw, a parameter neither

related to x nor y, is an admissible sensitivity parameter for λxy! Our algorithm derives an

εzw-specific estimand for λxy as follows. It first pushes forward εzw, and runs qID in the

modified graph, resulting in the identification of λzw. Next, the algorithm returns to the

original graph, and runs qID, which uses λzw to create the auxiliary variable w∗ = w − λzwz,

enabling the identification of λzx. Finally, still within qID, λxy is obtained using the auxiliary

variable x∗ = x− λzxz.

As discussed in Section4.3, the utility of θ-specific estimands is to show how sensitive the

target quantity of interest is to different hypothetical values of the sensitivity parameters θ.
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These results can then be submitted to quantitative plausibility judgments, for instance, in

the form of θ ∈ Θp, where Θp is a plausibility region. To illustrate how one could deploy this

in practice, we provide a numerical example of the causal model in Figure 4.6a. Our goal is to

assess how different hypothetical values for εzw affects inference of λxy. In a real context, this

needs to be estimated from finite samples, and here we use a maximum likelihood estimator.

Figure 4.6b shows the estimates for λxy (blue) for different values of the sensitivity parameter

εzw, along with the corresponding 95% confidence interval (gray). If, for instance, we can

plausibly bound εzw to be within 0.1 to 0.3, the plot reveals λxy can be safely judged to be

within -0.2 to -0.6.

4.6 Computational experiments

The identification problem in linear systems has not yet been efficiently solved. Although there

exists a complete solution using computer algebra [66], these methods are computationally

intractable, making it impractical for graphs larger than 4 or 5 nodes. Since we rely on

existing identification algorithms that are polynomial but not complete (i.e., qID cannot find

all identifiable parameters), we cannot expect the cID algorithm to find all sensitivity curves

as well. In this section, we report the results of an extensive set of experiments aimed to

empirically verify the generality of our approach. We have performed an exhaustive study

of all possible queries in 3 and 4-node models, which are essentially the largest instances

computer algebra methods can solve through brute force.7

A query consists of determining whether in modelG, a target parameter λxy is θ-identifiable

given a set of sensitivity parameters θ. For 3-node models, we have 50 connected graphs

with 720 possible queries; for 4-node models, we have 3,745 connected graphs and 1,059,156

possible queries.8 For each query, we used algebraic methods to determine ground-truth

7We use Gröbner bases, which has a doubly-exponential computational complexity [14]. See appendix for
details.

8For 5-node models, these numbers reach 1 million graphs and 11 billion queries. Ground-truth computa-
tions in 5-node models using computer algebra can take hours for a single graph.
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3-Node Models 4-Node Models

ID Algorithm Directed Bidirected Both Directed Bidirected Both

qID (AVs only) 19(100%) – (0%) 68 (21%) 14,952(95%) – (0%) 170,304(29%)
cID (AVs + PF) 19(100%) 109(100%) 320(100%) 14,952(95%) 50,708(97%) 555,758(96%)

Ground Truth 19 109 320 15,740 52,016 578,858

Table 4.1: Number of θ-identifiable sensitivity queries (only when θ 6= ∅) per type of sensitivity
parameters θ.

identification and checked it against the results of both qID and cID. Our interest lies in

the queries that are θ-identifiable only when θ 6= ∅.

The results are given in Table 4.1, where columns restrict sensitivity parameters θ to

be: (i) subsets of directed edges; (ii) subsets of bidirected edges; and, (iii) subsets of both

directed and bidirected edges. The results show that our cID algorithm correctly identifies

all possible sensitivity curves for 3-node models. Among 4-node models, our method solves

96% of all identifiable sensitivity queries.

These numbers reveal that, in the context of linear SCMs, canonical sensitivity analysis

examples which have been addressed on a case-by-case basis in the literature (e.g., Figure 4.7,

target coefficient in blue and sensitivity parameters in red), are only a small subset of all

possible sensitivity analyses exercises enabled by our proposal. When comparing cID’s

results to those of qID only, it is also clear that systematically incorporating constraints on

bidirected edges is essential for obtaining sensitivity curves.

A valid concern regarding cID’s current implementation is that the proposed topological

ordering for processing bidirected edges could be less capable than a general search over

all possible valid graphical manipulations. With this in mind, we performed a thorough

comparison of our proposal against other ordering methods for all queries in 3 and 4-node

models. Topological ordering proved to perform as well as a brute-force search that recursively

tests all possible subsets of bidirected edges that can be pushed forward.

Finally, the incompleteness of cID can stem from two sources: limitations of the graphical

manipulations performed by PushForward and the incompleteness of the identification
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Figure 4.7: Canonical sensitivity analyses: (a) backdoor violation with unobserved confounders
independent of observed confounders [25]; (b) putative instrumental variable, where both the
exclusion and independence restriction are suspected to be violated [143]; (c) randomized
trial in which treatment x has side-effect m, and unobserved mediation-outcome confounding
cannot be ruled out [140]. For linear SCMs, these are special cases of all queries solved by
our approach.

algorithm for directed edges, qID. Separating the two can help guide efforts for future research.

To achieve that, we used algebraic methods to simulate how cID would have performed if

it had access to a complete identification algorithm for directed edges instead of qID. We

found that cID would have identified over 99.99% of 4-node sensitivity queries. This seem to

suggest that: (i) the main bottleneck of cID is qID; and (ii) PushForward with topological

ordering can reap the benefits of improved identification algorithms for directed edges.

4.7 Conclusion

In this chapter, we introduced a general algorithmic framework of sensitivity analysis for

linear SCMs. We reduced sensitivity analysis to a constrained identification problem and

developed a novel graphical procedure to systematically incorporate constraints on bidirected

edges. We then devised an efficient graph-based algorithm for deriving sensitivity curves.

Exhaustive experiments corroborated the generality of our proposal. Such systematic tools

can help analysts better navigate in the model space and understand the trade-off between

the plausibility of assumptions and the strength of conclusions. Extensions to other types of

violations and to nonlinear models are promising directions for future work.
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CHAPTER 5

Generalizing Experimental Results by Leveraging

Knowledge of Mechanisms

5.1 Introduction

Generalizing results of randomized control trials (RCT) is critical in many empirical sciences

and demands an understanding of the conditions under which such generalizations are feasible.

When the mechanisms that determine the outcome differ between the study population

and the target population, generalization requires measuring the variables responsible for

such differences or, if this is not possible, isolating them away by measuring other variables

[113]. Recent work [78, 79, 77] describes an interesting situation under which transportability

across populations is feasible without such measurements. This feasibility, however, is not

immediately inferable using a standard (non-parametric) selection diagram [113, 16], because

it relies on the invariance of only some components of the outcome mechanism, but not all.

In this chapter, we use the theory of Structural Causal Models (SCM) [109] to show

how generalization in these settings can be modeled using ordinary structural equations,

counterfactual logic and selection diagrams. We demonstrate that it requires two key

assumptions: (i) the independence of causal factors that affect the outcome; and, (ii) functional

constraints on how these factors interact to produce the outcome. The combination of these

assumptions may entail the invariance of certain probabilities of causation [108, 137] across

domains, thus allowing the transport of causal effects in settings where non-parametric

generalization is otherwise impossible.

We further extend the results of existing literature by: (i) relaxing the monotonicity
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assumption and providing bounds for the causal effect in the target domain; (ii) deriving

novel identification and over-identification results for probabilities of causation, as well as

the transported causal effect, when trials from multiple source domains are available; and,

(iii) providing a Bayesian framework for estimating the transported causal effect from finite

samples. We illustrate these methods both in simulated data and in a real example that

generalizes the effects of Vitamin A supplementation on childhood mortality across different

regions [132, 102, 144]. Open source software for R implements the methods discussed in this

chapter.1

5.2 Motivating example

To fix ideas, we borrow the “Russian Roulette” example from [77]. Although stylized, this

intuitive example illustrates the key features of the problem.

5.2.1 A Russian Roulette trial

Suppose the city of Los Angeles decides to run a randomized control trial (RCT) to assess

the effect of playing “Russian Roulette” on mortality.2 After running the experiment, the

mayor of Los Angeles discovers that “Russian Roulette” is harmful: among those assigned to

play Russian Roulette, 17.5% of the people died, as compared to only 1% among those who

were not assigned to play the game (people can die due to other causes during the trial, for

example, prior poor health conditions).

After hearing the news about the Los Angeles experiment, the mayor of New York City (a

dictator) wonders what the overall mortality rate would be if the city forced everyone to play

Russian Roulette. Currently, the practice of Russian Roulette is forbidden in New York, and

its mortality rate is at 5% (4% higher than LA). The mayor thus asks the city’s statistician

1Available in https://github.com/carloscinelli/generalizing.

2Russian Roulette consists of loading a bullet into a revolver, spinning the cylinder, pointing the gun at
one’s own head and then pulling the trigger. We do not recommend attempting this.
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to decide whether and how one could use the data from from Los Angeles to predict the

mortality rate in New York, once the new policy is implemented.

Intuitively, our causal knowledge of the domain permits us to answer the question posed

by the NYC mayor. Mortality is a consequence of two “independent” processes (the game of

Russian Roulette and prior health conditions of the individual), and while the first factor

remains unaltered across cities, the second intensifies by a known amount (5% vs 1%).

Moreover, we can safely assume that the two processes interact disjunctively, namely, that

death occurs if and only if at least one of the two processes takes effect. From these two

assumptions and elementary probability theory, we can conclude that mortality in NYC

would be 20.8%. In section 5.3 we will cast this intuition into a formal setting, define this

notion of “independence,” and show how the data from NYC and LA should be combined to

match our expectation. But before that, let us examine how this intuition clashes with the

conclusion of a coarse analysis using selection diagrams.

5.2.2 An “impossibility” result

Selection diagrams are causal diagrams enriched with “selection nodes” S, usually represented

by square nodes (�). These new nodes are used by the analyst to indicate which local

mechanisms are suspected to differ between two environments (in our example, the mortality

mechanism is suspected to differ between Los Angeles and New York). More importantly,

the absence of a selection node pointing to a variable represents the assumption that the

local mechanism responsible for assigning the value to that variable is the same in the two

populations [106, 109, 113, 16].

To build our selection diagram, we need to introduce some notation. The population of

Los Angeles will be denoted by Π (the “source population”) and that of New York by Π∗ (the

“target population”). The random variable Y stands for mortality, with events Y = 1 denoting

“death” and Y = 0 denoting “survival;” the random variable X stands for the “treatment”

assignment, with events X = 1 denoting “play Russian Roulette” and X = 0 denoting “not

play Russian Roulette.” The random variable Yx denotes the potential response of Y when
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the treatment X is experimentally set to x. Thus, mathematically, the findings of the RCT

can be translated to P (Y1 = 1) = 17.5% and P (Y0 = 1) = 1%, and the available data from

New York is P ∗(Y0 = 1) = 5%. Our task is to estimate P ∗(Y1 = 1).

YX

(a) Coarse causal diagram

YX

S

(b) Coarse selection diagram

Figure 5.1: Coarse causal (a) and selection (b) diagrams of the Russian Roulette trial. The
presence of S → Y in (b) correctly prohibits the naive transportation of the interventional
distribution P (Yx) from the source Π (Los Angeles) to the target environment Π∗ (New York).

The coarsest causal diagram of the Russian Roulette trial comprises only the treatment

X and the outcome Y , as shown in Figure 5.1a. To move from the causal diagram to the

selection diagram, we need to think of what may differ between LA and NYC. Since we

already know from the data that P (Y0 = 1) 6= P ∗(Y0 = 1), we suspect there are differences in

the way mortality is determined in the two cities (for example, people in New York may be in

poorer health conditions, or the air quality may be worse). Thus, the selection diagram must

contain a selection node S pointing to the mortality variable Y to indicate this disparity, as

shown in Figure 5.1b.

Graphically, checking whether a causal relationship is transportable from one environment

to another involves checking whether there exists a set of measurements that d-separates

[109] the source of disparity (the selection node S) from our target quantity. The presence

of the selection node pointing directly into Y prevents the separation of S from Y , and

leads us to conclude that transportability is impossible without further assumptions. On

the other hand, the intuition that led us to predict the new mortality rate in NYC tells

us that such assumptions, once formalized, could license transportability. This intuition,

as we discussed, was based on two assumptions that are not shown in the coarse selection

diagram of Figure 5.1. The diagram represents only the existence of a disparity between LA

and NYC, not the fact that it is localized to one cause of death (prior health factors), and

that it does not extend to the other cause (the game of Russian Roulette). As a result, the
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diagram correctly warns us that, absent further assumptions, we are not authorized to make

any generalization between the two cities.

5.3 Building the structural model

We now explicate formally what we know about the game of “Russian Roulette” and health

factors, and show how this knowledge renders transportability possible.

5.3.1 Prior health conditions versus physical mechanism

To represent the two causes of death, we refine our model by defining two extra random

variables, B and H: (i) B denotes “bad luck” when playing Russian Roulette, and its values

represent a match (B = 1) or mismatch (B = 0) between the trigger and the location

of the bullet in the cylinder; (ii) and H denotes all other health factors producing death

(H = 1) or survival (H = 0). Accordingly, our causal diagram will contain two new edges,

H → Y and B → Y , since both “health conditions” and “bad luck” are key determinants

of mortality Y . The updated causal diagram is shown Figure 5.2a. Note the absence of a

directed or bidirected edge between H and B, which encodes our assumption that these two

mechanisms are activated independently of each other.3

The new model helps us see more clearly the commonalities and disparities between LA

and NYC. First, since there is a multitude of factors that can affect prior health conditions,

and those are likely to differ between the two cities (as suggested by the observed difference

P (Y0 = 1) 6= P ∗(Y0 = 1)), we again introduce a selection node pointing to H. Moreover, to

encode the assumption that the probability of “bad luck” occurring is the same in both cities,

we do not connect B to a selection node.4 The new selection diagram is shown in Figure 2b.

3The arrow X → Y comprises, of course, many intermediate mechanisms (such as loading the gun, spinning
the cylinder, pulling the trigger) that are not modeled explicitly.

4Note that, although reasonable, one cannot take this assumption for granted—it could be the case that
revolvers used for Russian Roulette in New York have a different number of chambers than those used in Los
Angeles. The absence of a selection node pointing to B encodes the assumption that this is not the case.
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YX

B H

(a) Causal diagram

YX

B H

S

(b) Selection diagram

Figure 5.2: New causal (a) and selection (b) diagrams explicitly including the variables
“health conditions” (H) and “bad luck” (B) when playing Russian Roulette. Here the analyst
asserts (using the selection node S) that H may differ between LA and NYC, but assumes
that the mechanism triggering B is the same between the two cities. Also important is the
absence of a directed edge or a bidirected edge between H and B.

The diagram of Figure 5.2b now guides us toward leveraging the data obtained in LA to

make predictions in NYC. If we can find a way to block the source of disparity originating from

H, we would be left with the invariant physical mechanism shared by both cities. However,

since H is unobserved, blockage is impossible without further assumptions. We now ask

whether our understanding of how the two mechanisms interact in producing Y would permit

us to estimate P ∗(Y1 = 1).

5.3.2 Leveraging functional constraints

Our understanding that mortality is caused by either one of the two processes (prior health

conditions or bad luck in the game), dictates the following functional specification for the

structural equation of Y ,

Y = H ∨ (X ∧B) (5.1)

Where ∨ denotes the logical “or” operator, and ∧ denotes the logical “and” operator. Like

any structural equation, Equation 5.1 defines the potential outcomes Y0 and Y1 [109, Ch.7]

which we may now find useful to encode explicitly. Its first implication is that Y0 = H and

Y1 = H ∨ B = Y0 ∨ B. This tells us that, once we know the potential response of units

under no treatment (Y0) we do not need to know anything else about their previous health
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Figure 5.3: Selection diagram explicitly showing the potential outcomes Y0 and Y1 as implied
by the functional constraints. Note that Y1 ⊥⊥ S | Y0.

condition (H) to determine the value of Y1—B would suffice.5 We can represent this fact in

a modified selection diagram, in which the potential outcomes are now also shown explicitly

(Figure 5.3). The diagram reveals that Y0 blocks the source of health disparities between the

two populations, and we conclude that Y1 ⊥⊥ S | Y0.6

More concretely, consider the counterfactual quantity

PS01 := P (Y1 = 1 | Y0 = 0)

which stands for the share of people who would die if forced to play Russian Roulette, among

those who would not have died if not forced to do so. In other words, PS01 represents the

probability that the game of Russian Roulette is sufficient to kill a person during the trial.

The acronym PS01 was chosen to emphasize its relation to the “probability of sufficiency”

(PS), PS = P (Y1 = 1|Y = 0, X = 0), as defined and analyzed in [108] and [137]. In our

5Although here we have Y0 = H for simplicity, this need not be the case. The same argument would hold,
for instance, if we define H to be a random variable with arbitrary cardinality and Y = g(H)∨ (X ∧B), where
g(H) ∈ {0, 1}. Likewise, see Appendix 7.4.1 for an example where the treatment variable X is continuous
and the same strategy adopted here can be employed.

6Since some relationships in the graph may be deterministic, conditional independencies other than those
revealed by d-separation (with lower-case d) may be present. A complete criterion for DAGs with deterministic
nodes is given by the D-separation criterion (with capital D) of [67]. Moreover, note arrows between potential
outcomes need not convey causal influence; their purpose is merely to ensure that the correct conditional
independencies among variables are encoded in the graph, as derived from the structural equations. Finally,
here we are not treating the question of how scientists acquire scientific knowledge in the form of a functional
specification such as Equation 1. Rather, our task is more modest: given that scientists sometimes have
knowledge of mechanisms, how can we leverage some of that knowledge for identification.
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context, since the treatment is randomized, the two quantities coincide,

P (Y1 = 1|Y0 = 0) = P (Y1 = 1|Y0 = 0, X = 0) = P (Y1 = 1|Y = 0, X = 0)

where the first equality is licensed by the randomization of X and the second equality is due

to consistency. In general, however, PS01 need not be the same as PS—the later measures

the probability of fatal treatment among those who, given the choice, would choose not to

be treated and survive; the former measures the probability of fatal treatment among those

who would survive had they not been assigned for treatment.7 Similar reasoning holds for

PS10 := P (Y1 = 0 | Y0 = 1), which stands for the probability that playing Russian Roulette is

sufficient to save a person who would die if denied treatment. In our example, this probability

is obviously zero as we shall formally show below. The condition Y1 ⊥⊥ S | Y0, implied by

the diagram, states that these probabilities of causation are invariant across cities.8 This

feature of invariance, which is important in its own right, follows solely from our structural

assumption about the mechanisms involved.

A second implication of Equation 5.1 is that the treatment effect is monotonic, that is

Y1 ≥ Y0 for all individuals. This, in turn, implies PS10 = 0; in other words, an individual

that would have died of other causes during the trial, would still die if forced to play Russian

Roulette. It has been shown that monotonicity is sufficient for identifying PS01 in this setting

[108, 137, 78]. Indeed, by the law of total probability,

P (Y1 = 1) = (1− PS10)P (Y0 = 1) + PS01(1− P (Y0 = 1))

The quantity P (Y0 = 1) is given from the RCT (1%) and, due to monotonicity, PS10 = 0.

7For example, in legal settings, where acts are executed by choice, conditioning on the observed X gives a
more appropriate measure of an agent’s responsibility, as argued in [109] and [111].

8Probabilities of causation have been extensively studied elsewhere under a different context. See
[108, 137, 109].
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Thus, we have:

PS01 =
P (Y1 = 1)− P (Y0 = 1)

1− P (Y0 = 1)
=

17.5%− 1%

99%
= 1/6

This is not surprising; the probability that the “treatment” is sufficient to kill an individual

who would have otherwise survived indeed equals 1/6—the probability of having “bad luck”

in the game of Russian Roulette, using a revolver with six chambers.9

Thus far we have established that PS10 = PS∗10, PS01 = PS∗01, and that PS10 = 0,

PS01 = 1/6. Combining these results with the current baseline mortality from NYC, that is,

P ∗(Y0 = 1) = 5%, we can finally evaluate our target quantity P ∗(Y1 = 1),

P ∗(Y1 = 1) = (1− PS∗10)P
∗(Y0 = 1) + PS∗01(1− P ∗(Y0 = 1))

= (1− PS10)(5%) + PS01(95%)

= (1)(5%) + (1/6)(95%) = 20.8%

Which matches the intuitive answer obtained in Section 5.2.

As a brief remark, note that, if instead of Y1 ⊥⊥ S | Y0 we had obtained the condition

Y0 ⊥⊥ S | Y1, we would conclude that the probabilities PN01 := P (Y0 = 0 | Y1 = 1) and

PN10 := P (Y0 = 0 | Y1 = 1) are the same across trials. These quantities represent the

probability that the treatment is necessary for causing (PN01) or preventing (PN10) the

outcome during the experiment. All results of this chapter hold in this setting, with minor

modifications. Therefore, for simplicity of exposition, in the remainder of the text we discuss

the case of Y1 ⊥⊥ S | Y0 only.10

9The right-hand side of this expression is known as the “relative difference,” or “susceptibility.” Simple
algebra shows that P (Y1=1)−P (Y0=1)

1−P (Y0=1) = 1− 1−P (Y1=1)
1−P (Y0=1) , where the quantity 1−P (Y1=1)

1−P (Y0=1) is known as the “survival
ratio.” Since under the assumption of monotonicity these estimands identify PS01, and PS01 is invariant
across domains, it thus follows that the “relative difference” and the “survival ratio” will also be equal
between populations. [78] suggested using this fact as a rationale for assuming homogeneity of effect measures
across domains, a common heuristic among epidemiologists for approaching generalizability problems. These
equivalences, however, break down without monotonicity; in that case, the “relative difference” is a lower
bound for the probability of sufficiency [137], as we discuss next.

10For example, under the assumption of monotonicity, we have that PN01 = P (Y1=1)−P (Y0=1)
P (Y1=1) [108].
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5.3.3 Bounds without monotonicity

A key step in obtaining a point estimate for P ∗(Y1 = 1) was the monotonicity property, which

emanates from the functional form of Equation 5.1. Monotonicity allowed us to identify the

probabilities of sufficiency PS01 and PS10, which, as advertised by the assumptions in the

selection diagram of Figure 5.3, are invariant across domains. The monotonicity property

holds trivially in our example of the Russian Roulette, when Y represents death, but it may

not hold for other outcomes or, more generally, it may not hold in contexts beyond our

stylized example.

Remarkably, however, even in the absence of monotonicity, one can still assess the

transported causal effect, albeit in the form of a bound. The next theorem shows that the

counterfactual independence Y1 ⊥⊥ S | Y0 by itself is strong enough for bounding the causal

effect in the target domain. These results improve the bias analysis performed by [78],

and provide an exact characterization of the inferences compatible with the assumption of

Y1 ⊥⊥ S | Y0.

Theorem 2. Consider a source domain Π and a target domain Π∗. Let Pij := P (Yi = j),

P ∗ij := P ∗(Yi = j), and let RR = P11

P01
denote the risk-ratio in the trial of the source domain

Π. If Y1 ⊥⊥ S | Y0, then P ∗11 of Π∗ is bounded by P ∗L11 ≤ P ∗11 ≤ P ∗U11 , with,

P ∗L11 = RR× P ∗01 + min

{(
P01 − P ∗01

P01

)
PSL01,

(
P01 − P ∗01

P01

)
PSU01

}
,

P ∗U11 = RR× P ∗01 + max

{(
P01 − P ∗01

P01

)
PSL01,

(
P01 − P ∗01

P01

)
PSU01

}

where PSL01 = max
{

0, P11−P01

1−P01

}
and PSU01 = min

{
P11

1−P01
, 1
}

are the lower and upper bounds

on PS01, respectively.

This last estimand is known as the “excess-risk-ratio,” and algebra also shows that P (Y1=1)−P (Y0=1)
P (Y1=1) =

1− 1
P (Y1=1)/P (Y0=1) , where

P (Y1=1)
P (Y0=1) is the “risk ratio.” Thus in this setting, both the “excess-risk-ratio” and

the “risk ratio” would be equal across domains. Without monotonicity, the “excess-risk-ratio” is a lower bound
on the probability of necessity [137].
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Proof. The bounds are obtained by solving a linear optimization problem, as detailed in

Appendix 7.4.2.

Theorem 2 can be better understood as a two-stage process. First, with a little algebra,

it is possible to re-express P ∗(Y1 = 1) as a function of PS01 alone, resulting in,

P ∗(Y1 = 1) = RR× P ∗(Y0 = 1) +

(
P (Y0 = 1)− P ∗(Y0 = 1)

P (Y0 = 1)

)
PS01 (5.2)

Where RR = P (Y1 = 1)/P (Y0 = 1) denotes the risk-ratio obtained in the trial of the source

domain Π. The first term of this expression, RR × P ∗(Y0 = 1), consists of the “naive”

prediction for P ∗(Y1 = 1) that one would have obtained by assuming a constant risk ratio

across populations. The second term adjusts this naive prediction, by taking into account

both the excess risk-ratio of contrasting the baseline mortality between Π and Π∗, as well as

the probability of sufficiency shared across environments, PS01.

After this, note that, although the probability of sufficiency PS01 in Equation 5.2 cannot

be point identified, it can be bounded by (see Appendix 7.4.2 as well as [137])

max

{
0,
P (Y1 = 1)− P (Y0 = 1)

1− P (Y0 = 1)

}
≤ PS01 ≤ min

{
P (Y1 = 1)

1− P (Y0 = 1)
, 1

}
(5.3)

Thus, by substituting PS01 with its bounds, we obtain the desired bounds for the target

quantity P ∗(Y1 = 1).

For instance, in our Russian Roulette example, regardless of whether monotonicity holds,

PS01 can be bounded by

16.7% ≤ PS01 ≤ 17.7%

And this assures us that P ∗(Y1 = 1) must lie between,

16.8% ≤ P ∗(Y1 = 1) ≤ 20.8%

To put it another way, the results of the trial in LA tells us that implementing the policy in
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NYC would cause at least an increase of 16.8%− 5% = 11.8% and at most an increase of

20.8%− 5% = 15.8% in mortality. Note that, here, substituting the lower bound for PS01

(16.7%) actually translates to the upper bound for P ∗(Y1 = 1) (20.8%). This happens because

the baseline risk in the target population Π∗ is higher than that of the source population Π,

and thus the adjustment due to PS01, in Equation 5.2, is negative.

These considerations naturally lead to the question: in general, how informative are

the bounds on P ∗(Y1 = 1)? It turns out that the width of the bounds have a simple

characterization. Consider the case in which the bounds for PS01 are not zero nor one.

Now let P ∗U(Y1 = 1) and P ∗L(Y1 = 1) denote the upper and lower bound on P ∗(Y1 = 1),

respectively. After some algebra, it is possible to show that (see Appendix 7.4.2),

P ∗U(Y1 = 1)− P ∗L(Y1 = 1) =
|P (Y0 = 1)− P ∗(Y0 = 1)|

1− P (Y0 = 1)
(5.4)

That is, in this setting, the width of the bounds depends on the baseline risks P (Y0 = 1) and

P ∗(Y0 = 1) alone. Moreover, even if the bounds for PS01 happen to be “wide,” if the baseline

risks are close enough across populations, the bounds for P ∗(Y1 = 1) can still be “narrow.” In

Section 5.4 we illustrate this fact with a real data example in which the bounds are narrow

enough to imply a positive effect of the treatment.

5.3.4 Identification with trials from multiple source domains

In Theorem 2 we learned that the existence of experimental data from one source population

leads to bounds on the transported causal effect of the target population, although it is

not enough for its point identification. Surprisingly, however, if we can obtain experimental

data from an additional source population, this suffices to change the picture. With two

source trials, it is possible to obtain a point estimate for the probabilities of sufficiency, and,

consequently, for P ∗(Y1 = 1) without invoking monotonicity, nor any further assumptions

beyond Y1 ⊥⊥ S | Y0. Moreover, multiple source trials entail strong testable implications that
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can be used to falsify this “cross-world” assumption.11

To illustrate, consider our Russian Roulette example, and suppose we learn that the city

of Chicago has also performed an RCT. In that trial, 25% of those assigned to play the game

died, in contrast to 10% of those not assigned to play. If the selection diagram contrasting

NYC with Chicago is the same as that of Figure 5.3, we can combine the results from LA

and Chicago to estimate the probabilities of sufficiency shared across cities. By the law of

total probability, expand the expression for P (Y1 = 1), both for LA and Chicago, to obtain a

system of two equations and two unknowns:

(LA Equation): 0.175 = (1− PS10)× 0.01 + PS01 × 0.99 (5.5)

(Chicago Equation): 0.250 = (1− PS10)× 0.10 + PS01 × 0.90 (5.6)

This system can then be solved for PS10 and PS01

PS10 = 0, PS01 = 1/6

Put differently, the only values for PS10 and PS01 that are compatible with the observed

data from both trials (LA and Chicago) are that: (i) the “treatment” cannot save anyone

from dying; and, that (ii) the treatment kills 1/6 of those who would not have died otherwise.

These are the same numeric values as before, but with an important difference—we did not

assume monotonicity to obtain point identification; instead, we learned from the data that

the treatment effect must be monotonic. Once we have these numbers, we can use the same

strategy as before to predict the causal effect in NYC, which amounts to, again, 20.8%.

Furthermore, since PS10 and PS01 must be valid probabilities, not all observed values

are compatible with the assumption that Y1 ⊥⊥ S | Y0. For instance, suppose that instead

of 10%, the observed baseline mortality rate in Chicago were 5%. This would imply the

impossible value PS10 = −1.03, thus falsifying the assumption of invariance across domains.

11Similar observations regarding testable implications when combining information from multiple studies
have also been made in [71], [95] and [44].
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It is also easy to see that with three or more source domains we obtain over-identification,

since each population pair implies different estimates for PS10 and PS01. If those estimates

are discordant, this calls into question the assumption of Y1 ⊥⊥ S | Y0. These results are

somewhat reassuring. They tell us that, despite its “cross-world” nature, the assumption of

invariance of probabilities of causation across domains may have strong testable implications,

and can thus be subjected to empirical scrutiny.

We formalize the previous considerations with the next two theorems.

Theorem 3. Consider two source domains Πa and Πb. Let the probabilities of sufficiency be

the same across the two populations, that is, PSa01 = PSb01 = PS01 and PSa10 = PSb10 = PS10.

Then,

PS10 = 1− P a
11P

b
00 − P b

11P
a
00

P a
01P

b
00 − P b

01P
a
00

PS01 =
P b
11P

a
01 − P a

11P
b
01

P a
01P

b
00 − P b

01P
a
00

Where P a
ij := P a(Yi = j) and P b

ij := P b(Yi = j). Moreover, the experimental probabilities

of necessity, and probability of necessity and sufficiency [137] of both populations are also

identifiable from experimental data of Πa and Πb.

Proof. As explained in the text, we can use the law of total probability for each domain to

obtain two linear equations with two unknowns, PS01 and PS10. We can thus (generically)

solve the system of equations for those quantities. Interestingly, in this setting, not only the

probabilities of sufficiency, but all remaining probabilities of causation (as discussed in [137]),

are also identifiable. See details in Appendix 7.4.2.

Next, the causal effect for a target population Π∗ can be transported by appealing again

to the law of total probability.

Theorem 4. Consider two source domains Πa, Πb, and a target domain Π∗. Let the

probabilities of sufficiency be the same across populations, that is, PSa01 = PSb01 = PS∗01 and
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PSa10 = PSb10 = PS∗10. Then, the causal effect P ∗11 in Π∗ is given by,

P ∗11 =
P a
11P

b
00 − P b

11P
a
00

P a
01P

b
00 − P b

01P
a
00

× P ∗01 +
P b
11P

a
01 − P a

11P
b
01

P a
01P

b
00 − P b

01P
a
00

× P ∗00

5.4 A Bayesian approach to estimation

The previous results focused on identification, that is, they are “asymptotic,” and assume that

the measured quantities are representative of their corresponding quantities in the population.

In practice, however, researchers need to take sampling uncertainty into account. In this

section, we describe a Bayesian framework that practitioners can easily put to use for finite

sample inference. A Bayesian approach is especially suited for this setting—when the target

quantity P ∗(Y1 = 1) is not identifiable from the data alone, preference for any value of the

parameter within the identified bounds must rely on prior knowledge.

5.4.1 Model specification

The Bayesian specification of our model can be simplified if we use counts. For the source

population Π, let n0 denote the sum of individuals with Y = 1 in the control group, and let

n1 denote the sum of individuals with Y = 1 in the treatment group. Likewise, let n∗0 and n∗1

denote those quantities for the target population Π∗. Note that n∗1 is not observed, since the

target population is under the “no-treatment” regime.

Now let us use the same notation of Theorem 2 to denote population parameters, that

is: P11 := P (Y1 = 1), P01 := P (Y0 = 1), P ∗01 := P ∗(Y0 = 1), P ∗11 := P ∗(Y1 = 1). Given that

the outcome variable Y is binary, the sum of individuals with Y = 1 follows a binomial

distribution, and we can write the model for the observed data D = {n0, n1, n
∗
0} as,

n0 ∼ Binomial(N0, P01) (5.7)

n1 ∼ Binomial(N1, P11) (5.8)

n∗0 ∼ Binomial(N∗0 , P
∗
01) (5.9)
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P01

n0

P11

n1

PS10

P ∗11

PS01

P ∗01

n∗0

Figure 5.4: Probabilistic graphical model for Bayesian inference when the quantity of interest
is P ∗11. Gray nodes (n0, n1, n∗0) denote observed variables. White notes denote latent
parameters (P01, P11, PS10, PS01, P ∗11, P ∗01). Note that P11 and P ∗11 share the parameters PS10

and PS01, which are invariant across populations.

where N0 denotes the total number of individuals in the control arm, and N1 the total number

of individuals in the treatment arm of the trial in the source population; N∗0 denotes the

total sample size of the target population (which is under the no-treatment regime). We

treat N0, N1 and N∗0 as known fixed quantities. Note the observed data depends only on the

parameters P01, P11 and P ∗01.

We now need to specify the prior distribution of the parameters and the target quantities

of interest. Here we describe two general alternatives, depending on whether the researcher

is interested in making inferences directly on P ∗11 (which in general will not be identified

from the data), or on its bounds (which are identified)—we believe these two approaches are

complementary, and we encourage investigators to explore both options (see also 116, 70, 128).

Inference on P ∗11. As discussed in the previous section, we have that P11 is a deterministic

function of PS10, PS01 and P01, that is, P11 = (1 − PS10)P01 + PS01(1 − P01). Therefore,

we need only to specify priors for the parameters P01, P ∗01, PS10 and PS01. For example,

an “uninformative” (or “flat”) prior consists of a uniform distribution over 0 and 1 for

all parameters. Another option is to choose a prior that incorporates the assumption of

monotonicity, by setting a point mass on PS10 = 0. Users have the flexibility of picking

anything in between, such as setting a prior that puts most, but not all, of the mass on

PS10 = 0, for instance. The target of inference is the posterior distribution of P ∗11, which is,
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again, a transformation of the parameters P ∗01, PS10 and PS01,

P ∗11 = (1− PS10)P
∗
01 + PS01(1− P ∗01)

As we shall see, with a “flat” prior, as the sample size increases the posterior distribution

remains spread on the identified bounds; whereas with a prior that assumes monotonicity the

posterior converges to the identified point estimate. Other quantities of interest may be the

posterior distribution of certain effect measures, such as the risk difference RD∗ = P ∗11−P ∗01
or the risk ratio RR∗ = P ∗11/P

∗
01. Figure 5.4 shows the probabilistic graphical model of this

setup, with observed variables in gray, and latent parameters in white. The known fixed

parameters N0, N1 and N∗0 are omitted for clarity.

Inference on bounds. When making inferences on P ∗11 (which is not identified), the shape

of its posterior will be dependent on (but not completely determined by) the shape of the

prior of the unidentified quantities PS01 and PS10, regardless of sample size. For this reason,

users may also find useful to perform inference directly on the bounds P ∗L11 and P ∗U11 (which

are identified). While the previous framework can still be used for such inferences, we note

that, if interest lies on the bounds alone, there is a simpler alternative—as the bounds are

functionals of the observed data, inference about P ∗L11 and P ∗U11 only requires priors on the

identified parameters P01, P11 and P ∗01 [116, 128].

Sampling. Given the observed data D and a prior distribution on the parameters, one can

obtain the posterior distribution of the target quantities using Gibbs sampling. Here we use

the Gibbs sampler JAGS [115]. Extending the model to two (or more) source populations

follows the same logic, thus we defer its discussion to Appendix 7.4.4. Next, we demonstrate

the method using: (i) simulated data from the Russian Roulette example; and, (ii) real data

from trials that investigate the effects of vitamin A supplementation on childhood mortality.

Code for replicating all results is also provided in Appendix 7.4.4.
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5.4.2 Simulated data example

To illustrate the method, we start by applying our tools to simulated data drawn from a

process with the same proportions as the Russian Roulette example, with various sample sizes.

We show the posterior distribution of P ∗(Y1 = 1) using both a “flat” prior for all parameters,

and a prior assuming monotonicity. The results are shown in Figures 5.5 and 5.6.

Let us start by examining Figure 5.5. Here we set “flat” priors for all parameters. Note

that, as per Theorem 2, the posterior distribution remains spread in the asymptotic bounds

of 16.8% and 20.8% regardless of sample size. Moving to Figure 5.6, we now set a point mass

prior on PS10 = 0, representing the assumption of monotonicity. The remaining parameters

continue to have a “flat” prior. As expected, the posterior distribution now concentrates

around 20.8% as the number of cases increases.

5.4.3 Real data example

We now illustrate our method with a real data example. We investigate three experiments

designed to determine the effects of vitamin A supplementation on childhood mortality. The

first trial was carried out in the Aceh province at the northern tip of Sumatra, Indonesia [132];

the second trial was conducted in the West Java province, in Java, also in Indonesia [102].

Finally, the third trial took place in the district of Sarlahi, Nepal [144]. The results from the

studies are shown in Table 5.1. Our exercise in this section consists of using the results of

earlier trials, along with the baseline risk of the target population, to predict mortality under

treatment in the target population.

Study Treatment Control

Survived Total Survived Total

Aceh [132] 12,890 12,991 12,079 12,209
West Java [102] 5,589 5,775 5,195 5,445
Sarlahi [144] 14,335 14,487 13,933 14,143

Table 5.1: Observed data for the vitamin A studies.
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Figure 5.5: Histograms of the posterior samples of P ∗(Y1 = 1) for a simulation of the Russian
Roulette data, considering different sample sizes 100, 1, 000 and 10, 000. Here all parameters
have a “flat” prior. Note that, as the sample size increases, the posterior distribution does
not concentrate on a point; rather, the posterior remains spread on the identified bound of
16.8% to 20.8%, as per Theorem 2.

Figure 5.6: Histograms of the posterior samples of P ∗(Y1 = 1) for a simulation of the
Russian Roulette data, considering different sample sizes 100, 1, 000 and 10, 000. Here we
put a point mass prior on PS10, corresponding to the assumption of monotonicity. The
remaining parameters have a “flat” prior. Note that, as the sample size increases, the posterior
distribution concentrates on 20.8%, since the parameter is identifiable in this setting.
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It is suspected that vitamin A reduces childhood mortality by reducing the incidence,

severity or duration of life-threatening diseases such as measles and diarrhoea [144]. As a

first approximation to this process, we can borrow the same disjunctive model of the previous

section. The variables now mean: (i) Y = 1 survival, and Y = 0 death during the trial;

(ii) H = 1 absence, and H = 0 presence of severe measles; (iii) X = 1 participation in the

treatment group (vitamin A supplementation), and X = 0 participation in the control group;

finally, (iv) B summarizes biological factors that determine the response to treatment (B = 1

successful response, B = 0 otherwise). Here the monotonicity assumption states that vitamin

A supplementation does not cause deaths. After presenting the results of our method, we

discuss cases under which these assumptions may be violated, thus preventing one from

inferring Y1 ⊥⊥ S | Y0.

Our first task is to use the results of the Aceh trial (ΠA) to predict the effects of the

West Java trial (ΠWJ). The estimates of the Aceh trial are P̂A(Y1 = 1) = 0.992 and

P̂A(Y0 = 1) = 0.989; whereas the baseline risk in the Java trial is P̂WJ(Y0 = 1) = 0.954. As

expected, note the large discrepancy of baseline risk in both trials, indicating the existence of

structural differences in how mortality is determined, and thus forbidding a direct transport of

PWJ(Y1 = 1). Figure 5.7 shows the posterior distribution of PWJ(Y1 = 1) using both a “flat”

prior for all parameters (left), and a prior assuming monotonicity for the effect of vitamin

A supplementation (right). In the first case, we obtain a 95% credible interval of 0.962 to

0.992 for PWJ(Y1 = 1), in agreement with the asymptotic bounds of Theorem 2—this shows

that, even without assuming monotonicity, the bounds are narrow enough to be consistent

with a positive effect of vitamin A supplementation in West Java.12 When assuming a

monotonic effect of vitamin A, we obtain the posterior mean of 0.967 (95% CI 0.956–0.975).

In both plots, a red dashed line indicates the actual value observed in the West Java trial,

P̂WJ(Y1 = 1) = 0.968, which is consistent with the predictions of our method.

12The 95% credible intervals for the risk difference and risk ratio are 0.008–0.04 and 1.009–1.042, respectively.
Alternatively, if one prefers inferences on the bounds, we have 95% credible intervals of: 0.955–0.975 for the
lower bound, 0.991–0.994 for the upper bound, and 0.002–0.020 for the lower bound of the risk difference (i.e,
P ∗L11 − P ∗01).
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Figure 5.7: Posterior of PWJ(Y1 = 1) for the West Java trial, using data from the Aceh trial.
Left: posterior of PWJ(Y1 = 1) using “flat” priors. Right: posterior of PWJ(Y1 = 1) assuming
monotonicity. Red dashed lines show the observed value in the West Java trial, P̂WJ(Y1 = 1).

Figure 5.8: From left to right, posterior of PS01, PS10 and P S(Y1 = 1) using data from both
the Aceh and West Java trials [132, 102], and using “flat” priors for all parameters. Dashed
red line indicates the observed value in the Sarlahi trial, P̂ S(Y1 = 1).

127



Our second task is to use the results of both the Aceh (ΠA) and West Java (ΠWJ) trials

to predict the effects of the Sarlahi trial (ΠS). As per Theorems 3 and 4, in this setting we

can identify the probabilities of sufficiency shared across regions, PS10 and PS01, as well as

the effect in Sarlahi, P S(Y1 = 1), without assuming monotonicity. The posterior distributions

of these three quantities are displayed in Figure 5.8. The posterior mean for PS01 is 0.346

(95% CI 0.214–0.478), while the posterior mean for PS10 is 0.001 (95% CI 0.000–0.004). This

suggests that, in the context of these trials, vitamin A supplementation is sufficient to prevent

21% to 48% of the deaths that would have otherwise occurred without supplementation,

while it has no or little side-effects that are sufficient to cause the death of otherwise healthy

subjects. Finally, we obtain the posterior mean of 0.989 (95% CI 0.987–0.991) for P S(Y1 = 1),

consistent with the actual value observed in the Sarlahi trial, P̂ S(Y1 = 1) = 0.989.

Before moving to the conclusions, let us use this example to make some brief remarks

about causal modeling in practice. Note that the working model in this section assumes the

only factor causing deaths during the period of the trial can be summarized by H, consisting

of diseases which, at least in principle, can be affected by the treatment (e.g, severe measles

or diarrhoea). What happens, however, if we augment the model to allow for other causes of

deaths unaffected by vitamin A supplementation? It can be shown that this new variable is

a common cause of both potential responses, thus creating a colliding path and forbidding

the conclusion that Y1 ⊥⊥ S | Y0.13 This suggests caution when transporting these results to

populations where mortality due to diarrhoea or measles is not predominant.

More generally, while one may summarize the main “identification assumption” for the

results in this chapter in terms of the counterfactual independence Y1 ⊥⊥ S | Y0, note we did

not commence the analysis by imposing this or any “identification assumption.” Instead, we

made an effort to explicate our understanding of the problem directly in a structural model,

and the necessary counterfactual independence emerged naturally as a logical consequence of

13Call these new causes C. The new structural equation for Y now reads Y = (H ∨ (X ∧B)) ∧ ¬C. This
leads to Y0 = H ∧¬C and Y1 = Y0 ∨ (B ∧¬C). Note this creates the colliding path S → H → Y0 ← C → Y1,
thus forbidding the conclusion that Y1 ⊥⊥ S | Y0, even when there is no selection node pointing directly to C.
For another illustration of when collider bias may arise, see Appendix 7.4.3.
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the structure. This is an important part of the process. If some of those modeling assumptions

happen to be challenged, as they often are in practical settings (e.g, unobserved confounding

between H and B), we should refrain from positing that Y1 ⊥⊥ S | Y0 and the model both

warns us of possible threats, as well as helps us in finding alternative solutions.14

5.5 Conclusions

This chapter showed how two apparently separate areas of causal inference research—the

generalization of causal effects across populations [113, 16, 78] and the identification of “causes

of effects” [108, 137, 111, 112]—can be merged for mutual benefit, unveiling important results

in both areas.

The first lesson that emerges from this combined analysis is that certain functional

constraints may entail the invariance of probabilities of causation across domains, which can

then be used as instruments to license generalization. This may occur when the outcome is a

product of several independent processes, only some of which are carriers of disparities, and

when the outcome produced under the “no-treatment” condition is sufficient to block these

sources of disparity. These functional constraints may enable the identification, or at least

the bounding of the target effect in settings where non-parametric generalization is otherwise

impossible.

A second lesson that surfaces from our investigation is that, whenever experimental data

from multiple sites are available, these may lead to the point identification of probabilities of

causation. These counterfactual probabilities can be the targets of investigations in public

health, legal settings, and the production of explanations [101, 111, 112]. For example, drugs

with a positive average treatment effect may still kill individuals who would have otherwise

survived—being able to quantify the percentage of individuals that are saved or harmed by

the treatment has important implications in many public health applications.

14For example, a sensitivity analysis might still be possible, and one could investigate how big a departure
from the original model assumptions would be necessary to invalidate the main conclusions.
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The development of tools for automating the types of analyses presented here, paralleling

those available for non-parametric models, is a challenging topic for future work. As we have

seen, determining the invariance of probabilities of causation requires additional constraints

beyond the standard non-parametric model; some recent developments, such as algorithms

for handling context-specific independencies for causal identification [139], may provide the

initial steps towards this undertaking.
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CHAPTER 6

Conclusion

In this dissertation we developed new theory, methods, and software for drawing causal

inferences under more flexible and realistic settings. More specifically, Chapters 2 and 3

developed a novel powerful, yet simple, suite of sensitivity analysis tools for popular methods,

such as confounding adjustment and instrumental variables; Chapter 4 devised the first

systematic, algorithmic approach to sensitivity analysis for arbitrary linear structural causal

models, subsuming many previous canonical results of prior literature; and Chapter 5 derived

novel (partial) identification results both for the generalization of causal effects across

populations as well as for the identification of “causes of effects.” Each of these projects

represent an ongoing research agenda, with promising directions for future work.

In particular, I believe the methods developed in Chapters 2 and 3 have the potential

to quickly become the de-facto standard for sensitivity analysis, and soon be ubiquitous

in applied papers. An extension of the methods presented in Chapter 3 to the area of

Mendelian Randomization (using genetic variants as instrumental variables) is already under

work [38]. Short to medium term goals in this area should include the development of a suite

of sensitivity analysis tools for panel data methods and regression discontinuity designs, as

well as extending these results to more flexible semiparametric models. This would cover the

bulk of the main methods that are currently widely used in applied work, making sensitivity

analysis easy to peform, routine and standard practice across the applied sciences.

The overarching theme around the results of Chapter 4 is to devise new ways to represent

soft constraints on the data generating process (or alternative constraints currently neglected

by traditional theory), along with tools to systematically derive (partial) identification results
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leveraging such constraints. I believe this will be an indispensable part for a modern, flexible

and trustworthy approach to causal inference, that allows for modeling assumptions that

better match the researcher’s domain knowledge. Recent explorations in this direction include

incorporating arbitrary relative constraints among causal effects in linear structural models

[147], leading to interesting new identification results (such as generalizing the well known

differences-in-differences method), or to the ability to systematically leverage knowledge

of “variable importance” for benchmarking in sensitivity analysis (as in Section 2.4.4, for

instance). Exploiting non-zero constraints on path-specific effects has also led to a new

state-of-the-art algorithm for traditional linear identification itself [89]. All these results,

however, still rely on the strong assumption of linearity for all variables of the system, and

an important direction for future endeavours is to obtain similar results for non-parametric

models.

Finally, extensions on the work of generalizability and probabilities of causation of

Chapter 5 include a refined taxonomy of causal estimands for these counterfactual quantities,

improved bounds from multiple domains, without requiring strict equality of probabilities of

causation, as well as a more robust Bayesian workflow for inference with finite samples under

partial identification.
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CHAPTER 7

Appendices

7.1 Appendix for Chapter 2

7.1.1 Simple measures for routine reporting

7.1.1.1 Preliminaries

For any univariate regression, recall R2 = t2/(t2 + df), t2 =
(

R2

1−R2

)
df, and f 2 = R2

1−R2 = t2

df ,

where df is the regression’s degrees of freedom. Repeating the partialling out procedure to

allow for covariates, the partial R2 of any covariate can be written in terms of its coefficient’s

t statistic and vice-versa. For instance, the partial R2 of the confounder with the treatment,

conditional on X, can be written as

R2
D∼Z|X =

t2
δ̂

t2
δ̂

+ df
. (7.1)

Analogously,

f 2
D∼Z|X =

R2
D∼Z|X

1−R2
D∼Z|X

=
t2
δ̂

df
. (7.2)

Where δ̂ is the coefficient of the regression equation Z = δ̂D+Xψ̂+ ε̂Z , and tδ̂ is the t-value

corresponding to δ̂.
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7.1.1.2 General strength of a confounder

Consider a confounder strong enough to change the estimated treatment effect by (100×q∗)%.

This means that |b̂ias| = q∗|τ̂res|. Hence, by equation 2.13 we have that

q∗|τ̂res| =

√√√√R2
Y∼Z|D,X R2

D∼Z|X

1−R2
D∼Z|X

ŝe(τ̂res)
√
df. (7.3)

Dividing both sides by ŝe(τ̂res)
√
df and noting |τ̂res|

ŝe(τ̂res)
√

df
=
|tτ̂res |√

df
= fY∼D|X , we obtain

q∗|fY∼D|X | =

√√√√R2
Y∼Z|D,X R2

D∼Z|X

1−R2
D∼Z|X

(7.4)

= |RY∼Z|D,X × fD∼Z|X | (7.5)

= BF. (7.6)

That is, to bring the estimated effect down by (100 × q∗)%, the bias factor (BF) of the

confounder
(
RY∼Z|D,XfD∼Z|X

)
has to equal q∗ times the partial f of the treatment with the

outcome.

7.1.1.3 Extreme sensitivity scenarios

Considering the extreme case scenario where the confounders explain all the residual variance

of the outcome, that is, R2
Y∼Z|D,X = 1, a confounder strong enough to bring down the

estimated effect to zero (that is q∗ = 1) would need to satisfy f 2
Y∼D|X = f 2

D∼Z|X which implies

R2
Y∼D|X = R2

D∼Z|X . This shows the partial R2 of the treatment with the outcome is itself a

measure of an extreme-scenario sensitivity analysis.
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7.1.2 The Robustness Value (RV)

Now consider a confounder with R2
Y∼Z|D,X = R2

D∼Z|X = RVq∗ . Rearranging terms and

squaring Equation 7.4, one obtains

RV2
q∗ + f 2

q∗RVq∗ − f 2
q∗ = 0, (7.7)

where fq∗ := q∗|fY∼D|X |. Solving the quadratic equation for RVq∗ ,

RVq∗ =
1

2

(√
f 4
q∗ + 4f 2

q∗ − f 2
q∗

)
(7.8)

gives us the equation for the robustness value for the point estimate. Note that, since the

derivative of the bias with respect to both sensitivity parameters is positive, any confounder

with both associations below RVq∗ is not strong enough to bring about a relative bias of q∗.

RV for t-values, or lower and upper bounds of confidence intervals

Imagine the researcher wants to know how strong a confounder would need to be for a

100(1− α)% confidence interval to include a change of (100× q∗)% of the treatment estimate.

Consider again a confounder with equal association with the treatment and the outcome,

R2
Y∼Z|D,X = R2

D∼Z|X = RVq∗,α. By Equation 2.13,

|τ̂ | = |τ̂res| − ŝe(τ̂res)
RVq∗,α√

1− RVq∗,α

√
df, (7.9)

where we are assuming the bias reduces the absolute value of the estimated effect. For the

opposite direction the subtraction would be changed to addition. Further, for any confounder

with equal association with the treatment and the outcome, Equation 2.12 for the adjusted

standard error simplifies to

ŝe(τ̂) = ŝe(τ̂res)
√

df
df− 1

. (7.10)
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Let |t∗α,df−1| denote the t-value threshold for a t-test with significance level of α and df− 1

degrees of freedom, and define f ∗α,df−1 := |t∗α,df−1|/
√
df− 1. Now note that, for the adjusted

t-test to not reject the hypothesis H0 : τ = (1− q)τ̂res, we must have

|t∗α,df−1| ≥
|τ̂ | − (1− q∗)|τ̂res|

ŝe(τ̂)
(7.11)

≥
q∗|τ̂res| − ŝe(τ̂res)

RVq∗,α√
1−RVq∗,α

√
df

ŝe(τ̂res)
√

df
df−1

(7.12)

≥

(
q∗|fY∼D|X | −

RVq∗,α√
1− RVq∗,α

)
√
df− 1. (7.13)

Divide by
√
df− 1 and rearrange terms to obtain,

RVq∗,α√
1− RVq∗,α

≥ fq∗ − f ∗α,df−1 = fq∗,α, (7.14)

where we define fq∗,α := fq∗ − f ∗α,df−1. Our goal is to find the minimal strength of the

confounder RVq∗,α (which must be positive) such that this inequality holds. Thus, we have

two cases. If fq∗,α < 0, then trivially RVq∗,α = 0. This happens when an inclusion of a

covariate with zero predictive power would be enough not to reject the null hypothesis, either

because the t-value is already low enough, or because it becomes low enough after adjusting

for the loss in degrees of freedom.

Now consider the case where fq∗,α > 0, which means the minimum will happen in the

equality. Rearrange terms and square to obtain,

RV2
q∗,α + f 2

q∗,αRVq∗,α − f 2
q∗,α = 0. (7.15)

Solving the quadratic equation for RVq∗,α gives us the robustness value for a reduction of

(100× q∗)% to not be rejected at the significance level α,

RVq∗,α =
1

2

(√
f 4
q∗,α + 4f 2

q∗,α − f 2
q∗,α

)
. (7.16)
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Note that, due to the variance reduction factor of Equation 2.15, it could be the case

that increasing the sensitivity parameter R2
Y∼Z|D,X helps with statistical significance. When

this happens, there can exist a set of confounders with lower R2
Y∼Z|D,X and R2

D∼Z|X than

RVq∗,α able to drive the t-statistic below significance. To check for such cases, we need to

verify whether the derivative of the adjusted t-value with respect to R2
Y∼Z|D,X is negative

(the derivative with respect to R2
D∼Z|X is always negative). The t-value for τ̂ for testing the

null hypothesis H0 : τ = (1− q)τ̂res can be written as,

tτ̂ ,q∗ =
τ̂ − (1− q∗)τ̂res

ŝe(τ̂)
=
fq∗
√

1−R2
D∼Z|X −

√
R2
Y∼Z|D,X

√
R2
D∼Z|X

1−
√
R2
Y∼Z|D,X

×
√
df− 1 (7.17)

Dividing by
√
df− 1 and taking the derivative with respect to R2

Y∼Z|D,X gives us,

∂tτ̂ ,q∗

∂R2
Y∼Z|D,X

=
fq∗
√

1−R2
D∼Z|X

√
R2
Y∼Z|D,X −

√
R2
D∼Z|X

2
√
R2
Y∼Z|D,X(1−R2

Y∼Z|D,X)3/2
(7.18)

Equation 7.18 is negative when the numerator is less than zero, that is, when

R2
D∼Z|X

(1−R2
D∼Z|X)R2

Y∼Z|D,X
> f 2

q∗ (7.19)

For the point of equal association, R2
Y∼Z|D,X = R2

D∼Z|X = RVq∗,α, the condition in Equa-

tion 7.19 simplifies to RVq∗,α > 1− 1/f 2
q∗ . Note that, since RV ≥ 0 this condition will often

hold—for instance, for q∗ = 1, whenever the partial R2 of the treatment with the outcome is

less or equal to 50%, the first order condition is guaranteed to hold.

When condition 7.19 does not hold, Equation 7.16 is still a useful and meaningful reference

point of a specific contour line. However, one may want to alternatively define the RVq∗,α as

the maximum bound on both coordinates such that any confounder with (both) associations

below that bound cannot bring the t-value below the chosen critical level. In that case, given

a bound of RVq∗,α on both coordinates, we can solve the following constrained minimization
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problem,

min
R2
Y∼Z|D,X ,R2

D∼Z|X

tτ̂ ,q s.t. R2
Y∼Z|D,X ≤ RVq∗,α and R2

D∼Z|X ≤ RVq∗,α (7.20)

Since the derivative of the adjusted t-value with respect to R2
D∼Z|X is always negative,

the optimum R2
D∼Z|X always reaches the bound. Next we have two cases: when (i) the

derivative of the solution with respect to R2
Y∼Z|D,X is negative, this means the optimum for

both arguments reach the bound, and solving for a specific t-value threshold gives RVq∗,α

as before (Equation 7.16); when (ii) the derivative of the solution with respect to R2
Y∼Z|D,X

is zero, then the optimal R2
Y∼Z|D,X is an interior point, which by Equation 7.19 equals

R2
Y∼Z|D,X = RVq∗,α/((1 − RVq∗,α)f 2

q∗). Solving for a specific t-value threshold gives us the

bound,

RVq∗,α =
f 2
q∗ − f ∗2α,df−1

1 + f 2
q∗

(7.21)

Finally, note that if one picks the threshold |t∗α,df−1| = 0 then RVq∗,α trivially reduces to

RV∗q. Also note that, for fixed |t∗α,df−1|, when df → ∞ we have that RVq∗,α → RVq∗ , since

standard errors become irrelevant when compared to the bias of the point estimate.

7.1.2.1 Impact thresholds [58] for non-zero null hypothesis

In Section 2.6.1 we showed that a confounder’s impact, as defined in [58], does not fully

characterize the minimal strength of confounding necessary to bring about a certain amount

of bias in the regression coefficient, except when the relative bias is unity (that is, when

the null hypothesis of interest is zero). Thus, the impact thresholds obtained in [58] under

the null of zero (in which case RY∼Z|X = RD∼Z|X) cannot be immediately generalized to

non-zero null hypotheses. Here we provide a simple illustrative numerical example. Consider

the case with no observed covariates X, a single unobserved confounder Z, all variables

standardized to mean zero and unit variance and a sample of size 1, 000. Suppose τ̂res = 0.5,
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ŝe(τ̂res) = 0.0274 and that we want to learn the minimal strength of Z necessary to bring

this estimate to τ̂ = −0.5 (a relative bias of 2). Solving the bias equation for the case

where RY∼Z|X = RD∼Z|X one would obtain an impact threshold of 2/3. However, this is

not the minimal impact that would make τ̂ = −0.5. As a counterexample, a confounder

with an impact as low as 0.51 is sufficient to bring about a change of this magnitude, with

RY∼Z|X = 0.515 and RD∼Z|X = 0.99.

7.1.3 Formal benchmark bounds

Suppose the researcher has substantive knowledge that certain covariates are “the most

important predictors of the outcome” and other covariates “the most important predictors of

the treatment assignment.” Imagine, also, that the researcher is willing to defend the claim

that the unobserved confounder Z is not “as strong” as those covariates.

In order to use this information for bounding the strength of the confounder Z, we need

to give it an operational meaning. We operationalize these types of claim as comparisons

of the explanatory power of the confounder vis-a-vis the explanatory power of the observed

covariates. Mathematically, we can quantify these comparisons using total or partial R2

measures. Here we will assume that Z ⊥ X or, equivalently, that the following analysis

applies to the part of Z not linearly explained by covariates X.

7.1.3.1 Comparing the total R2 of covariates with the total R2 of the confounder

Although in the text we use the bounds by comparing partial R2 measures, perhaps the

simplest derivation is the comparison of the total R2 of observed covariates with the total R2

of the unobserved confounder Z. Consider an example in which the observed covariate Xj

is assumed to be an important predictor of the treatment assignment D. If the researcher

believes the correlation of Xj with D to be stronger than the correlation of Z with D, this
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implies,

R2
D∼Z < R2

D∼Xj . (7.22)

We could use the same argument for comparing R2
Y∼Z with R2

Y∼Xj . As it happens, such

claims are sufficient to bound the sensitivity parameters. Let us generalize this notion by

defining,

kD :=
R2
D∼Z

R2
D∼Xj

, kY :=
R2
Y∼Z

R2
Y∼Xj

. (7.23)

That is, kD and kY measure how the correlation of Z, with D and Y , compares to the

correlation of Xj with those same variables. Our goal here is to re-express both sensitivity

parameters as a function of kD and kY . Since Z ⊥X, we have that

R2
D∼Z+X = R2

D∼Z +R2
D∼X = kDR

2
D∼Xj +R2

D∼X (7.24)

R2
Y∼Z+X = R2

Y∼Z +R2
Y∼X = kYR

2
Y∼Xj +R2

Y∼X . (7.25)

Now we can trivially re-express R2
D∼Z|X as function of kD,

R2
D∼Z|X =

R2
D∼Z+X −R2

D∼X

1−R2
D∼X

(7.26)

= kD

(
R2
D∼Xj

1−R2
D∼X

)
. (7.27)

Analogous result holds for R2
Y∼Z|X . What remains is to re-express R2

Y∼Z|D,X . Using the

standard recursive definition of partial correlations, we know that

∣∣RY∼Z|X,D

∣∣ =

∣∣RY∼Z|X −RY∼D|XRD∼Z|X
∣∣√

1−R2
Y∼D|X

√
1−R2

D∼Z|X

. (7.28)

The only two terms of the RHS including the confounder, RY∼Z|X and RD∼Z|X , have been

re-expressed as a function of kD and kY above. We now show how to determine the sign of
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the correlations, by considering the direction of the strengths of the confounder act towards

hurting our preferred hypothesis.

Let us assume the confounder acts towards reducing the absolute value of the effect size.

If the effect size is positive (RY∼D|X > 0), this means RY∼Z|D,X and RD∼Z|X must have

the same signs. Consider, first, RY∼Z|X,D < 0 and RD∼Z|X < 0. This implies RY∼Z|X < 0,

which means we are reducing the absolute value of RY∼Z|X . Now consider RY∼Z|D,X > 0 and

RD∼Z|X > 0. This implies RY∼Z|X > 0, which, again, means we are reducing the absolute

value of RY∼Z|X . If the effect size is negative (RY∼D|X < 0), this now would mean that

RY∼Z|D,X and RD∼Z|X must have the opposite signs, and applying the previous arguments,

we reach the same conclusion that we will be reducing the absolute value of RY∼Z|X .

Therefore, considering that the confounder acts towards reducing the magnitude of the

estimate towards zero, we have that,

∣∣RY∼Z|X,D

∣∣ =
|RY∼Z|X | − |RY∼D|XRD∼Z|X |√

1−R2
Y∼D|X

√
1−R2

D∼Z|X

. (7.29)

Extending the previous arguments to multiple covariates is straightforward, since these results

hold for any subset of X.

7.1.3.2 Comparing the partial R2 of covariates with the partial R2 of the con-

founder

Now imagine the researcher is willing to make a more elaborate type of claim. For instance,

the researcher believes that omitting Xj increases the mean squared error of the full treatment

regression more than omitting Z. This means that, R2
D∼X−j+Z < R2

D∼X , whereX−j represents

all variables in X except Xj. If we now subtract of both sides R2
D∼X−j and further divide

them by 1−R2
D∼X−j , this gives us,

R2
D∼X−j+Z −R

2
D∼X−j

1−R2
D∼X−j

<
R2
D∼X −R2

D∼X−j

1−R2
D∼X−j

. (7.30)
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Which means that

R2
D∼Z|X−j < R2

D∼Xj |X−j . (7.31)

That is, we can compare the strength of Z to Xj by assessing their relative contribution to

the partial R2 of the treatment regression given the remaining covariates. Generalizing this

notion define,

kD :=
R2
D∼Z|X−j

R2
D∼Xj |X−j

. (7.32)

Our goal now is to re-express R2
D∼Z|X in terms of kD.

Bounding R2
D∼Z|X

From Equation 7.32 we have that |RD∼Z|X−j | =
√
kD|RD∼Xj |X−j |. Also, the assumption

that Z ⊥ X implies RZ∼Xj |X−j = 0. Combining these two results, and using the standard

recursive definition of partial correlations, gives us

∣∣RD∼Z|X
∣∣ =

∣∣∣∣∣∣RD∼Z|X−j −RD∼Xj |X−jRZ∼Xj |X−j√
1−R2

D∼Xj |X−j

√
1−R2

Z∼Xj |X−j

∣∣∣∣∣∣ (7.33)

=

∣∣∣∣∣∣ RD∼Z|X−j√
1−R2

D∼Xj |X−j

∣∣∣∣∣∣ (7.34)

=

√
kD
∣∣RD∼Xj |X−j

∣∣√
1−R2

D∼Xj |X−j

(7.35)

=
√
kD
∣∣fD∼Xj |X−j∣∣ . (7.36)

Hence,

R2
D∼Z|X = kD × f 2

D∼Xj |X−j. (7.37)
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Also, notice that, since R2
D∼Z|X ≤ 1 this, means kD cannot vary freely but rather is bounded

by

kD ≤
1

f 2
D∼Xj |X−j

. (7.38)

As an example, if a researcher has a covariate that currently explains 50% of the residual

variance of the treatment assignment (implying f 2
D∼Xj |X−j = 1), Equation 7.38 reveals it is

impossible to have an orthogonal unobserved confounder Z stronger than that covariate.

Using multiple covariates. Now let us generalize the previous bound to multiple covari-

ates. Let this set of covariates be X(1...j) = {X1, . . . , Xj}. We will denote the complement of

this set X−(1...j). Thus, kD now is defined as

kD :=
R2
D∼Z|X−(1...j)

R2
D∼X(1...j)|X−(1...j)

. (7.39)

Applying the recursive definition of partial correlation to, RD∼Z|X , RD∼Z|X−(1)
, RD∼Z|X−(1,2)

,

up to RD∼Z|X−(1,...,j)
, and recalling the orthogonality of Z with X, we have that,

RD∼Z|X =
RD∼Z|X−(1,...,j)√

1−R2
D∼X1|X−(1)

√
1−R2

D∼X2|X−(1,2)
. . .
√

1−R2
D∼Xj |X−(1,...,j)

. (7.40)

Since, R2
D∼Z|X−(1...j)

= kDR
2
D∼X(1...j)|X−(1...j)

, we obtain,

∣∣RD∼Z|X
∣∣ =

√
kD

∣∣∣RD∼X(1...j)|X−(1...j)

∣∣∣√
1−R2

D∼X1|X−(1)

√
1−R2

D∼X2|X−(1,2)
. . .
√

1−R2
D∼Xj |X−(1,...,j)

. (7.41)

We can simplify this further by noticing the denominator is simply
√

1−R2
D∼X(1...j)|X−(1...j)
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∣∣RD∼Z|X
∣∣ =

√
kD

∣∣∣RD∼X(1...j)|X−(1...j)

∣∣∣√
1−R2

D∼X(1...j)|X−(1...j)

=
√
kD

∣∣∣fD∼X(1...j)|X−(1...j)

∣∣∣ . (7.42)

Bounding RY∼Z|D,X

We have two ways of bounding RY∼Z|D,X , making comparisons conditional or not conditional

on D.

Comparisons not conditioning on D. As in the previous derivation, define,

kY :=
R2
Y∼Z|X−(1...j)

R2
Y∼X(1...j)|X−(1...j)

. (7.43)

That is, we are asking the researcher to compare the explanatory power of the confounder

against the explanatory power of X(1...j) with respect to the outcome, conditioning on the

remaining covariatesX−(1...j) but not conditioning on the treatment. Using the same recursive

argument as before, we obtain

∣∣RY∼Z|X
∣∣ =

√
kY

∣∣∣fY∼X(1...j)|X−(1...j)

∣∣∣ . (7.44)

We can now bound R2
Y∼Z|D,X by noting again that

RY∼Z|D,X =
RY∼Z|X −RY∼D|XRD∼Z|X√

1−R2
Y∼D|X

√
1−R2

D∼Z|X

, (7.45)

then using the same argument as in 7.1.3.2.
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Comparisons conditioning on D. Here we have that kD is defined as before, but kY

compares the explanatory power of the confounder against the explanatory power of a

covariate Xj with respect to the outcome, conditioning on both the remaining covariates

X−(1...j) and the treatment, that is,

kD :=
R2
D∼Z|X−j

R2
D∼Xj |X−j

, kY :=
R2
Y∼Z|X−j ,D

R2
Y∼Xj |X−j ,D

. (7.46)

To bound R2
Y∼Z|D,X , we first need to investigate RZ∼Xj |X−j ,D. Expanding the partial

correlation gives us

∣∣RZ∼Xj |X−j ,D
∣∣ =

∣∣∣∣∣∣RZ∼Xj |X−j −RD∼Z|X−jRD∼Xj |X−j√
1−R2

D∼Z|X−j

√
1−R2

D∼Xj |X−j

∣∣∣∣∣∣ (7.47)

=

∣∣∣∣∣∣ RD∼Z|X−jRD∼Xj |X−j√
1−R2

D∼Z|X−j

√
1−R2

D∼Xj |X−j

∣∣∣∣∣∣ (7.48)

=

∣∣∣∣∣∣
√
kDRD∼Xj |X−jRD∼Xj |X−j√

1− kDR2
D∼Xj |X−j

√
1−R2

D∼Xj |X−j

∣∣∣∣∣∣ (7.49)

=
∣∣fKD × fD∼Xj |X−j∣∣ . (7.50)

where, fKD is defined to be,

fKD :=

√
kDRD∼Xj |X−j√

1− kDR2
D∼Xj |X−j

. (7.51)
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Combining theses results and Equation 7.46 we can proceed to bound RY∼Z|D,X :

|RY∼Z|D,X | =

∣∣∣∣∣∣RY∼Z|X−j ,D −RY∼Xj |X−jDRZ∼Xj |X−j ,D√
1−R2

Y∼Xj |X−jD

√
1−R2

Z∼Xj |X−j ,D

∣∣∣∣∣∣ (7.52)

≤
∣∣RY∼Z|X−j ,D

∣∣+
∣∣RY∼Xj |X−jD

∣∣ ∣∣RZ∼Xj |X−j ,D
∣∣√

1−R2
Y∼Xj |X−jD

√
1−R2

Z∼Xj |X−j ,D

(7.53)

=

√
kY
∣∣RY∼Xj |X−jD

∣∣+
∣∣RY∼Xj |X−jD

∣∣ ∣∣fKD × fD∼Xj |X−j∣∣√
1−R2

Y∼Xj |X−jD

√
1− f 2

KD
× f 2

D∼Xj |X−j

(7.54)

=

√kY +
∣∣fKD × fD∼Xj |X−j∣∣√

1− f 2
KD
× f 2

D∼Xj |X−j

 |RY∼Xj |X−jD|√
1−R2

Y∼Xj |X−jD

 (7.55)

= η
∣∣fY∼Xj |X−j ,D∣∣ . (7.56)

Hence, we have that,

R2
Y∼Z|D,X ≤ η2f 2

Y∼Xj |X−j ,D, (7.57)

where η =

√
kY +

∣∣∣fKD×fD∼Xj |X−j∣∣∣√
1−f2KD×f

2
D∼Xj |X−j

. Note the bound is tight. Without further assumptions, we

can create an unobserved confounder Z that makes the inequality step in 7.53 an equality.

One can extend this to multiple covariates by iteratively applying the recursive definition of

partial correlation.

7.1.4 Some numerical examples of informal benchmarking

Here we show how the informal benchmarking practices proposed in [58, 59] and in [26] could

lead users to erroneous conclusions. Starting with [26], consider the simulation in the R code

presented in the left hand side of Figure 7.1. Note the unobserved confounder Z is exactly

like X in terms of its association with the treatment D and the outcome Y ; moreover, we also

have that Z ⊥ X. Finally, note that, by construction, the unobserved confounder Z (which

is as strong as X) is sufficient to bring the effect estimate down to zero. The right hand side
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# cleans workspace
rm(list = ls())

# set seed for reproducibility
set.seed(10)

# loads packages
library(treatSens)
library(konfound)

# simulates data
n <- 500
x <- rnorm(n)
z <- rnorm(n)
d <- x + z + rnorm(n)
y <- x + z + rnorm(n)

# Carnegie et al method
sense <- treatSens(y ~ d + x)
sensPlot(sense)

# Frank's method
model <- lm(y ~ d + x)

## computes impact threshold
konfound(model, tested_variable = "d",

alpha = 0.05)

## "observed impact" of X
cor(x, d)*cor(x, y)

Figure 7.1: Examples of informal benchmarking.
Note: Code (left) and plot (right) for the incorrect informal benchmark bound produced from the methods
of Carnegie, Harada and Hill (2006). Note the informal benchmark would lead one to incorrectly conclude
that an unobserved confounder Z exactly like X would not be sufficient to explain away the estimated effect,
when in fact it would (as shown in the red “x” mark). Code for [58] and [59] is also shown in the left.

of Figure 7.1 shows the output of [26] companion software, the R package treatSens [27].1

Note it incorrectly claims that the effect estimate would be robust to a confounder as strong

as X (benchmark shown in the red “x” mark).

Now moving to [58] and [59], one would first compute the “impact threshold” of a

confounding variable and compare this to the “observed” impact of the covariate X. In

the same simulation of Figure 7.1, these calculation are shown in the last part of the code

(using the R package konfound). One then obtains an impact threshold of 0.469 (considering

statistical significance of 5%), which, when contrasted with the “observed impact” of X,

RY∼X × RD∼X = 0.314, would lead an investigator to erroneously conclude that an

unobserved confounder as strong as X would not be sufficient to explain away the estimate.

1As of 14 October 2019, the R package was removed from CRAN for lack of maitainance; archived versions
can still be found in https://cran.r-project.org/web/packages/treatSens/index.html.
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7.2 Appendix for Chapter 3

7.2.1 Main estimators for IV

For ease of reference, in this section we show in more detail some of the algebraic identities

(and differences) of the main approaches to IV estimation.

7.2.1.1 Indirect Least Squares (ILS)

Point Estimate. The ILS estimate is defined as the ratio of the reduced-form and first-stage

estimates

τ̂ILS :=
λ̂

θ̂
(7.58)

Inference. Inference in the ILS framework is usually performed using the delta-method,

with estimated variance

v̂ar(τ̂ILS) :=
1

θ̂2

(
v̂ar(λ̂) + τ̂ 2v̂ar(θ̂)− 2τ̂ ĉov(λ̂, θ̂)

)
(7.59)

where, using the FWL formulation,

v̂ar(λ̂) =
var(Y ⊥Z,X,W )

var(Z⊥X,W )
× df−1, v̂ar(θ̂) =

var(D⊥Z,X,W )

var(Z⊥X,W )
× df−1 (7.60)

are the estimated variances of the reduced form and first stage, and

ĉov(λ̂, θ̂) =
cov(Y ⊥Z,X,W , D⊥Z,X,W )

var(Z⊥X,W )
× df−1 (7.61)

is the estimated covariance of λ̂ and θ̂.

148



7.2.1.2 Two-Stage Least Squares (2SLS)

Point Estimate. By the FWL theorem, the 2SLS point estimate can be written as

τ̂2SLS :=
cov(Y ⊥X,W , D̂⊥X,W )

var(D̂⊥X,W )
(7.62)

In the just-identified case, the ILS and 2SLS point estimates are numerically identical.

Expanding D̂ we have that

τ̂2SLS =
cov(Y ⊥X,W , D̂⊥X,W )

var(D̂⊥X,W )
=

cov(Y ⊥X,W , θ̂Z⊥X,W )

var(θ̂Z⊥X,W )
(7.63)

=
θ̂ × cov(Y ⊥X,W , Z⊥X,W )

θ̂2 × var(Z⊥X,W )
=
λ̂

θ̂
(7.64)

Which establishes the equality τ̂2SLS = τ̂ILS.

Inference. By the FWL theorem, the standard two-stage least squares estimate of the

variance can be written as

v̂ar(τ̂2SLS) :=
var(Y ⊥X,W − τ̂D⊥X,W )

var(D̂⊥X,W )
× df−1 (7.65)

As with the point estimate, for the just-identified case, the estimated variance of ILS and

2SLS are numerically identical. To see why, note the denominator of Equation 7.65 can be

expanded to

var(D̂⊥X,W ) = var(θ̂Z⊥X,W ) = θ̂2var(Z⊥X,W ) (7.66)
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Finally, the numerator can be written as,

var(Y ⊥X,W − τ̂D⊥X,W ) = var(Y ⊥X,W − τ̂(θ̂ZX,W +D⊥Z,X,W )) (7.67)

= var((Y ⊥X,W − λ̂ZX,W )− τ̂D⊥Z,X,W ) (7.68)

= var(Y ⊥Z,X,W − τ̂D⊥Z,X,W ) (7.69)

= var(Y ⊥Z,X,W ) + τ̂ 2var(D⊥Z,X,W )− 2τ̂cov(Y ⊥Z,X,W , D⊥Z,X,W )

(7.70)

Plugging in Equations 7.70 and 7.66 back in Equation 7.65, then using Equations 7.60 and 7.61

establishes the desired equality.

7.2.1.3 Anderson-Rubin (AR)

Point Estimate. We define the Anderson-Rubin point estimate to be the value of τ0 that

makes φ̂ = 0, ie,

τ̂AR = {τ0; φ̂τ0 = 0} (7.71)

Resorting again to the FWL theorem, we can write the regression coefficient of the AR

regression, φ̂τ0 , as a function of the regression coefficients of the first stage and reduced form,

φ̂τ0 =
cov(Y ⊥X,W − τ0D⊥X,W , Z⊥X,W )

var(Z⊥X,W )
(7.72)

=
cov(Y ⊥X,W , Z⊥X,W )

var(Z⊥X,W )
− τ0

cov(D⊥X,W , Z⊥X,W )

var(Z⊥X,W )
(7.73)

= λ̂− τ0θ̂ (7.74)

Thus solving for the condition φ̂τ0 = 0 gives us

τ̂AR =
λ̂

θ̂
(7.75)
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Which establishes the equality τ̂AR = τ̂ILS. Therefore, all the point estimates of ILS, 2SLS

and AR are numerically identical.

Inference. The AR confidence interval with significance level α is defined as all values of

τ0 such that we cannot reject the null hypothesis H0 : φτ0 = 0 at the chosen significance level

CI1−α(τ) = {τ0; t2φ̂τ0 ≤ t∗2α,df} (7.76)

This confidence interval can be obtained analytically as functions of the estimates of the

first-stage and reduced form regressions. As shown in Equation 7.74, φ̂τ0 can be written as

the linear combination

φ̂τ0 = λ̂− τ0θ̂ (7.77)

Likewise, by the FWL theorem, the estimated variance is given by

v̂ar(φ̂τ0) =
var(Y ⊥Z,X,W − τ0D⊥Z,X,W )

var(Z⊥X,W )
× df−1 (7.78)

=

(
var(Y ⊥Z,X,W )

var(Z⊥X,W )
+ τ 20

var(D⊥Z,X,W )

var(Z⊥X,W )
− 2τ0

cov(Y ⊥Z,X,W , D⊥Z,X,W )

var(Z⊥X,W )

)
× df−1

(7.79)

= v̂ar(λ̂) + τ 20 v̂ar(θ̂)− 2τ0ĉov(λ̂, θ̂) (7.80)

Thus, we obtain that the t-value tφ̂τ0 for testing the null hypothesis H0 : φτ0 = 0 equals to

tφ̂τ0
=

λ̂− τ0θ̂√
v̂ar(λ̂) + τ 20 v̂ar(θ̂)− 2τ0ĉov(λ̂, θ̂)

(7.81)

And our task is to find all values of τ0 such that the following inequality holds

(λ̂− τ0θ̂)2

v̂ar(λ̂) + τ 20 v̂ar(θ̂)− 2τ0ĉov(λ̂, θ̂)
≤ t

∗2
α,df (7.82)
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First, note that the empty set is not possible here. If we pick τ0 = τ̂AR, then the numerator

in Equation 7.82 is zero, and the inequality trivially holds—therefore, the point-estimate is

always included in the confidence interval. Now squaring and rearranging terms we obtain

(
θ̂2 − v̂ar(θ̂)× t∗2α,df

)
︸ ︷︷ ︸

a

τ 20 + 2
(
ĉov(λ̂, θ̂)× t∗2α,df − λ̂θ̂

)
︸ ︷︷ ︸

b

τ0 +
(
λ̂2 − v̂ar(λ̂)× t∗2α,df

)
︸ ︷︷ ︸

c

≤ 0 (7.83)

Our task has simplified to find all values of τ0 that makes the above quadratic equation, with

coefficients a, b and c, non-positive. As discussed in Section 3.4.2.2, this confidence interval

can take three different forms, depending on the instrument strength: (i) finite and connected,

(ii) the union two disjoint half lines; or, (iii) the whole real line.

7.2.1.4 Fieller’s theorem

Fieller’s proposal to test the null hypothesis H0 : τ = τ0 is to construct the linear combination

φ̂τ0 = λ̂− τ0θ̂, and to test the null hypothesis H0 : φτ0 = 0. The standard estimated variance

for φ̂τ0 equals Equation 7.80, resulting in a test statistic equal to Equation 7.81, and thus

numerically identical to the AR approach.

7.2.2 OVB-adjusted critical values and set of compatible inferences

7.2.2.1 OVB-adjusted critical values

As in the main text, using the reduced form as an example, let LL1−α(λ) := λ̂− t∗α,df −1× ŝe(λ̂)

be the lower limit of a 1−α level confidence interval of the full reduced form regression, where

t∗α,df −1 denotes the critical α-level threshold of the t-distribution with df −1 degrees of freedom.

Considering the direction of the bias that reduces the lower limit, Equations 3.24 and 3.26
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imply

LL1−α(λ) := λ̂− t∗α,df −1 × ŝe(λ̂) (7.84)

= λ̂res − BF
√

df × ŝe(λ̂res)− t∗α,df −1 × SEF
√

df /(df −1)× ŝe(λ̂res) (7.85)

= λ̂res −
(

SEF
√

df /(df −1)× t∗α,df −1 + BF
√

df
)
× ŝe(λ̂res) (7.86)

Similarly, now let UL1−α(λ) the upper limit of the confidence interval and consider the

direction of the bias that increases the upper limit. By the same algebraic manipulations, we

obtain

UL1−α(λ) = λ̂res +
(

SEF
√

df /(df −1)× t∗α,df −1 + BF
√

df
)
× ŝe(λ̂res) (7.87)

Note that, in both Equations 7.86 and 7.87, the only part that depends on the omitted

variable W is the common multiple of the observed standard error, which defines the new

OVB-adjusted critical value,

t†α,df −1,R2 := SEF
√

df /(df −1)× t∗α,df −1 + BF
√

df. (7.88)

7.2.2.2 Compatible inferences given bounds on the partial R2

Now suppose the analyst wishes to investigate the worst possible lower (or upper) limits of the

confidence intervals induced by a confounder with strength no stronger than certain bounds,

for instance, R2
Y∼W |Z,X ≤ R2max

Y∼W |Z,X and R2
Z∼W |X ≤ R2max

Z∼W |X . As per the last section, this

amounts to finding the largest OVB-adjusted critical value induced by an omitted variable W

with at most such strength. That is, we need to solve the following maximization problem

max
R2
Y∼W |Z,X ,R2

Z∼W |X

t†α,df −1,R2 s.t. R2
Y∼W |Z,X ≤ R2max

Y∼W |Z,X , R2
Z∼W |X ≤ R2max

Z∼W |X (7.89)
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Dividing t†α,df −1,R2 by
√

df and letting f ∗α,df −1 := t∗α,df −1/
√

df −1, we see that the derivative

of t†α,df −1,R2 with respect to R2
Z∼W |X is always increasing, since

∂(t†α,df −1,R2/
√

df)

∂R2
Z∼W |X

=
∂ BF

∂R2
Z∼W |X

+ f ∗α,df −1 ×
∂ SEF

∂R2
Z∼W |X

(7.90)

=
(R2

Y∼W |Z,X)1/2

2(1−R2
Z∼W |X)3/2(R2

Z∼W |X)1/2
+ f ∗α,df −1

(1−R2
Y∼W |Z,X)1/2

2(1−R2
Z∼W |X)3/2

(7.91)

=
(R2

Y∼W |Z,X)1/2 + f ∗α,df −1(1−R2
Y∼W |Z,X)1/2(R2

Z∼W |X)1/2

2(1−R2
Z∼W |X)3/2(R2

Z∼W |X)1/2
≥ 0 (7.92)

Therefore, the “optimal” R2∗
Z∼W |X (the one the minimizes (maximizes) the lower (upper) limit

of the confidence interval) always reaches the bound. However, the same is not true for the

derivative with respect to R2
Y∼W |Z,X . To see that, write,

∂(t†α,df −1,R2/
√

df)

∂R2
Y∼W |Z,X

=
∂ BF

∂R2
Y∼W |Z,X

+ f ∗α,df −1 ×
∂ SEF

∂R2
Y∼W |Z,X

(7.93)

=
(R2

Z∼W |X)1/2

2(1−R2
Z∼W |X)1/2(R2

Y∼W |Z,X)1/2
+

−f ∗α,df −1
2(1−R2

Y∼W |Z,X)1/2(1−R2
Z∼W |X)1/2

(7.94)

=
(R2

Z∼W |X)1/2(1−R2
Y∼W |Z,X)1/2 − f ∗α,df −1(R2

Y∼W |Z,X)1/2

2(R2
Y∼W |Z,X)1/2(1−R2

Y∼W |Z,X)1/2(1−R2
Z∼W |X)1/2

(7.95)

That is, due to the variance reduction factor of the omitted variable (VRF in Equation 3.26),

it could be the case that increasing R2
Y∼W |Z,X reduces the standard error more than enough

to compensate for the increase in bias, resulting in tighter confidence intervals.

We have, thus, two cases. First, consider the case in which the optimal point reaches both

bounds. In that case, the numerator of Equation 7.95 must be positive when evaluated at

the solution. Rearranging and squaring, we see that this happens when

R2max
Z∼W |X ≥ f ∗2α,df −1 × f 2max

Y∼W |Z,X (7.96)

Clearly, when considering the sensitivity of the point estimate, we have f ∗α,df −1 = 0, and the
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condition always holds. If condition of Equation 7.96 fails, then the optimal R2∗
Y∼W |Z,X will

be an interior point. This will happen when the numerator of Equation 7.95 equals zero.

Since we know R2
Z∼W |X reaches its maximum, the optimal R2∗

Y∼W |Z,X will be,

R2∗
Y∼W |Z,X =

R2max
Z∼W |X

f ∗2α,df −1 +R2max
Z∼W |X

(7.97)

Denoting the solution to the optimization problem as t†max
α,df −1,R2 , the most extreme possible

lower and upper limits after adjusting for W are given by

LLmax
1−α,R2(λ) = λ̂res − t†max

α,df −1,R2 × ŝe(λ̂res), ULmax
1−α,R2 = λ̂res + t†max

α,df −1,R2 × ŝe(λ̂res) (7.98)

And interval composed of such limits

CImax
1−α,R2(λ) =

[
LLmax

1−α,R2(λ), ULmax
1−α,R2(λ)

]
(7.99)

Defines the set of compatible inferences given the bounds on the partial R2, R2
Y∼W |Z,X ≤

R2max
Y∼W |Z,X and R2

Z∼W |X ≤ R2max
Z∼W |X .

7.2.3 (Extreme) Robustness Values

7.2.3.1 The Extreme Robustness Value

The Extreme Robustness Value XRVq∗,α(λ) is defined as the greatest lower bound XRV on

the sensitivity parameter R2
Z∼W |X , while keeping the parameter R2

Y∼W |Z,X unconstrained,

such that the null hypothesis that a change of (100× q)% of the original estimate, H0 : λ =

(1− q∗)λ̂res, is not rejected at the α level:

XRVq∗,α(λ) := inf
{

XRV; (1− q∗)λ̂res ∈ CImax
1−α,1,XRV(λ)

}
(7.100)
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First, consider the case where fq∗(λ) < f ∗α,df −1. Note the XRV will be zero, since we already

cannot reject the null hypothesis H0 : λ = (1− q∗)λ̂res even assuming zero omitted variable

bias. Next, note that, when f ∗α,df −1 > 0, we can always pick a large enough value for R2
Y∼W |Z,X

until condition 7.96 fails (since f 2
Y∼W |Z,X is unbounded). Therefore, XRV will be given by

an interior point solution. Using Equation 7.97 to express t†max
α,df −1,R2 solely in terms of the

optimal R2
Z∼W |X , and solving for the value that gives us (1− q∗)λ̂res, we obtain

XRVq∗,α(λ) =


0, if fq∗(λ) ≤ f ∗α,df−1

f 2
q∗(λ)− f ∗2α,df−1

1 + f 2
q∗(λ)

, otherwise.

(7.101)

7.2.3.2 The Robustness Value

The Robustness Value RVq∗,α(λ) for not rejecting the null hypothesis that H0 : λ = (1−q∗)λ̂res,

at the significance level α, is defined as

RVq∗,α(λ) := inf
{

RV; (1− q∗)λ̂res ∈ CImax
1−α,RV,RV(λ)

}
(7.102)

Where now we consider both sensitivity parameters bounded by RV. Again, consider the case

where fq∗(λ) < f ∗α,df −1. The RV then must be zero, since we already cannot reject the null

hypothesis H0 : λ = (1− q∗)λ̂res given the current data. Next, let’s consider the case when

the bound on R2
Y∼W |Z,X is not biding—here our optimization problem reduces to the XRV

case. Finally, we have the solution in which both coordinates achieve the bound, resulting in

a quadratic equation as solved before for Chapter 2. We thus have,

RVq∗,α(λ) =



0, if fq∗(λ) ≤ f ∗α,df−1

1

2

(√
f 4
q∗,α(λ) + 4f 2

q∗,α(λ)− f 2
q∗,α(λ)

)
, if f ∗α,df−1 < fq∗(λ) < f ∗−1α,df−1

XRVq∗,α(λ), otherwise.

(7.103)
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The condition fq∗(λ) < f ∗−1α,df−1, stems from the fact that the XRV solution cannot

satisfy Equation 7.96. We now show that this is equivalent to the previous condition

RVq∗,α(λ) > 1− 1/f 2
q∗(λ). If fq∗(λ) < 1/f ∗α,df−1 then,

RVq∗,α(λ) =
1

2

(√
f 4
q∗,α(λ) + 4f 2

q∗,α(λ)− f 2
q∗,α(λ)

)
(7.104)

=
1

2

(√
(fq∗(λ)− f ∗α,df−1)

4 + 4(fq∗(λ)− f ∗α,df−1)
2 − (fq∗(λ)− f ∗α,df−1)

2
)

(7.105)

>
1

2

(√
(fq∗(λ)− 1/fq∗(λ))4 + 4(fq∗(λ)− 1/fq∗(λ))2 − (fq∗(λ)− 1/fq∗(λ))2

)
(7.106)

=
1

2

√(f 2
q (λ)− 1

fq∗(λ)

)4

+ 4

(
f 2
q∗(λ)− 1

fq∗(λ)

)2

−
(
f 2
q∗(λ)− 1

fq∗(λ)

)2
 (7.107)

=

(
1

2

)(
f 2
q∗(λ)− 1

f 2
q∗(λ)

)(√
(f 2
q (λ)− 1)2 + 4f 2

q∗(λ)− f 2
q∗(λ) + 1

)
(7.108)

=

(
1

2

)(
1− 1/f 2

q∗(λ)
) (√

f 4
q (λ) + 1− 2f 2

q∗(λ) + 4f 2
q∗(λ)− f 2

q∗(λ) + 1
)

(7.109)

=

(
1

2

)(
1− 1/f 2

q∗(λ)
) (√

f 4
q (λ) + 1 + 2f 2

q∗(λ)− f 2
q∗(λ) + 1

)
(7.110)

=

(
1

2

)(
1− 1/f 2

q∗(λ)
) (
f 2
q∗(λ) + 1− f 2

q∗(λ) + 1
)

(7.111)

= 1− 1/f 2
q∗(λ) (7.112)

Therefore, fq∗(λ) < 1/f ∗α,df−1 =⇒ RVq∗,α(λ) > 1− 1/f 2
q∗(λ). By the same argument one

can derive RVq∗,α(λ) > 1 − 1/f 2
q∗(λ) =⇒ fq(λ) > 1/f ∗α,df−1. Hence, both conditions are

equivalent. The new condition, however, is much simpler to verify.

7.2.4 Bounds on the strength of W

Let Xj be a specific covariate of the set X. Now define

kZ :=
R2
Z∼W |X−j

R2
Z∼Xj |X−j

, kY :=
R2
Y∼W |Z,X−j

R2
Y∼Xj |ZX−j

. (7.113)
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Where X−j is the set X excluding covariate Xj. Our goal in this section is to re-express (or

bound) both sensitivity parameters as a function of the new parameters kZ and kY and the

observed data.

In Chapter 2 we showed how to obtains bounds for the strength ofW under the assumption

that R2
W∼Xj |X−j = 0, or, equivalently, when we consider the part of W not linearly explained

by X. This result may be particularly useful when considering both X and W as causes of

Z, as in such cases contemplating the marginal orthogonality of W (or its part not explained

by observed covariates) is more natural. Here we additionally provide bounds under the

assumption that R2
W∼Xj |Z,X−j = 0. This condition may be helpful when contemplating the

strength of W against Xj whenever these variables are side-effects of Z, instead of causes of

Z. In such cases, reasoning about the marginal orthogonality of W with respect to X may

not be natural, as Z itself is also a source of dependence between these variables.

We can thus start by re-expressing R2
Y∼W |Z,X in terms of kY , which in this case is

straightforward. Using the recursive definition of partial correlations, and considering our

two conditions R2
W∼Xj |Z,X−j = 0 and R2

Y∼W |Z,X−j = kYR
2
Y∼Xj |ZX−j , we obtain

∣∣RY∼W |Z,X
∣∣ =

∣∣∣∣∣∣RY∼W |Z,X−j −RY∼Xj |Z,X−jRW∼Xj |Z,X−j√
1−R2

Y∼Xj |Z,X−j

√
1−R2

W∼Xj |Z,X−j

∣∣∣∣∣∣ (7.114)

=

∣∣∣∣∣∣ RY∼W |Z,X−j√
1−R2

Y∼Xj |Z,X−j

∣∣∣∣∣∣ (7.115)

=

∣∣∣∣∣∣
√
kYRY∼Xj |Z,X−j√
1−R2

Y∼Xj |Z,X−j

∣∣∣∣∣∣ (7.116)

=
√
kY
∣∣fY∼Xj |Z,X−j ∣∣ (7.117)

Hence,

R2
Y∼W |Z,X = kY × f 2

Y∼Xj |Z,X−j (7.118)
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Moving to bound R2
Z∼W |X , it is useful to first note that the conditions R2

W∼Xj |Z,X−j = 0 and

R2
Z∼W |X−j = kZR

2
Z∼Xj |X−j allow us to re-express RW∼Xj |X−j as a function of kZ

RW∼Xj |Z,X−j = 0 =⇒
RW∼Xj |X−j −RW∼Z|X−jRXj∼Z|X−j√

1−R2
W∼Z|X−j

√
1−R2

Xj∼Z|X−j

= 0 (7.119)

=⇒ RW∼Xj |X−j −RW∼Z|X−jRXj∼Z|X−j = 0 (7.120)

=⇒ RW∼Xj |X−j = RW∼Z|X−jRXj∼Z|X−j (7.121)

=⇒ RW∼Xj |X−j = RZ∼W |X−jRZ∼Xj |X−j (7.122)

=⇒ |RW∼Xj |X−j | =
√
kZR

2
Z∼Xj |X−j (7.123)

Now we can re-write R2
Z∼W |X using the recursive definition of partial correlations

∣∣RZ∼W |X
∣∣ =

∣∣∣∣∣∣RZ∼W |X−j −RZ∼Xj |X−jRW∼Xj |X−j√
1−R2

Z∼Xj |X−j

√
1−R2

W∼Xj |X−j

∣∣∣∣∣∣ (7.124)

≤
∣∣RZ∼W |X−j

∣∣+
∣∣RZ∼Xj |X−jRW∼Xj |X−j

∣∣√
1−R2

Z∼Xj |X−j

√
1−R2

W∼Xj |X−j

(7.125)

=

∣∣√kZRZ∼Xj |X−j
∣∣+
∣∣∣√kZR3

Z∼Xj |X−j

∣∣∣√
1−R2

Z∼Xj |X−j

√
1− kZR4

Z∼Xj |X−j

(7.126)

=

√kZ +
∣∣∣R3

Z∼Xj |X−j

∣∣∣√
1− kZR4

Z∼Xj |X−j

×
 ∣∣RZ∼Xj |X−j

∣∣√
1−R2

Z∼Xj |X−j

 (7.127)

= η′|fZ∼Xj |X−j | (7.128)

Hence we have that

R2
Z∼W |X ≤ η′

2
f 2
Z∼Xj |X−j (7.129)

Where η′ =

(√
kZ+

∣∣∣∣R3
Z∼Xj |X−j

∣∣∣∣√
1−kZR4

Z∼Xj |X−j

)
.
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7.3 Appendix for Chapter 4

7.3.1 Proof of propositions 1 and 2

The propositions follow directly from the definitions, but we state the proofs here for

completeness. For proposition 1, first note ES is a functional of the covariance matrix Σ

and it is by definition identifiable. Thus, if Q is identifiable, we can also uniquely compute

Q from Σ and, since B = ES − Q, and each of its components is identifiable, B can also

be uniquely computed from Σ and it is thus identifiable. Conversely, if B is identifiable,

just write Q = ES + B, which means Q can be uniquely determined from Σ and it is also

identifiable.

Proposition 2 follows the same argument. First note that if Q is θ-identifiable then we can

write B(θ) = ES − Q(θ) which is uniquely determined by Σ and θ, giving us a bias function

parameterized in terms of θ. Conversely, if there exists a function B(θ) which, by definition,

gives us a unique bias in terms of θ (and the data Σ), we can write Q(θ) = ES +B(θ). This

implies Q can be uniquely determined from Σ and θ and it is thus θ-identifiable.

7.3.2 Proof and pseudocode for Theorem 1

Theorem 1 (PushForward). Given a linear SCM with graph G, covariance matrix Σ, a set

of known directed edges D, and known bidirected edge εxy, let the pair 〈G′,Σ′〉 be constructed

from G and Σ as follows:

1. x↔ y is removed and σ′xy = σxy − εxy;

2. ∀c ∈ Ch(x), c 6= y, the bidirected edges c ↔ y are added if they do not exist, and

ε′cy = εcy + λxcεxy;

3. ∀z ∈ De(y), z 6= x, if there is an edge on any directed path from y to z that is not in

D, then z is removed from G′. For the remaining z, σ′xz = σxz − εxyδyz, where δyz is

the sum of all directed paths from y to z;
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4. All other parameters and covariances remain the same.

Then if λab is identifiable in G′ it is (εxy,D)-identifiable in G.

Before moving forward, we use a couple definitions from the literature, which make

reasoning about paths in the graph easier:

Definition 3. [57] A path π from v to w is a trek if it has no colliding arrowheads, that is,

π is of the form:

v ← ...← ↔ → ...→ w

v ← ...← k → ...→ w

v ← ...← w

v → ...→ w

Definition 4. [57] A trek monomial π(Λ, E) for trek π is defined as the product of the

structural parameters along the trek, multiplied by the trek’s top error term covariance.

In particular, if π does not contain a bidirected edge2,

π(Λ, E) = ε2k
∏

x→y∈π

λxy

where k is the node at the “top" of the trek (it has no incoming edges). If the trek contains

bidirected edge εab, then

π(Λ, E) = εab
∏

x→y∈π

λxy

Lemma 1. [57] The covariance between v and w, σvw can be written as the sum of the trek

monomials of all treks between v and w (Tvw):

2Note also that we can have a trek from v to v, including a trek that takes no edges at all, which would
be simply ε2v
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Algorithm 2 PF - PushForward

1: function PF(G,Σ,D, εxy, x)
2: initialize 〈G′,Σ′〉 ← 〈G,Σ〉
3: update ε′xy ← 0 in G′ and σ′xy ← σ′xy − εxy in Σ′

4: for each c ∈ Ch(x) do
5: update ε′cy ← ε′cy + λxcεxy in G′
6: end for
7: for each z ∈ De(y) do
8: if Edges(δyz) ⊆ D then
9: update σ′xz = σxz − εxyδyz
10: else
11: remove z from G′

12: end if
13: end for
14: return 〈G′,Σ′〉
15: end function

σvw =
∑
π∈Tvw

π(Λ, E)

At its core, identifiability of an edge λ in linear Gaussian SCM can be reduced to the

problem of finding whether there exists a unique solution for λ in terms of covariances in

the system of equations defined by the rules of path analysis [57], and knowledge of existing

directed and bidirected effects.

With this in mind, we can prove PushForward.

Proof. Specified in the theorem is a covariance matrix Σ, a graph of the structural equations

G, a set of known directed edges D, and known bidirected edge εxy. The system of equations

constraining values of structural parameters is

σvw =
∑
π∈Tvw

π(Λ, E) ∀v, w ∈ G
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We first look at σxy, and define a new known quantity σ′xy:

σxy = εxy +
∑

π∈Txy\{εxy}

π(Λ, E)

σ′xy = σxy − εxy =
∑

π∈Txy\{εxy}

π(Λ, E)

We also look at all descendants of y, (z ∈ Z) where the directed paths from y to z (δyz) are

made entirely of known edges (Edges(δyz) ⊆ D). We define

δab =
1

ε2a

∑
π∈T→xy

π(Λ, E)

where T →xy represents the set of treks taking only directed edges from a to b: a→ ...→ b. For

each such descendant of y, z, we define the quantity σ′xz

σxz = δyzεxy +
∑

π∈Txy\T→εxyyz

π(Λ, E)

σ′xz = σxz − δyzεxy =
∑

π∈Txy\T→εxyyz

π(Λ, E)

Here, we used T →εxyyz to represent the treks starting from εxy, and continuing from y to x

(half-treks from x to z using εxy). Finally, we define σ′vw = σvw for all other covariances

between nodes a and b where both a and b are either non-descendants of y, or have their

paths to y known.

This gives us a new system of equations in the original variables. All that remains

to be shown is that an identified quantity λ′ab in G′ which contains a “pushed-forward”

bidirected edge guarantees that the above-generated system of equations can be solved for

the corresponding variable λab.

As per the definition of G′, it is identical to G, except:

1. the bidirected edge x↔ y is removed
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2. ∀c ∈ Ch(x), the edges c↔ y are added.

3. Descendants of y, z, where all edges of δyz are not known are removed

This new model G′, with parameters Λ′ and E ′ has system of equations:

σ
′′

vw =
∑
π∈Tvw

π(Λ′, E ′) ∀v, w ∈ G′

We compare this new system of equations to the modified equations of G.

• For all non-descendants of x or y, all covariance equations are identical (Both graphs

have the same treks from non-descendants of x and y to all other nodes, and these

covariances were not modified in the augmented equations).

• For all descendants of x, the modified equations for G have εxyλxc wherever G′ has ε′cy

when G does not have bidirected edge c↔ y. If G already includes an εcy, then it has

(εxyλxc + εcy) for each ε′cy. This can be seen by comparing the treks available in the

two models. We can create a map of treks in G to treks in G′. Treks not crossing the

added/removed bidirected edges are identical. All that remains are treks crossing εxy in

G, and ε′cy in G′. Suppose we have a trek from a to b in G′ a← ...← c↔ y → ...→ b,

crossing the bidirected edge ε′cy. The corresponding trek in G across εcy, if it exists,

and the trek a ← ... ← c → x ↔ y → ... → b both map to it. Since we have a map

from treks in G to all treks in G′, which differs only in the specified spot, the equations

are likewise identical save for the mapping difference.

• The covariances between x and the descendants of y and y have likewise identical

equations. This is because the removed treks in the modified equations are the only

possibilities including εxy, so all variables behave as if the bidirected edge did not exist.

This can also be seen by recognizing that setting εxy = 0 would result in the same

equation as removing all instances of the variable. Since the only treks from x which

include εxy start by crossing x ↔ y, and continue on a directed path, removing all

directed paths from y multiplied by εxy achieves the desired effect.
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Finally, we notice that any algorithm for identifiability in this new model G′ certifies that

the system of equations can be uniquely solved for a given parameter, and the answer can be

written in terms of Σ′, which is computable given Σ and εxy.

7.3.3 Identification, sensitivity analysis and Gröbner bases

Gröbner bases are a symbolic method of computer algebra used to solve systems of polynomial

equations. [66] have shown that the identification (ID) problem in linear SCMs can be reduced

to solving a system of polynomial equations and how Gröbner bases provide a complete

solution.

In this section we will take a practical approach of showing how to set up the ID problem

so it can be solved with Gröbner bases. We also show how to extend this to include sensitivity

parameters, solving the problem of θ-identification. Our approach is based on [66]. For a

basic understanding of Gröbner bases, please refer to [43].

Gröbner bases can be seen as an algorithm to do variable elimination in complex polynomial

equations. Let us illustrate the variable elimination approach in the simple instrumental

variable graph:

x

z

y
b

a

εxy

We can write the (normalized) covariance equations induced by the graph as follows:

σxy = a+ εxy

σzy = b× a

σzx = b

Given these equations, the goal is to solve for a in terms of the covariances of Σ only. Normally,

one would approach this directly, by simply eliminating one variable at a time. For example,
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after eliminating b, we get:

σxy = a+ εxy

σzy = σzx × a

Next, we would eliminate εxy, by putting it in terms of a:

εxy = σxy − a

Then, we have a final equation just in terms a and the Σ. This equation can be solved for a,

and depending on how many values of a satisfy the constraint, it give us our identification

result (here, only a = σzy
σzx

is valid).

Gröbner bases perform an equivalent operation—they successively eliminate variables

from the system of equations. In this situation, we want to eliminate εxy and b, leaving only

a and the covariances. In SAGE [136], this reduces to the following code:

R.<a,b,epsilon_xy,sigma_zx,sigma_zy,sigma_xy>

= PolynomialRing(QQ)

Ideal(

sigma_xy - (a+epsilon_xy),

sigma_zy - (b*a),

sigma_zx - (b)

).elimination_ideal([epsilon_xy,b]).groebner_basis()

If the result is a first degree polynomial in a, there is a single solution.

The extension of this method to the θ-identification problem entailed by sensitivity analysis

is straightforward. As sensitivity parameters are treated like known variables, we simply do

not eliminate them. In the above example, if we were to treat εxy as a sensitivity parameter,

our code would be:

R.<a,b,epsilon_xy,sigma_zx,sigma_zy,sigma_xy>

= PolynomialRing(QQ)

Ideal(

sigma_xy - (a+epsilon_xy),

sigma_zy - (b*a),

sigma_zx - (b)

).elimination_ideal([b]).groebner_basis()
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with an identical interpretation: if the resulting polynomials in a, Σ and εxy are linear in a,

we conclude that knowing the givens is sufficient to identify a.

Unfortunately, despite the completeness of this approach, Gröbner bases are doubly-

exponential in the number of variables, and in this case each edge corresponds to a variable

[14]. This limits the practical solvable graph size to 4 or 5 nodes [57, 66]. Our own experiments

hit upon the same limitation, with attempted computations on 5-node graphs sometimes

taking several days for identifying single edges, despite using an optimized representation of

the equations [57].

7.3.4 Detailed description of computational experiments

In this section, we provide a detailed description of our computational experiments, including

pseudocode and additional tests. Our computational experiments have two main goals.

First, they aim to empirically verify the generality of our constrained identification

algorithm cID, by comparing our results to the ground truth obtained via computer algebra.

Second, note that cID has three separate components:

1. The qID algorithm [28], which we use both for the identification of directed edges,

and for incorporating constraints on directed edges that can be used as sensitivity

parameters;

2. The graphical manipulations performed by PushForward, which we use to incorporate

constraints on bidirected edges; and,

3. The order in which to perform the graphical manipulation of PushForward. In cID

we chose to perform a topological ordering as described in Algorithm 1.

Thus, our computational experiments also aim to disentangle the contributions of each of

those components to our results.
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Solving all 3 and 4-Node sensitivity queries

Our computational experiments rely on the ability to find ground-truth answers to the

question of whether a target coefficient λab is θ-identifiable in a given graph G (this is defined

to be a query). As explained in Section 7.3.3, these ground truth answers can be obtained

with algebraic methods, more precisely using Gröbner bases [66].

For 3-node models we have 50 connected graphs with 720 possible queries; for 4-node

models, we have 3,745 connected graphs and 1,059,156 possible queries. Note that, for

5-node models, we have 1,016,317 connected graphs and 11,615,669,904 possible queries. As

mentioned in Section 7.3.3, ground-truth computations using computer algebra can take hours

(or sometimes days) for a single 5-node graph, rendering an exhaustive study of sensitivity

queries in 5-node models impractical.

We have thus performed an exhaustive computation of the ground truth answer of all

possible queries in 3 and 4 node models via computer algebra using SAGE [136]. These

results give us a list stating for every graph G, every edge λab, and all possible subsets of

directed and bidirected edges used as sensitivity parameters θ, whether λab can be uniquely

computed from Σ and θ.

Our main interest lies on those queries that can be identified only when θ 6= ∅ (we call this

a sensitivity query)—in other words, we do not consider those edges that can be identified

from Σ alone, since in these cases the parameter is identifiable and a sensitivity analysis

would not be needed. The ground truth numbers of all θ-identifiable queries only when θ 6= ∅

are 320 for 3-node models and 578,858 for 4-node models.

Our exhaustive computations also allow us to see how many sensitivity queries can be

solved using only subsets of directed edges or only subsets of bidirected edges as sensitivity

parameters. The decomposition then becomes the following. For 3-node models, there are

19 sensitivity queries that can be solved using only subsets of directed edges as sensitivity

parameters, 109 using only subsets of bidirected edges, and, as before, 320 total queries

which are solvable using an arbitrary combination of both. For 4-node models, these numbers
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increase to 15,740, 52,016 and 578,858 respectively. These numbers reveal that incorporating

constraints on bidirected edges is an essential step for deriving sensitivity curves.

Comparing qID and cID to ground-truth answers

Once we have obtained ground-truth answers to all queries in 3 and 4-node models, we run

both the qID as well as the cID algorithm for each of those queries and check whether they

can correctly decide whether θ is an admissible set of sensitivity parameters for λab in G

(and thus able to provide a sensitivity curve). This comparison gives us the numbers we have

presented in the main text in Table 4.1.

3 Nodes 4 Nodes

PF order ID Alg. directed edges Directed Bidirected Both Directed Bidirected Both

none qID 19 - 68 14,952 - 170,304
PFo qID 19 101 304 14,952 43,526 505,076
PFs qID 19 105 308 14,952 46,630 517,036
PFr qID 19 109 320 14,952 50,708 555,758
PFt qID 19 109 320 14,952 50,708 555,758

none Complete 19 - 68 15,740 - 177,216
PFo Complete 19 101 304 15,740 44,680 524,846
PFs Complete 19 105 308 15,740 47,962 538,332
PFr Complete 19 109 320 15,740 51,992 578,758
PFt Complete 19 109 320 15,740 51,992 578,758

Ground Truth 19 109 320 15,740 52,016 578,858

Table 7.1: Number of θ-identifiable queries (only when θ 6= ∅) per type of sensitivity
parameters θ, using different ordering methods for PushForward and different ID algorithm
for the directed edges.
Note: Ground Truth is computed using Gröbner bases. The first column defines the ordering method
of PushForward used for incorporating constraints on bidirected edges—this is passed as the argument
PForder in the general function cID*. The second column refers to the identification algorithm used for
directed edges—this is passed as the argument IDmethod in the general function cID*. “Complete” means
we used Gröbner bases to simulate a complete ID algorithm for directed edges running inside cID*. Note
the first row corresponds to qID and the boldfaced row corresponds to cID as presented in the main text
applying PushForward in topological ordering. These two rows are the ones presented in Table 4.1 of the
main text. Pseudocode for computing these numbers is given in Algorithm 4.
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Alternative ordering methods for PushForward

In the main text, the cID algorithm applies PushForward in a topological ordering for

processing multiple bidirected edges. The method does not perform all possible graphical

manipulations, and as such, a valid concern is that it might be less capable than a more

general search. Another interesting question is to check whether simpler methods would

perform as well as the current cID implementation. To tackle these questions, we tested

additional ordering methods for handling multiple bidirected edges.

For simplicity of exposition, the cID algorithm in the main text has the ordering method

embedded in the pseudocode itself. For the purposes of this section, however, it is conceptually

easier to create a meta algorithm that repeats the following process: (i) first it creates a

collection of valid modified graphs G applying PushForward according to some ordering

method; then, (ii) it applies an identification algorithm to each of those modified graphs.

This is given in Algorithm 3, which we call cID*.

Algorithm 3 Meta constrained ID algorithm.
1: function cID*(G,Σ,B,D, PForder, IDmethod)
2: repeat
3: G ← PForder(G,Σ,B,D)
4: for 〈G′,Σ′〉 ∈ G do
5: D ← D ∪ IDmethod(G′,Σ′,D)
6: end for
7: until all directed edges have been identified or no edge has been identified in the last

iteration
8: return D
9: end function

In Algorithm 3, the argument PForder represents a function that takes as inputs a graph

G, a covariance matrix Σ, a set of known bidirected edges B and a set of known directed edges

D. It then returns a collection G of valid modified models 〈G′,Σ′〉 by iteratively applying

PushForward following a particular ordering method (for example, topological ordering).

The argument IDmethod refers to an identification method for directed edges (for instance,

qID). It is a function that takes as inputs a graph G, a covariance matrix Σ and a set of

known directed edges D and it returns the new set of known directed edges.
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We can now create different functions for different ordering methods. For instance, the

function PFt described in Algorithm 7 applies PushForward in topological ordering (as

embedded in Algorithm 1 of the main text) and returns all valid modified graphs. We now

define three additional ordering methods.

• PFo described in Algorithm 5. This function pushes forward each bidirected edge

only once, considering the original graph. This method is the simplest application

of PushForward, and serves as a base of comparison to assess the gains of more

elaborate methods.

• PFs described in Algorithm 6. This function tries to apply PushForward once to all

subsets of bidirected edges connected to each end node. This procedure has exponential

computational complexity.

• PFr described in Algorithm 8. This function recursively tries every possible combination

of applying PushForward for each bidirected edge connected to the same end node

(it tries each subset once, and of those that can be pushed forward again, tries each

subset, and so on). This procedure has doubly exponential computational complexity.

All these function return a collection G of valid modified graphs, and can be used as the

PForder argument in the cID* function. Of these methdos, PFr is arguably the most

important for comparison with our current implementation of topological ordering. The

results are shown in the first half of Table 7.1, which compares cID* using the same ID

method for directed edges (qID) but different ordering methods for applying PushForward.

Our preferred version, which was presented in the main text as cID, corresponds to the

boldfaced row with ordering method PFt and ID method qID. As we can see, topological

ordering performs as well as the brute-force recursive search of all subsets performed by PFr,

which has doubly exponential computational complexity.
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Disentangling PF and qID

Finally, the incompleteness of cID can stem from two sources: limitations of the graphical

manipulations performed by PushForward or the incompleteness of the identification

algorithm for directed edges, qID. Separating the two can help guide efforts for future

research. To achieve that, we used algebraic methods to simulate how cID would have

performed if it had access to a complete identification algorithm for directed edges instead of

qID.

More precisely, we use Gröbner bases as our ID algorithm for directed edges (IDmethod)

in cID*, where, just like qID, Gröbner bases only have access to constraints on bidirected

edges via the graphical manipulation performed by PushForward. That is, Gröbner bases is

dealing with the problem as if it were a “vanilla” identification problem, not explicitly knowing

that the bidirected edge is fixed. The results can be seen in the second half of Table 7.1.

The last row indicates, for instance, that incorporating constraints on bidirected edges using

PushForward in topological order, in combination with a complete identification algorithm

for directed edges, would have identified over 99.99% of 4-node sensitivity queries.

This suggests that: (i) the main bottleneck of the current implementation of cID is qID

itself; (ii) PushForward with topological ordering is an efficient procedure for dealing with

bidirected edges that can reap the benefits of improved identification algorithms.

7.3.5 The missed cases

As discussed in the previous section, PushForward in topological order, in combination

with a complete identification algorithm for directed edges, would have identified over 99.99%

of all 4-node sensitivity queries. In this section we briefly discuss some of the missed cases,

which may provide guidance for further improvements of the cID algorithm. We also provide

all the missed cases for those interested in exploring them further (Tables 7.2 and 7.3).

When iterating over modified graphs, the cID algorithm feeds its next iteration only

identification results for direct effects (single coefficients), not of path specific effects or total
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Figure 7.2: Examples of missed cases using PushForward with a complete identification
algorithm of directed edges. In both examples, λxy is εzx-identifiable, but the algorithm fails
due to lack of exploitation of identified total effects. In example 7.2a, it turns out a simple
marginalization of w suffices for the εzx-identification of λxy using the current implementation
of the cID algorithm. However, marginalization alone is often not enough, as shown in
example 7.2b.

effects (sums of products of coefficients), which may nevertheless be identified. Figure 7.2

shows two simple examples that illustrates how not exploiting the knowledge of known total

effects can result in a failure of identification.

Let us start with Figure 7.2a. In this example, our task is to find a sensitivity curve

for λxy in terms of εzx. First note that z is not a valid instrument for λxy since it is a

descendant of x. However, pushing forward εzx allows us to identify the total effect of x on

z. This, in turn, permits the creation of the auxiliary variable z∗ = z − (λxz + λxwλwz)x

which is now a valid instrument for λxy. In the example of Figure 7.2a, it turns out a simpler

solution would also suffice—marginalizing w. Note the marginalized DAG results in a simple

three node model which can be solved by the current implementation of cID. Nevertheless,

marginalization by itself may not always be sufficient, as a simple variation of this very

example shows (Figure 7.2b).

In sum, θ-identification in these cases require systematically exploiting known total effects

(for instance, creating AVs subtracting out total effects) or known path-specific effects, a task

which still does not have a satisfactory solution in the literature. A final interesting (and

challenging) example in which cID failed to find the sensitivity curve is shown in Figure 7.3.
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Algorithm 4 Pseudocode for checking the performance of cID* with different PushFor-
ward orders and different ID algorithm for directed edges. In the code, IdentifyDirect-
edEdges and IsIdentified are computed using computer algebra (Gröbner bases), and
give the ground-truth values.
1: initialize Total← 0
2: initialize PFtotal← 0
3: S ← set of all possible connected DAGs, with all combinations of directed and bidirected

edges.
4: for each graph 〈G,Σ〉 ∈ S do
5: IDedges← IdentifyDirectedEdges(G)
6: for all (x→ y) ∈ G where (x→ y) /∈ IDedges do
7: SPS ← All subsets of directed and bidirected edges of G which do not contain

(x→ y)
8: for each set 〈D,B〉 ∈ SPS do
9: if IsIdentified(G, x→ y,D,B) then
10: Total← Total + 1
11: if (x→ y) ∈ cID*(G,Σ,D,B, PForder, IDmethod) then
12: PFTotal← PFTotal + 1
13: end if
14: end if
15: end for
16: end for
17: end for
18: return PFtotal

Total

Algorithm 5 Push forward each bidirected edge once.
1: function PFo(G,Σ,B,D)
2: let By represent subset of B where all edges have y as end point

(By = {(x↔ y) ∈ B,∀x})
3: G ← {(G,Σ)}
4: for each node y ∈ G do
5: for bidirected edge εxy ∈ By do
6: if x /∈ De(y) or δyx ∈ D then
7: add PF(G,Σ,D, εxy, x) to G
8: end if
9: end for
10: end for
11: return G
12: end function

174



Algorithm 6 Push forward all subsets once.
1: function PFs(G,Σ,B,D)
2: let By represent subset of B where all edges have y as end point

(By = {(x↔ y) ∈ B,∀x})
3: G ← {(G,Σ)}
4: for each node y do
5: for each B′y ⊆ By do
6: 〈G′,Σ′〉 ← 〈G,Σ〉
7: for each εxy ∈ B′y do
8: if x /∈ De(y) or δyx ∈ D then
9: 〈G′,Σ′〉 ←PF(G′,Σ′,D, εxy, x)
10: for all z ∈ Ch(x) do
11: if λxz /∈ D then
12: remove εzy from B′y if it was not yet processed.
13: end if
14: end for
15: end if
16: end for
17: add 〈G′,Σ′〉 to G
18: end for
19: end for
20: return G
21: end function
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Algorithm 7 Push forward in topological order.
1: function PFt(G,Σ,B,D)
2: let By represent subset of B where all edges have y as end point

(By = {(x↔ y) ∈ B,∀x})
3: G ← {(G,Σ)}
4: for each node y do
5: 〈G′,Σ′〉 ← 〈G,Σ〉
6: for each εxy ∈ By in topological order on x do
7: if x /∈ De(y) or δyx ∈ D then
8: 〈G′,Σ′〉 ←PF(G′,Σ′,D, εxy, x)
9: add 〈G′,Σ′〉 to G
10: for all z ∈ Ch(x) do
11: if λxz /∈ D then
12: remove εzy from By if it was not yet processed.
13: else
14: add εzy to By
15: end if
16: end for
17: end if
18: end for
19: end for
20: return G ∪ PFo(G,Σ,B,D)
21: end function
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Algorithm 8 Push forward all subsets recursively.
1: function PFr(G,Σ,B,D)
2: let By represent subset of B where all edges have y as end point

(By = {(x↔ y) ∈ B,∀x})
3: initialize G ← {(G,Σ, ∅)}
4: for each node y do
5: PushSets← {〈G,Σ, B′y〉 for all B′y ⊆ By}
6: while PushSets not empty do
7: pop 〈G′,Σ′, B′y〉 from PushSets
8: PushAgain← {}
9: for each εxy ∈ B′y do
10: if x /∈ De(y) or δyx ∈ D then
11: 〈G′,Σ′〉 ←PF(G′,Σ′,D, εxy, x)
12: for all z ∈ Ch(x) do
13: if λxz /∈ D then
14: remove εzy from B′y if it was not yet processed.
15: else
16: add εzy to PushAgain
17: end if
18: end for
19: end if
20: end for
21: add 〈G′,Σ′〉 to G
22: for allB′′y ⊆ PushAgain do
23: add 〈G′,Σ′, B′′y 〉 to PushSets
24: end for
25: end while
26: end for
27: return G
28: end function
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Figure 7.3: An interesting missed case example. Here λxy is εcm-identifiable. All examples
can be found in Tables 7.2 and 7.3.
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Graph Target Quantity Sensitivity Parameters
1 1→2 1→3 1→4 2→4 1↔3 1↔4 2↔4 1→3 1↔4
2 1→2 1→3 1→4 2→4 1↔3 1↔4 2↔4 1→3 1↔4 1→2
3 1→2 1→3 1→4 2→4 1↔3 1↔4 2↔4 3↔4 1→3 1↔4 3↔4
4 1→2 1→3 1→4 2→4 1↔3 1↔4 2↔4 3↔4 1→3 1↔4 3↔4 1→2
5 1→2 1→3 1→4 2→4 3→4 1↔3 1↔4 2↔4 1→3 1↔4 3→4
6 1→2 1→3 1→4 2→4 3→4 1↔3 1↔4 2↔4 1→3 1↔4 1→2 3→4
7 1→2 1→3 1→4 2→4 3→4 1↔3 1↔4 2↔4 3↔4 1→3 1↔4 3↔4 3→4
8 1→2 1→3 1→4 2→4 3→4 1↔3 1↔4 2↔4 3↔4 1→3 1↔4 3↔4 1→2 3→4
9 1→2 1→3 2→3 1→4 2→4 1↔3 1↔4 2↔4 1→3 1↔4
10 1→2 1→3 2→3 1→4 2→4 1↔3 1↔4 2↔4 1→3 1↔4 2→3
11 1→2 1→3 2→3 1→4 2→4 1↔3 1↔4 2↔4 1→3 1↔4 1→2
12 1→2 1→3 2→3 1→4 2→4 1↔3 1↔4 2↔4 1→3 1↔4 1→2 2→3
13 1→2 1→3 2→3 1→4 2→4 1↔3 1↔4 2↔4 3↔4 1→3 1↔4 3↔4
14 1→2 1→3 2→3 1→4 2→4 1↔3 1↔4 2↔4 3↔4 1→3 1↔4 3↔4 2→3
15 1→2 1→3 2→3 1→4 2→4 1↔3 1↔4 2↔4 3↔4 1→3 1↔4 3↔4 1→2
16 1→2 1→3 2→3 1→4 2→4 1↔3 1↔4 2↔4 3↔4 1→3 1↔4 3↔4 1→2 2→3
17 1→2 1→3 2→3 1→4 2→4 3→4 1↔3 1↔4 2↔4 1→3 1↔4 3→4
18 1→2 1→3 2→3 1→4 2→4 3→4 1↔3 1↔4 2↔4 1→3 1↔4 3→4 1→2
19 1→2 1→3 2→3 1→4 2→4 3→4 1↔3 1↔4 2↔4 1→3 1↔4 2→3 3→4
20 1→2 1→3 2→3 1→4 2→4 3→4 1↔3 1↔4 2↔4 1→3 1↔4 2→3 3→4 1→2
21 1→2 1→3 2→3 1→4 2→4 3→4 1↔3 1↔4 2↔4 3↔4 1→3 1↔4 3↔4 3→4
22 1→2 1→3 2→3 1→4 2→4 3→4 1↔3 1↔4 2↔4 3↔4 1→3 1↔4 3↔4 3→4 1→2
23 1→2 1→3 2→3 1→4 2→4 3→4 1↔3 1↔4 2↔4 3↔4 1→3 1↔4 3↔4 2→3 3→4
24 1→2 1→3 2→3 1→4 2→4 3→4 1↔3 1↔4 2↔4 3↔4 1→3 1↔4 3↔4 2→3 3→4 1→2
25 1→2 1→3 2→3 2→4 3→4 1↔3 2↔3 1↔4 2→4 1↔3
26 1→2 1→3 2→3 2→4 3→4 1↔3 2↔3 1↔4 2→4 1↔3 1→2
27 1→2 1→3 2→3 2→4 3→4 1↔3 2↔3 1↔4 3→4 1↔3
28 1→2 1→3 2→3 2→4 3→4 1↔3 2↔3 1↔4 3→4 1↔3 1→2
29 1→2 1→3 2→3 2→4 3→4 1↔3 2↔3 1↔4 3↔4 2→4 1↔3 3↔4
30 1→2 1→3 2→3 2→4 3→4 1↔3 2↔3 1↔4 3↔4 2→4 1↔3 3↔4 1→2
31 1→2 1→3 2→3 2→4 3→4 1↔3 2↔3 1↔4 3↔4 3→4 1↔3 3↔4
32 1→2 1→3 2→3 2→4 3→4 1↔3 2↔3 1↔4 3↔4 3→4 1↔3 3↔4 1→2
33 1→2 1→3 2→3 1→4 1↔3 2↔3 1↔4 1→4 1↔3
34 1→2 1→3 2→3 1→4 1↔3 2↔3 1↔4 1→4 1↔3 1→2
35 1→2 1→3 2→3 1→4 1↔3 2↔3 1↔4 3↔4 1→4 1↔3 3↔4
36 1→2 1→3 2→3 1→4 1↔3 2↔3 1↔4 3↔4 1→4 1↔3 3↔4 1→2
37 1→2 1→3 2→3 1→4 3→4 1↔3 2↔3 1↔4 1→4 1↔3
38 1→2 1→3 2→3 1→4 3→4 1↔3 2↔3 1↔4 1→4 1↔3 3→4
39 1→2 1→3 2→3 1→4 3→4 1↔3 2↔3 1↔4 1→4 1↔3 1→2
40 1→2 1→3 2→3 1→4 3→4 1↔3 2↔3 1↔4 1→4 1↔3 1→2 3→4
41 1→2 1→3 2→3 1→4 3→4 1↔3 2↔3 1↔4 3↔4 1→4 1↔3 3↔4
42 1→2 1→3 2→3 1→4 3→4 1↔3 2↔3 1↔4 3↔4 1→4 1↔3 3↔4 3→4
43 1→2 1→3 2→3 1→4 3→4 1↔3 2↔3 1↔4 3↔4 1→4 1↔3 3↔4 1→2
44 1→2 1→3 2→3 1→4 3→4 1↔3 2↔3 1↔4 3↔4 1→4 1↔3 3↔4 1→2 3→4
45 1→2 1→3 2→3 1→4 2→4 1↔3 2↔3 1↔4 1→4 1↔3
46 1→2 1→3 2→3 1→4 2→4 1↔3 2↔3 1↔4 1→4 1↔3 2→4
47 1→2 1→3 2→3 1→4 2→4 1↔3 2↔3 1↔4 1→4 1↔3 1→2
48 1→2 1→3 2→3 1→4 2→4 1↔3 2↔3 1↔4 1→4 1↔3 1→2 2→4
49 1→2 1→3 2→3 1→4 2→4 1↔3 2↔3 1↔4 3↔4 1→4 1↔3 3↔4
50 1→2 1→3 2→3 1→4 2→4 1↔3 2↔3 1↔4 3↔4 1→4 1↔3 3↔4 2→4

Table 7.2: Missed sensitivity queries of PushForward in topological order, in combination
with a complete identification algorithm for directed edges. Part 1.
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Graph Target Quantity Sensitivity Parameters
51 1→2 1→3 2→3 1→4 2→4 1↔3 2↔3 1↔4 3↔4 1→4 1↔3 3↔4 1→2
52 1→2 1→3 2→3 1→4 2→4 1↔3 2↔3 1↔4 3↔4 1→4 1↔3 3↔4 1→2 2→4
53 1→2 1→3 2→3 1→4 2→4 3→4 1↔3 2↔3 1↔4 1→4 1↔3 3→4
54 1→2 1→3 2→3 1→4 2→4 3→4 1↔3 2↔3 1↔4 1→4 1↔3 3→4 1→2
55 1→2 1→3 2→3 1→4 2→4 3→4 1↔3 2↔3 1↔4 1→4 1↔3 2→4
56 1→2 1→3 2→3 1→4 2→4 3→4 1↔3 2↔3 1↔4 1→4 1↔3 1→2 2→4
57 1→2 1→3 2→3 1→4 2→4 3→4 1↔3 2↔3 1↔4 1→4 1↔3 3→4 2→4
58 1→2 1→3 2→3 1→4 2→4 3→4 1↔3 2↔3 1↔4 1→4 1↔3 3→4 1→2 2→4
59 1→2 1→3 2→3 1→4 2→4 3→4 1↔3 2↔3 1↔4 1→4 1↔3 1↔4
60 1→2 1→3 2→3 1→4 2→4 3→4 1↔3 2↔3 1↔4 1→4 1↔3 1↔4 1→2
61 1→2 1→3 2→3 1→4 2→4 3→4 1↔3 2↔3 1↔4 2→4 1↔3 1→4
62 1→2 1→3 2→3 1→4 2→4 3→4 1↔3 2↔3 1↔4 2→4 1↔3 1→2 1→4
63 1→2 1→3 2→3 1→4 2→4 3→4 1↔3 2↔3 1↔4 2→4 1↔3 1↔4
64 1→2 1→3 2→3 1→4 2→4 3→4 1↔3 2↔3 1↔4 2→4 1↔3 1↔4 1→2
65 1→2 1→3 2→3 1→4 2→4 3→4 1↔3 2↔3 1↔4 3→4 1↔3 1→4
66 1→2 1→3 2→3 1→4 2→4 3→4 1↔3 2↔3 1↔4 3→4 1↔3 1→2 1→4
67 1→2 1→3 2→3 1→4 2→4 3→4 1↔3 2↔3 1↔4 3→4 1↔3 1↔4
68 1→2 1→3 2→3 1→4 2→4 3→4 1↔3 2↔3 1↔4 3→4 1↔3 1↔4 1→2
69 1→2 1→3 2→3 1→4 2→4 3→4 1↔3 2↔3 1↔4 3↔4 1→4 1↔3 3↔4 3→4
70 1→2 1→3 2→3 1→4 2→4 3→4 1↔3 2↔3 1↔4 3↔4 1→4 1↔3 3↔4 3→4 1→2
71 1→2 1→3 2→3 1→4 2→4 3→4 1↔3 2↔3 1↔4 3↔4 1→4 1↔3 3↔4 2→4
72 1→2 1→3 2→3 1→4 2→4 3→4 1↔3 2↔3 1↔4 3↔4 1→4 1↔3 3↔4 1→2 2→4
73 1→2 1→3 2→3 1→4 2→4 3→4 1↔3 2↔3 1↔4 3↔4 1→4 1↔3 3↔4 3→4 2→4
74 1→2 1→3 2→3 1→4 2→4 3→4 1↔3 2↔3 1↔4 3↔4 1→4 1↔3 3↔4 3→4 1→2 2→4
75 1→2 1→3 2→3 1→4 2→4 3→4 1↔3 2↔3 1↔4 3↔4 1→4 1↔3 1↔4 3↔4
76 1→2 1→3 2→3 1→4 2→4 3→4 1↔3 2↔3 1↔4 3↔4 1→4 1↔3 1↔4 3↔4 1→2
77 1→2 1→3 2→3 1→4 2→4 3→4 1↔3 2↔3 1↔4 3↔4 2→4 1↔3 3↔4 1→4
78 1→2 1→3 2→3 1→4 2→4 3→4 1↔3 2↔3 1↔4 3↔4 2→4 1↔3 3↔4 1→2 1→4
79 1→2 1→3 2→3 1→4 2→4 3→4 1↔3 2↔3 1↔4 3↔4 2→4 1↔3 1↔4 3↔4
80 1→2 1→3 2→3 1→4 2→4 3→4 1↔3 2↔3 1↔4 3↔4 2→4 1↔3 1↔4 3↔4 1→2
81 1→2 1→3 2→3 1→4 2→4 3→4 1↔3 2↔3 1↔4 3↔4 3→4 1↔3 3↔4 1→4
82 1→2 1→3 2→3 1→4 2→4 3→4 1↔3 2↔3 1↔4 3↔4 3→4 1↔3 3↔4 1→2 1→4
83 1→2 1→3 2→3 1→4 2→4 3→4 1↔3 2↔3 1↔4 3↔4 3→4 1↔3 1↔4 3↔4
84 1→2 1→3 2→3 1→4 2→4 3→4 1↔3 2↔3 1↔4 3↔4 3→4 1↔3 1↔4 3↔4 1→2
85 1→2 2→3 2→4 3→4 1↔2 1↔4 3↔4 1→2 1↔4
86 1→2 2→3 2→4 3→4 1↔2 1↔4 3↔4 1→2 1↔4 2→3
87 1→2 2→3 2→4 3→4 1↔2 1↔4 2↔4 3↔4 1→2 1↔4 2↔4
88 1→2 2→3 2→4 3→4 1↔2 1↔4 2↔4 3↔4 1→2 1↔4 2↔4 2→3
89 1→2 2→3 1→4 2→4 3→4 1↔2 1↔4 3↔4 1→2 1↔4 1→4
90 1→2 2→3 1→4 2→4 3→4 1↔2 1↔4 3↔4 1→2 1↔4 2→3 1→4
91 1→2 2→3 1→4 2→4 3→4 1↔2 1↔4 2↔4 3↔4 1→2 1↔4 2↔4 1→4
92 1→2 2→3 1→4 2→4 3→4 1↔2 1↔4 2↔4 3↔4 1→2 1↔4 2↔4 2→3 1→4
93 1→2 1→3 1→4 3→4 1↔2 1↔4 3↔4 1→2 1↔4
94 1→2 1→3 1→4 3→4 1↔2 1↔4 3↔4 1→2 1↔4 1→3
95 1→2 1→3 1→4 3→4 1↔2 1↔4 2↔4 3↔4 1→2 1↔4 2↔4
96 1→2 1→3 1→4 3→4 1↔2 1↔4 2↔4 3↔4 1→2 1↔4 2↔4 1→3
97 1→2 1→3 1→4 2→4 3→4 1↔2 1↔4 3↔4 1→2 1↔4 2→4
98 1→2 1→3 1→4 2→4 3→4 1↔2 1↔4 3↔4 1→2 1↔4 1→3 2→4
99 1→2 1→3 1→4 2→4 3→4 1↔2 1↔4 2↔4 3↔4 1→2 1↔4 2↔4 2→4
100 1→2 1→3 1→4 2→4 3→4 1↔2 1↔4 2↔4 3↔4 1→2 1↔4 2↔4 1→3 2→4

Table 7.3: Missed sensitivity queries of PushForward in topological order, in combination
with a complete identification algorithm for directed edges. Part 2.
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7.4 Appendix for Chapter 5

7.4.1 An example with continuous treatment

Here we provide a simple example in which, although the treatment variable is continuous, the

relevant dependencies among potential outcomes are still amenable to graphical representation.

Suppose we have the same selection diagram as in Figure 5.2b, but now let X, B, and H

all be continuous variables. Next, consider the following functional specification for the

structural equation of Y ,

Y = I(H > 0) ∨ I(X ×B > 0) (7.130)

Where I(·) denotes the indicator function. Now note from Equation 7.130 we can derive the

potential outcomes Y0 = I(H > 0) for x = 0, and, Yx = I(H > 0)∨I(xB > 0) = Y0∨I(xB >

0), for x 6= 0. We can thus draw the same modified selection diagram as in Figure 5.3, but

now replacing Y1 with Yx, leading to the conclusion that Yx ⊥⊥ S | Y0, for all x 6= 0.

7.4.2 Proofs

7.4.2.1 Bounds with a single source population

Here we show how to obtain the bounds of Theorem 2. To simplify notation, let Pij :=

P (Yi = j), P ∗ij := P ∗(Yi = j), PS10 := P ∗(Y1 = 0|Y0 = 1) = P (Y1 = 0|Y0 = 1) and

PS01 = P ∗(Y1 = 1|Y0 = 0) = P (Y1 = 1|Y0 = 0). The target function to be optimized is P ∗11,

which can be written as,

P ∗11 = (1− PS10)P
∗
01 + PS01(1− P ∗01) (7.131)

Our goal is to pick PS10 and PS01 such that it maximizes (or minimizes) Equation 7.131

subject to the following constraints: (i) PS10 and PS01 need to be between zero and one (since

PS10 and PS01 need to be valid probabilities); and, (ii) PS10 and PS01 must conform to the
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observed results of the trial in the source domain, that is, P11 = (1−PS10)P01 +PS01(1−P01).

Thus, our optimization problem is,

max
PS10,PS01

P ∗11 = (1− PS10)P
∗
01 + PS01(1− P ∗01)

s.t. P11 = (1− PS10)P01 + PS01(1− P01)

and 0 ≤ PS10 ≤ 1, 0 ≤ PS01 ≤ 1

To simplify the problem, we can use the equality constraint P11 = (1−PS10)P01+PS01(1−P01)

to eliminate one of the variables. For instance, writing PS10 in terms of PS01 gives us,

1− PS10 =
P11 − PS01(1− P01)

P01

(7.132)

Which results in a new target function,

P ∗11 = (1− PS10)P
∗
01 + PS01(1− P ∗01) (7.133)

=

(
P11 − PS01(1− P01)

P01

)
P ∗01 + PS01(1− P ∗01) (7.134)

=

(
P11

P01

)
P ∗01 +

(
P01 − P ∗01

P01

)
PS01 (7.135)

= RR× P ∗01 +

(
P01 − P ∗01

P01

)
PS01 (7.136)

Where RR = P11

P01
is the causal risk-ratio in the trial of the source domain Π. Since 0 ≤

(1− PS10) ≤ 1, the substitution also results in additional constraints on PS01,

P11 − P01

1− P01

≤ PS01 ≤
P11

1− P01

(7.137)

Thus, define the lower and upper bounds on PS01 as

PSL01 = max

{
0,
P11 − P01

1− P01

}
, PSU01 = min

{
P11

1− P01

, 1

}
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Our new maximization problem can be written as,

max
PS01

RR× P ∗01 +

(
P01 − P ∗01

P01

)
PS01 s.t. PSL01 ≤ PS01 ≤ PSU01 (7.138)

Since the target function is linear, the maximum occurs at the extreme points of PS01. The

same reasoning holds for the minimization problem. Thus, we have that,

P ∗L11 ≤ P ∗11 ≤ P ∗U11

Where,

P ∗L11 = RR× P ∗01 + min

{(
P01 − P ∗01

P01

)
PSL01,

(
P01 − P ∗01

P01

)
PSU01

}

and

P ∗U11 = RR× P ∗01 + max

{(
P01 − P ∗01

P01

)
PSL01,

(
P01 − P ∗01

P01

)
PSU01

}

7.4.2.2 Informativeness of the bounds

We now derive the width of the bounds for P ∗11 for the case when the bounds for PS01 do not

reach 0 nor 1 (this will happen when both P11 > P01 and P11 < 1− P01). Define the width

W of the bounds as the difference between the upper and lower bound of P ∗11, that is,

W = P ∗U11 − P ∗L11
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Expanding the terms we obtain,

W = P ∗U11 − P ∗L11 (7.139)

=

∣∣∣∣(P01 − P ∗01
P01

)
PSU01 −

(
P01 − P ∗01

P01

)
PSL01

∣∣∣∣ (7.140)

=
|P01 − P ∗01|

P01

×
(
PSU01 − PSL01

)
(7.141)

=
|P01 − P ∗01|

P01

× P01

1− P01

(7.142)

=
|P01 − P ∗01|

1− P01

(7.143)

Thus, when the bounds for PS01 are “interior,” the informativeness of the bounds depends

only on P01 and P ∗01. Moreover, even if the bounds for PS01 are “wide,” the bounds for P ∗11

may be “narrow,” provided the baseline risks of the source and target population are close

enough.

7.4.2.3 Identification with multiple source domains

We now show how to obtain the identification results of Theorem 3 and 4. Consider

two source populations Πa and Πb. Again, to simplify notation, let P a
ij := P a(Yi = j),

P b
ij := P a(Yi = j), PS10 := P a(Y1 = 0|Y0 = 1) = P b(Y1 = 0|Y0 = 1) = P ∗(Y1 = 0|Y0 = 1) and

PS01 := P a(Y1 = 1|Y0 = 0) = P b(Y1 = 1|Y0 = 0) = P ∗(Y1 = 1|Y0 = 0).

First note that PS10 and PS01 are identified from the experimental data in Πa and Πb.

Using the law of total probability for P a
11 and P b

11 write,

P a
11 = (1− PS10)× P a

01 + PS01 × P a
00 (7.144)

P b
11 = (1− PS10)× P b

01 + PS01 × P b
00 (7.145)
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We thus have a system of two equations and two unknowns,

P a
01 P a

00

P b
01 P b

00

(1− PS10)

PS01

 =

P a
11

P b
11

 (7.146)

Yielding the solution,

(1− PS10)

PS01

 =
1

P a
01P

b
00 − P b

01P
a
00

×

 P b
00 −P a

00

−P b
01 P a

01

P a
11

P b
11

 (7.147)

Which amounts to:

PS10 = 1− P a
11P

b
00 − P b

11P
a
00

P a
01P

b
00 − P b

01P
a
00

(7.148)

PS01 =
P b
11P

a
01 − P a

11P
b
01

P a
01P

b
00 − P b

01P
a
00

(7.149)

All values of the RHS can be computed from the experimental data of Πa and Πb. Note

that, since PS10 and PS01 must be between 0 and 1, not all solutions are valid. Therefore,

two domains already entail some testable implications—if either PS10 and PS01 are not valid

probabilities, this means that the assumption that the probabilities of sufficiency are invariant

across domains is false. If we add a third or more source domains, it is easy to see that

we will have three or more equations but still only two unknowns, and the system is thus

over-identified.

Once in possession of PS10 and PS01, we can transport the causal effect to the target

population Π∗ by appealing again to the law of total probability,

P ∗11 = (1− PS10)× P ∗01 + PS01 × P ∗00 (7.150)

=
P a
11P

b
00 − P b

11P
a
00

P a
01P

b
00 − P b

01P
a
00

× P ∗01 +
P b
11P

a
01 − P a

11P
b
01

P a
01P

b
00 − P b

01P
a
00

× P ∗00 (7.151)

Finally, we note that all probabilities of causation, as discussed in [137], are also identifiable

in this setting. First, consider the probability of necessity and sufficiency, PNS = P (Y1 =
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1, Y0 = 0) for Πa. Using the chain rule, PNS can be written as,

P a(Y1 = 1, Y0 = 0) = P a(Y1 = 1 | Y0 = 0)P a(Y0 = 0) (7.152)

= PS01 × P a(Y0 = 0) (7.153)

Note PS01 was already identified, and P a(Y0 = 0) is given by the trial data in Πa, thus

rendering PNSa identifiable. Similar reasoning holds for Πb.

For the probability of necessity, define PN01 := P (Y0 = 0 | Y1 = 1). Due to the

randomization of X, PN01 coincides with Tian and Pear’s probability of necessity during the

trial (not the observational PN), by the same argument we provide for PS in the main text.

The final step is to note that,

P a(Y0 = 0 | Y1 = 1) =
P a(Y0 = 0, Y1 = 1)

P a(Y1 = 1)
=

PNSa

P a(Y1 = 1)

The numerator is simply the PNS, which we have already identified, and the denominator is

given by the trial data in Πa. Again, analogous argument can be given for Πb.

7.4.3 Modeling functional constraints

To illustrate the usefulness of explicitly modeling functional constraints in a structural

framework, we apply the same modeling strategy of the paper in an example described in [78]:

Consider a team of investigators who are interested in the effect of antibiotic treatment

on mortality in patients with a specific bacterial infection (. . . ) the investigators believe

that the response to this antibiotic is completely determined by an unmeasured bacterial

gene, such that only those who are infected with a bacterial strain with this gene respond

to treatment. The prevalence of this bacterial gene is equal between populations, because

the populations share the same bacterial ecosystem (. . . ) if the investigators further

believe that the gene for susceptibility reduces the mortality in the presence of antibiotics,

but has no effect in the absence of antibiotics, they will conclude that G may be equal

between populations.
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Here the conclusion that G may be equal between populations is equivalent to claiming

Y1 ⊥⊥ S | Y0. But is the description above sufficient for substantiating this claim? Figure 7.4

shows two models compatible with the description, yet leading to two opposite conclusions.

Y

Y1

BG

A

Y0

U

S

(a)

Y

Y1

BG

A

Y0

U

S

(b)

Figure 7.4: Two selection diagrams compatible with the verbal description of [78, page 11].
Yet, model (a) implies Y1 ⊥⊥ S | Y0, and model (b) implies the opposite; conditioning on Y0
opens the colliding path S → U ↔ BG→ Y1.

Let the variable A represent the binary treatment (antibiotic), Y represent the binary

outcome (mortality), BG stand for the presence or absence of the “bacterial gene” and finally

let U be a binary variable that summarizes all other factors that may cause death (Y = 1).

The description of the problem suggests the functional specification,

Y = U ∧ (¬A ∨ ¬BG) (7.154)

showing the antibiotics and the bacterial gene both helping to reduce mortality (¬ denotes the

logical “not”). Equation 7.154 entails the potential outcomes Y0 = U and Y1 = U ∧ (¬BG) =

Y0 ∧ (¬BG), which are explicitly shown in both diagrams as dictated by the functional

specification. Moreover, in both models the prevalence of the bacterial gene BG is equal

between populations (i.e., BG ⊥⊥ S). In the model of Figure 7.4a, as in our previous analysis,

we indeed conclude that Y1 ⊥⊥ S | Y0, and that P ∗(Y1) is transportable. However, in the

model of Figure 7.4b, there is an unmeasured confounder between BG and U .3 Conditioning

on Y0 (a child of a collider) opens the colliding path S → U ↔ BG→ Y1, thus not licensing

3This could arise, for instance, as a result of population stratification.
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the independence Y1 ⊥⊥ S | Y0.

7.4.4 Bayesian estimation

7.4.4.1 Multiple source domains

In this section we show how to extend the probabilistic graphical model of Section 5.4 to two

or more sources. Let us start with two source populations Πa and Πb, and one target domain

Π∗. The observed data is now D = {na0, na1, n∗0, nb0, nb1}, all with binomial distributions:

na0 ∼ Binomial(Na
0 , P

a
01) (7.155)

na1 ∼ Binomial(Na
1 , P

a
11) (7.156)

n∗0 ∼ Binomial(N∗0 , P
∗
01) (7.157)

nb0 ∼ Binomial(N b
0 , P

b
01) (7.158)

nb1 ∼ Binomial(N b
1 , P

b
11) (7.159)

We also have the following deterministic relationships for P a
11, P b

11 and P ∗11:

P a
11 = (1− PS10)P

a
01 + PS01(1− P a

01) (7.160)

P b
11 = (1− PS10)P

b
01 + PS01(1− P b

01) (7.161)

P ∗11 = (1− PS10)P
∗
01 + PS01(1− P ∗01) (7.162)

The probabilistic graphical model for this case is shown in Figure 7.5.

Thus, one needs to place priors on the parent nodes only, and then perform inference

as before. The extension to more than two populations follows the same logic. It is worth

noting that, as we have seen in Section 5.3, with two or more source populations the model

entails testable implications. Therefore, we advise researchers to check whether the data is

compatible with the model [68].

Finally, similarly to the discussion in Section 5.4, a simpler modeling alternative here is
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P a01

na0

P a11

na1

PS10

P ∗01

n∗0

P ∗11 P b11

PS01

nb1

P b01

nb0

Figure 7.5: Probabilistic graphical model with two source populations Πa, Πb and one target
population Π∗. Gray nodes (na0, na1, n∗0, nb0, nb1) denote observed variables. White notes
denote latent parameters (P a

01, P a
11, PS10, PS01, P ∗11, P ∗01, P b

11, P b
01). Note that P a

11, P ∗11 and
P b
11 share the parameters PS10 and PS01, which are invariant across populations.

to place priors only on the parameters of the observed data directly, and make inferences

using the posterior of the functionals of the observed data that identify the target quantities.

7.4.4.2 Replication code

Here we provide R code to replicate the estimation examples using JAGS [115] and the

package rjags [114].

# Set up -------------------------------------------------------

## Cleans workspace

rm(list = ls())

## Loads necessary R packages

library(rjags)

## JAGS models

model_one_source <-

"model{
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# Likelihood

n0 ~ dbinom(p01, N0)

n1 ~ dbinom(p11, N1)

n0s ~ dbinom(p01s, N0s)

# Priors

PS10 ~ dbeta(1,1)

PS01 ~ dbeta(1,1)

p01 ~ dbeta(1, 1)

p01s ~ dbeta(1, 1)

# Computed quantities

p11 <- (1-PS10)*p01 + PS01*(1-p01)

p11s <- (1-PS10)*p01s + PS01*(1-p01s)

rd <- p11s - p01s

rr <- p11s/p01s

# bounds

PS01_l <- max(0, (p11-p01)/(1-p01))

PS01_u <- min(p11/(1-p01), 1)

p11_1 <- (1-p01s/p01)*PS01_l + (p01s/p01)*p11

p11_2 <- (1-p01s/p01)*PS01_u + (p01s/p01)*p11

p11_l <- min(p11_1, p11_2)

p11_u <- max(p11_1, p11_2)

rd_l <- p11_l - p01s

rr_l <- p11_l/p01s

}"

model_one_source_monotonic <-
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"model{

# Likelihood

n0 ~ dbinom(p01, N0)

n1 ~ dbinom(p11, N1)

n0s ~ dbinom(p01s, N0s)

# Priors

PS10 <- 0

PS01 ~ dbeta(1,1)

p01 ~ dbeta(1, 1)

p01s ~ dbeta(1, 1)

# Computed quantities

p11 <- (1-PS10)*p01 + PS01*(1-p01)

p11s <- (1-PS10)*p01s + PS01*(1-p01s)

rd <- p11s - p01s

rr <- p11s/p01s

}"

model_two_sources <- "model{

# Likelihood

n0a ~ dbinom(p01a, N0a)

n0b ~ dbinom(p01b, N0b)

n0c ~ dbinom(p01c, N0c)

n1a ~ dbinom(p11a, N1a)

n1b ~ dbinom(p11b, N1b)
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# Priors

p01a ~ dbeta(1, 1)

p01b ~ dbeta(1, 1)

p01c ~ dbeta(1, 1)

PS10 ~ dbeta(1, 1)

PS01 ~ dbeta(1, 1)

# Computed quantities

p11a <- (1-PS10)*p01a + PS01*(1-p01a)

p11b <- (1-PS10)*p01b + PS01*(1-p01b)

p11c <- (1-PS10)*p01c + PS01*(1-p01c)

rra <- (p11a)/(p01a)

rrb <- (p11b)/(p01b)

rrc <- (p11c)/(p01c)

}"

# Simulated data example ---------------------------------------

loop_n <- c(1e2, 1e3, 1e4)

### Without monotonicity

par(mfrow = c(1, 3))

for(n in loop_n){

# creates data

data <- list(

N0 = n,

n0 = sum(rbinom(n, 1, prob = 0.01)),

N1 = n,

n1 = sum(rbinom(n, 1, prob = 0.175)),
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N0s = n,

n0s = sum(rbinom(n, 1, prob = 0.05))

)

# posterior samples

model <- jags.model(textConnection(model_one_source),

data = data)

samples <- coda.samples(model = model,

variable.names = c("p01","p01s", "p11","p11s"),

n.iter = 100000)

samp.data <- as.data.frame(samples[[1]])

hist(samp.data$p11s,

main = "",

xlim = c(0, .4),

yaxt = "n",

xaxt = "n",

xlab = paste0("n = ", n),

ylab = "",

col = "gray")

labs <- round(quantile(data$p11s, c(0.025, 0.975)), 2)

axis(side = 1, at = c(0, labs, .4))

}

### With monotonicity

par(mfrow = c(1, 3))
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for(n in loop_n){

data <- list(

N0 = n,

n0 = sum(rbinom(n, 1, prob = 0.01)),

N1 = n,

n1 = sum(rbinom(n, 1, prob = 0.175)),

N0s = n,

n0s = sum(rbinom(n, 1, prob = 0.05))

)

# posterior samples

model <- jags.model(textConnection(model_one_source_monotonic),

data = data)

samples <- coda.samples(model = model,

variable.names = c("p01","p01s", "p11","p11s"),

n.iter = 100000)

samp.data <- as.data.frame(samples[[1]])

hist(samp.data$p11s,

main = "",

xlim = c(0, .4),

yaxt = "n",

xaxt = "n",

xlab = paste0("n = ", n),

ylab = "",

col = "gray")
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labs <- round(quantile(data$p11s, c(0.025, 0.975)), 2)

axis(side = 1, at = c(0, labs, .4))

}

# Vitamin A example --------------------------------------------

### Vitamin A data

### Aceh study

Aceh <- data.frame(N0 = 12209,

n0 = 12079,

N1 = 12991,

n1 = 12890)

### West Java study

West.Java <- data.frame(N0 = 5445,

n0 = 5195,

N1 = 5775,

n1 = 5589)

### Sarlahi Study

Sarlahi <- data.frame(N0 = 14143,

n0 = 13933,

N1 = 14487,

n1 = 14335)

## Transporting: Aceh -> West Java

### Data

data <- list(N0 = Aceh$N0,

n0 = Aceh$n0,
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N1 = Aceh$N1,

n1 = Aceh$n1,

N0s = West.Java$N0,

n0s = West.Java$n0)

### Posterior samples bounds

model.bounds <- jags.model(textConnection(model_one_source),

data = data, n.chains = 4, n.adapt = 1e3)

## burn-in

update(model.bounds, n.iter = 1e4)

## samples

samp.bounds <- coda.samples(model.bounds,

variable.names = c("p01","p01s", "p11",

"PS01", "PS10", "p11s",

"rd", "rr",

"PS01_l", "PS01_u",

"p11_l", "p11_u",

"rd_l", "rr_l"),

n.iter = 100000)

summary(samp.bounds)

## extract data.frame

sim.bounds <- do.call("rbind", samp.bounds)

sim.bounds <- as.data.frame(sim.bounds)

### Posterior samples monotonic

model.monotonic <- jags.model(textConnection(model_one_source_monotonic),
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data = data, n.chains = 4, n.adapt = 1e3)

## burn-in

update(model.monotonic, n.iter = 1e4)

## samples

samp.monotonic <- coda.samples(model.monotonic,

variable.names = c("p01","p01s", "p11",

"PS01", "PS10", "p11s",

"rd", "rr"),

n.iter = 100000)

summary(samp.monotonic)

## extract data.frame

sim.monotonic <- do.call("rbind", samp.monotonic)

sim.monotonic <- as.data.frame(sim.monotonic)

## plot

par(mfrow = c(1, 2))

lims <- c(0.94,1)

mark <- West.Java$n1/West.Java$N1

hist(sim.bounds$p11s,

breaks = 50,

main = "",

xlim = lims,

yaxt = "n",

xlab = "Flat priors",

ylab = "",

col = "gray")

abline(v = mark, col = "red", lty = 2, lwd = 2)
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hist(sim.monotonic$p11s,

breaks = 50,

main = "",

xlim = lims,

yaxt = "n",

xlab = "Assuming monotonicity",

ylab = "",

col = "gray")

abline(v = mark, col = "red", lty = 2, lwd = 2)

## Transporting: Aceh + West Java -> Sarlahi

### Data

data2 <- list(N0a = Aceh$N0,

n0a = Aceh$n0,

N1a = Aceh$N1,

n1a = Aceh$n1,

N0b = West.Java$N0,

n0b = West.Java$n0,

N1b = West.Java$N1,

n1b = West.Java$n1,

N0c = Sarlahi$N0,

n0c = Sarlahi$n0)

### Posterior samples two sources

model2 <- jags.model(textConnection(model_two_sources),

data = data2, n.chains = 4, n.adapt = 1e3)

## burn in
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update(model2, n.iter = 1e4)

## samples

samp2 <- coda.samples(model2,

variable.names = c("p01a","p01b","p01c",

"p11a", "p11b","p11c",

"PS01", "PS10",

"rra", "rrb", "rrc"),

n.iter = 100000)

summary(samp2)

## extract data.frame

sim2 <- as.data.frame(samp2[[1]])

### Plot

par(mfrow = c(1, 3))

mark <- Sarlahi$n1/Sarlahi$N1

hist(sim2$PS01, xlim = c(0,1), breaks = 50,

yaxt = "n", col = "gray", main = "", xlab = "PS01", ylab = "")

hist(sim2$PS10, xlim = c(0, 0.1),

yaxt = "n", col = "gray", main = "", xlab = "PS10", ylab = "")

hist(sim2$p11c,

yaxt = "n", col = "gray", main = "", xlab = "P11*", ylab = "")

abline(v = mark, col = "red", lty = 2, lwd = 2)
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